]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/linux/pagemap.h
mmap locking API: convert mmap_sem comments
[mirror_ubuntu-hirsute-kernel.git] / include / linux / pagemap.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_PAGEMAP_H
3#define _LINUX_PAGEMAP_H
4
5/*
6 * Copyright 1995 Linus Torvalds
7 */
8#include <linux/mm.h>
9#include <linux/fs.h>
10#include <linux/list.h>
11#include <linux/highmem.h>
12#include <linux/compiler.h>
7c0f6ba6 13#include <linux/uaccess.h>
1da177e4 14#include <linux/gfp.h>
3e9f45bd 15#include <linux/bitops.h>
e286781d 16#include <linux/hardirq.h> /* for in_interrupt() */
8edf344c 17#include <linux/hugetlb_inline.h>
1da177e4 18
aa65c29c
JK
19struct pagevec;
20
1da177e4 21/*
9c5d760b 22 * Bits in mapping->flags.
1da177e4 23 */
9a896c9a 24enum mapping_flags {
9c5d760b
MH
25 AS_EIO = 0, /* IO error on async write */
26 AS_ENOSPC = 1, /* ENOSPC on async write */
27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
29 AS_EXITING = 4, /* final truncate in progress */
371a096e 30 /* writeback related tags are not used */
9c5d760b 31 AS_NO_WRITEBACK_TAGS = 5,
9a896c9a 32};
1da177e4 33
8ed1e46a
JL
34/**
35 * mapping_set_error - record a writeback error in the address_space
767e5ee5
MWO
36 * @mapping: the mapping in which an error should be set
37 * @error: the error to set in the mapping
8ed1e46a
JL
38 *
39 * When writeback fails in some way, we must record that error so that
40 * userspace can be informed when fsync and the like are called. We endeavor
41 * to report errors on any file that was open at the time of the error. Some
42 * internal callers also need to know when writeback errors have occurred.
43 *
44 * When a writeback error occurs, most filesystems will want to call
45 * mapping_set_error to record the error in the mapping so that it can be
46 * reported when the application calls fsync(2).
47 */
3e9f45bd
GC
48static inline void mapping_set_error(struct address_space *mapping, int error)
49{
8ed1e46a
JL
50 if (likely(!error))
51 return;
52
53 /* Record in wb_err for checkers using errseq_t based tracking */
735e4ae5
JL
54 __filemap_set_wb_err(mapping, error);
55
56 /* Record it in superblock */
57 errseq_set(&mapping->host->i_sb->s_wb_err, error);
8ed1e46a
JL
58
59 /* Record it in flags for now, for legacy callers */
60 if (error == -ENOSPC)
61 set_bit(AS_ENOSPC, &mapping->flags);
62 else
63 set_bit(AS_EIO, &mapping->flags);
3e9f45bd
GC
64}
65
ba9ddf49
LS
66static inline void mapping_set_unevictable(struct address_space *mapping)
67{
68 set_bit(AS_UNEVICTABLE, &mapping->flags);
69}
70
89e004ea
LS
71static inline void mapping_clear_unevictable(struct address_space *mapping)
72{
73 clear_bit(AS_UNEVICTABLE, &mapping->flags);
74}
75
1eb6234e 76static inline bool mapping_unevictable(struct address_space *mapping)
ba9ddf49 77{
1eb6234e 78 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
ba9ddf49 79}
ba9ddf49 80
91b0abe3
JW
81static inline void mapping_set_exiting(struct address_space *mapping)
82{
83 set_bit(AS_EXITING, &mapping->flags);
84}
85
86static inline int mapping_exiting(struct address_space *mapping)
87{
88 return test_bit(AS_EXITING, &mapping->flags);
89}
90
371a096e
HY
91static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
92{
93 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
94}
95
96static inline int mapping_use_writeback_tags(struct address_space *mapping)
97{
98 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
99}
100
dd0fc66f 101static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 102{
9c5d760b 103 return mapping->gfp_mask;
1da177e4
LT
104}
105
c62d2555
MH
106/* Restricts the given gfp_mask to what the mapping allows. */
107static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
108 gfp_t gfp_mask)
109{
110 return mapping_gfp_mask(mapping) & gfp_mask;
111}
112
1da177e4
LT
113/*
114 * This is non-atomic. Only to be used before the mapping is activated.
115 * Probably needs a barrier...
116 */
260b2367 117static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 118{
9c5d760b 119 m->gfp_mask = mask;
1da177e4
LT
120}
121
c6f92f9f 122void release_pages(struct page **pages, int nr);
1da177e4 123
e286781d
NP
124/*
125 * speculatively take a reference to a page.
0139aa7b
JK
126 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
127 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
e286781d
NP
128 *
129 * This function must be called inside the same rcu_read_lock() section as has
130 * been used to lookup the page in the pagecache radix-tree (or page table):
0139aa7b 131 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
e286781d
NP
132 *
133 * Unless an RCU grace period has passed, the count of all pages coming out
134 * of the allocator must be considered unstable. page_count may return higher
135 * than expected, and put_page must be able to do the right thing when the
136 * page has been finished with, no matter what it is subsequently allocated
137 * for (because put_page is what is used here to drop an invalid speculative
138 * reference).
139 *
140 * This is the interesting part of the lockless pagecache (and lockless
141 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
142 * has the following pattern:
143 * 1. find page in radix tree
144 * 2. conditionally increment refcount
145 * 3. check the page is still in pagecache (if no, goto 1)
146 *
0139aa7b 147 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
b93b0163 148 * following (with the i_pages lock held):
e286781d
NP
149 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
150 * B. remove page from pagecache
151 * C. free the page
152 *
153 * There are 2 critical interleavings that matter:
154 * - 2 runs before A: in this case, A sees elevated refcount and bails out
155 * - A runs before 2: in this case, 2 sees zero refcount and retries;
156 * subsequently, B will complete and 1 will find no page, causing the
157 * lookup to return NULL.
158 *
159 * It is possible that between 1 and 2, the page is removed then the exact same
160 * page is inserted into the same position in pagecache. That's OK: the
b93b0163 161 * old find_get_page using a lock could equally have run before or after
e286781d
NP
162 * such a re-insertion, depending on order that locks are granted.
163 *
164 * Lookups racing against pagecache insertion isn't a big problem: either 1
165 * will find the page or it will not. Likewise, the old find_get_page could run
166 * either before the insertion or afterwards, depending on timing.
167 */
494eec70 168static inline int __page_cache_add_speculative(struct page *page, int count)
e286781d 169{
8375ad98 170#ifdef CONFIG_TINY_RCU
bdd4e85d 171# ifdef CONFIG_PREEMPT_COUNT
591a3d7c 172 VM_BUG_ON(!in_atomic() && !irqs_disabled());
e286781d
NP
173# endif
174 /*
175 * Preempt must be disabled here - we rely on rcu_read_lock doing
176 * this for us.
177 *
178 * Pagecache won't be truncated from interrupt context, so if we have
179 * found a page in the radix tree here, we have pinned its refcount by
180 * disabling preempt, and hence no need for the "speculative get" that
181 * SMP requires.
182 */
309381fe 183 VM_BUG_ON_PAGE(page_count(page) == 0, page);
494eec70 184 page_ref_add(page, count);
e286781d
NP
185
186#else
494eec70 187 if (unlikely(!page_ref_add_unless(page, count, 0))) {
e286781d
NP
188 /*
189 * Either the page has been freed, or will be freed.
190 * In either case, retry here and the caller should
191 * do the right thing (see comments above).
192 */
193 return 0;
194 }
195#endif
309381fe 196 VM_BUG_ON_PAGE(PageTail(page), page);
e286781d
NP
197
198 return 1;
199}
200
494eec70 201static inline int page_cache_get_speculative(struct page *page)
ce0ad7f0 202{
494eec70 203 return __page_cache_add_speculative(page, 1);
204}
ce0ad7f0 205
494eec70 206static inline int page_cache_add_speculative(struct page *page, int count)
207{
208 return __page_cache_add_speculative(page, count);
ce0ad7f0
NP
209}
210
b03143ac
GJ
211/**
212 * attach_page_private - Attach private data to a page.
213 * @page: Page to attach data to.
214 * @data: Data to attach to page.
215 *
216 * Attaching private data to a page increments the page's reference count.
217 * The data must be detached before the page will be freed.
218 */
219static inline void attach_page_private(struct page *page, void *data)
220{
221 get_page(page);
222 set_page_private(page, (unsigned long)data);
223 SetPagePrivate(page);
224}
225
226/**
227 * detach_page_private - Detach private data from a page.
228 * @page: Page to detach data from.
229 *
230 * Removes the data that was previously attached to the page and decrements
231 * the refcount on the page.
232 *
233 * Return: Data that was attached to the page.
234 */
235static inline void *detach_page_private(struct page *page)
236{
237 void *data = (void *)page_private(page);
238
239 if (!PagePrivate(page))
240 return NULL;
241 ClearPagePrivate(page);
242 set_page_private(page, 0);
243 put_page(page);
244
245 return data;
246}
247
44110fe3 248#ifdef CONFIG_NUMA
2ae88149 249extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 250#else
2ae88149
NP
251static inline struct page *__page_cache_alloc(gfp_t gfp)
252{
253 return alloc_pages(gfp, 0);
254}
255#endif
256
1da177e4
LT
257static inline struct page *page_cache_alloc(struct address_space *x)
258{
2ae88149 259 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
260}
261
8a5c743e 262static inline gfp_t readahead_gfp_mask(struct address_space *x)
7b1de586 263{
453f85d4 264 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
7b1de586
WF
265}
266
1da177e4
LT
267typedef int filler_t(void *, struct page *);
268
0d3f9296 269pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb 270 pgoff_t index, unsigned long max_scan);
0d3f9296 271pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
272 pgoff_t index, unsigned long max_scan);
273
2457aec6
MG
274#define FGP_ACCESSED 0x00000001
275#define FGP_LOCK 0x00000002
276#define FGP_CREAT 0x00000004
277#define FGP_WRITE 0x00000008
278#define FGP_NOFS 0x00000010
279#define FGP_NOWAIT 0x00000020
a75d4c33 280#define FGP_FOR_MMAP 0x00000040
2457aec6
MG
281
282struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 283 int fgp_flags, gfp_t cache_gfp_mask);
2457aec6
MG
284
285/**
286 * find_get_page - find and get a page reference
287 * @mapping: the address_space to search
288 * @offset: the page index
289 *
290 * Looks up the page cache slot at @mapping & @offset. If there is a
291 * page cache page, it is returned with an increased refcount.
292 *
293 * Otherwise, %NULL is returned.
294 */
295static inline struct page *find_get_page(struct address_space *mapping,
296 pgoff_t offset)
297{
45f87de5 298 return pagecache_get_page(mapping, offset, 0, 0);
2457aec6
MG
299}
300
301static inline struct page *find_get_page_flags(struct address_space *mapping,
302 pgoff_t offset, int fgp_flags)
303{
45f87de5 304 return pagecache_get_page(mapping, offset, fgp_flags, 0);
2457aec6
MG
305}
306
307/**
308 * find_lock_page - locate, pin and lock a pagecache page
2457aec6
MG
309 * @mapping: the address_space to search
310 * @offset: the page index
311 *
312 * Looks up the page cache slot at @mapping & @offset. If there is a
313 * page cache page, it is returned locked and with an increased
314 * refcount.
315 *
316 * Otherwise, %NULL is returned.
317 *
318 * find_lock_page() may sleep.
319 */
320static inline struct page *find_lock_page(struct address_space *mapping,
321 pgoff_t offset)
322{
45f87de5 323 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
2457aec6
MG
324}
325
326/**
327 * find_or_create_page - locate or add a pagecache page
328 * @mapping: the page's address_space
329 * @index: the page's index into the mapping
330 * @gfp_mask: page allocation mode
331 *
332 * Looks up the page cache slot at @mapping & @offset. If there is a
333 * page cache page, it is returned locked and with an increased
334 * refcount.
335 *
336 * If the page is not present, a new page is allocated using @gfp_mask
337 * and added to the page cache and the VM's LRU list. The page is
338 * returned locked and with an increased refcount.
339 *
340 * On memory exhaustion, %NULL is returned.
341 *
342 * find_or_create_page() may sleep, even if @gfp_flags specifies an
343 * atomic allocation!
344 */
345static inline struct page *find_or_create_page(struct address_space *mapping,
767e5ee5 346 pgoff_t index, gfp_t gfp_mask)
2457aec6 347{
767e5ee5 348 return pagecache_get_page(mapping, index,
2457aec6 349 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
45f87de5 350 gfp_mask);
2457aec6
MG
351}
352
353/**
354 * grab_cache_page_nowait - returns locked page at given index in given cache
355 * @mapping: target address_space
356 * @index: the page index
357 *
358 * Same as grab_cache_page(), but do not wait if the page is unavailable.
359 * This is intended for speculative data generators, where the data can
360 * be regenerated if the page couldn't be grabbed. This routine should
361 * be safe to call while holding the lock for another page.
362 *
363 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
364 * and deadlock against the caller's locked page.
365 */
366static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
367 pgoff_t index)
368{
369 return pagecache_get_page(mapping, index,
370 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
45f87de5 371 mapping_gfp_mask(mapping));
2457aec6
MG
372}
373
ec848215
MWO
374/*
375 * Given the page we found in the page cache, return the page corresponding
376 * to this index in the file
377 */
378static inline struct page *find_subpage(struct page *head, pgoff_t index)
4101196b 379{
ec848215
MWO
380 /* HugeTLBfs wants the head page regardless */
381 if (PageHuge(head))
382 return head;
4101196b 383
a0650604 384 return head + (index & (hpage_nr_pages(head) - 1));
4101196b
MWO
385}
386
0cd6144a 387struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a 388struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a
JW
389unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
390 unsigned int nr_entries, struct page **entries,
391 pgoff_t *indices);
b947cee4
JK
392unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
393 pgoff_t end, unsigned int nr_pages,
394 struct page **pages);
395static inline unsigned find_get_pages(struct address_space *mapping,
396 pgoff_t *start, unsigned int nr_pages,
397 struct page **pages)
398{
399 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
400 pages);
401}
ebf43500
JA
402unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
403 unsigned int nr_pages, struct page **pages);
72b045ae 404unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 405 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae
JK
406 struct page **pages);
407static inline unsigned find_get_pages_tag(struct address_space *mapping,
a6906972 408 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
72b045ae
JK
409 struct page **pages)
410{
411 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
412 nr_pages, pages);
413}
1da177e4 414
54566b2c
NP
415struct page *grab_cache_page_write_begin(struct address_space *mapping,
416 pgoff_t index, unsigned flags);
afddba49 417
1da177e4
LT
418/*
419 * Returns locked page at given index in given cache, creating it if needed.
420 */
57f6b96c
FW
421static inline struct page *grab_cache_page(struct address_space *mapping,
422 pgoff_t index)
1da177e4
LT
423{
424 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
425}
426
1da177e4 427extern struct page * read_cache_page(struct address_space *mapping,
5e5358e7 428 pgoff_t index, filler_t *filler, void *data);
0531b2aa
LT
429extern struct page * read_cache_page_gfp(struct address_space *mapping,
430 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
431extern int read_cache_pages(struct address_space *mapping,
432 struct list_head *pages, filler_t *filler, void *data);
433
090d2b18 434static inline struct page *read_mapping_page(struct address_space *mapping,
5e5358e7 435 pgoff_t index, void *data)
090d2b18 436{
6c45b454 437 return read_cache_page(mapping, index, NULL, data);
090d2b18
PE
438}
439
a0f7a756 440/*
5cbc198a
KS
441 * Get index of the page with in radix-tree
442 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
a0f7a756 443 */
5cbc198a 444static inline pgoff_t page_to_index(struct page *page)
a0f7a756 445{
e9b61f19
KS
446 pgoff_t pgoff;
447
e9b61f19 448 if (likely(!PageTransTail(page)))
09cbfeaf 449 return page->index;
e9b61f19
KS
450
451 /*
452 * We don't initialize ->index for tail pages: calculate based on
453 * head page
454 */
09cbfeaf 455 pgoff = compound_head(page)->index;
e9b61f19
KS
456 pgoff += page - compound_head(page);
457 return pgoff;
a0f7a756
NH
458}
459
5cbc198a
KS
460/*
461 * Get the offset in PAGE_SIZE.
462 * (TODO: hugepage should have ->index in PAGE_SIZE)
463 */
464static inline pgoff_t page_to_pgoff(struct page *page)
465{
466 if (unlikely(PageHeadHuge(page)))
467 return page->index << compound_order(page);
468
469 return page_to_index(page);
470}
471
1da177e4
LT
472/*
473 * Return byte-offset into filesystem object for page.
474 */
475static inline loff_t page_offset(struct page *page)
476{
09cbfeaf 477 return ((loff_t)page->index) << PAGE_SHIFT;
1da177e4
LT
478}
479
f981c595
MG
480static inline loff_t page_file_offset(struct page *page)
481{
8cd79788 482 return ((loff_t)page_index(page)) << PAGE_SHIFT;
f981c595
MG
483}
484
0fe6e20b
NH
485extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
486 unsigned long address);
487
1da177e4
LT
488static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
489 unsigned long address)
490{
0fe6e20b
NH
491 pgoff_t pgoff;
492 if (unlikely(is_vm_hugetlb_page(vma)))
493 return linear_hugepage_index(vma, address);
494 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1da177e4 495 pgoff += vma->vm_pgoff;
09cbfeaf 496 return pgoff;
1da177e4
LT
497}
498
b3c97528
HH
499extern void __lock_page(struct page *page);
500extern int __lock_page_killable(struct page *page);
d065bd81
ML
501extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
502 unsigned int flags);
b3c97528 503extern void unlock_page(struct page *page);
1da177e4 504
f4458845
AM
505/*
506 * Return true if the page was successfully locked
507 */
529ae9aa
NP
508static inline int trylock_page(struct page *page)
509{
48c935ad 510 page = compound_head(page);
8413ac9d 511 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
529ae9aa
NP
512}
513
db37648c
NP
514/*
515 * lock_page may only be called if we have the page's inode pinned.
516 */
1da177e4
LT
517static inline void lock_page(struct page *page)
518{
519 might_sleep();
529ae9aa 520 if (!trylock_page(page))
1da177e4
LT
521 __lock_page(page);
522}
db37648c 523
2687a356
MW
524/*
525 * lock_page_killable is like lock_page but can be interrupted by fatal
526 * signals. It returns 0 if it locked the page and -EINTR if it was
527 * killed while waiting.
528 */
529static inline int lock_page_killable(struct page *page)
530{
531 might_sleep();
529ae9aa 532 if (!trylock_page(page))
2687a356
MW
533 return __lock_page_killable(page);
534 return 0;
535}
536
d065bd81
ML
537/*
538 * lock_page_or_retry - Lock the page, unless this would block and the
539 * caller indicated that it can handle a retry.
9a95f3cf 540 *
c1e8d7c6 541 * Return value and mmap_lock implications depend on flags; see
9a95f3cf 542 * __lock_page_or_retry().
d065bd81
ML
543 */
544static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
545 unsigned int flags)
546{
547 might_sleep();
548 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
549}
550
1da177e4 551/*
74d81bfa
NP
552 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
553 * and should not be used directly.
1da177e4 554 */
b3c97528 555extern void wait_on_page_bit(struct page *page, int bit_nr);
f62e00cc 556extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
a4796e37 557
1da177e4
LT
558/*
559 * Wait for a page to be unlocked.
560 *
561 * This must be called with the caller "holding" the page,
562 * ie with increased "page->count" so that the page won't
563 * go away during the wait..
564 */
565static inline void wait_on_page_locked(struct page *page)
566{
567 if (PageLocked(page))
48c935ad 568 wait_on_page_bit(compound_head(page), PG_locked);
1da177e4
LT
569}
570
62906027
NP
571static inline int wait_on_page_locked_killable(struct page *page)
572{
573 if (!PageLocked(page))
574 return 0;
575 return wait_on_page_bit_killable(compound_head(page), PG_locked);
576}
577
9a1ea439
HD
578extern void put_and_wait_on_page_locked(struct page *page);
579
19343b5b 580void wait_on_page_writeback(struct page *page);
1da177e4 581extern void end_page_writeback(struct page *page);
1d1d1a76 582void wait_for_stable_page(struct page *page);
1da177e4 583
c11f0c0b 584void page_endio(struct page *page, bool is_write, int err);
57d99845 585
385e1ca5
DH
586/*
587 * Add an arbitrary waiter to a page's wait queue
588 */
ac6424b9 589extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
385e1ca5 590
1da177e4 591/*
4bce9f6e 592 * Fault everything in given userspace address range in.
1da177e4
LT
593 */
594static inline int fault_in_pages_writeable(char __user *uaddr, int size)
f56f821f 595{
9923777d 596 char __user *end = uaddr + size - 1;
f56f821f
DV
597
598 if (unlikely(size == 0))
e23d4159 599 return 0;
f56f821f 600
e23d4159
AV
601 if (unlikely(uaddr > end))
602 return -EFAULT;
f56f821f
DV
603 /*
604 * Writing zeroes into userspace here is OK, because we know that if
605 * the zero gets there, we'll be overwriting it.
606 */
e23d4159
AV
607 do {
608 if (unlikely(__put_user(0, uaddr) != 0))
609 return -EFAULT;
f56f821f 610 uaddr += PAGE_SIZE;
e23d4159 611 } while (uaddr <= end);
f56f821f
DV
612
613 /* Check whether the range spilled into the next page. */
614 if (((unsigned long)uaddr & PAGE_MASK) ==
615 ((unsigned long)end & PAGE_MASK))
e23d4159 616 return __put_user(0, end);
f56f821f 617
e23d4159 618 return 0;
f56f821f
DV
619}
620
4bce9f6e 621static inline int fault_in_pages_readable(const char __user *uaddr, int size)
f56f821f
DV
622{
623 volatile char c;
f56f821f
DV
624 const char __user *end = uaddr + size - 1;
625
626 if (unlikely(size == 0))
e23d4159 627 return 0;
f56f821f 628
e23d4159
AV
629 if (unlikely(uaddr > end))
630 return -EFAULT;
631
632 do {
633 if (unlikely(__get_user(c, uaddr) != 0))
634 return -EFAULT;
f56f821f 635 uaddr += PAGE_SIZE;
e23d4159 636 } while (uaddr <= end);
f56f821f
DV
637
638 /* Check whether the range spilled into the next page. */
639 if (((unsigned long)uaddr & PAGE_MASK) ==
640 ((unsigned long)end & PAGE_MASK)) {
e23d4159 641 return __get_user(c, end);
f56f821f
DV
642 }
643
90b75db6 644 (void)c;
e23d4159 645 return 0;
f56f821f
DV
646}
647
529ae9aa
NP
648int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
649 pgoff_t index, gfp_t gfp_mask);
650int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
651 pgoff_t index, gfp_t gfp_mask);
97cecb5a 652extern void delete_from_page_cache(struct page *page);
62cccb8c 653extern void __delete_from_page_cache(struct page *page, void *shadow);
ef6a3c63 654int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
aa65c29c
JK
655void delete_from_page_cache_batch(struct address_space *mapping,
656 struct pagevec *pvec);
529ae9aa 657
cee9a0c4
MWO
658#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
659
660void page_cache_sync_readahead(struct address_space *, struct file_ra_state *,
661 struct file *, pgoff_t index, unsigned long req_count);
662void page_cache_async_readahead(struct address_space *, struct file_ra_state *,
663 struct file *, struct page *, pgoff_t index,
664 unsigned long req_count);
2c684234
MWO
665void page_cache_readahead_unbounded(struct address_space *, struct file *,
666 pgoff_t index, unsigned long nr_to_read,
667 unsigned long lookahead_count);
cee9a0c4 668
529ae9aa
NP
669/*
670 * Like add_to_page_cache_locked, but used to add newly allocated pages:
48c935ad 671 * the page is new, so we can just run __SetPageLocked() against it.
529ae9aa
NP
672 */
673static inline int add_to_page_cache(struct page *page,
674 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
675{
676 int error;
677
48c935ad 678 __SetPageLocked(page);
529ae9aa
NP
679 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
680 if (unlikely(error))
48c935ad 681 __ClearPageLocked(page);
529ae9aa
NP
682 return error;
683}
684
042124cc
MWO
685/**
686 * struct readahead_control - Describes a readahead request.
687 *
688 * A readahead request is for consecutive pages. Filesystems which
689 * implement the ->readahead method should call readahead_page() or
690 * readahead_page_batch() in a loop and attempt to start I/O against
691 * each page in the request.
692 *
693 * Most of the fields in this struct are private and should be accessed
694 * by the functions below.
695 *
696 * @file: The file, used primarily by network filesystems for authentication.
697 * May be NULL if invoked internally by the filesystem.
698 * @mapping: Readahead this filesystem object.
699 */
700struct readahead_control {
701 struct file *file;
702 struct address_space *mapping;
703/* private: use the readahead_* accessors instead */
704 pgoff_t _index;
705 unsigned int _nr_pages;
706 unsigned int _batch_count;
707};
708
709/**
710 * readahead_page - Get the next page to read.
711 * @rac: The current readahead request.
712 *
713 * Context: The page is locked and has an elevated refcount. The caller
714 * should decreases the refcount once the page has been submitted for I/O
715 * and unlock the page once all I/O to that page has completed.
716 * Return: A pointer to the next page, or %NULL if we are done.
717 */
718static inline struct page *readahead_page(struct readahead_control *rac)
719{
720 struct page *page;
721
722 BUG_ON(rac->_batch_count > rac->_nr_pages);
723 rac->_nr_pages -= rac->_batch_count;
724 rac->_index += rac->_batch_count;
725
726 if (!rac->_nr_pages) {
727 rac->_batch_count = 0;
728 return NULL;
729 }
730
731 page = xa_load(&rac->mapping->i_pages, rac->_index);
732 VM_BUG_ON_PAGE(!PageLocked(page), page);
733 rac->_batch_count = hpage_nr_pages(page);
734
735 return page;
736}
737
738static inline unsigned int __readahead_batch(struct readahead_control *rac,
739 struct page **array, unsigned int array_sz)
740{
741 unsigned int i = 0;
742 XA_STATE(xas, &rac->mapping->i_pages, 0);
743 struct page *page;
744
745 BUG_ON(rac->_batch_count > rac->_nr_pages);
746 rac->_nr_pages -= rac->_batch_count;
747 rac->_index += rac->_batch_count;
748 rac->_batch_count = 0;
749
750 xas_set(&xas, rac->_index);
751 rcu_read_lock();
752 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
753 VM_BUG_ON_PAGE(!PageLocked(page), page);
754 VM_BUG_ON_PAGE(PageTail(page), page);
755 array[i++] = page;
756 rac->_batch_count += hpage_nr_pages(page);
757
758 /*
759 * The page cache isn't using multi-index entries yet,
760 * so the xas cursor needs to be manually moved to the
761 * next index. This can be removed once the page cache
762 * is converted.
763 */
764 if (PageHead(page))
765 xas_set(&xas, rac->_index + rac->_batch_count);
766
767 if (i == array_sz)
768 break;
769 }
770 rcu_read_unlock();
771
772 return i;
773}
774
775/**
776 * readahead_page_batch - Get a batch of pages to read.
777 * @rac: The current readahead request.
778 * @array: An array of pointers to struct page.
779 *
780 * Context: The pages are locked and have an elevated refcount. The caller
781 * should decreases the refcount once the page has been submitted for I/O
782 * and unlock the page once all I/O to that page has completed.
783 * Return: The number of pages placed in the array. 0 indicates the request
784 * is complete.
785 */
786#define readahead_page_batch(rac, array) \
787 __readahead_batch(rac, array, ARRAY_SIZE(array))
788
789/**
790 * readahead_pos - The byte offset into the file of this readahead request.
791 * @rac: The readahead request.
792 */
793static inline loff_t readahead_pos(struct readahead_control *rac)
794{
795 return (loff_t)rac->_index * PAGE_SIZE;
796}
797
798/**
799 * readahead_length - The number of bytes in this readahead request.
800 * @rac: The readahead request.
801 */
802static inline loff_t readahead_length(struct readahead_control *rac)
803{
804 return (loff_t)rac->_nr_pages * PAGE_SIZE;
805}
806
807/**
808 * readahead_index - The index of the first page in this readahead request.
809 * @rac: The readahead request.
810 */
811static inline pgoff_t readahead_index(struct readahead_control *rac)
812{
813 return rac->_index;
814}
815
816/**
817 * readahead_count - The number of pages in this readahead request.
818 * @rac: The readahead request.
819 */
820static inline unsigned int readahead_count(struct readahead_control *rac)
821{
822 return rac->_nr_pages;
823}
824
b57c2cb9
FF
825static inline unsigned long dir_pages(struct inode *inode)
826{
09cbfeaf
KS
827 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
828 PAGE_SHIFT;
b57c2cb9
FF
829}
830
243145bc
AG
831/**
832 * page_mkwrite_check_truncate - check if page was truncated
833 * @page: the page to check
834 * @inode: the inode to check the page against
835 *
836 * Returns the number of bytes in the page up to EOF,
837 * or -EFAULT if the page was truncated.
838 */
839static inline int page_mkwrite_check_truncate(struct page *page,
840 struct inode *inode)
841{
842 loff_t size = i_size_read(inode);
843 pgoff_t index = size >> PAGE_SHIFT;
844 int offset = offset_in_page(size);
845
846 if (page->mapping != inode->i_mapping)
847 return -EFAULT;
848
849 /* page is wholly inside EOF */
850 if (page->index < index)
851 return PAGE_SIZE;
852 /* page is wholly past EOF */
853 if (page->index > index || !offset)
854 return -EFAULT;
855 /* page is partially inside EOF */
856 return offset;
857}
858
1da177e4 859#endif /* _LINUX_PAGEMAP_H */