]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/perf_event.h
perf, x86: Implement user-space RDPMC support, to allow fast, user-space access to...
[mirror_ubuntu-bionic-kernel.git] / include / linux / perf_event.h
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events:
0793a61d 3 *
a308444c 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
0793a61d 7 *
57c0c15b 8 * Data type definitions, declarations, prototypes.
0793a61d 9 *
a308444c 10 * Started by: Thomas Gleixner and Ingo Molnar
0793a61d 11 *
57c0c15b 12 * For licencing details see kernel-base/COPYING
0793a61d 13 */
cdd6c482
IM
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
0793a61d 16
f3dfd265
PM
17#include <linux/types.h>
18#include <linux/ioctl.h>
9aaa131a 19#include <asm/byteorder.h>
0793a61d
TG
20
21/*
9f66a381
IM
22 * User-space ABI bits:
23 */
24
25/*
0d48696f 26 * attr.type
0793a61d 27 */
1c432d89 28enum perf_type_id {
a308444c
IM
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
24f1e32c 34 PERF_TYPE_BREAKPOINT = 5,
b8e83514 35
a308444c 36 PERF_TYPE_MAX, /* non-ABI */
b8e83514 37};
6c594c21 38
b8e83514 39/*
cdd6c482
IM
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
a308444c 42 * syscall:
b8e83514 43 */
1c432d89 44enum perf_hw_id {
9f66a381 45 /*
b8e83514 46 * Common hardware events, generalized by the kernel:
9f66a381 47 */
f4dbfa8f
PZ
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
8f622422
IM
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
c37e1749 57 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
f4dbfa8f 58
a308444c 59 PERF_COUNT_HW_MAX, /* non-ABI */
b8e83514 60};
e077df4f 61
8326f44d 62/*
cdd6c482 63 * Generalized hardware cache events:
8326f44d 64 *
89d6c0b5 65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
8326f44d
IM
66 * { read, write, prefetch } x
67 * { accesses, misses }
68 */
1c432d89 69enum perf_hw_cache_id {
a308444c
IM
70 PERF_COUNT_HW_CACHE_L1D = 0,
71 PERF_COUNT_HW_CACHE_L1I = 1,
72 PERF_COUNT_HW_CACHE_LL = 2,
73 PERF_COUNT_HW_CACHE_DTLB = 3,
74 PERF_COUNT_HW_CACHE_ITLB = 4,
75 PERF_COUNT_HW_CACHE_BPU = 5,
89d6c0b5 76 PERF_COUNT_HW_CACHE_NODE = 6,
a308444c
IM
77
78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
8326f44d
IM
79};
80
1c432d89 81enum perf_hw_cache_op_id {
a308444c
IM
82 PERF_COUNT_HW_CACHE_OP_READ = 0,
83 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
8326f44d 85
a308444c 86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
8326f44d
IM
87};
88
1c432d89
PZ
89enum perf_hw_cache_op_result_id {
90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
8326f44d 92
a308444c 93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
8326f44d
IM
94};
95
b8e83514 96/*
cdd6c482
IM
97 * Special "software" events provided by the kernel, even if the hardware
98 * does not support performance events. These events measure various
b8e83514
PZ
99 * physical and sw events of the kernel (and allow the profiling of them as
100 * well):
101 */
1c432d89 102enum perf_sw_ids {
a308444c
IM
103 PERF_COUNT_SW_CPU_CLOCK = 0,
104 PERF_COUNT_SW_TASK_CLOCK = 1,
105 PERF_COUNT_SW_PAGE_FAULTS = 2,
106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
107 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
f7d79860
AB
110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
111 PERF_COUNT_SW_EMULATION_FAULTS = 8,
a308444c
IM
112
113 PERF_COUNT_SW_MAX, /* non-ABI */
0793a61d
TG
114};
115
8a057d84 116/*
0d48696f 117 * Bits that can be set in attr.sample_type to request information
8a057d84
PZ
118 * in the overflow packets.
119 */
cdd6c482 120enum perf_event_sample_format {
a308444c
IM
121 PERF_SAMPLE_IP = 1U << 0,
122 PERF_SAMPLE_TID = 1U << 1,
123 PERF_SAMPLE_TIME = 1U << 2,
124 PERF_SAMPLE_ADDR = 1U << 3,
3dab77fb 125 PERF_SAMPLE_READ = 1U << 4,
a308444c
IM
126 PERF_SAMPLE_CALLCHAIN = 1U << 5,
127 PERF_SAMPLE_ID = 1U << 6,
128 PERF_SAMPLE_CPU = 1U << 7,
129 PERF_SAMPLE_PERIOD = 1U << 8,
7f453c24 130 PERF_SAMPLE_STREAM_ID = 1U << 9,
3a43ce68 131 PERF_SAMPLE_RAW = 1U << 10,
974802ea 132
f413cdb8 133 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
8a057d84
PZ
134};
135
53cfbf59 136/*
cdd6c482 137 * The format of the data returned by read() on a perf event fd,
3dab77fb
PZ
138 * as specified by attr.read_format:
139 *
140 * struct read_format {
57c0c15b 141 * { u64 value;
d7ebe75b
VW
142 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
143 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
57c0c15b
IM
144 * { u64 id; } && PERF_FORMAT_ID
145 * } && !PERF_FORMAT_GROUP
3dab77fb 146 *
57c0c15b 147 * { u64 nr;
d7ebe75b
VW
148 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
149 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
57c0c15b
IM
150 * { u64 value;
151 * { u64 id; } && PERF_FORMAT_ID
152 * } cntr[nr];
153 * } && PERF_FORMAT_GROUP
3dab77fb 154 * };
53cfbf59 155 */
cdd6c482 156enum perf_event_read_format {
a308444c
IM
157 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
158 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
159 PERF_FORMAT_ID = 1U << 2,
3dab77fb 160 PERF_FORMAT_GROUP = 1U << 3,
974802ea 161
57c0c15b 162 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
53cfbf59
PM
163};
164
974802ea
PZ
165#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
166
9f66a381 167/*
cdd6c482 168 * Hardware event_id to monitor via a performance monitoring event:
9f66a381 169 */
cdd6c482 170struct perf_event_attr {
974802ea 171
f4a2deb4 172 /*
a21ca2ca
IM
173 * Major type: hardware/software/tracepoint/etc.
174 */
175 __u32 type;
974802ea
PZ
176
177 /*
178 * Size of the attr structure, for fwd/bwd compat.
179 */
180 __u32 size;
a21ca2ca
IM
181
182 /*
183 * Type specific configuration information.
f4a2deb4
PZ
184 */
185 __u64 config;
9f66a381 186
60db5e09 187 union {
b23f3325
PZ
188 __u64 sample_period;
189 __u64 sample_freq;
60db5e09
PZ
190 };
191
b23f3325
PZ
192 __u64 sample_type;
193 __u64 read_format;
9f66a381 194
2743a5b0 195 __u64 disabled : 1, /* off by default */
0475f9ea
PM
196 inherit : 1, /* children inherit it */
197 pinned : 1, /* must always be on PMU */
198 exclusive : 1, /* only group on PMU */
199 exclude_user : 1, /* don't count user */
200 exclude_kernel : 1, /* ditto kernel */
201 exclude_hv : 1, /* ditto hypervisor */
2743a5b0 202 exclude_idle : 1, /* don't count when idle */
0a4a9391 203 mmap : 1, /* include mmap data */
8d1b2d93 204 comm : 1, /* include comm data */
60db5e09 205 freq : 1, /* use freq, not period */
bfbd3381 206 inherit_stat : 1, /* per task counts */
57e7986e 207 enable_on_exec : 1, /* next exec enables */
9f498cc5 208 task : 1, /* trace fork/exit */
2667de81 209 watermark : 1, /* wakeup_watermark */
ab608344
PZ
210 /*
211 * precise_ip:
212 *
213 * 0 - SAMPLE_IP can have arbitrary skid
214 * 1 - SAMPLE_IP must have constant skid
215 * 2 - SAMPLE_IP requested to have 0 skid
216 * 3 - SAMPLE_IP must have 0 skid
217 *
218 * See also PERF_RECORD_MISC_EXACT_IP
219 */
220 precise_ip : 2, /* skid constraint */
3af9e859 221 mmap_data : 1, /* non-exec mmap data */
c980d109 222 sample_id_all : 1, /* sample_type all events */
ab608344 223
a240f761
JR
224 exclude_host : 1, /* don't count in host */
225 exclude_guest : 1, /* don't count in guest */
226
227 __reserved_1 : 43;
2743a5b0 228
2667de81
PZ
229 union {
230 __u32 wakeup_events; /* wakeup every n events */
231 __u32 wakeup_watermark; /* bytes before wakeup */
232 };
24f1e32c 233
f13c12c6 234 __u32 bp_type;
a7e3ed1e
AK
235 union {
236 __u64 bp_addr;
237 __u64 config1; /* extension of config */
238 };
239 union {
240 __u64 bp_len;
241 __u64 config2; /* extension of config1 */
242 };
eab656ae
TG
243};
244
d859e29f 245/*
cdd6c482 246 * Ioctls that can be done on a perf event fd:
d859e29f 247 */
cdd6c482 248#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
57c0c15b
IM
249#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
250#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
cdd6c482 251#define PERF_EVENT_IOC_RESET _IO ('$', 3)
4c49b128 252#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
cdd6c482 253#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
6fb2915d 254#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
cdd6c482
IM
255
256enum perf_event_ioc_flags {
3df5edad
PZ
257 PERF_IOC_FLAG_GROUP = 1U << 0,
258};
d859e29f 259
37d81828
PM
260/*
261 * Structure of the page that can be mapped via mmap
262 */
cdd6c482 263struct perf_event_mmap_page {
37d81828
PM
264 __u32 version; /* version number of this structure */
265 __u32 compat_version; /* lowest version this is compat with */
38ff667b
PZ
266
267 /*
cdd6c482 268 * Bits needed to read the hw events in user-space.
38ff667b 269 *
92f22a38
PZ
270 * u32 seq;
271 * s64 count;
38ff667b 272 *
a2e87d06
PZ
273 * do {
274 * seq = pc->lock;
38ff667b 275 *
a2e87d06
PZ
276 * barrier()
277 * if (pc->index) {
278 * count = pmc_read(pc->index - 1);
279 * count += pc->offset;
280 * } else
281 * goto regular_read;
38ff667b 282 *
a2e87d06
PZ
283 * barrier();
284 * } while (pc->lock != seq);
38ff667b 285 *
92f22a38
PZ
286 * NOTE: for obvious reason this only works on self-monitoring
287 * processes.
38ff667b 288 */
37d81828 289 __u32 lock; /* seqlock for synchronization */
cdd6c482
IM
290 __u32 index; /* hardware event identifier */
291 __s64 offset; /* add to hardware event value */
292 __u64 time_enabled; /* time event active */
293 __u64 time_running; /* time event on cpu */
7b732a75 294
41f95331
PZ
295 /*
296 * Hole for extension of the self monitor capabilities
297 */
298
7f8b4e4e 299 __u64 __reserved[123]; /* align to 1k */
41f95331 300
38ff667b
PZ
301 /*
302 * Control data for the mmap() data buffer.
303 *
43a21ea8
PZ
304 * User-space reading the @data_head value should issue an rmb(), on
305 * SMP capable platforms, after reading this value -- see
cdd6c482 306 * perf_event_wakeup().
43a21ea8
PZ
307 *
308 * When the mapping is PROT_WRITE the @data_tail value should be
309 * written by userspace to reflect the last read data. In this case
310 * the kernel will not over-write unread data.
38ff667b 311 */
8e3747c1 312 __u64 data_head; /* head in the data section */
43a21ea8 313 __u64 data_tail; /* user-space written tail */
37d81828
PM
314};
315
39447b38 316#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
184f412c 317#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
cdd6c482
IM
318#define PERF_RECORD_MISC_KERNEL (1 << 0)
319#define PERF_RECORD_MISC_USER (2 << 0)
320#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
39447b38
ZY
321#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
322#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
6fab0192 323
ab608344
PZ
324/*
325 * Indicates that the content of PERF_SAMPLE_IP points to
326 * the actual instruction that triggered the event. See also
327 * perf_event_attr::precise_ip.
328 */
329#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
ef21f683
PZ
330/*
331 * Reserve the last bit to indicate some extended misc field
332 */
333#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
334
5c148194
PZ
335struct perf_event_header {
336 __u32 type;
6fab0192
PZ
337 __u16 misc;
338 __u16 size;
5c148194
PZ
339};
340
341enum perf_event_type {
5ed00415 342
0c593b34 343 /*
c980d109
ACM
344 * If perf_event_attr.sample_id_all is set then all event types will
345 * have the sample_type selected fields related to where/when
346 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
347 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
348 * the perf_event_header and the fields already present for the existing
349 * fields, i.e. at the end of the payload. That way a newer perf.data
350 * file will be supported by older perf tools, with these new optional
351 * fields being ignored.
352 *
0c593b34
PZ
353 * The MMAP events record the PROT_EXEC mappings so that we can
354 * correlate userspace IPs to code. They have the following structure:
355 *
356 * struct {
0127c3ea 357 * struct perf_event_header header;
0c593b34 358 *
0127c3ea
IM
359 * u32 pid, tid;
360 * u64 addr;
361 * u64 len;
362 * u64 pgoff;
363 * char filename[];
0c593b34
PZ
364 * };
365 */
cdd6c482 366 PERF_RECORD_MMAP = 1,
0a4a9391 367
43a21ea8
PZ
368 /*
369 * struct {
57c0c15b
IM
370 * struct perf_event_header header;
371 * u64 id;
372 * u64 lost;
43a21ea8
PZ
373 * };
374 */
cdd6c482 375 PERF_RECORD_LOST = 2,
43a21ea8 376
8d1b2d93
PZ
377 /*
378 * struct {
0127c3ea 379 * struct perf_event_header header;
8d1b2d93 380 *
0127c3ea
IM
381 * u32 pid, tid;
382 * char comm[];
8d1b2d93
PZ
383 * };
384 */
cdd6c482 385 PERF_RECORD_COMM = 3,
8d1b2d93 386
9f498cc5
PZ
387 /*
388 * struct {
389 * struct perf_event_header header;
390 * u32 pid, ppid;
391 * u32 tid, ptid;
393b2ad8 392 * u64 time;
9f498cc5
PZ
393 * };
394 */
cdd6c482 395 PERF_RECORD_EXIT = 4,
9f498cc5 396
26b119bc
PZ
397 /*
398 * struct {
0127c3ea
IM
399 * struct perf_event_header header;
400 * u64 time;
689802b2 401 * u64 id;
7f453c24 402 * u64 stream_id;
a78ac325
PZ
403 * };
404 */
184f412c
IM
405 PERF_RECORD_THROTTLE = 5,
406 PERF_RECORD_UNTHROTTLE = 6,
a78ac325 407
60313ebe
PZ
408 /*
409 * struct {
a21ca2ca
IM
410 * struct perf_event_header header;
411 * u32 pid, ppid;
9f498cc5 412 * u32 tid, ptid;
a6f10a2f 413 * u64 time;
60313ebe
PZ
414 * };
415 */
cdd6c482 416 PERF_RECORD_FORK = 7,
60313ebe 417
38b200d6
PZ
418 /*
419 * struct {
184f412c
IM
420 * struct perf_event_header header;
421 * u32 pid, tid;
3dab77fb 422 *
184f412c 423 * struct read_format values;
38b200d6
PZ
424 * };
425 */
cdd6c482 426 PERF_RECORD_READ = 8,
38b200d6 427
8a057d84 428 /*
0c593b34 429 * struct {
0127c3ea 430 * struct perf_event_header header;
0c593b34 431 *
43a21ea8
PZ
432 * { u64 ip; } && PERF_SAMPLE_IP
433 * { u32 pid, tid; } && PERF_SAMPLE_TID
434 * { u64 time; } && PERF_SAMPLE_TIME
435 * { u64 addr; } && PERF_SAMPLE_ADDR
e6e18ec7 436 * { u64 id; } && PERF_SAMPLE_ID
7f453c24 437 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
43a21ea8 438 * { u32 cpu, res; } && PERF_SAMPLE_CPU
57c0c15b 439 * { u64 period; } && PERF_SAMPLE_PERIOD
0c593b34 440 *
3dab77fb 441 * { struct read_format values; } && PERF_SAMPLE_READ
0c593b34 442 *
f9188e02 443 * { u64 nr,
43a21ea8 444 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
3dab77fb 445 *
57c0c15b
IM
446 * #
447 * # The RAW record below is opaque data wrt the ABI
448 * #
449 * # That is, the ABI doesn't make any promises wrt to
450 * # the stability of its content, it may vary depending
451 * # on event, hardware, kernel version and phase of
452 * # the moon.
453 * #
454 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
455 * #
3dab77fb 456 *
a044560c
PZ
457 * { u32 size;
458 * char data[size];}&& PERF_SAMPLE_RAW
0c593b34 459 * };
8a057d84 460 */
184f412c 461 PERF_RECORD_SAMPLE = 9,
e6e18ec7 462
cdd6c482 463 PERF_RECORD_MAX, /* non-ABI */
5c148194
PZ
464};
465
f9188e02
PZ
466enum perf_callchain_context {
467 PERF_CONTEXT_HV = (__u64)-32,
468 PERF_CONTEXT_KERNEL = (__u64)-128,
469 PERF_CONTEXT_USER = (__u64)-512,
7522060c 470
f9188e02
PZ
471 PERF_CONTEXT_GUEST = (__u64)-2048,
472 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
473 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
474
475 PERF_CONTEXT_MAX = (__u64)-4095,
7522060c
IM
476};
477
e7e7ee2e
IM
478#define PERF_FLAG_FD_NO_GROUP (1U << 0)
479#define PERF_FLAG_FD_OUTPUT (1U << 1)
480#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
a4be7c27 481
f3dfd265 482#ifdef __KERNEL__
9f66a381 483/*
f3dfd265 484 * Kernel-internal data types and definitions:
9f66a381
IM
485 */
486
cdd6c482 487#ifdef CONFIG_PERF_EVENTS
e5d1367f 488# include <linux/cgroup.h>
cdd6c482 489# include <asm/perf_event.h>
7be79236 490# include <asm/local64.h>
f3dfd265
PM
491#endif
492
39447b38 493struct perf_guest_info_callbacks {
e7e7ee2e
IM
494 int (*is_in_guest)(void);
495 int (*is_user_mode)(void);
496 unsigned long (*get_guest_ip)(void);
39447b38
ZY
497};
498
2ff6cfd7
AB
499#ifdef CONFIG_HAVE_HW_BREAKPOINT
500#include <asm/hw_breakpoint.h>
501#endif
502
f3dfd265
PM
503#include <linux/list.h>
504#include <linux/mutex.h>
505#include <linux/rculist.h>
506#include <linux/rcupdate.h>
507#include <linux/spinlock.h>
d6d020e9 508#include <linux/hrtimer.h>
3c446b3d 509#include <linux/fs.h>
709e50cf 510#include <linux/pid_namespace.h>
906010b2 511#include <linux/workqueue.h>
5331d7b8 512#include <linux/ftrace.h>
85cfabbc 513#include <linux/cpu.h>
e360adbe 514#include <linux/irq_work.h>
d430d3d7 515#include <linux/jump_label.h>
60063497 516#include <linux/atomic.h>
fa588151 517#include <asm/local.h>
f3dfd265 518
f9188e02
PZ
519#define PERF_MAX_STACK_DEPTH 255
520
521struct perf_callchain_entry {
522 __u64 nr;
523 __u64 ip[PERF_MAX_STACK_DEPTH];
524};
525
3a43ce68
FW
526struct perf_raw_record {
527 u32 size;
528 void *data;
f413cdb8
FW
529};
530
caff2bef
PZ
531struct perf_branch_entry {
532 __u64 from;
533 __u64 to;
534 __u64 flags;
535};
536
537struct perf_branch_stack {
538 __u64 nr;
539 struct perf_branch_entry entries[0];
540};
541
f3dfd265
PM
542struct task_struct;
543
efc9f05d
SE
544/*
545 * extra PMU register associated with an event
546 */
547struct hw_perf_event_extra {
548 u64 config; /* register value */
549 unsigned int reg; /* register address or index */
550 int alloc; /* extra register already allocated */
551 int idx; /* index in shared_regs->regs[] */
552};
553
0793a61d 554/**
cdd6c482 555 * struct hw_perf_event - performance event hardware details:
0793a61d 556 */
cdd6c482
IM
557struct hw_perf_event {
558#ifdef CONFIG_PERF_EVENTS
d6d020e9
PZ
559 union {
560 struct { /* hardware */
a308444c 561 u64 config;
447a194b 562 u64 last_tag;
a308444c 563 unsigned long config_base;
cdd6c482 564 unsigned long event_base;
a308444c 565 int idx;
447a194b 566 int last_cpu;
efc9f05d 567 struct hw_perf_event_extra extra_reg;
d6d020e9 568 };
721a669b 569 struct { /* software */
a308444c 570 struct hrtimer hrtimer;
d6d020e9 571 };
24f1e32c 572#ifdef CONFIG_HAVE_HW_BREAKPOINT
45a73372
FW
573 struct { /* breakpoint */
574 struct arch_hw_breakpoint info;
575 struct list_head bp_list;
d580ff86
PZ
576 /*
577 * Crufty hack to avoid the chicken and egg
578 * problem hw_breakpoint has with context
579 * creation and event initalization.
580 */
581 struct task_struct *bp_target;
45a73372 582 };
24f1e32c 583#endif
d6d020e9 584 };
a4eaf7f1 585 int state;
e7850595 586 local64_t prev_count;
b23f3325 587 u64 sample_period;
9e350de3 588 u64 last_period;
e7850595 589 local64_t period_left;
60db5e09 590 u64 interrupts;
6a24ed6c 591
abd50713
PZ
592 u64 freq_time_stamp;
593 u64 freq_count_stamp;
ee06094f 594#endif
0793a61d
TG
595};
596
a4eaf7f1
PZ
597/*
598 * hw_perf_event::state flags
599 */
600#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
601#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
602#define PERF_HES_ARCH 0x04
603
cdd6c482 604struct perf_event;
621a01ea 605
8d2cacbb
PZ
606/*
607 * Common implementation detail of pmu::{start,commit,cancel}_txn
608 */
609#define PERF_EVENT_TXN 0x1
6bde9b6c 610
621a01ea 611/**
4aeb0b42 612 * struct pmu - generic performance monitoring unit
621a01ea 613 */
4aeb0b42 614struct pmu {
b0a873eb
PZ
615 struct list_head entry;
616
abe43400 617 struct device *dev;
2e80a82a
PZ
618 char *name;
619 int type;
620
108b02cf
PZ
621 int * __percpu pmu_disable_count;
622 struct perf_cpu_context * __percpu pmu_cpu_context;
8dc85d54 623 int task_ctx_nr;
6bde9b6c
LM
624
625 /*
a4eaf7f1
PZ
626 * Fully disable/enable this PMU, can be used to protect from the PMI
627 * as well as for lazy/batch writing of the MSRs.
6bde9b6c 628 */
ad5133b7
PZ
629 void (*pmu_enable) (struct pmu *pmu); /* optional */
630 void (*pmu_disable) (struct pmu *pmu); /* optional */
6bde9b6c 631
8d2cacbb 632 /*
a4eaf7f1 633 * Try and initialize the event for this PMU.
24cd7f54 634 * Should return -ENOENT when the @event doesn't match this PMU.
8d2cacbb 635 */
b0a873eb
PZ
636 int (*event_init) (struct perf_event *event);
637
a4eaf7f1
PZ
638#define PERF_EF_START 0x01 /* start the counter when adding */
639#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
640#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
641
8d2cacbb 642 /*
a4eaf7f1
PZ
643 * Adds/Removes a counter to/from the PMU, can be done inside
644 * a transaction, see the ->*_txn() methods.
645 */
646 int (*add) (struct perf_event *event, int flags);
647 void (*del) (struct perf_event *event, int flags);
648
649 /*
650 * Starts/Stops a counter present on the PMU. The PMI handler
651 * should stop the counter when perf_event_overflow() returns
652 * !0. ->start() will be used to continue.
653 */
654 void (*start) (struct perf_event *event, int flags);
655 void (*stop) (struct perf_event *event, int flags);
656
657 /*
658 * Updates the counter value of the event.
659 */
cdd6c482 660 void (*read) (struct perf_event *event);
6bde9b6c
LM
661
662 /*
24cd7f54
PZ
663 * Group events scheduling is treated as a transaction, add
664 * group events as a whole and perform one schedulability test.
665 * If the test fails, roll back the whole group
a4eaf7f1
PZ
666 *
667 * Start the transaction, after this ->add() doesn't need to
24cd7f54 668 * do schedulability tests.
8d2cacbb 669 */
e7e7ee2e 670 void (*start_txn) (struct pmu *pmu); /* optional */
8d2cacbb 671 /*
a4eaf7f1 672 * If ->start_txn() disabled the ->add() schedulability test
8d2cacbb
PZ
673 * then ->commit_txn() is required to perform one. On success
674 * the transaction is closed. On error the transaction is kept
675 * open until ->cancel_txn() is called.
676 */
e7e7ee2e 677 int (*commit_txn) (struct pmu *pmu); /* optional */
8d2cacbb 678 /*
a4eaf7f1 679 * Will cancel the transaction, assumes ->del() is called
25985edc 680 * for each successful ->add() during the transaction.
8d2cacbb 681 */
e7e7ee2e 682 void (*cancel_txn) (struct pmu *pmu); /* optional */
35edc2a5
PZ
683
684 /*
685 * Will return the value for perf_event_mmap_page::index for this event,
686 * if no implementation is provided it will default to: event->hw.idx + 1.
687 */
688 int (*event_idx) (struct perf_event *event); /*optional */
621a01ea
IM
689};
690
6a930700 691/**
cdd6c482 692 * enum perf_event_active_state - the states of a event
6a930700 693 */
cdd6c482 694enum perf_event_active_state {
57c0c15b 695 PERF_EVENT_STATE_ERROR = -2,
cdd6c482
IM
696 PERF_EVENT_STATE_OFF = -1,
697 PERF_EVENT_STATE_INACTIVE = 0,
57c0c15b 698 PERF_EVENT_STATE_ACTIVE = 1,
6a930700
IM
699};
700
9b51f66d 701struct file;
453f19ee
PZ
702struct perf_sample_data;
703
a8b0ca17 704typedef void (*perf_overflow_handler_t)(struct perf_event *,
b326e956
FW
705 struct perf_sample_data *,
706 struct pt_regs *regs);
707
d6f962b5 708enum perf_group_flag {
e7e7ee2e 709 PERF_GROUP_SOFTWARE = 0x1,
d6f962b5
FW
710};
711
e7e7ee2e
IM
712#define SWEVENT_HLIST_BITS 8
713#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
76e1d904
FW
714
715struct swevent_hlist {
e7e7ee2e
IM
716 struct hlist_head heads[SWEVENT_HLIST_SIZE];
717 struct rcu_head rcu_head;
76e1d904
FW
718};
719
8a49542c
PZ
720#define PERF_ATTACH_CONTEXT 0x01
721#define PERF_ATTACH_GROUP 0x02
d580ff86 722#define PERF_ATTACH_TASK 0x04
8a49542c 723
e5d1367f
SE
724#ifdef CONFIG_CGROUP_PERF
725/*
726 * perf_cgroup_info keeps track of time_enabled for a cgroup.
727 * This is a per-cpu dynamically allocated data structure.
728 */
729struct perf_cgroup_info {
e7e7ee2e
IM
730 u64 time;
731 u64 timestamp;
e5d1367f
SE
732};
733
734struct perf_cgroup {
e7e7ee2e
IM
735 struct cgroup_subsys_state css;
736 struct perf_cgroup_info *info; /* timing info, one per cpu */
e5d1367f
SE
737};
738#endif
739
76369139
FW
740struct ring_buffer;
741
0793a61d 742/**
cdd6c482 743 * struct perf_event - performance event kernel representation:
0793a61d 744 */
cdd6c482
IM
745struct perf_event {
746#ifdef CONFIG_PERF_EVENTS
65abc865 747 struct list_head group_entry;
592903cd 748 struct list_head event_entry;
04289bb9 749 struct list_head sibling_list;
76e1d904 750 struct hlist_node hlist_entry;
0127c3ea 751 int nr_siblings;
d6f962b5 752 int group_flags;
cdd6c482 753 struct perf_event *group_leader;
a4eaf7f1 754 struct pmu *pmu;
04289bb9 755
cdd6c482 756 enum perf_event_active_state state;
8a49542c 757 unsigned int attach_state;
e7850595 758 local64_t count;
a6e6dea6 759 atomic64_t child_count;
ee06094f 760
53cfbf59 761 /*
cdd6c482 762 * These are the total time in nanoseconds that the event
53cfbf59 763 * has been enabled (i.e. eligible to run, and the task has
cdd6c482 764 * been scheduled in, if this is a per-task event)
53cfbf59
PM
765 * and running (scheduled onto the CPU), respectively.
766 *
767 * They are computed from tstamp_enabled, tstamp_running and
cdd6c482 768 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
53cfbf59
PM
769 */
770 u64 total_time_enabled;
771 u64 total_time_running;
772
773 /*
774 * These are timestamps used for computing total_time_enabled
cdd6c482 775 * and total_time_running when the event is in INACTIVE or
53cfbf59
PM
776 * ACTIVE state, measured in nanoseconds from an arbitrary point
777 * in time.
cdd6c482
IM
778 * tstamp_enabled: the notional time when the event was enabled
779 * tstamp_running: the notional time when the event was scheduled on
53cfbf59 780 * tstamp_stopped: in INACTIVE state, the notional time when the
cdd6c482 781 * event was scheduled off.
53cfbf59
PM
782 */
783 u64 tstamp_enabled;
784 u64 tstamp_running;
785 u64 tstamp_stopped;
786
eed01528
SE
787 /*
788 * timestamp shadows the actual context timing but it can
789 * be safely used in NMI interrupt context. It reflects the
790 * context time as it was when the event was last scheduled in.
791 *
792 * ctx_time already accounts for ctx->timestamp. Therefore to
793 * compute ctx_time for a sample, simply add perf_clock().
794 */
795 u64 shadow_ctx_time;
796
24f1e32c 797 struct perf_event_attr attr;
c320c7b7 798 u16 header_size;
6844c09d 799 u16 id_header_size;
c320c7b7 800 u16 read_size;
cdd6c482 801 struct hw_perf_event hw;
0793a61d 802
cdd6c482 803 struct perf_event_context *ctx;
9b51f66d 804 struct file *filp;
0793a61d 805
53cfbf59
PM
806 /*
807 * These accumulate total time (in nanoseconds) that children
cdd6c482 808 * events have been enabled and running, respectively.
53cfbf59
PM
809 */
810 atomic64_t child_total_time_enabled;
811 atomic64_t child_total_time_running;
812
0793a61d 813 /*
d859e29f 814 * Protect attach/detach and child_list:
0793a61d 815 */
fccc714b
PZ
816 struct mutex child_mutex;
817 struct list_head child_list;
cdd6c482 818 struct perf_event *parent;
0793a61d
TG
819
820 int oncpu;
821 int cpu;
822
082ff5a2
PZ
823 struct list_head owner_entry;
824 struct task_struct *owner;
825
7b732a75
PZ
826 /* mmap bits */
827 struct mutex mmap_mutex;
828 atomic_t mmap_count;
ac9721f3
PZ
829 int mmap_locked;
830 struct user_struct *mmap_user;
76369139 831 struct ring_buffer *rb;
10c6db11 832 struct list_head rb_entry;
37d81828 833
7b732a75 834 /* poll related */
0793a61d 835 wait_queue_head_t waitq;
3c446b3d 836 struct fasync_struct *fasync;
79f14641
PZ
837
838 /* delayed work for NMIs and such */
839 int pending_wakeup;
4c9e2542 840 int pending_kill;
79f14641 841 int pending_disable;
e360adbe 842 struct irq_work pending;
592903cd 843
79f14641
PZ
844 atomic_t event_limit;
845
cdd6c482 846 void (*destroy)(struct perf_event *);
592903cd 847 struct rcu_head rcu_head;
709e50cf
PZ
848
849 struct pid_namespace *ns;
8e5799b1 850 u64 id;
6fb2915d 851
b326e956 852 perf_overflow_handler_t overflow_handler;
4dc0da86 853 void *overflow_handler_context;
453f19ee 854
07b139c8 855#ifdef CONFIG_EVENT_TRACING
1c024eca 856 struct ftrace_event_call *tp_event;
6fb2915d 857 struct event_filter *filter;
ee06094f 858#endif
6fb2915d 859
e5d1367f
SE
860#ifdef CONFIG_CGROUP_PERF
861 struct perf_cgroup *cgrp; /* cgroup event is attach to */
862 int cgrp_defer_enabled;
863#endif
864
6fb2915d 865#endif /* CONFIG_PERF_EVENTS */
0793a61d
TG
866};
867
b04243ef
PZ
868enum perf_event_context_type {
869 task_context,
870 cpu_context,
871};
872
0793a61d 873/**
cdd6c482 874 * struct perf_event_context - event context structure
0793a61d 875 *
cdd6c482 876 * Used as a container for task events and CPU events as well:
0793a61d 877 */
cdd6c482 878struct perf_event_context {
108b02cf 879 struct pmu *pmu;
ee643c41 880 enum perf_event_context_type type;
0793a61d 881 /*
cdd6c482 882 * Protect the states of the events in the list,
d859e29f 883 * nr_active, and the list:
0793a61d 884 */
e625cce1 885 raw_spinlock_t lock;
d859e29f 886 /*
cdd6c482 887 * Protect the list of events. Locking either mutex or lock
d859e29f
PM
888 * is sufficient to ensure the list doesn't change; to change
889 * the list you need to lock both the mutex and the spinlock.
890 */
a308444c 891 struct mutex mutex;
04289bb9 892
889ff015
FW
893 struct list_head pinned_groups;
894 struct list_head flexible_groups;
a308444c 895 struct list_head event_list;
cdd6c482 896 int nr_events;
a308444c
IM
897 int nr_active;
898 int is_active;
bfbd3381 899 int nr_stat;
0f5a2601 900 int nr_freq;
dddd3379 901 int rotate_disable;
a308444c
IM
902 atomic_t refcount;
903 struct task_struct *task;
53cfbf59
PM
904
905 /*
4af4998b 906 * Context clock, runs when context enabled.
53cfbf59 907 */
a308444c
IM
908 u64 time;
909 u64 timestamp;
564c2b21
PM
910
911 /*
912 * These fields let us detect when two contexts have both
913 * been cloned (inherited) from a common ancestor.
914 */
cdd6c482 915 struct perf_event_context *parent_ctx;
a308444c
IM
916 u64 parent_gen;
917 u64 generation;
918 int pin_count;
e5d1367f 919 int nr_cgroups; /* cgroup events present */
28009ce4 920 struct rcu_head rcu_head;
0793a61d
TG
921};
922
7ae07ea3
FW
923/*
924 * Number of contexts where an event can trigger:
e7e7ee2e 925 * task, softirq, hardirq, nmi.
7ae07ea3
FW
926 */
927#define PERF_NR_CONTEXTS 4
928
0793a61d 929/**
cdd6c482 930 * struct perf_event_cpu_context - per cpu event context structure
0793a61d
TG
931 */
932struct perf_cpu_context {
cdd6c482
IM
933 struct perf_event_context ctx;
934 struct perf_event_context *task_ctx;
0793a61d 935 int active_oncpu;
3b6f9e5c 936 int exclusive;
e9d2b064
PZ
937 struct list_head rotation_list;
938 int jiffies_interval;
51676957 939 struct pmu *active_pmu;
e5d1367f 940 struct perf_cgroup *cgrp;
0793a61d
TG
941};
942
5622f295 943struct perf_output_handle {
57c0c15b 944 struct perf_event *event;
76369139 945 struct ring_buffer *rb;
6d1acfd5 946 unsigned long wakeup;
5d967a8b
PZ
947 unsigned long size;
948 void *addr;
949 int page;
5622f295
MM
950};
951
cdd6c482 952#ifdef CONFIG_PERF_EVENTS
829b42dd 953
2e80a82a 954extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
b0a873eb 955extern void perf_pmu_unregister(struct pmu *pmu);
621a01ea 956
3bf101ba 957extern int perf_num_counters(void);
84c79910 958extern const char *perf_pmu_name(void);
a8d757ef
SE
959extern void __perf_event_task_sched_in(struct task_struct *prev,
960 struct task_struct *task);
961extern void __perf_event_task_sched_out(struct task_struct *prev,
962 struct task_struct *next);
cdd6c482
IM
963extern int perf_event_init_task(struct task_struct *child);
964extern void perf_event_exit_task(struct task_struct *child);
965extern void perf_event_free_task(struct task_struct *task);
4e231c79 966extern void perf_event_delayed_put(struct task_struct *task);
cdd6c482 967extern void perf_event_print_debug(void);
33696fc0
PZ
968extern void perf_pmu_disable(struct pmu *pmu);
969extern void perf_pmu_enable(struct pmu *pmu);
cdd6c482
IM
970extern int perf_event_task_disable(void);
971extern int perf_event_task_enable(void);
26ca5c11 972extern int perf_event_refresh(struct perf_event *event, int refresh);
cdd6c482 973extern void perf_event_update_userpage(struct perf_event *event);
fb0459d7
AV
974extern int perf_event_release_kernel(struct perf_event *event);
975extern struct perf_event *
976perf_event_create_kernel_counter(struct perf_event_attr *attr,
977 int cpu,
38a81da2 978 struct task_struct *task,
4dc0da86
AK
979 perf_overflow_handler_t callback,
980 void *context);
59ed446f
PZ
981extern u64 perf_event_read_value(struct perf_event *event,
982 u64 *enabled, u64 *running);
5c92d124 983
df1a132b 984struct perf_sample_data {
5622f295
MM
985 u64 type;
986
987 u64 ip;
988 struct {
989 u32 pid;
990 u32 tid;
991 } tid_entry;
992 u64 time;
a308444c 993 u64 addr;
5622f295
MM
994 u64 id;
995 u64 stream_id;
996 struct {
997 u32 cpu;
998 u32 reserved;
999 } cpu_entry;
a308444c 1000 u64 period;
5622f295 1001 struct perf_callchain_entry *callchain;
3a43ce68 1002 struct perf_raw_record *raw;
df1a132b
PZ
1003};
1004
e7e7ee2e 1005static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
dc1d628a
PZ
1006{
1007 data->addr = addr;
1008 data->raw = NULL;
1009}
1010
5622f295
MM
1011extern void perf_output_sample(struct perf_output_handle *handle,
1012 struct perf_event_header *header,
1013 struct perf_sample_data *data,
cdd6c482 1014 struct perf_event *event);
5622f295
MM
1015extern void perf_prepare_sample(struct perf_event_header *header,
1016 struct perf_sample_data *data,
cdd6c482 1017 struct perf_event *event,
5622f295
MM
1018 struct pt_regs *regs);
1019
a8b0ca17 1020extern int perf_event_overflow(struct perf_event *event,
5622f295
MM
1021 struct perf_sample_data *data,
1022 struct pt_regs *regs);
df1a132b 1023
6c7e550f
FBH
1024static inline bool is_sampling_event(struct perf_event *event)
1025{
1026 return event->attr.sample_period != 0;
1027}
1028
3b6f9e5c 1029/*
cdd6c482 1030 * Return 1 for a software event, 0 for a hardware event
3b6f9e5c 1031 */
cdd6c482 1032static inline int is_software_event(struct perf_event *event)
3b6f9e5c 1033{
89a1e187 1034 return event->pmu->task_ctx_nr == perf_sw_context;
3b6f9e5c
PM
1035}
1036
d430d3d7 1037extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
f29ac756 1038
a8b0ca17 1039extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
f29ac756 1040
b0f82b81 1041#ifndef perf_arch_fetch_caller_regs
e7e7ee2e 1042static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
b0f82b81 1043#endif
5331d7b8
FW
1044
1045/*
1046 * Take a snapshot of the regs. Skip ip and frame pointer to
1047 * the nth caller. We only need a few of the regs:
1048 * - ip for PERF_SAMPLE_IP
1049 * - cs for user_mode() tests
1050 * - bp for callchains
1051 * - eflags, for future purposes, just in case
1052 */
b0f82b81 1053static inline void perf_fetch_caller_regs(struct pt_regs *regs)
5331d7b8 1054{
5331d7b8
FW
1055 memset(regs, 0, sizeof(*regs));
1056
b0f82b81 1057 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
5331d7b8
FW
1058}
1059
7e54a5a0 1060static __always_inline void
a8b0ca17 1061perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
e49a5bd3 1062{
7e54a5a0
PZ
1063 struct pt_regs hot_regs;
1064
d430d3d7
JB
1065 if (static_branch(&perf_swevent_enabled[event_id])) {
1066 if (!regs) {
1067 perf_fetch_caller_regs(&hot_regs);
1068 regs = &hot_regs;
1069 }
a8b0ca17 1070 __perf_sw_event(event_id, nr, regs, addr);
e49a5bd3
FW
1071 }
1072}
1073
b2029520 1074extern struct jump_label_key_deferred perf_sched_events;
ee6dcfa4 1075
a8d757ef
SE
1076static inline void perf_event_task_sched_in(struct task_struct *prev,
1077 struct task_struct *task)
ee6dcfa4 1078{
b2029520 1079 if (static_branch(&perf_sched_events.key))
a8d757ef 1080 __perf_event_task_sched_in(prev, task);
ee6dcfa4
PZ
1081}
1082
a8d757ef
SE
1083static inline void perf_event_task_sched_out(struct task_struct *prev,
1084 struct task_struct *next)
ee6dcfa4 1085{
a8b0ca17 1086 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
ee6dcfa4 1087
b2029520 1088 if (static_branch(&perf_sched_events.key))
a8d757ef 1089 __perf_event_task_sched_out(prev, next);
ee6dcfa4
PZ
1090}
1091
3af9e859 1092extern void perf_event_mmap(struct vm_area_struct *vma);
39447b38 1093extern struct perf_guest_info_callbacks *perf_guest_cbs;
dcf46b94
ZY
1094extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1095extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
39447b38 1096
cdd6c482
IM
1097extern void perf_event_comm(struct task_struct *tsk);
1098extern void perf_event_fork(struct task_struct *tsk);
8d1b2d93 1099
56962b44
FW
1100/* Callchains */
1101DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1102
e7e7ee2e
IM
1103extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1104extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
394ee076 1105
e7e7ee2e 1106static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
70791ce9
FW
1107{
1108 if (entry->nr < PERF_MAX_STACK_DEPTH)
1109 entry->ip[entry->nr++] = ip;
1110}
394ee076 1111
cdd6c482
IM
1112extern int sysctl_perf_event_paranoid;
1113extern int sysctl_perf_event_mlock;
1114extern int sysctl_perf_event_sample_rate;
1ccd1549 1115
163ec435
PZ
1116extern int perf_proc_update_handler(struct ctl_table *table, int write,
1117 void __user *buffer, size_t *lenp,
1118 loff_t *ppos);
1119
320ebf09
PZ
1120static inline bool perf_paranoid_tracepoint_raw(void)
1121{
1122 return sysctl_perf_event_paranoid > -1;
1123}
1124
1125static inline bool perf_paranoid_cpu(void)
1126{
1127 return sysctl_perf_event_paranoid > 0;
1128}
1129
1130static inline bool perf_paranoid_kernel(void)
1131{
1132 return sysctl_perf_event_paranoid > 1;
1133}
1134
cdd6c482 1135extern void perf_event_init(void);
1c024eca
PZ
1136extern void perf_tp_event(u64 addr, u64 count, void *record,
1137 int entry_size, struct pt_regs *regs,
ecc55f84 1138 struct hlist_head *head, int rctx);
24f1e32c 1139extern void perf_bp_event(struct perf_event *event, void *data);
0d905bca 1140
9d23a90a 1141#ifndef perf_misc_flags
e7e7ee2e
IM
1142# define perf_misc_flags(regs) \
1143 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1144# define perf_instruction_pointer(regs) instruction_pointer(regs)
9d23a90a
PM
1145#endif
1146
5622f295 1147extern int perf_output_begin(struct perf_output_handle *handle,
a7ac67ea 1148 struct perf_event *event, unsigned int size);
5622f295
MM
1149extern void perf_output_end(struct perf_output_handle *handle);
1150extern void perf_output_copy(struct perf_output_handle *handle,
1151 const void *buf, unsigned int len);
4ed7c92d
PZ
1152extern int perf_swevent_get_recursion_context(void);
1153extern void perf_swevent_put_recursion_context(int rctx);
44234adc
FW
1154extern void perf_event_enable(struct perf_event *event);
1155extern void perf_event_disable(struct perf_event *event);
e9d2b064 1156extern void perf_event_task_tick(void);
0793a61d
TG
1157#else
1158static inline void
a8d757ef
SE
1159perf_event_task_sched_in(struct task_struct *prev,
1160 struct task_struct *task) { }
0793a61d 1161static inline void
a8d757ef
SE
1162perf_event_task_sched_out(struct task_struct *prev,
1163 struct task_struct *next) { }
cdd6c482
IM
1164static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1165static inline void perf_event_exit_task(struct task_struct *child) { }
1166static inline void perf_event_free_task(struct task_struct *task) { }
4e231c79 1167static inline void perf_event_delayed_put(struct task_struct *task) { }
57c0c15b 1168static inline void perf_event_print_debug(void) { }
57c0c15b
IM
1169static inline int perf_event_task_disable(void) { return -EINVAL; }
1170static inline int perf_event_task_enable(void) { return -EINVAL; }
26ca5c11
AK
1171static inline int perf_event_refresh(struct perf_event *event, int refresh)
1172{
1173 return -EINVAL;
1174}
15dbf27c 1175
925d519a 1176static inline void
a8b0ca17 1177perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
24f1e32c 1178static inline void
184f412c 1179perf_bp_event(struct perf_event *event, void *data) { }
0a4a9391 1180
39447b38 1181static inline int perf_register_guest_info_callbacks
e7e7ee2e 1182(struct perf_guest_info_callbacks *callbacks) { return 0; }
39447b38 1183static inline int perf_unregister_guest_info_callbacks
e7e7ee2e 1184(struct perf_guest_info_callbacks *callbacks) { return 0; }
39447b38 1185
57c0c15b 1186static inline void perf_event_mmap(struct vm_area_struct *vma) { }
cdd6c482
IM
1187static inline void perf_event_comm(struct task_struct *tsk) { }
1188static inline void perf_event_fork(struct task_struct *tsk) { }
1189static inline void perf_event_init(void) { }
184f412c 1190static inline int perf_swevent_get_recursion_context(void) { return -1; }
4ed7c92d 1191static inline void perf_swevent_put_recursion_context(int rctx) { }
44234adc
FW
1192static inline void perf_event_enable(struct perf_event *event) { }
1193static inline void perf_event_disable(struct perf_event *event) { }
e9d2b064 1194static inline void perf_event_task_tick(void) { }
0793a61d
TG
1195#endif
1196
e7e7ee2e 1197#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
5622f295 1198
3f6da390
PZ
1199/*
1200 * This has to have a higher priority than migration_notifier in sched.c.
1201 */
e7e7ee2e
IM
1202#define perf_cpu_notifier(fn) \
1203do { \
1204 static struct notifier_block fn##_nb __cpuinitdata = \
1205 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1206 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1207 (void *)(unsigned long)smp_processor_id()); \
1208 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1209 (void *)(unsigned long)smp_processor_id()); \
1210 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1211 (void *)(unsigned long)smp_processor_id()); \
1212 register_cpu_notifier(&fn##_nb); \
3f6da390
PZ
1213} while (0)
1214
f3dfd265 1215#endif /* __KERNEL__ */
cdd6c482 1216#endif /* _LINUX_PERF_EVENT_H */