]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/percpu-defs.h
percpu: preffity percpu header files
[mirror_ubuntu-bionic-kernel.git] / include / linux / percpu-defs.h
CommitLineData
62fde541
TH
1/*
2 * linux/percpu-defs.h - basic definitions for percpu areas
3 *
4 * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER.
5 *
6 * This file is separate from linux/percpu.h to avoid cyclic inclusion
7 * dependency from arch header files. Only to be included from
8 * asm/percpu.h.
9 *
10 * This file includes macros necessary to declare percpu sections and
11 * variables, and definitions of percpu accessors and operations. It
12 * should provide enough percpu features to arch header files even when
13 * they can only include asm/percpu.h to avoid cyclic inclusion dependency.
14 */
15
5028eaa9
DH
16#ifndef _LINUX_PERCPU_DEFS_H
17#define _LINUX_PERCPU_DEFS_H
18
62fde541
TH
19#ifdef CONFIG_SMP
20
21#ifdef MODULE
22#define PER_CPU_SHARED_ALIGNED_SECTION ""
23#define PER_CPU_ALIGNED_SECTION ""
24#else
25#define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned"
26#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
27#endif
28#define PER_CPU_FIRST_SECTION "..first"
29
30#else
31
32#define PER_CPU_SHARED_ALIGNED_SECTION ""
33#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
34#define PER_CPU_FIRST_SECTION ""
35
36#endif
37
5028eaa9
DH
38/*
39 * Base implementations of per-CPU variable declarations and definitions, where
40 * the section in which the variable is to be placed is provided by the
7c756e6e 41 * 'sec' argument. This may be used to affect the parameters governing the
5028eaa9
DH
42 * variable's storage.
43 *
44 * NOTE! The sections for the DECLARE and for the DEFINE must match, lest
45 * linkage errors occur due the compiler generating the wrong code to access
46 * that section.
47 */
7c756e6e 48#define __PCPU_ATTRS(sec) \
e0fdb0e0 49 __percpu __attribute__((section(PER_CPU_BASE_SECTION sec))) \
7c756e6e
TH
50 PER_CPU_ATTRIBUTES
51
52#define __PCPU_DUMMY_ATTRS \
53 __attribute__((section(".discard"), unused))
54
55/*
56 * s390 and alpha modules require percpu variables to be defined as
57 * weak to force the compiler to generate GOT based external
58 * references for them. This is necessary because percpu sections
59 * will be located outside of the usually addressable area.
60 *
61 * This definition puts the following two extra restrictions when
62 * defining percpu variables.
63 *
64 * 1. The symbol must be globally unique, even the static ones.
65 * 2. Static percpu variables cannot be defined inside a function.
66 *
67 * Archs which need weak percpu definitions should define
68 * ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary.
69 *
70 * To ensure that the generic code observes the above two
71 * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak
72 * definition is used for all cases.
73 */
74#if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU)
75/*
76 * __pcpu_scope_* dummy variable is used to enforce scope. It
77 * receives the static modifier when it's used in front of
78 * DEFINE_PER_CPU() and will trigger build failure if
79 * DECLARE_PER_CPU() is used for the same variable.
80 *
81 * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness
82 * such that hidden weak symbol collision, which will cause unrelated
83 * variables to share the same address, can be detected during build.
84 */
85#define DECLARE_PER_CPU_SECTION(type, name, sec) \
86 extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \
dd17c8f7 87 extern __PCPU_ATTRS(sec) __typeof__(type) name
7c756e6e
TH
88
89#define DEFINE_PER_CPU_SECTION(type, name, sec) \
90 __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \
0f5e4816 91 extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \
7c756e6e 92 __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \
b1a0fbfd 93 extern __PCPU_ATTRS(sec) __typeof__(type) name; \
c43768cb 94 __PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES __weak \
dd17c8f7 95 __typeof__(type) name
7c756e6e
TH
96#else
97/*
98 * Normal declaration and definition macros.
99 */
100#define DECLARE_PER_CPU_SECTION(type, name, sec) \
dd17c8f7 101 extern __PCPU_ATTRS(sec) __typeof__(type) name
7c756e6e
TH
102
103#define DEFINE_PER_CPU_SECTION(type, name, sec) \
c43768cb 104 __PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES \
dd17c8f7 105 __typeof__(type) name
7c756e6e 106#endif
5028eaa9
DH
107
108/*
109 * Variant on the per-CPU variable declaration/definition theme used for
110 * ordinary per-CPU variables.
111 */
112#define DECLARE_PER_CPU(type, name) \
113 DECLARE_PER_CPU_SECTION(type, name, "")
114
115#define DEFINE_PER_CPU(type, name) \
116 DEFINE_PER_CPU_SECTION(type, name, "")
117
118/*
119 * Declaration/definition used for per-CPU variables that must come first in
120 * the set of variables.
121 */
122#define DECLARE_PER_CPU_FIRST(type, name) \
123 DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
124
125#define DEFINE_PER_CPU_FIRST(type, name) \
126 DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
127
128/*
129 * Declaration/definition used for per-CPU variables that must be cacheline
130 * aligned under SMP conditions so that, whilst a particular instance of the
131 * data corresponds to a particular CPU, inefficiencies due to direct access by
132 * other CPUs are reduced by preventing the data from unnecessarily spanning
133 * cachelines.
134 *
135 * An example of this would be statistical data, where each CPU's set of data
136 * is updated by that CPU alone, but the data from across all CPUs is collated
137 * by a CPU processing a read from a proc file.
138 */
139#define DECLARE_PER_CPU_SHARED_ALIGNED(type, name) \
140 DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
141 ____cacheline_aligned_in_smp
142
143#define DEFINE_PER_CPU_SHARED_ALIGNED(type, name) \
144 DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
145 ____cacheline_aligned_in_smp
146
53f82452
JF
147#define DECLARE_PER_CPU_ALIGNED(type, name) \
148 DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \
149 ____cacheline_aligned
150
151#define DEFINE_PER_CPU_ALIGNED(type, name) \
152 DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \
153 ____cacheline_aligned
154
5028eaa9
DH
155/*
156 * Declaration/definition used for per-CPU variables that must be page aligned.
157 */
3e352aa8 158#define DECLARE_PER_CPU_PAGE_ALIGNED(type, name) \
3d9a854c 159 DECLARE_PER_CPU_SECTION(type, name, "..page_aligned") \
3e352aa8 160 __aligned(PAGE_SIZE)
5028eaa9
DH
161
162#define DEFINE_PER_CPU_PAGE_ALIGNED(type, name) \
3d9a854c 163 DEFINE_PER_CPU_SECTION(type, name, "..page_aligned") \
3e352aa8 164 __aligned(PAGE_SIZE)
5028eaa9 165
c957ef2c
SL
166/*
167 * Declaration/definition used for per-CPU variables that must be read mostly.
168 */
169#define DECLARE_PER_CPU_READ_MOSTLY(type, name) \
170 DECLARE_PER_CPU_SECTION(type, name, "..readmostly")
171
172#define DEFINE_PER_CPU_READ_MOSTLY(type, name) \
173 DEFINE_PER_CPU_SECTION(type, name, "..readmostly")
174
5028eaa9 175/*
545695fb
TH
176 * Intermodule exports for per-CPU variables. sparse forgets about
177 * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to
178 * noop if __CHECKER__.
5028eaa9 179 */
545695fb 180#ifndef __CHECKER__
dd17c8f7
RR
181#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var)
182#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var)
545695fb
TH
183#else
184#define EXPORT_PER_CPU_SYMBOL(var)
185#define EXPORT_PER_CPU_SYMBOL_GPL(var)
186#endif
5028eaa9 187
62fde541
TH
188/*
189 * Accessors and operations.
190 */
191#ifndef __ASSEMBLY__
192
9c28278a
TH
193/*
194 * Macro which verifies @ptr is a percpu pointer without evaluating
195 * @ptr. This is to be used in percpu accessors to verify that the
196 * input parameter is a percpu pointer.
197 *
198 * + 0 is required in order to convert the pointer type from a
199 * potential array type to a pointer to a single item of the array.
200 */
eba11788
TH
201#define __verify_pcpu_ptr(ptr) \
202do { \
9c28278a
TH
203 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \
204 (void)__vpp_verify; \
205} while (0)
206
62fde541
TH
207#ifdef CONFIG_SMP
208
209/*
210 * Add an offset to a pointer but keep the pointer as-is. Use RELOC_HIDE()
211 * to prevent the compiler from making incorrect assumptions about the
212 * pointer value. The weird cast keeps both GCC and sparse happy.
213 */
eba11788
TH
214#define SHIFT_PERCPU_PTR(__p, __offset) \
215({ \
216 __verify_pcpu_ptr(__p); \
62fde541
TH
217 RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset)); \
218})
219
eba11788 220#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR(ptr, per_cpu_offset(cpu))
3b8ed91d 221#define raw_cpu_ptr(ptr) arch_raw_cpu_ptr(ptr)
62fde541
TH
222
223#ifdef CONFIG_DEBUG_PREEMPT
224#define this_cpu_ptr(ptr) SHIFT_PERCPU_PTR(ptr, my_cpu_offset)
225#else
226#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
227#endif
228
62fde541
TH
229#else /* CONFIG_SMP */
230
eba11788
TH
231#define VERIFY_PERCPU_PTR(__p) \
232({ \
233 __verify_pcpu_ptr(__p); \
234 (typeof(*(__p)) __kernel __force *)(__p); \
62fde541
TH
235})
236
eba11788 237#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
3b8ed91d
TH
238#define raw_cpu_ptr(ptr) per_cpu_ptr(ptr, 0)
239#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
62fde541
TH
240
241#endif /* CONFIG_SMP */
242
3b8ed91d
TH
243#define per_cpu(var, cpu) (*per_cpu_ptr(&(var), cpu))
244#define __raw_get_cpu_var(var) (*raw_cpu_ptr(&(var)))
245#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
246
62fde541
TH
247/* keep until we have removed all uses of __this_cpu_ptr */
248#define __this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
249
9defda18
TH
250/*
251 * Must be an lvalue. Since @var must be a simple identifier,
252 * we force a syntax error here if it isn't.
253 */
eba11788
TH
254#define get_cpu_var(var) \
255(*({ \
256 preempt_disable(); \
257 this_cpu_ptr(&var); \
258}))
9defda18
TH
259
260/*
261 * The weird & is necessary because sparse considers (void)(var) to be
262 * a direct dereference of percpu variable (var).
263 */
eba11788
TH
264#define put_cpu_var(var) \
265do { \
266 (void)&(var); \
267 preempt_enable(); \
9defda18
TH
268} while (0)
269
eba11788
TH
270#define get_cpu_ptr(var) \
271({ \
272 preempt_disable(); \
273 this_cpu_ptr(var); \
274})
9defda18 275
eba11788
TH
276#define put_cpu_ptr(var) \
277do { \
278 (void)(var); \
279 preempt_enable(); \
9defda18
TH
280} while (0)
281
a32f8d8e
TH
282/*
283 * Branching function to split up a function into a set of functions that
284 * are called for different scalar sizes of the objects handled.
285 */
286
287extern void __bad_size_call_parameter(void);
288
289#ifdef CONFIG_DEBUG_PREEMPT
290extern void __this_cpu_preempt_check(const char *op);
291#else
292static inline void __this_cpu_preempt_check(const char *op) { }
293#endif
294
295#define __pcpu_size_call_return(stem, variable) \
eba11788
TH
296({ \
297 typeof(variable) pscr_ret__; \
a32f8d8e
TH
298 __verify_pcpu_ptr(&(variable)); \
299 switch(sizeof(variable)) { \
eba11788
TH
300 case 1: pscr_ret__ = stem##1(variable); break; \
301 case 2: pscr_ret__ = stem##2(variable); break; \
302 case 4: pscr_ret__ = stem##4(variable); break; \
303 case 8: pscr_ret__ = stem##8(variable); break; \
a32f8d8e 304 default: \
eba11788 305 __bad_size_call_parameter(); break; \
a32f8d8e
TH
306 } \
307 pscr_ret__; \
308})
309
310#define __pcpu_size_call_return2(stem, variable, ...) \
311({ \
312 typeof(variable) pscr2_ret__; \
313 __verify_pcpu_ptr(&(variable)); \
314 switch(sizeof(variable)) { \
315 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
316 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
317 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
318 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
319 default: \
320 __bad_size_call_parameter(); break; \
321 } \
322 pscr2_ret__; \
323})
324
325/*
326 * Special handling for cmpxchg_double. cmpxchg_double is passed two
327 * percpu variables. The first has to be aligned to a double word
328 * boundary and the second has to follow directly thereafter.
329 * We enforce this on all architectures even if they don't support
330 * a double cmpxchg instruction, since it's a cheap requirement, and it
331 * avoids breaking the requirement for architectures with the instruction.
332 */
333#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
334({ \
335 bool pdcrb_ret__; \
eba11788 336 __verify_pcpu_ptr(&(pcp1)); \
a32f8d8e 337 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
eba11788
TH
338 VM_BUG_ON((unsigned long)(&(pcp1)) % (2 * sizeof(pcp1))); \
339 VM_BUG_ON((unsigned long)(&(pcp2)) != \
340 (unsigned long)(&(pcp1)) + sizeof(pcp1)); \
a32f8d8e
TH
341 switch(sizeof(pcp1)) { \
342 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
343 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
344 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
345 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
346 default: \
347 __bad_size_call_parameter(); break; \
348 } \
349 pdcrb_ret__; \
350})
351
352#define __pcpu_size_call(stem, variable, ...) \
353do { \
354 __verify_pcpu_ptr(&(variable)); \
355 switch(sizeof(variable)) { \
356 case 1: stem##1(variable, __VA_ARGS__);break; \
357 case 2: stem##2(variable, __VA_ARGS__);break; \
358 case 4: stem##4(variable, __VA_ARGS__);break; \
359 case 8: stem##8(variable, __VA_ARGS__);break; \
360 default: \
361 __bad_size_call_parameter();break; \
362 } \
363} while (0)
364
365/*
366 * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
367 *
368 * Optimized manipulation for memory allocated through the per cpu
369 * allocator or for addresses of per cpu variables.
370 *
371 * These operation guarantee exclusivity of access for other operations
372 * on the *same* processor. The assumption is that per cpu data is only
373 * accessed by a single processor instance (the current one).
374 *
375 * The arch code can provide optimized implementation by defining macros
376 * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
377 * cpu atomic operations for 2 byte sized RMW actions. If arch code does
378 * not provide operations for a scalar size then the fallback in the
379 * generic code will be used.
eba11788
TH
380 *
381 * cmpxchg_double replaces two adjacent scalars at once. The first two
382 * parameters are per cpu variables which have to be of the same size. A
383 * truth value is returned to indicate success or failure (since a double
384 * register result is difficult to handle). There is very limited hardware
385 * support for these operations, so only certain sizes may work.
a32f8d8e
TH
386 */
387
388/*
eba11788
TH
389 * Operations for contexts where we do not want to do any checks for
390 * preemptions. Unless strictly necessary, always use [__]this_cpu_*()
391 * instead.
a32f8d8e 392 *
eba11788
TH
393 * If there is no other protection through preempt disable and/or disabling
394 * interupts then one of these RMW operations can show unexpected behavior
395 * because the execution thread was rescheduled on another processor or an
396 * interrupt occurred and the same percpu variable was modified from the
397 * interrupt context.
a32f8d8e 398 */
eba11788
TH
399#define raw_cpu_read(pcp) __pcpu_size_call_return(raw_cpu_read_, pcp)
400#define raw_cpu_write(pcp, val) __pcpu_size_call(raw_cpu_write_, pcp, val)
401#define raw_cpu_add(pcp, val) __pcpu_size_call(raw_cpu_add_, pcp, val)
402#define raw_cpu_and(pcp, val) __pcpu_size_call(raw_cpu_and_, pcp, val)
403#define raw_cpu_or(pcp, val) __pcpu_size_call(raw_cpu_or_, pcp, val)
404#define raw_cpu_add_return(pcp, val) __pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
405#define raw_cpu_xchg(pcp, nval) __pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval)
406#define raw_cpu_cmpxchg(pcp, oval, nval) \
a32f8d8e 407 __pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
eba11788
TH
408#define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
409 __pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
410
411#define raw_cpu_sub(pcp, val) raw_cpu_add(pcp, -(val))
412#define raw_cpu_inc(pcp) raw_cpu_add(pcp, 1)
413#define raw_cpu_dec(pcp) raw_cpu_sub(pcp, 1)
414#define raw_cpu_sub_return(pcp, val) raw_cpu_add_return(pcp, -(typeof(pcp))(val))
415#define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1)
416#define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1)
a32f8d8e
TH
417
418/*
eba11788
TH
419 * Operations for contexts that are safe from preemption/interrupts. These
420 * operations verify that preemption is disabled.
a32f8d8e 421 */
eba11788
TH
422#define __this_cpu_read(pcp) \
423({ \
424 __this_cpu_preempt_check("read"); \
425 raw_cpu_read(pcp); \
426})
a32f8d8e 427
eba11788
TH
428#define __this_cpu_write(pcp, val) \
429({ \
430 __this_cpu_preempt_check("write"); \
431 raw_cpu_write(pcp, val); \
432})
a32f8d8e 433
eba11788
TH
434#define __this_cpu_add(pcp, val) \
435({ \
436 __this_cpu_preempt_check("add"); \
cadb1c4d 437 raw_cpu_add(pcp, val); \
eba11788 438})
a32f8d8e 439
eba11788
TH
440#define __this_cpu_and(pcp, val) \
441({ \
442 __this_cpu_preempt_check("and"); \
cadb1c4d 443 raw_cpu_and(pcp, val); \
eba11788 444})
a32f8d8e 445
eba11788
TH
446#define __this_cpu_or(pcp, val) \
447({ \
448 __this_cpu_preempt_check("or"); \
cadb1c4d 449 raw_cpu_or(pcp, val); \
eba11788 450})
a32f8d8e 451
eba11788
TH
452#define __this_cpu_add_return(pcp, val) \
453({ \
454 __this_cpu_preempt_check("add_return"); \
455 raw_cpu_add_return(pcp, val); \
456})
a32f8d8e 457
eba11788
TH
458#define __this_cpu_xchg(pcp, nval) \
459({ \
460 __this_cpu_preempt_check("xchg"); \
461 raw_cpu_xchg(pcp, nval); \
462})
a32f8d8e 463
eba11788
TH
464#define __this_cpu_cmpxchg(pcp, oval, nval) \
465({ \
466 __this_cpu_preempt_check("cmpxchg"); \
467 raw_cpu_cmpxchg(pcp, oval, nval); \
468})
a32f8d8e 469
eba11788
TH
470#define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
471({ __this_cpu_preempt_check("cmpxchg_double"); \
472 raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2); \
473})
a32f8d8e 474
eba11788
TH
475#define __this_cpu_sub(pcp, val) __this_cpu_add(pcp, -(typeof(pcp))(val))
476#define __this_cpu_inc(pcp) __this_cpu_add(pcp, 1)
477#define __this_cpu_dec(pcp) __this_cpu_sub(pcp, 1)
478#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
479#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
480#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
a32f8d8e
TH
481
482/*
eba11788
TH
483 * Operations with implied preemption protection. These operations can be
484 * used without worrying about preemption. Note that interrupts may still
485 * occur while an operation is in progress and if the interrupt modifies
486 * the variable too then RMW actions may not be reliable.
a32f8d8e 487 */
eba11788
TH
488#define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, pcp)
489#define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, pcp, val)
490#define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, pcp, val)
491#define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, pcp, val)
492#define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, pcp, val)
493#define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
494#define this_cpu_xchg(pcp, nval) __pcpu_size_call_return2(this_cpu_xchg_, pcp, nval)
495#define this_cpu_cmpxchg(pcp, oval, nval) \
496 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
497#define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
498 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
499
500#define this_cpu_sub(pcp, val) this_cpu_add(pcp, -(typeof(pcp))(val))
501#define this_cpu_inc(pcp) this_cpu_add(pcp, 1)
502#define this_cpu_dec(pcp) this_cpu_sub(pcp, 1)
a32f8d8e
TH
503#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val))
504#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
505#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
a32f8d8e 506
62fde541 507#endif /* __ASSEMBLY__ */
5028eaa9 508#endif /* _LINUX_PERCPU_DEFS_H */