]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/percpu.h
percpu: fix generic definition of __this_cpu_add_and_return()
[mirror_ubuntu-artful-kernel.git] / include / linux / percpu.h
CommitLineData
1da177e4
LT
1#ifndef __LINUX_PERCPU_H
2#define __LINUX_PERCPU_H
7ff6f082 3
0a3021f4 4#include <linux/preempt.h>
1da177e4 5#include <linux/smp.h>
7ff6f082 6#include <linux/cpumask.h>
6a242909 7#include <linux/pfn.h>
de380b55 8#include <linux/init.h>
7ff6f082 9
1da177e4
LT
10#include <asm/percpu.h>
11
6a242909 12/* enough to cover all DEFINE_PER_CPUs in modules */
b00742d3 13#ifdef CONFIG_MODULES
6a242909 14#define PERCPU_MODULE_RESERVE (8 << 10)
b00742d3 15#else
6a242909 16#define PERCPU_MODULE_RESERVE 0
1da177e4
LT
17#endif
18
6a242909 19#ifndef PERCPU_ENOUGH_ROOM
b00742d3 20#define PERCPU_ENOUGH_ROOM \
6a242909
TH
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23#endif
b00742d3 24
632bbfee
JB
25/*
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
28 */
29#define get_cpu_var(var) (*({ \
632bbfee
JB
30 preempt_disable(); \
31 &__get_cpu_var(var); }))
f7b64fe8 32
e0fdb0e0
RR
33/*
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
36 */
f7b64fe8 37#define put_cpu_var(var) do { \
e0fdb0e0 38 (void)&(var); \
f7b64fe8
TH
39 preempt_enable(); \
40} while (0)
1da177e4 41
8b8e2ec1
PZ
42#define get_cpu_ptr(var) ({ \
43 preempt_disable(); \
44 this_cpu_ptr(var); })
45
46#define put_cpu_ptr(var) do { \
47 (void)(var); \
48 preempt_enable(); \
49} while (0)
50
8d408b4b 51/* minimum unit size, also is the maximum supported allocation size */
6abad5ac 52#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
8d408b4b 53
099a19d9
TH
54/*
55 * Percpu allocator can serve percpu allocations before slab is
56 * initialized which allows slab to depend on the percpu allocator.
57 * The following two parameters decide how much resource to
58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
60 */
61#define PERCPU_DYNAMIC_EARLY_SLOTS 128
62#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
63
8d408b4b
TH
64/*
65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
6b19b0c2
TH
66 * back on the first chunk for dynamic percpu allocation if arch is
67 * manually allocating and mapping it for faster access (as a part of
68 * large page mapping for example).
8d408b4b 69 *
6b19b0c2
TH
70 * The following values give between one and two pages of free space
71 * after typical minimal boot (2-way SMP, single disk and NIC) with
72 * both defconfig and a distro config on x86_64 and 32. More
73 * intelligent way to determine this would be nice.
8d408b4b 74 */
6b19b0c2
TH
75#if BITS_PER_LONG > 32
76#define PERCPU_DYNAMIC_RESERVE (20 << 10)
77#else
78#define PERCPU_DYNAMIC_RESERVE (12 << 10)
79#endif
8d408b4b 80
fbf59bc9 81extern void *pcpu_base_addr;
fb435d52 82extern const unsigned long *pcpu_unit_offsets;
1da177e4 83
fd1e8a1f
TH
84struct pcpu_group_info {
85 int nr_units; /* aligned # of units */
86 unsigned long base_offset; /* base address offset */
87 unsigned int *cpu_map; /* unit->cpu map, empty
88 * entries contain NR_CPUS */
89};
90
91struct pcpu_alloc_info {
92 size_t static_size;
93 size_t reserved_size;
94 size_t dyn_size;
95 size_t unit_size;
96 size_t atom_size;
97 size_t alloc_size;
98 size_t __ai_size; /* internal, don't use */
99 int nr_groups; /* 0 if grouping unnecessary */
100 struct pcpu_group_info groups[];
101};
102
f58dc01b
TH
103enum pcpu_fc {
104 PCPU_FC_AUTO,
105 PCPU_FC_EMBED,
106 PCPU_FC_PAGE,
f58dc01b
TH
107
108 PCPU_FC_NR,
109};
110extern const char *pcpu_fc_names[PCPU_FC_NR];
111
112extern enum pcpu_fc pcpu_chosen_fc;
113
3cbc8565
TH
114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
115 size_t align);
d4b95f80
TH
116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
a530b795 118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
fbf59bc9 119
fd1e8a1f
TH
120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
121 int nr_units);
122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
123
fb435d52
TH
124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
125 void *base_addr);
8d408b4b 126
08fc4580 127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
4ba6ce25 128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
129 size_t atom_size,
130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131 pcpu_fc_alloc_fn_t alloc_fn,
132 pcpu_fc_free_fn_t free_fn);
08fc4580 133#endif
66c3a757 134
08fc4580 135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
fb435d52 136extern int __init pcpu_page_first_chunk(size_t reserved_size,
d4b95f80
TH
137 pcpu_fc_alloc_fn_t alloc_fn,
138 pcpu_fc_free_fn_t free_fn,
139 pcpu_fc_populate_pte_fn_t populate_pte_fn);
08fc4580 140#endif
d4b95f80 141
f2a8205c
TH
142/*
143 * Use this to get to a cpu's version of the per-cpu object
144 * dynamically allocated. Non-atomic access to the current CPU's
145 * version should probably be combined with get_cpu()/put_cpu().
146 */
bbddff05 147#ifdef CONFIG_SMP
fbf59bc9 148#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
bbddff05
TH
149#else
150#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
151#endif
fbf59bc9 152
e0fdb0e0 153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
10fad5e4 154extern bool is_kernel_percpu_address(unsigned long addr);
1da177e4 155
bbddff05 156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
e74e3962
TH
157extern void __init setup_per_cpu_areas(void);
158#endif
099a19d9 159extern void __init percpu_init_late(void);
e74e3962 160
de380b55
TH
161extern void __percpu *__alloc_percpu(size_t size, size_t align);
162extern void free_percpu(void __percpu *__pdata);
163extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
164
64ef291f 165#define alloc_percpu(type) \
e0fdb0e0 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
1da177e4 167
066123a5
TH
168/*
169 * Optional methods for optimized non-lvalue per-cpu variable access.
170 *
171 * @var can be a percpu variable or a field of it and its size should
172 * equal char, int or long. percpu_read() evaluates to a lvalue and
173 * all others to void.
174 *
933393f5
CL
175 * These operations are guaranteed to be atomic.
176 * The generic versions disable interrupts. Archs are
066123a5 177 * encouraged to implement single-instruction alternatives which don't
933393f5 178 * require protection.
066123a5
TH
179 */
180#ifndef percpu_read
181# define percpu_read(var) \
182 ({ \
f7b64fe8
TH
183 typeof(var) *pr_ptr__ = &(var); \
184 typeof(var) pr_ret__; \
185 pr_ret__ = get_cpu_var(*pr_ptr__); \
186 put_cpu_var(*pr_ptr__); \
187 pr_ret__; \
066123a5
TH
188 })
189#endif
190
191#define __percpu_generic_to_op(var, val, op) \
192do { \
f7b64fe8
TH
193 typeof(var) *pgto_ptr__ = &(var); \
194 get_cpu_var(*pgto_ptr__) op val; \
195 put_cpu_var(*pgto_ptr__); \
066123a5
TH
196} while (0)
197
198#ifndef percpu_write
199# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
200#endif
201
202#ifndef percpu_add
203# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
204#endif
205
206#ifndef percpu_sub
207# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
208#endif
209
210#ifndef percpu_and
211# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
212#endif
213
214#ifndef percpu_or
215# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
216#endif
217
218#ifndef percpu_xor
219# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
220#endif
221
7340a0b1
CL
222/*
223 * Branching function to split up a function into a set of functions that
224 * are called for different scalar sizes of the objects handled.
225 */
226
227extern void __bad_size_call_parameter(void);
228
0f5e4816
TH
229#define __pcpu_size_call_return(stem, variable) \
230({ typeof(variable) pscr_ret__; \
545695fb 231 __verify_pcpu_ptr(&(variable)); \
7340a0b1 232 switch(sizeof(variable)) { \
0f5e4816
TH
233 case 1: pscr_ret__ = stem##1(variable);break; \
234 case 2: pscr_ret__ = stem##2(variable);break; \
235 case 4: pscr_ret__ = stem##4(variable);break; \
236 case 8: pscr_ret__ = stem##8(variable);break; \
7340a0b1
CL
237 default: \
238 __bad_size_call_parameter();break; \
239 } \
0f5e4816 240 pscr_ret__; \
7340a0b1
CL
241})
242
a663ffff
CL
243#define __pcpu_size_call_return2(stem, variable, ...) \
244({ \
245 typeof(variable) pscr2_ret__; \
246 __verify_pcpu_ptr(&(variable)); \
247 switch(sizeof(variable)) { \
248 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
249 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
250 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
251 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
252 default: \
253 __bad_size_call_parameter(); break; \
254 } \
255 pscr2_ret__; \
256})
257
7c334339
CL
258/*
259 * Special handling for cmpxchg_double. cmpxchg_double is passed two
260 * percpu variables. The first has to be aligned to a double word
261 * boundary and the second has to follow directly thereafter.
d4d84fef
CM
262 * We enforce this on all architectures even if they don't support
263 * a double cmpxchg instruction, since it's a cheap requirement, and it
264 * avoids breaking the requirement for architectures with the instruction.
7c334339
CL
265 */
266#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
267({ \
268 bool pdcrb_ret__; \
269 __verify_pcpu_ptr(&pcp1); \
270 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
271 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
272 VM_BUG_ON((unsigned long)(&pcp2) != \
273 (unsigned long)(&pcp1) + sizeof(pcp1)); \
274 switch(sizeof(pcp1)) { \
275 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
276 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
277 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
278 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
279 default: \
280 __bad_size_call_parameter(); break; \
281 } \
282 pdcrb_ret__; \
283})
284
0f5e4816 285#define __pcpu_size_call(stem, variable, ...) \
7340a0b1 286do { \
545695fb 287 __verify_pcpu_ptr(&(variable)); \
7340a0b1
CL
288 switch(sizeof(variable)) { \
289 case 1: stem##1(variable, __VA_ARGS__);break; \
290 case 2: stem##2(variable, __VA_ARGS__);break; \
291 case 4: stem##4(variable, __VA_ARGS__);break; \
292 case 8: stem##8(variable, __VA_ARGS__);break; \
293 default: \
294 __bad_size_call_parameter();break; \
295 } \
296} while (0)
297
298/*
299 * Optimized manipulation for memory allocated through the per cpu
dd17c8f7 300 * allocator or for addresses of per cpu variables.
7340a0b1
CL
301 *
302 * These operation guarantee exclusivity of access for other operations
303 * on the *same* processor. The assumption is that per cpu data is only
304 * accessed by a single processor instance (the current one).
305 *
306 * The first group is used for accesses that must be done in a
307 * preemption safe way since we know that the context is not preempt
308 * safe. Interrupts may occur. If the interrupt modifies the variable
309 * too then RMW actions will not be reliable.
310 *
311 * The arch code can provide optimized functions in two ways:
312 *
313 * 1. Override the function completely. F.e. define this_cpu_add().
314 * The arch must then ensure that the various scalar format passed
315 * are handled correctly.
316 *
317 * 2. Provide functions for certain scalar sizes. F.e. provide
318 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
319 * sized RMW actions. If arch code does not provide operations for
320 * a scalar size then the fallback in the generic code will be
321 * used.
322 */
323
324#define _this_cpu_generic_read(pcp) \
325({ typeof(pcp) ret__; \
326 preempt_disable(); \
327 ret__ = *this_cpu_ptr(&(pcp)); \
328 preempt_enable(); \
329 ret__; \
330})
331
332#ifndef this_cpu_read
333# ifndef this_cpu_read_1
334# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
335# endif
336# ifndef this_cpu_read_2
337# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
338# endif
339# ifndef this_cpu_read_4
340# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
341# endif
342# ifndef this_cpu_read_8
343# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
344# endif
0f5e4816 345# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
7340a0b1
CL
346#endif
347
348#define _this_cpu_generic_to_op(pcp, val, op) \
349do { \
933393f5
CL
350 unsigned long flags; \
351 local_irq_save(flags); \
f7b64fe8 352 *__this_cpu_ptr(&(pcp)) op val; \
933393f5 353 local_irq_restore(flags); \
7340a0b1
CL
354} while (0)
355
356#ifndef this_cpu_write
357# ifndef this_cpu_write_1
358# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
359# endif
360# ifndef this_cpu_write_2
361# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
362# endif
363# ifndef this_cpu_write_4
364# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
365# endif
366# ifndef this_cpu_write_8
367# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
368# endif
0f5e4816 369# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
7340a0b1
CL
370#endif
371
372#ifndef this_cpu_add
373# ifndef this_cpu_add_1
374# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
375# endif
376# ifndef this_cpu_add_2
377# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
378# endif
379# ifndef this_cpu_add_4
380# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
381# endif
382# ifndef this_cpu_add_8
383# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
384# endif
0f5e4816 385# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
7340a0b1
CL
386#endif
387
388#ifndef this_cpu_sub
389# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
390#endif
391
392#ifndef this_cpu_inc
393# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
394#endif
395
396#ifndef this_cpu_dec
397# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
398#endif
399
400#ifndef this_cpu_and
401# ifndef this_cpu_and_1
402# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
403# endif
404# ifndef this_cpu_and_2
405# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
406# endif
407# ifndef this_cpu_and_4
408# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
409# endif
410# ifndef this_cpu_and_8
411# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
412# endif
0f5e4816 413# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
7340a0b1
CL
414#endif
415
416#ifndef this_cpu_or
417# ifndef this_cpu_or_1
418# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
419# endif
420# ifndef this_cpu_or_2
421# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
422# endif
423# ifndef this_cpu_or_4
424# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
425# endif
426# ifndef this_cpu_or_8
427# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
428# endif
0f5e4816 429# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
7340a0b1
CL
430#endif
431
432#ifndef this_cpu_xor
433# ifndef this_cpu_xor_1
434# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
435# endif
436# ifndef this_cpu_xor_2
437# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
438# endif
439# ifndef this_cpu_xor_4
440# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
441# endif
442# ifndef this_cpu_xor_8
443# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
444# endif
0f5e4816 445# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
7340a0b1
CL
446#endif
447
40304775
TH
448#define _this_cpu_generic_add_return(pcp, val) \
449({ \
450 typeof(pcp) ret__; \
933393f5
CL
451 unsigned long flags; \
452 local_irq_save(flags); \
40304775
TH
453 __this_cpu_add(pcp, val); \
454 ret__ = __this_cpu_read(pcp); \
933393f5 455 local_irq_restore(flags); \
40304775
TH
456 ret__; \
457})
458
459#ifndef this_cpu_add_return
460# ifndef this_cpu_add_return_1
461# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
462# endif
463# ifndef this_cpu_add_return_2
464# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
465# endif
466# ifndef this_cpu_add_return_4
467# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
468# endif
469# ifndef this_cpu_add_return_8
470# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
471# endif
472# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
473#endif
474
475#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
476#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
477#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
478
2b712442
CL
479#define _this_cpu_generic_xchg(pcp, nval) \
480({ typeof(pcp) ret__; \
933393f5
CL
481 unsigned long flags; \
482 local_irq_save(flags); \
2b712442
CL
483 ret__ = __this_cpu_read(pcp); \
484 __this_cpu_write(pcp, nval); \
933393f5 485 local_irq_restore(flags); \
2b712442
CL
486 ret__; \
487})
488
489#ifndef this_cpu_xchg
490# ifndef this_cpu_xchg_1
491# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
492# endif
493# ifndef this_cpu_xchg_2
494# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
495# endif
496# ifndef this_cpu_xchg_4
497# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
498# endif
499# ifndef this_cpu_xchg_8
500# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
501# endif
502# define this_cpu_xchg(pcp, nval) \
503 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
504#endif
505
506#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
933393f5
CL
507({ \
508 typeof(pcp) ret__; \
509 unsigned long flags; \
510 local_irq_save(flags); \
2b712442
CL
511 ret__ = __this_cpu_read(pcp); \
512 if (ret__ == (oval)) \
513 __this_cpu_write(pcp, nval); \
933393f5 514 local_irq_restore(flags); \
2b712442
CL
515 ret__; \
516})
517
518#ifndef this_cpu_cmpxchg
519# ifndef this_cpu_cmpxchg_1
520# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
521# endif
522# ifndef this_cpu_cmpxchg_2
523# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
524# endif
525# ifndef this_cpu_cmpxchg_4
526# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
527# endif
528# ifndef this_cpu_cmpxchg_8
529# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
530# endif
531# define this_cpu_cmpxchg(pcp, oval, nval) \
532 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
533#endif
534
7c334339
CL
535/*
536 * cmpxchg_double replaces two adjacent scalars at once. The first
537 * two parameters are per cpu variables which have to be of the same
538 * size. A truth value is returned to indicate success or failure
539 * (since a double register result is difficult to handle). There is
540 * very limited hardware support for these operations, so only certain
541 * sizes may work.
542 */
543#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
544({ \
545 int ret__; \
933393f5
CL
546 unsigned long flags; \
547 local_irq_save(flags); \
7c334339
CL
548 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
549 oval1, oval2, nval1, nval2); \
933393f5 550 local_irq_restore(flags); \
7c334339
CL
551 ret__; \
552})
553
554#ifndef this_cpu_cmpxchg_double
555# ifndef this_cpu_cmpxchg_double_1
556# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
557 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
558# endif
559# ifndef this_cpu_cmpxchg_double_2
560# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
561 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
562# endif
563# ifndef this_cpu_cmpxchg_double_4
564# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
565 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
566# endif
567# ifndef this_cpu_cmpxchg_double_8
568# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
569 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
570# endif
571# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
572 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
573#endif
574
7340a0b1 575/*
933393f5 576 * Generic percpu operations for context that are safe from preemption/interrupts.
7340a0b1 577 * Either we do not care about races or the caller has the
933393f5 578 * responsibility of handling preemption/interrupt issues. Arch code can still
7340a0b1
CL
579 * override these instructions since the arch per cpu code may be more
580 * efficient and may actually get race freeness for free (that is the
581 * case for x86 for example).
582 *
583 * If there is no other protection through preempt disable and/or
584 * disabling interupts then one of these RMW operations can show unexpected
585 * behavior because the execution thread was rescheduled on another processor
586 * or an interrupt occurred and the same percpu variable was modified from
587 * the interrupt context.
588 */
589#ifndef __this_cpu_read
590# ifndef __this_cpu_read_1
591# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
592# endif
593# ifndef __this_cpu_read_2
594# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
595# endif
596# ifndef __this_cpu_read_4
597# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
598# endif
599# ifndef __this_cpu_read_8
600# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
601# endif
0f5e4816 602# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
7340a0b1
CL
603#endif
604
605#define __this_cpu_generic_to_op(pcp, val, op) \
606do { \
607 *__this_cpu_ptr(&(pcp)) op val; \
608} while (0)
609
610#ifndef __this_cpu_write
611# ifndef __this_cpu_write_1
612# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
613# endif
614# ifndef __this_cpu_write_2
615# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
616# endif
617# ifndef __this_cpu_write_4
618# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
619# endif
620# ifndef __this_cpu_write_8
621# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
622# endif
0f5e4816 623# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
7340a0b1
CL
624#endif
625
626#ifndef __this_cpu_add
627# ifndef __this_cpu_add_1
628# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
629# endif
630# ifndef __this_cpu_add_2
631# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
632# endif
633# ifndef __this_cpu_add_4
634# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
635# endif
636# ifndef __this_cpu_add_8
637# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
638# endif
0f5e4816 639# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
7340a0b1
CL
640#endif
641
642#ifndef __this_cpu_sub
643# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
644#endif
645
646#ifndef __this_cpu_inc
647# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
648#endif
649
650#ifndef __this_cpu_dec
651# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
652#endif
653
654#ifndef __this_cpu_and
655# ifndef __this_cpu_and_1
656# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
657# endif
658# ifndef __this_cpu_and_2
659# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
660# endif
661# ifndef __this_cpu_and_4
662# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
663# endif
664# ifndef __this_cpu_and_8
665# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
666# endif
0f5e4816 667# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
7340a0b1
CL
668#endif
669
670#ifndef __this_cpu_or
671# ifndef __this_cpu_or_1
672# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
673# endif
674# ifndef __this_cpu_or_2
675# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
676# endif
677# ifndef __this_cpu_or_4
678# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
679# endif
680# ifndef __this_cpu_or_8
681# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
682# endif
0f5e4816 683# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
7340a0b1
CL
684#endif
685
686#ifndef __this_cpu_xor
687# ifndef __this_cpu_xor_1
688# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
689# endif
690# ifndef __this_cpu_xor_2
691# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
692# endif
693# ifndef __this_cpu_xor_4
694# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
695# endif
696# ifndef __this_cpu_xor_8
697# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
698# endif
0f5e4816 699# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
7340a0b1
CL
700#endif
701
a663ffff
CL
702#define __this_cpu_generic_add_return(pcp, val) \
703({ \
704 __this_cpu_add(pcp, val); \
705 __this_cpu_read(pcp); \
706})
707
708#ifndef __this_cpu_add_return
709# ifndef __this_cpu_add_return_1
710# define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
711# endif
712# ifndef __this_cpu_add_return_2
713# define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
714# endif
715# ifndef __this_cpu_add_return_4
716# define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
717# endif
718# ifndef __this_cpu_add_return_8
719# define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
720# endif
7d96b3e5
KK
721# define __this_cpu_add_return(pcp, val) \
722 __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val)
a663ffff
CL
723#endif
724
725#define __this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
726#define __this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
727#define __this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
728
2b712442
CL
729#define __this_cpu_generic_xchg(pcp, nval) \
730({ typeof(pcp) ret__; \
731 ret__ = __this_cpu_read(pcp); \
732 __this_cpu_write(pcp, nval); \
733 ret__; \
734})
735
736#ifndef __this_cpu_xchg
737# ifndef __this_cpu_xchg_1
738# define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
739# endif
740# ifndef __this_cpu_xchg_2
741# define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
742# endif
743# ifndef __this_cpu_xchg_4
744# define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
745# endif
746# ifndef __this_cpu_xchg_8
747# define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
748# endif
749# define __this_cpu_xchg(pcp, nval) \
750 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
751#endif
752
753#define __this_cpu_generic_cmpxchg(pcp, oval, nval) \
754({ \
755 typeof(pcp) ret__; \
756 ret__ = __this_cpu_read(pcp); \
757 if (ret__ == (oval)) \
758 __this_cpu_write(pcp, nval); \
759 ret__; \
760})
761
762#ifndef __this_cpu_cmpxchg
763# ifndef __this_cpu_cmpxchg_1
764# define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
765# endif
766# ifndef __this_cpu_cmpxchg_2
767# define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
768# endif
769# ifndef __this_cpu_cmpxchg_4
770# define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
771# endif
772# ifndef __this_cpu_cmpxchg_8
773# define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
774# endif
775# define __this_cpu_cmpxchg(pcp, oval, nval) \
776 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
777#endif
778
7c334339
CL
779#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
780({ \
781 int __ret = 0; \
782 if (__this_cpu_read(pcp1) == (oval1) && \
783 __this_cpu_read(pcp2) == (oval2)) { \
784 __this_cpu_write(pcp1, (nval1)); \
785 __this_cpu_write(pcp2, (nval2)); \
786 __ret = 1; \
787 } \
788 (__ret); \
789})
790
791#ifndef __this_cpu_cmpxchg_double
792# ifndef __this_cpu_cmpxchg_double_1
793# define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
794 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
795# endif
796# ifndef __this_cpu_cmpxchg_double_2
797# define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
798 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
799# endif
800# ifndef __this_cpu_cmpxchg_double_4
801# define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
802 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
803# endif
804# ifndef __this_cpu_cmpxchg_double_8
805# define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
806 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
807# endif
808# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
809 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
810#endif
811
1da177e4 812#endif /* __LINUX_PERCPU_H */