]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/pagemap.h
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / include / linux / pagemap.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_PAGEMAP_H
3#define _LINUX_PAGEMAP_H
4
5/*
6 * Copyright 1995 Linus Torvalds
7 */
8#include <linux/mm.h>
9#include <linux/fs.h>
10#include <linux/list.h>
11#include <linux/highmem.h>
12#include <linux/compiler.h>
7c0f6ba6 13#include <linux/uaccess.h>
1da177e4 14#include <linux/gfp.h>
3e9f45bd 15#include <linux/bitops.h>
e286781d 16#include <linux/hardirq.h> /* for in_interrupt() */
8edf344c 17#include <linux/hugetlb_inline.h>
1da177e4
LT
18
19/*
9c5d760b 20 * Bits in mapping->flags.
1da177e4 21 */
9a896c9a 22enum mapping_flags {
9c5d760b
MH
23 AS_EIO = 0, /* IO error on async write */
24 AS_ENOSPC = 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
26 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
27 AS_EXITING = 4, /* final truncate in progress */
371a096e 28 /* writeback related tags are not used */
9c5d760b 29 AS_NO_WRITEBACK_TAGS = 5,
9a896c9a 30};
1da177e4 31
8ed1e46a
JL
32/**
33 * mapping_set_error - record a writeback error in the address_space
34 * @mapping - the mapping in which an error should be set
35 * @error - the error to set in the mapping
36 *
37 * When writeback fails in some way, we must record that error so that
38 * userspace can be informed when fsync and the like are called. We endeavor
39 * to report errors on any file that was open at the time of the error. Some
40 * internal callers also need to know when writeback errors have occurred.
41 *
42 * When a writeback error occurs, most filesystems will want to call
43 * mapping_set_error to record the error in the mapping so that it can be
44 * reported when the application calls fsync(2).
45 */
3e9f45bd
GC
46static inline void mapping_set_error(struct address_space *mapping, int error)
47{
8ed1e46a
JL
48 if (likely(!error))
49 return;
50
51 /* Record in wb_err for checkers using errseq_t based tracking */
52 filemap_set_wb_err(mapping, error);
53
54 /* Record it in flags for now, for legacy callers */
55 if (error == -ENOSPC)
56 set_bit(AS_ENOSPC, &mapping->flags);
57 else
58 set_bit(AS_EIO, &mapping->flags);
3e9f45bd
GC
59}
60
ba9ddf49
LS
61static inline void mapping_set_unevictable(struct address_space *mapping)
62{
63 set_bit(AS_UNEVICTABLE, &mapping->flags);
64}
65
89e004ea
LS
66static inline void mapping_clear_unevictable(struct address_space *mapping)
67{
68 clear_bit(AS_UNEVICTABLE, &mapping->flags);
69}
70
ba9ddf49
LS
71static inline int mapping_unevictable(struct address_space *mapping)
72{
088e5465 73 if (mapping)
89e004ea
LS
74 return test_bit(AS_UNEVICTABLE, &mapping->flags);
75 return !!mapping;
ba9ddf49 76}
ba9ddf49 77
91b0abe3
JW
78static inline void mapping_set_exiting(struct address_space *mapping)
79{
80 set_bit(AS_EXITING, &mapping->flags);
81}
82
83static inline int mapping_exiting(struct address_space *mapping)
84{
85 return test_bit(AS_EXITING, &mapping->flags);
86}
87
371a096e
HY
88static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
89{
90 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
91}
92
93static inline int mapping_use_writeback_tags(struct address_space *mapping)
94{
95 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
96}
97
dd0fc66f 98static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 99{
9c5d760b 100 return mapping->gfp_mask;
1da177e4
LT
101}
102
c62d2555
MH
103/* Restricts the given gfp_mask to what the mapping allows. */
104static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
105 gfp_t gfp_mask)
106{
107 return mapping_gfp_mask(mapping) & gfp_mask;
108}
109
1da177e4
LT
110/*
111 * This is non-atomic. Only to be used before the mapping is activated.
112 * Probably needs a barrier...
113 */
260b2367 114static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 115{
9c5d760b 116 m->gfp_mask = mask;
1da177e4
LT
117}
118
b745bc85 119void release_pages(struct page **pages, int nr, bool cold);
1da177e4 120
e286781d
NP
121/*
122 * speculatively take a reference to a page.
0139aa7b
JK
123 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
124 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
e286781d
NP
125 *
126 * This function must be called inside the same rcu_read_lock() section as has
127 * been used to lookup the page in the pagecache radix-tree (or page table):
0139aa7b 128 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
e286781d
NP
129 *
130 * Unless an RCU grace period has passed, the count of all pages coming out
131 * of the allocator must be considered unstable. page_count may return higher
132 * than expected, and put_page must be able to do the right thing when the
133 * page has been finished with, no matter what it is subsequently allocated
134 * for (because put_page is what is used here to drop an invalid speculative
135 * reference).
136 *
137 * This is the interesting part of the lockless pagecache (and lockless
138 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
139 * has the following pattern:
140 * 1. find page in radix tree
141 * 2. conditionally increment refcount
142 * 3. check the page is still in pagecache (if no, goto 1)
143 *
0139aa7b 144 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
e286781d
NP
145 * following (with tree_lock held for write):
146 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
147 * B. remove page from pagecache
148 * C. free the page
149 *
150 * There are 2 critical interleavings that matter:
151 * - 2 runs before A: in this case, A sees elevated refcount and bails out
152 * - A runs before 2: in this case, 2 sees zero refcount and retries;
153 * subsequently, B will complete and 1 will find no page, causing the
154 * lookup to return NULL.
155 *
156 * It is possible that between 1 and 2, the page is removed then the exact same
157 * page is inserted into the same position in pagecache. That's OK: the
158 * old find_get_page using tree_lock could equally have run before or after
159 * such a re-insertion, depending on order that locks are granted.
160 *
161 * Lookups racing against pagecache insertion isn't a big problem: either 1
162 * will find the page or it will not. Likewise, the old find_get_page could run
163 * either before the insertion or afterwards, depending on timing.
164 */
165static inline int page_cache_get_speculative(struct page *page)
166{
8375ad98 167#ifdef CONFIG_TINY_RCU
bdd4e85d 168# ifdef CONFIG_PREEMPT_COUNT
591a3d7c 169 VM_BUG_ON(!in_atomic() && !irqs_disabled());
e286781d
NP
170# endif
171 /*
172 * Preempt must be disabled here - we rely on rcu_read_lock doing
173 * this for us.
174 *
175 * Pagecache won't be truncated from interrupt context, so if we have
176 * found a page in the radix tree here, we have pinned its refcount by
177 * disabling preempt, and hence no need for the "speculative get" that
178 * SMP requires.
179 */
309381fe 180 VM_BUG_ON_PAGE(page_count(page) == 0, page);
fe896d18 181 page_ref_inc(page);
e286781d
NP
182
183#else
184 if (unlikely(!get_page_unless_zero(page))) {
185 /*
186 * Either the page has been freed, or will be freed.
187 * In either case, retry here and the caller should
188 * do the right thing (see comments above).
189 */
190 return 0;
191 }
192#endif
309381fe 193 VM_BUG_ON_PAGE(PageTail(page), page);
e286781d
NP
194
195 return 1;
196}
197
ce0ad7f0
NP
198/*
199 * Same as above, but add instead of inc (could just be merged)
200 */
201static inline int page_cache_add_speculative(struct page *page, int count)
202{
203 VM_BUG_ON(in_interrupt());
204
b560d8ad 205#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
bdd4e85d 206# ifdef CONFIG_PREEMPT_COUNT
591a3d7c 207 VM_BUG_ON(!in_atomic() && !irqs_disabled());
ce0ad7f0 208# endif
309381fe 209 VM_BUG_ON_PAGE(page_count(page) == 0, page);
fe896d18 210 page_ref_add(page, count);
ce0ad7f0
NP
211
212#else
fe896d18 213 if (unlikely(!page_ref_add_unless(page, count, 0)))
ce0ad7f0
NP
214 return 0;
215#endif
309381fe 216 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
ce0ad7f0
NP
217
218 return 1;
219}
220
44110fe3 221#ifdef CONFIG_NUMA
2ae88149 222extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 223#else
2ae88149
NP
224static inline struct page *__page_cache_alloc(gfp_t gfp)
225{
226 return alloc_pages(gfp, 0);
227}
228#endif
229
1da177e4
LT
230static inline struct page *page_cache_alloc(struct address_space *x)
231{
2ae88149 232 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
233}
234
235static inline struct page *page_cache_alloc_cold(struct address_space *x)
236{
2ae88149 237 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
1da177e4
LT
238}
239
8a5c743e 240static inline gfp_t readahead_gfp_mask(struct address_space *x)
7b1de586 241{
8a5c743e
MH
242 return mapping_gfp_mask(x) |
243 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN;
7b1de586
WF
244}
245
1da177e4
LT
246typedef int filler_t(void *, struct page *);
247
e7b563bb
JW
248pgoff_t page_cache_next_hole(struct address_space *mapping,
249 pgoff_t index, unsigned long max_scan);
250pgoff_t page_cache_prev_hole(struct address_space *mapping,
251 pgoff_t index, unsigned long max_scan);
252
2457aec6
MG
253#define FGP_ACCESSED 0x00000001
254#define FGP_LOCK 0x00000002
255#define FGP_CREAT 0x00000004
256#define FGP_WRITE 0x00000008
257#define FGP_NOFS 0x00000010
258#define FGP_NOWAIT 0x00000020
259
260struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 261 int fgp_flags, gfp_t cache_gfp_mask);
2457aec6
MG
262
263/**
264 * find_get_page - find and get a page reference
265 * @mapping: the address_space to search
266 * @offset: the page index
267 *
268 * Looks up the page cache slot at @mapping & @offset. If there is a
269 * page cache page, it is returned with an increased refcount.
270 *
271 * Otherwise, %NULL is returned.
272 */
273static inline struct page *find_get_page(struct address_space *mapping,
274 pgoff_t offset)
275{
45f87de5 276 return pagecache_get_page(mapping, offset, 0, 0);
2457aec6
MG
277}
278
279static inline struct page *find_get_page_flags(struct address_space *mapping,
280 pgoff_t offset, int fgp_flags)
281{
45f87de5 282 return pagecache_get_page(mapping, offset, fgp_flags, 0);
2457aec6
MG
283}
284
285/**
286 * find_lock_page - locate, pin and lock a pagecache page
2457aec6
MG
287 * @mapping: the address_space to search
288 * @offset: the page index
289 *
290 * Looks up the page cache slot at @mapping & @offset. If there is a
291 * page cache page, it is returned locked and with an increased
292 * refcount.
293 *
294 * Otherwise, %NULL is returned.
295 *
296 * find_lock_page() may sleep.
297 */
298static inline struct page *find_lock_page(struct address_space *mapping,
299 pgoff_t offset)
300{
45f87de5 301 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
2457aec6
MG
302}
303
304/**
305 * find_or_create_page - locate or add a pagecache page
306 * @mapping: the page's address_space
307 * @index: the page's index into the mapping
308 * @gfp_mask: page allocation mode
309 *
310 * Looks up the page cache slot at @mapping & @offset. If there is a
311 * page cache page, it is returned locked and with an increased
312 * refcount.
313 *
314 * If the page is not present, a new page is allocated using @gfp_mask
315 * and added to the page cache and the VM's LRU list. The page is
316 * returned locked and with an increased refcount.
317 *
318 * On memory exhaustion, %NULL is returned.
319 *
320 * find_or_create_page() may sleep, even if @gfp_flags specifies an
321 * atomic allocation!
322 */
323static inline struct page *find_or_create_page(struct address_space *mapping,
324 pgoff_t offset, gfp_t gfp_mask)
325{
326 return pagecache_get_page(mapping, offset,
327 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
45f87de5 328 gfp_mask);
2457aec6
MG
329}
330
331/**
332 * grab_cache_page_nowait - returns locked page at given index in given cache
333 * @mapping: target address_space
334 * @index: the page index
335 *
336 * Same as grab_cache_page(), but do not wait if the page is unavailable.
337 * This is intended for speculative data generators, where the data can
338 * be regenerated if the page couldn't be grabbed. This routine should
339 * be safe to call while holding the lock for another page.
340 *
341 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
342 * and deadlock against the caller's locked page.
343 */
344static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
345 pgoff_t index)
346{
347 return pagecache_get_page(mapping, index,
348 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
45f87de5 349 mapping_gfp_mask(mapping));
2457aec6
MG
350}
351
0cd6144a 352struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a 353struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a
JW
354unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
355 unsigned int nr_entries, struct page **entries,
356 pgoff_t *indices);
b947cee4
JK
357unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
358 pgoff_t end, unsigned int nr_pages,
359 struct page **pages);
360static inline unsigned find_get_pages(struct address_space *mapping,
361 pgoff_t *start, unsigned int nr_pages,
362 struct page **pages)
363{
364 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
365 pages);
366}
ebf43500
JA
367unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
368 unsigned int nr_pages, struct page **pages);
1da177e4
LT
369unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
370 int tag, unsigned int nr_pages, struct page **pages);
7e7f7749
RZ
371unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
372 int tag, unsigned int nr_entries,
373 struct page **entries, pgoff_t *indices);
1da177e4 374
54566b2c
NP
375struct page *grab_cache_page_write_begin(struct address_space *mapping,
376 pgoff_t index, unsigned flags);
afddba49 377
1da177e4
LT
378/*
379 * Returns locked page at given index in given cache, creating it if needed.
380 */
57f6b96c
FW
381static inline struct page *grab_cache_page(struct address_space *mapping,
382 pgoff_t index)
1da177e4
LT
383{
384 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
385}
386
1da177e4 387extern struct page * read_cache_page(struct address_space *mapping,
5e5358e7 388 pgoff_t index, filler_t *filler, void *data);
0531b2aa
LT
389extern struct page * read_cache_page_gfp(struct address_space *mapping,
390 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
391extern int read_cache_pages(struct address_space *mapping,
392 struct list_head *pages, filler_t *filler, void *data);
393
090d2b18 394static inline struct page *read_mapping_page(struct address_space *mapping,
5e5358e7 395 pgoff_t index, void *data)
090d2b18
PE
396{
397 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
398 return read_cache_page(mapping, index, filler, data);
399}
400
a0f7a756 401/*
5cbc198a
KS
402 * Get index of the page with in radix-tree
403 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
a0f7a756 404 */
5cbc198a 405static inline pgoff_t page_to_index(struct page *page)
a0f7a756 406{
e9b61f19
KS
407 pgoff_t pgoff;
408
e9b61f19 409 if (likely(!PageTransTail(page)))
09cbfeaf 410 return page->index;
e9b61f19
KS
411
412 /*
413 * We don't initialize ->index for tail pages: calculate based on
414 * head page
415 */
09cbfeaf 416 pgoff = compound_head(page)->index;
e9b61f19
KS
417 pgoff += page - compound_head(page);
418 return pgoff;
a0f7a756
NH
419}
420
5cbc198a
KS
421/*
422 * Get the offset in PAGE_SIZE.
423 * (TODO: hugepage should have ->index in PAGE_SIZE)
424 */
425static inline pgoff_t page_to_pgoff(struct page *page)
426{
427 if (unlikely(PageHeadHuge(page)))
428 return page->index << compound_order(page);
429
430 return page_to_index(page);
431}
432
1da177e4
LT
433/*
434 * Return byte-offset into filesystem object for page.
435 */
436static inline loff_t page_offset(struct page *page)
437{
09cbfeaf 438 return ((loff_t)page->index) << PAGE_SHIFT;
1da177e4
LT
439}
440
f981c595
MG
441static inline loff_t page_file_offset(struct page *page)
442{
8cd79788 443 return ((loff_t)page_index(page)) << PAGE_SHIFT;
f981c595
MG
444}
445
0fe6e20b
NH
446extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
447 unsigned long address);
448
1da177e4
LT
449static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
450 unsigned long address)
451{
0fe6e20b
NH
452 pgoff_t pgoff;
453 if (unlikely(is_vm_hugetlb_page(vma)))
454 return linear_hugepage_index(vma, address);
455 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1da177e4 456 pgoff += vma->vm_pgoff;
09cbfeaf 457 return pgoff;
1da177e4
LT
458}
459
b3c97528
HH
460extern void __lock_page(struct page *page);
461extern int __lock_page_killable(struct page *page);
d065bd81
ML
462extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
463 unsigned int flags);
b3c97528 464extern void unlock_page(struct page *page);
1da177e4 465
529ae9aa
NP
466static inline int trylock_page(struct page *page)
467{
48c935ad 468 page = compound_head(page);
8413ac9d 469 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
529ae9aa
NP
470}
471
db37648c
NP
472/*
473 * lock_page may only be called if we have the page's inode pinned.
474 */
1da177e4
LT
475static inline void lock_page(struct page *page)
476{
477 might_sleep();
529ae9aa 478 if (!trylock_page(page))
1da177e4
LT
479 __lock_page(page);
480}
db37648c 481
2687a356
MW
482/*
483 * lock_page_killable is like lock_page but can be interrupted by fatal
484 * signals. It returns 0 if it locked the page and -EINTR if it was
485 * killed while waiting.
486 */
487static inline int lock_page_killable(struct page *page)
488{
489 might_sleep();
529ae9aa 490 if (!trylock_page(page))
2687a356
MW
491 return __lock_page_killable(page);
492 return 0;
493}
494
d065bd81
ML
495/*
496 * lock_page_or_retry - Lock the page, unless this would block and the
497 * caller indicated that it can handle a retry.
9a95f3cf
PC
498 *
499 * Return value and mmap_sem implications depend on flags; see
500 * __lock_page_or_retry().
d065bd81
ML
501 */
502static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
503 unsigned int flags)
504{
505 might_sleep();
506 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
507}
508
1da177e4 509/*
74d81bfa
NP
510 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
511 * and should not be used directly.
1da177e4 512 */
b3c97528 513extern void wait_on_page_bit(struct page *page, int bit_nr);
f62e00cc 514extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
a4796e37 515
1da177e4
LT
516/*
517 * Wait for a page to be unlocked.
518 *
519 * This must be called with the caller "holding" the page,
520 * ie with increased "page->count" so that the page won't
521 * go away during the wait..
522 */
523static inline void wait_on_page_locked(struct page *page)
524{
525 if (PageLocked(page))
48c935ad 526 wait_on_page_bit(compound_head(page), PG_locked);
1da177e4
LT
527}
528
62906027
NP
529static inline int wait_on_page_locked_killable(struct page *page)
530{
531 if (!PageLocked(page))
532 return 0;
533 return wait_on_page_bit_killable(compound_head(page), PG_locked);
534}
535
1da177e4
LT
536/*
537 * Wait for a page to complete writeback
538 */
539static inline void wait_on_page_writeback(struct page *page)
540{
541 if (PageWriteback(page))
542 wait_on_page_bit(page, PG_writeback);
543}
544
545extern void end_page_writeback(struct page *page);
1d1d1a76 546void wait_for_stable_page(struct page *page);
1da177e4 547
c11f0c0b 548void page_endio(struct page *page, bool is_write, int err);
57d99845 549
385e1ca5
DH
550/*
551 * Add an arbitrary waiter to a page's wait queue
552 */
ac6424b9 553extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
385e1ca5 554
1da177e4 555/*
4bce9f6e 556 * Fault everything in given userspace address range in.
1da177e4
LT
557 */
558static inline int fault_in_pages_writeable(char __user *uaddr, int size)
f56f821f 559{
9923777d 560 char __user *end = uaddr + size - 1;
f56f821f
DV
561
562 if (unlikely(size == 0))
e23d4159 563 return 0;
f56f821f 564
e23d4159
AV
565 if (unlikely(uaddr > end))
566 return -EFAULT;
f56f821f
DV
567 /*
568 * Writing zeroes into userspace here is OK, because we know that if
569 * the zero gets there, we'll be overwriting it.
570 */
e23d4159
AV
571 do {
572 if (unlikely(__put_user(0, uaddr) != 0))
573 return -EFAULT;
f56f821f 574 uaddr += PAGE_SIZE;
e23d4159 575 } while (uaddr <= end);
f56f821f
DV
576
577 /* Check whether the range spilled into the next page. */
578 if (((unsigned long)uaddr & PAGE_MASK) ==
579 ((unsigned long)end & PAGE_MASK))
e23d4159 580 return __put_user(0, end);
f56f821f 581
e23d4159 582 return 0;
f56f821f
DV
583}
584
4bce9f6e 585static inline int fault_in_pages_readable(const char __user *uaddr, int size)
f56f821f
DV
586{
587 volatile char c;
f56f821f
DV
588 const char __user *end = uaddr + size - 1;
589
590 if (unlikely(size == 0))
e23d4159 591 return 0;
f56f821f 592
e23d4159
AV
593 if (unlikely(uaddr > end))
594 return -EFAULT;
595
596 do {
597 if (unlikely(__get_user(c, uaddr) != 0))
598 return -EFAULT;
f56f821f 599 uaddr += PAGE_SIZE;
e23d4159 600 } while (uaddr <= end);
f56f821f
DV
601
602 /* Check whether the range spilled into the next page. */
603 if (((unsigned long)uaddr & PAGE_MASK) ==
604 ((unsigned long)end & PAGE_MASK)) {
e23d4159 605 return __get_user(c, end);
f56f821f
DV
606 }
607
90b75db6 608 (void)c;
e23d4159 609 return 0;
f56f821f
DV
610}
611
529ae9aa
NP
612int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
613 pgoff_t index, gfp_t gfp_mask);
614int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
615 pgoff_t index, gfp_t gfp_mask);
97cecb5a 616extern void delete_from_page_cache(struct page *page);
62cccb8c 617extern void __delete_from_page_cache(struct page *page, void *shadow);
ef6a3c63 618int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
529ae9aa
NP
619
620/*
621 * Like add_to_page_cache_locked, but used to add newly allocated pages:
48c935ad 622 * the page is new, so we can just run __SetPageLocked() against it.
529ae9aa
NP
623 */
624static inline int add_to_page_cache(struct page *page,
625 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
626{
627 int error;
628
48c935ad 629 __SetPageLocked(page);
529ae9aa
NP
630 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
631 if (unlikely(error))
48c935ad 632 __ClearPageLocked(page);
529ae9aa
NP
633 return error;
634}
635
b57c2cb9
FF
636static inline unsigned long dir_pages(struct inode *inode)
637{
09cbfeaf
KS
638 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
639 PAGE_SHIFT;
b57c2cb9
FF
640}
641
1da177e4 642#endif /* _LINUX_PAGEMAP_H */