]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/percpu.h
Merge branch 'drm-nouveau-next' of git://anongit.freedesktop.org/git/nouveau/linux...
[mirror_ubuntu-zesty-kernel.git] / include / linux / percpu.h
CommitLineData
1da177e4
LT
1#ifndef __LINUX_PERCPU_H
2#define __LINUX_PERCPU_H
7ff6f082 3
309381fe 4#include <linux/mmdebug.h>
0a3021f4 5#include <linux/preempt.h>
1da177e4 6#include <linux/smp.h>
7ff6f082 7#include <linux/cpumask.h>
6a242909 8#include <linux/pfn.h>
de380b55 9#include <linux/init.h>
7ff6f082 10
1da177e4
LT
11#include <asm/percpu.h>
12
6a242909 13/* enough to cover all DEFINE_PER_CPUs in modules */
b00742d3 14#ifdef CONFIG_MODULES
6a242909 15#define PERCPU_MODULE_RESERVE (8 << 10)
b00742d3 16#else
6a242909 17#define PERCPU_MODULE_RESERVE 0
1da177e4
LT
18#endif
19
6a242909 20#ifndef PERCPU_ENOUGH_ROOM
b00742d3 21#define PERCPU_ENOUGH_ROOM \
6a242909
TH
22 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
23 PERCPU_MODULE_RESERVE)
24#endif
b00742d3 25
632bbfee
JB
26/*
27 * Must be an lvalue. Since @var must be a simple identifier,
28 * we force a syntax error here if it isn't.
29 */
30#define get_cpu_var(var) (*({ \
632bbfee
JB
31 preempt_disable(); \
32 &__get_cpu_var(var); }))
f7b64fe8 33
e0fdb0e0
RR
34/*
35 * The weird & is necessary because sparse considers (void)(var) to be
36 * a direct dereference of percpu variable (var).
37 */
f7b64fe8 38#define put_cpu_var(var) do { \
e0fdb0e0 39 (void)&(var); \
f7b64fe8
TH
40 preempt_enable(); \
41} while (0)
1da177e4 42
8b8e2ec1
PZ
43#define get_cpu_ptr(var) ({ \
44 preempt_disable(); \
45 this_cpu_ptr(var); })
46
47#define put_cpu_ptr(var) do { \
48 (void)(var); \
49 preempt_enable(); \
50} while (0)
51
8d408b4b 52/* minimum unit size, also is the maximum supported allocation size */
6abad5ac 53#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
8d408b4b 54
099a19d9
TH
55/*
56 * Percpu allocator can serve percpu allocations before slab is
57 * initialized which allows slab to depend on the percpu allocator.
58 * The following two parameters decide how much resource to
59 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
60 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
61 */
62#define PERCPU_DYNAMIC_EARLY_SLOTS 128
63#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
64
8d408b4b
TH
65/*
66 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
6b19b0c2
TH
67 * back on the first chunk for dynamic percpu allocation if arch is
68 * manually allocating and mapping it for faster access (as a part of
69 * large page mapping for example).
8d408b4b 70 *
6b19b0c2
TH
71 * The following values give between one and two pages of free space
72 * after typical minimal boot (2-way SMP, single disk and NIC) with
73 * both defconfig and a distro config on x86_64 and 32. More
74 * intelligent way to determine this would be nice.
8d408b4b 75 */
6b19b0c2
TH
76#if BITS_PER_LONG > 32
77#define PERCPU_DYNAMIC_RESERVE (20 << 10)
78#else
79#define PERCPU_DYNAMIC_RESERVE (12 << 10)
80#endif
8d408b4b 81
fbf59bc9 82extern void *pcpu_base_addr;
fb435d52 83extern const unsigned long *pcpu_unit_offsets;
1da177e4 84
fd1e8a1f
TH
85struct pcpu_group_info {
86 int nr_units; /* aligned # of units */
87 unsigned long base_offset; /* base address offset */
88 unsigned int *cpu_map; /* unit->cpu map, empty
89 * entries contain NR_CPUS */
90};
91
92struct pcpu_alloc_info {
93 size_t static_size;
94 size_t reserved_size;
95 size_t dyn_size;
96 size_t unit_size;
97 size_t atom_size;
98 size_t alloc_size;
99 size_t __ai_size; /* internal, don't use */
100 int nr_groups; /* 0 if grouping unnecessary */
101 struct pcpu_group_info groups[];
102};
103
f58dc01b
TH
104enum pcpu_fc {
105 PCPU_FC_AUTO,
106 PCPU_FC_EMBED,
107 PCPU_FC_PAGE,
f58dc01b
TH
108
109 PCPU_FC_NR,
110};
17f3609c 111extern const char * const pcpu_fc_names[PCPU_FC_NR];
f58dc01b
TH
112
113extern enum pcpu_fc pcpu_chosen_fc;
114
3cbc8565
TH
115typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
116 size_t align);
d4b95f80
TH
117typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
118typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
a530b795 119typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
fbf59bc9 120
fd1e8a1f
TH
121extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
122 int nr_units);
123extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
124
fb435d52
TH
125extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
126 void *base_addr);
8d408b4b 127
08fc4580 128#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
4ba6ce25 129extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
130 size_t atom_size,
131 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
132 pcpu_fc_alloc_fn_t alloc_fn,
133 pcpu_fc_free_fn_t free_fn);
08fc4580 134#endif
66c3a757 135
08fc4580 136#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
fb435d52 137extern int __init pcpu_page_first_chunk(size_t reserved_size,
d4b95f80
TH
138 pcpu_fc_alloc_fn_t alloc_fn,
139 pcpu_fc_free_fn_t free_fn,
140 pcpu_fc_populate_pte_fn_t populate_pte_fn);
08fc4580 141#endif
d4b95f80 142
f2a8205c
TH
143/*
144 * Use this to get to a cpu's version of the per-cpu object
145 * dynamically allocated. Non-atomic access to the current CPU's
146 * version should probably be combined with get_cpu()/put_cpu().
147 */
bbddff05 148#ifdef CONFIG_SMP
fbf59bc9 149#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
bbddff05
TH
150#else
151#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
152#endif
fbf59bc9 153
e0fdb0e0 154extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
10fad5e4 155extern bool is_kernel_percpu_address(unsigned long addr);
1da177e4 156
bbddff05 157#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
e74e3962
TH
158extern void __init setup_per_cpu_areas(void);
159#endif
099a19d9 160extern void __init percpu_init_late(void);
e74e3962 161
de380b55
TH
162extern void __percpu *__alloc_percpu(size_t size, size_t align);
163extern void free_percpu(void __percpu *__pdata);
164extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
165
64ef291f 166#define alloc_percpu(type) \
e0fdb0e0 167 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
1da177e4 168
7340a0b1
CL
169/*
170 * Branching function to split up a function into a set of functions that
171 * are called for different scalar sizes of the objects handled.
172 */
173
174extern void __bad_size_call_parameter(void);
175
188a8140
CL
176#ifdef CONFIG_DEBUG_PREEMPT
177extern void __this_cpu_preempt_check(const char *op);
178#else
179static inline void __this_cpu_preempt_check(const char *op) { }
180#endif
181
0f5e4816
TH
182#define __pcpu_size_call_return(stem, variable) \
183({ typeof(variable) pscr_ret__; \
545695fb 184 __verify_pcpu_ptr(&(variable)); \
7340a0b1 185 switch(sizeof(variable)) { \
0f5e4816
TH
186 case 1: pscr_ret__ = stem##1(variable);break; \
187 case 2: pscr_ret__ = stem##2(variable);break; \
188 case 4: pscr_ret__ = stem##4(variable);break; \
189 case 8: pscr_ret__ = stem##8(variable);break; \
7340a0b1
CL
190 default: \
191 __bad_size_call_parameter();break; \
192 } \
0f5e4816 193 pscr_ret__; \
7340a0b1
CL
194})
195
a663ffff
CL
196#define __pcpu_size_call_return2(stem, variable, ...) \
197({ \
198 typeof(variable) pscr2_ret__; \
199 __verify_pcpu_ptr(&(variable)); \
200 switch(sizeof(variable)) { \
201 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
202 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
203 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
204 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
205 default: \
206 __bad_size_call_parameter(); break; \
207 } \
208 pscr2_ret__; \
209})
210
7c334339
CL
211/*
212 * Special handling for cmpxchg_double. cmpxchg_double is passed two
213 * percpu variables. The first has to be aligned to a double word
214 * boundary and the second has to follow directly thereafter.
d4d84fef
CM
215 * We enforce this on all architectures even if they don't support
216 * a double cmpxchg instruction, since it's a cheap requirement, and it
217 * avoids breaking the requirement for architectures with the instruction.
7c334339
CL
218 */
219#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
220({ \
221 bool pdcrb_ret__; \
222 __verify_pcpu_ptr(&pcp1); \
223 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
224 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
225 VM_BUG_ON((unsigned long)(&pcp2) != \
226 (unsigned long)(&pcp1) + sizeof(pcp1)); \
227 switch(sizeof(pcp1)) { \
228 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
229 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
230 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
231 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
232 default: \
233 __bad_size_call_parameter(); break; \
234 } \
235 pdcrb_ret__; \
236})
237
0f5e4816 238#define __pcpu_size_call(stem, variable, ...) \
7340a0b1 239do { \
545695fb 240 __verify_pcpu_ptr(&(variable)); \
7340a0b1
CL
241 switch(sizeof(variable)) { \
242 case 1: stem##1(variable, __VA_ARGS__);break; \
243 case 2: stem##2(variable, __VA_ARGS__);break; \
244 case 4: stem##4(variable, __VA_ARGS__);break; \
245 case 8: stem##8(variable, __VA_ARGS__);break; \
246 default: \
247 __bad_size_call_parameter();break; \
248 } \
249} while (0)
250
251/*
b3ca1c10
CL
252 * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
253 *
7340a0b1 254 * Optimized manipulation for memory allocated through the per cpu
dd17c8f7 255 * allocator or for addresses of per cpu variables.
7340a0b1
CL
256 *
257 * These operation guarantee exclusivity of access for other operations
258 * on the *same* processor. The assumption is that per cpu data is only
259 * accessed by a single processor instance (the current one).
260 *
261 * The first group is used for accesses that must be done in a
262 * preemption safe way since we know that the context is not preempt
263 * safe. Interrupts may occur. If the interrupt modifies the variable
264 * too then RMW actions will not be reliable.
265 *
266 * The arch code can provide optimized functions in two ways:
267 *
268 * 1. Override the function completely. F.e. define this_cpu_add().
269 * The arch must then ensure that the various scalar format passed
270 * are handled correctly.
271 *
272 * 2. Provide functions for certain scalar sizes. F.e. provide
273 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
274 * sized RMW actions. If arch code does not provide operations for
275 * a scalar size then the fallback in the generic code will be
276 * used.
277 */
278
279#define _this_cpu_generic_read(pcp) \
280({ typeof(pcp) ret__; \
281 preempt_disable(); \
282 ret__ = *this_cpu_ptr(&(pcp)); \
283 preempt_enable(); \
284 ret__; \
285})
286
287#ifndef this_cpu_read
288# ifndef this_cpu_read_1
289# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
290# endif
291# ifndef this_cpu_read_2
292# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
293# endif
294# ifndef this_cpu_read_4
295# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
296# endif
297# ifndef this_cpu_read_8
298# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
299# endif
0f5e4816 300# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
7340a0b1
CL
301#endif
302
303#define _this_cpu_generic_to_op(pcp, val, op) \
304do { \
933393f5 305 unsigned long flags; \
e920d597 306 raw_local_irq_save(flags); \
b3ca1c10 307 *raw_cpu_ptr(&(pcp)) op val; \
e920d597 308 raw_local_irq_restore(flags); \
7340a0b1
CL
309} while (0)
310
311#ifndef this_cpu_write
312# ifndef this_cpu_write_1
313# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
314# endif
315# ifndef this_cpu_write_2
316# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
317# endif
318# ifndef this_cpu_write_4
319# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
320# endif
321# ifndef this_cpu_write_8
322# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
323# endif
0f5e4816 324# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
7340a0b1
CL
325#endif
326
327#ifndef this_cpu_add
328# ifndef this_cpu_add_1
329# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
330# endif
331# ifndef this_cpu_add_2
332# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
333# endif
334# ifndef this_cpu_add_4
335# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
336# endif
337# ifndef this_cpu_add_8
338# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
339# endif
0f5e4816 340# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
7340a0b1
CL
341#endif
342
343#ifndef this_cpu_sub
bd09d9a3 344# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val))
7340a0b1
CL
345#endif
346
347#ifndef this_cpu_inc
348# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
349#endif
350
351#ifndef this_cpu_dec
352# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
353#endif
354
355#ifndef this_cpu_and
356# ifndef this_cpu_and_1
357# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
358# endif
359# ifndef this_cpu_and_2
360# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
361# endif
362# ifndef this_cpu_and_4
363# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
364# endif
365# ifndef this_cpu_and_8
366# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
367# endif
0f5e4816 368# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
7340a0b1
CL
369#endif
370
371#ifndef this_cpu_or
372# ifndef this_cpu_or_1
373# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
374# endif
375# ifndef this_cpu_or_2
376# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
377# endif
378# ifndef this_cpu_or_4
379# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
380# endif
381# ifndef this_cpu_or_8
382# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
383# endif
0f5e4816 384# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
7340a0b1
CL
385#endif
386
40304775
TH
387#define _this_cpu_generic_add_return(pcp, val) \
388({ \
389 typeof(pcp) ret__; \
933393f5 390 unsigned long flags; \
e920d597 391 raw_local_irq_save(flags); \
b3ca1c10
CL
392 raw_cpu_add(pcp, val); \
393 ret__ = raw_cpu_read(pcp); \
e920d597 394 raw_local_irq_restore(flags); \
40304775
TH
395 ret__; \
396})
397
398#ifndef this_cpu_add_return
399# ifndef this_cpu_add_return_1
400# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
401# endif
402# ifndef this_cpu_add_return_2
403# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
404# endif
405# ifndef this_cpu_add_return_4
406# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
407# endif
408# ifndef this_cpu_add_return_8
409# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
410# endif
411# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
412#endif
413
bd09d9a3 414#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val))
40304775
TH
415#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
416#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
417
2b712442
CL
418#define _this_cpu_generic_xchg(pcp, nval) \
419({ typeof(pcp) ret__; \
933393f5 420 unsigned long flags; \
e920d597 421 raw_local_irq_save(flags); \
b3ca1c10
CL
422 ret__ = raw_cpu_read(pcp); \
423 raw_cpu_write(pcp, nval); \
e920d597 424 raw_local_irq_restore(flags); \
2b712442
CL
425 ret__; \
426})
427
428#ifndef this_cpu_xchg
429# ifndef this_cpu_xchg_1
430# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
431# endif
432# ifndef this_cpu_xchg_2
433# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
434# endif
435# ifndef this_cpu_xchg_4
436# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
437# endif
438# ifndef this_cpu_xchg_8
439# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
440# endif
441# define this_cpu_xchg(pcp, nval) \
442 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
443#endif
444
445#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
933393f5
CL
446({ \
447 typeof(pcp) ret__; \
448 unsigned long flags; \
e920d597 449 raw_local_irq_save(flags); \
b3ca1c10 450 ret__ = raw_cpu_read(pcp); \
2b712442 451 if (ret__ == (oval)) \
b3ca1c10 452 raw_cpu_write(pcp, nval); \
e920d597 453 raw_local_irq_restore(flags); \
2b712442
CL
454 ret__; \
455})
456
457#ifndef this_cpu_cmpxchg
458# ifndef this_cpu_cmpxchg_1
459# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
460# endif
461# ifndef this_cpu_cmpxchg_2
462# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
463# endif
464# ifndef this_cpu_cmpxchg_4
465# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
466# endif
467# ifndef this_cpu_cmpxchg_8
468# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
469# endif
470# define this_cpu_cmpxchg(pcp, oval, nval) \
471 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
472#endif
473
7c334339
CL
474/*
475 * cmpxchg_double replaces two adjacent scalars at once. The first
476 * two parameters are per cpu variables which have to be of the same
477 * size. A truth value is returned to indicate success or failure
478 * (since a double register result is difficult to handle). There is
479 * very limited hardware support for these operations, so only certain
480 * sizes may work.
481 */
482#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
483({ \
484 int ret__; \
933393f5 485 unsigned long flags; \
e920d597 486 raw_local_irq_save(flags); \
b3ca1c10 487 ret__ = raw_cpu_generic_cmpxchg_double(pcp1, pcp2, \
7c334339 488 oval1, oval2, nval1, nval2); \
e920d597 489 raw_local_irq_restore(flags); \
7c334339
CL
490 ret__; \
491})
492
493#ifndef this_cpu_cmpxchg_double
494# ifndef this_cpu_cmpxchg_double_1
495# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
496 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
497# endif
498# ifndef this_cpu_cmpxchg_double_2
499# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
500 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
501# endif
502# ifndef this_cpu_cmpxchg_double_4
503# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
504 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
505# endif
506# ifndef this_cpu_cmpxchg_double_8
507# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
508 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
509# endif
510# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
511 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
512#endif
513
7340a0b1 514/*
b3ca1c10
CL
515 * Generic percpu operations for contexts where we do not want to do
516 * any checks for preemptiosn.
7340a0b1
CL
517 *
518 * If there is no other protection through preempt disable and/or
519 * disabling interupts then one of these RMW operations can show unexpected
520 * behavior because the execution thread was rescheduled on another processor
521 * or an interrupt occurred and the same percpu variable was modified from
522 * the interrupt context.
523 */
b3ca1c10
CL
524#ifndef raw_cpu_read
525# ifndef raw_cpu_read_1
526# define raw_cpu_read_1(pcp) (*raw_cpu_ptr(&(pcp)))
7340a0b1 527# endif
b3ca1c10
CL
528# ifndef raw_cpu_read_2
529# define raw_cpu_read_2(pcp) (*raw_cpu_ptr(&(pcp)))
7340a0b1 530# endif
b3ca1c10
CL
531# ifndef raw_cpu_read_4
532# define raw_cpu_read_4(pcp) (*raw_cpu_ptr(&(pcp)))
7340a0b1 533# endif
b3ca1c10
CL
534# ifndef raw_cpu_read_8
535# define raw_cpu_read_8(pcp) (*raw_cpu_ptr(&(pcp)))
7340a0b1 536# endif
b3ca1c10 537# define raw_cpu_read(pcp) __pcpu_size_call_return(raw_cpu_read_, (pcp))
7340a0b1
CL
538#endif
539
b3ca1c10 540#define raw_cpu_generic_to_op(pcp, val, op) \
7340a0b1 541do { \
b3ca1c10 542 *raw_cpu_ptr(&(pcp)) op val; \
7340a0b1
CL
543} while (0)
544
b3ca1c10
CL
545
546#ifndef raw_cpu_write
547# ifndef raw_cpu_write_1
548# define raw_cpu_write_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), =)
7340a0b1 549# endif
b3ca1c10
CL
550# ifndef raw_cpu_write_2
551# define raw_cpu_write_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), =)
7340a0b1 552# endif
b3ca1c10
CL
553# ifndef raw_cpu_write_4
554# define raw_cpu_write_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), =)
7340a0b1 555# endif
b3ca1c10
CL
556# ifndef raw_cpu_write_8
557# define raw_cpu_write_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), =)
7340a0b1 558# endif
b3ca1c10 559# define raw_cpu_write(pcp, val) __pcpu_size_call(raw_cpu_write_, (pcp), (val))
7340a0b1
CL
560#endif
561
b3ca1c10
CL
562#ifndef raw_cpu_add
563# ifndef raw_cpu_add_1
564# define raw_cpu_add_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=)
7340a0b1 565# endif
b3ca1c10
CL
566# ifndef raw_cpu_add_2
567# define raw_cpu_add_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=)
7340a0b1 568# endif
b3ca1c10
CL
569# ifndef raw_cpu_add_4
570# define raw_cpu_add_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=)
7340a0b1 571# endif
b3ca1c10
CL
572# ifndef raw_cpu_add_8
573# define raw_cpu_add_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=)
7340a0b1 574# endif
b3ca1c10 575# define raw_cpu_add(pcp, val) __pcpu_size_call(raw_cpu_add_, (pcp), (val))
7340a0b1
CL
576#endif
577
b3ca1c10
CL
578#ifndef raw_cpu_sub
579# define raw_cpu_sub(pcp, val) raw_cpu_add((pcp), -(val))
7340a0b1
CL
580#endif
581
b3ca1c10
CL
582#ifndef raw_cpu_inc
583# define raw_cpu_inc(pcp) raw_cpu_add((pcp), 1)
7340a0b1
CL
584#endif
585
b3ca1c10
CL
586#ifndef raw_cpu_dec
587# define raw_cpu_dec(pcp) raw_cpu_sub((pcp), 1)
7340a0b1
CL
588#endif
589
b3ca1c10
CL
590#ifndef raw_cpu_and
591# ifndef raw_cpu_and_1
592# define raw_cpu_and_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=)
7340a0b1 593# endif
b3ca1c10
CL
594# ifndef raw_cpu_and_2
595# define raw_cpu_and_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=)
7340a0b1 596# endif
b3ca1c10
CL
597# ifndef raw_cpu_and_4
598# define raw_cpu_and_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=)
7340a0b1 599# endif
b3ca1c10
CL
600# ifndef raw_cpu_and_8
601# define raw_cpu_and_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=)
7340a0b1 602# endif
b3ca1c10 603# define raw_cpu_and(pcp, val) __pcpu_size_call(raw_cpu_and_, (pcp), (val))
7340a0b1
CL
604#endif
605
b3ca1c10
CL
606#ifndef raw_cpu_or
607# ifndef raw_cpu_or_1
608# define raw_cpu_or_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=)
7340a0b1 609# endif
b3ca1c10
CL
610# ifndef raw_cpu_or_2
611# define raw_cpu_or_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=)
7340a0b1 612# endif
b3ca1c10
CL
613# ifndef raw_cpu_or_4
614# define raw_cpu_or_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=)
7340a0b1 615# endif
b3ca1c10
CL
616# ifndef raw_cpu_or_8
617# define raw_cpu_or_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=)
7340a0b1 618# endif
b3ca1c10 619# define raw_cpu_or(pcp, val) __pcpu_size_call(raw_cpu_or_, (pcp), (val))
7340a0b1
CL
620#endif
621
b3ca1c10 622#define raw_cpu_generic_add_return(pcp, val) \
a663ffff 623({ \
b3ca1c10
CL
624 raw_cpu_add(pcp, val); \
625 raw_cpu_read(pcp); \
a663ffff
CL
626})
627
b3ca1c10
CL
628#ifndef raw_cpu_add_return
629# ifndef raw_cpu_add_return_1
630# define raw_cpu_add_return_1(pcp, val) raw_cpu_generic_add_return(pcp, val)
a663ffff 631# endif
b3ca1c10
CL
632# ifndef raw_cpu_add_return_2
633# define raw_cpu_add_return_2(pcp, val) raw_cpu_generic_add_return(pcp, val)
a663ffff 634# endif
b3ca1c10
CL
635# ifndef raw_cpu_add_return_4
636# define raw_cpu_add_return_4(pcp, val) raw_cpu_generic_add_return(pcp, val)
a663ffff 637# endif
b3ca1c10
CL
638# ifndef raw_cpu_add_return_8
639# define raw_cpu_add_return_8(pcp, val) raw_cpu_generic_add_return(pcp, val)
a663ffff 640# endif
b3ca1c10
CL
641# define raw_cpu_add_return(pcp, val) \
642 __pcpu_size_call_return2(raw_add_return_, pcp, val)
a663ffff
CL
643#endif
644
b3ca1c10
CL
645#define raw_cpu_sub_return(pcp, val) raw_cpu_add_return(pcp, -(typeof(pcp))(val))
646#define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1)
647#define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1)
a663ffff 648
b3ca1c10 649#define raw_cpu_generic_xchg(pcp, nval) \
2b712442 650({ typeof(pcp) ret__; \
b3ca1c10
CL
651 ret__ = raw_cpu_read(pcp); \
652 raw_cpu_write(pcp, nval); \
2b712442
CL
653 ret__; \
654})
655
b3ca1c10
CL
656#ifndef raw_cpu_xchg
657# ifndef raw_cpu_xchg_1
658# define raw_cpu_xchg_1(pcp, nval) raw_cpu_generic_xchg(pcp, nval)
2b712442 659# endif
b3ca1c10
CL
660# ifndef raw_cpu_xchg_2
661# define raw_cpu_xchg_2(pcp, nval) raw_cpu_generic_xchg(pcp, nval)
2b712442 662# endif
b3ca1c10
CL
663# ifndef raw_cpu_xchg_4
664# define raw_cpu_xchg_4(pcp, nval) raw_cpu_generic_xchg(pcp, nval)
2b712442 665# endif
b3ca1c10
CL
666# ifndef raw_cpu_xchg_8
667# define raw_cpu_xchg_8(pcp, nval) raw_cpu_generic_xchg(pcp, nval)
2b712442 668# endif
b3ca1c10
CL
669# define raw_cpu_xchg(pcp, nval) \
670 __pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval)
2b712442
CL
671#endif
672
b3ca1c10 673#define raw_cpu_generic_cmpxchg(pcp, oval, nval) \
2b712442
CL
674({ \
675 typeof(pcp) ret__; \
b3ca1c10 676 ret__ = raw_cpu_read(pcp); \
2b712442 677 if (ret__ == (oval)) \
b3ca1c10 678 raw_cpu_write(pcp, nval); \
2b712442
CL
679 ret__; \
680})
681
b3ca1c10
CL
682#ifndef raw_cpu_cmpxchg
683# ifndef raw_cpu_cmpxchg_1
684# define raw_cpu_cmpxchg_1(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval)
2b712442 685# endif
b3ca1c10
CL
686# ifndef raw_cpu_cmpxchg_2
687# define raw_cpu_cmpxchg_2(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval)
2b712442 688# endif
b3ca1c10
CL
689# ifndef raw_cpu_cmpxchg_4
690# define raw_cpu_cmpxchg_4(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval)
2b712442 691# endif
b3ca1c10
CL
692# ifndef raw_cpu_cmpxchg_8
693# define raw_cpu_cmpxchg_8(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval)
2b712442 694# endif
b3ca1c10
CL
695# define raw_cpu_cmpxchg(pcp, oval, nval) \
696 __pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
2b712442
CL
697#endif
698
b3ca1c10 699#define raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
7c334339
CL
700({ \
701 int __ret = 0; \
b3ca1c10
CL
702 if (raw_cpu_read(pcp1) == (oval1) && \
703 raw_cpu_read(pcp2) == (oval2)) { \
704 raw_cpu_write(pcp1, (nval1)); \
705 raw_cpu_write(pcp2, (nval2)); \
7c334339
CL
706 __ret = 1; \
707 } \
708 (__ret); \
709})
710
b3ca1c10
CL
711#ifndef raw_cpu_cmpxchg_double
712# ifndef raw_cpu_cmpxchg_double_1
713# define raw_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
714 raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
7c334339 715# endif
b3ca1c10
CL
716# ifndef raw_cpu_cmpxchg_double_2
717# define raw_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
718 raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
7c334339 719# endif
b3ca1c10
CL
720# ifndef raw_cpu_cmpxchg_double_4
721# define raw_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
722 raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
7c334339 723# endif
b3ca1c10
CL
724# ifndef raw_cpu_cmpxchg_double_8
725# define raw_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
726 raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
7c334339 727# endif
b3ca1c10
CL
728# define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
729 __pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
730#endif
731
732/*
733 * Generic percpu operations for context that are safe from preemption/interrupts.
b3ca1c10
CL
734 */
735#ifndef __this_cpu_read
188a8140
CL
736# define __this_cpu_read(pcp) \
737 (__this_cpu_preempt_check("read"),__pcpu_size_call_return(raw_cpu_read_, (pcp)))
b3ca1c10
CL
738#endif
739
740#ifndef __this_cpu_write
188a8140
CL
741# define __this_cpu_write(pcp, val) \
742do { __this_cpu_preempt_check("write"); \
743 __pcpu_size_call(raw_cpu_write_, (pcp), (val)); \
744} while (0)
b3ca1c10
CL
745#endif
746
747#ifndef __this_cpu_add
188a8140
CL
748# define __this_cpu_add(pcp, val) \
749do { __this_cpu_preempt_check("add"); \
750 __pcpu_size_call(raw_cpu_add_, (pcp), (val)); \
751} while (0)
b3ca1c10
CL
752#endif
753
754#ifndef __this_cpu_sub
755# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val))
756#endif
757
758#ifndef __this_cpu_inc
759# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
760#endif
761
762#ifndef __this_cpu_dec
763# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
764#endif
765
766#ifndef __this_cpu_and
188a8140
CL
767# define __this_cpu_and(pcp, val) \
768do { __this_cpu_preempt_check("and"); \
769 __pcpu_size_call(raw_cpu_and_, (pcp), (val)); \
770} while (0)
771
b3ca1c10
CL
772#endif
773
774#ifndef __this_cpu_or
188a8140
CL
775# define __this_cpu_or(pcp, val) \
776do { __this_cpu_preempt_check("or"); \
777 __pcpu_size_call(raw_cpu_or_, (pcp), (val)); \
778} while (0)
b3ca1c10
CL
779#endif
780
781#ifndef __this_cpu_add_return
782# define __this_cpu_add_return(pcp, val) \
188a8140 783 (__this_cpu_preempt_check("add_return"),__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val))
b3ca1c10
CL
784#endif
785
786#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
787#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
788#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
789
790#ifndef __this_cpu_xchg
791# define __this_cpu_xchg(pcp, nval) \
188a8140 792 (__this_cpu_preempt_check("xchg"),__pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval))
b3ca1c10
CL
793#endif
794
795#ifndef __this_cpu_cmpxchg
796# define __this_cpu_cmpxchg(pcp, oval, nval) \
188a8140 797 (__this_cpu_preempt_check("cmpxchg"),__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval))
b3ca1c10
CL
798#endif
799
800#ifndef __this_cpu_cmpxchg_double
7c334339 801# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
188a8140 802 (__this_cpu_preempt_check("cmpxchg_double"),__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)))
7c334339
CL
803#endif
804
1da177e4 805#endif /* __LINUX_PERCPU_H */