]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/rcupdate.h
rcu: Uninline rcu_read_lock_held()
[mirror_ubuntu-artful-kernel.git] / include / linux / rcupdate.h
CommitLineData
1da177e4 1/*
a71fca58 2 * Read-Copy Update mechanism for mutual exclusion
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
1da177e4 17 *
01c1c660 18 * Copyright IBM Corporation, 2001
1da177e4
LT
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
a71fca58 21 *
595182bc 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
1da177e4
LT
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 29 * http://lse.sourceforge.net/locking/rcupdate.html
1da177e4
LT
30 *
31 */
32
33#ifndef __LINUX_RCUPDATE_H
34#define __LINUX_RCUPDATE_H
35
99098751 36#include <linux/types.h>
1da177e4
LT
37#include <linux/cache.h>
38#include <linux/spinlock.h>
39#include <linux/threads.h>
1da177e4
LT
40#include <linux/cpumask.h>
41#include <linux/seqlock.h>
851a67b8 42#include <linux/lockdep.h>
4446a36f 43#include <linux/completion.h>
551d55a9 44#include <linux/debugobjects.h>
187f1882 45#include <linux/bug.h>
ca5ecddf 46#include <linux/compiler.h>
88c18630 47#include <asm/barrier.h>
1da177e4 48
7a754743 49extern int rcu_expedited; /* for sysctl */
e5ab6772
DY
50#ifdef CONFIG_RCU_TORTURE_TEST
51extern int rcutorture_runnable; /* for sysctl */
52#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
53
ad0dc7f9
PM
54enum rcutorture_type {
55 RCU_FLAVOR,
56 RCU_BH_FLAVOR,
57 RCU_SCHED_FLAVOR,
58 SRCU_FLAVOR,
59 INVALID_RCU_FLAVOR
60};
61
4a298656 62#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
ad0dc7f9
PM
63void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
64 unsigned long *gpnum, unsigned long *completed);
584dc4ce
TB
65void rcutorture_record_test_transition(void);
66void rcutorture_record_progress(unsigned long vernum);
67void do_trace_rcu_torture_read(const char *rcutorturename,
68 struct rcu_head *rhp,
69 unsigned long secs,
70 unsigned long c_old,
71 unsigned long c);
4a298656 72#else
ad0dc7f9
PM
73static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
74 int *flags,
75 unsigned long *gpnum,
76 unsigned long *completed)
77{
78 *flags = 0;
79 *gpnum = 0;
80 *completed = 0;
81}
4a298656
PM
82static inline void rcutorture_record_test_transition(void)
83{
84}
85static inline void rcutorture_record_progress(unsigned long vernum)
86{
87}
91afaf30 88#ifdef CONFIG_RCU_TRACE
584dc4ce
TB
89void do_trace_rcu_torture_read(const char *rcutorturename,
90 struct rcu_head *rhp,
91 unsigned long secs,
92 unsigned long c_old,
93 unsigned long c);
91afaf30 94#else
52494535
PM
95#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
96 do { } while (0)
91afaf30 97#endif
4a298656
PM
98#endif
99
e27fc964
TH
100#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
101#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
a3dc3fb1
PM
102#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
103#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
c0f4dfd4 104#define ulong2long(a) (*(long *)(&(a)))
a3dc3fb1 105
03b042bf 106/* Exported common interfaces */
2c42818e
PM
107
108#ifdef CONFIG_PREEMPT_RCU
109
110/**
111 * call_rcu() - Queue an RCU callback for invocation after a grace period.
112 * @head: structure to be used for queueing the RCU updates.
113 * @func: actual callback function to be invoked after the grace period
114 *
115 * The callback function will be invoked some time after a full grace
116 * period elapses, in other words after all pre-existing RCU read-side
117 * critical sections have completed. However, the callback function
118 * might well execute concurrently with RCU read-side critical sections
119 * that started after call_rcu() was invoked. RCU read-side critical
120 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
121 * and may be nested.
f0a0e6f2
PM
122 *
123 * Note that all CPUs must agree that the grace period extended beyond
124 * all pre-existing RCU read-side critical section. On systems with more
125 * than one CPU, this means that when "func()" is invoked, each CPU is
126 * guaranteed to have executed a full memory barrier since the end of its
127 * last RCU read-side critical section whose beginning preceded the call
128 * to call_rcu(). It also means that each CPU executing an RCU read-side
129 * critical section that continues beyond the start of "func()" must have
130 * executed a memory barrier after the call_rcu() but before the beginning
131 * of that RCU read-side critical section. Note that these guarantees
132 * include CPUs that are offline, idle, or executing in user mode, as
133 * well as CPUs that are executing in the kernel.
134 *
135 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
136 * resulting RCU callback function "func()", then both CPU A and CPU B are
137 * guaranteed to execute a full memory barrier during the time interval
138 * between the call to call_rcu() and the invocation of "func()" -- even
139 * if CPU A and CPU B are the same CPU (but again only if the system has
140 * more than one CPU).
2c42818e 141 */
584dc4ce
TB
142void call_rcu(struct rcu_head *head,
143 void (*func)(struct rcu_head *head));
2c42818e
PM
144
145#else /* #ifdef CONFIG_PREEMPT_RCU */
146
147/* In classic RCU, call_rcu() is just call_rcu_sched(). */
148#define call_rcu call_rcu_sched
149
150#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
151
152/**
153 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
154 * @head: structure to be used for queueing the RCU updates.
155 * @func: actual callback function to be invoked after the grace period
156 *
157 * The callback function will be invoked some time after a full grace
158 * period elapses, in other words after all currently executing RCU
159 * read-side critical sections have completed. call_rcu_bh() assumes
160 * that the read-side critical sections end on completion of a softirq
161 * handler. This means that read-side critical sections in process
162 * context must not be interrupted by softirqs. This interface is to be
163 * used when most of the read-side critical sections are in softirq context.
164 * RCU read-side critical sections are delimited by :
165 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
166 * OR
167 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
168 * These may be nested.
f0a0e6f2
PM
169 *
170 * See the description of call_rcu() for more detailed information on
171 * memory ordering guarantees.
2c42818e 172 */
584dc4ce
TB
173void call_rcu_bh(struct rcu_head *head,
174 void (*func)(struct rcu_head *head));
2c42818e
PM
175
176/**
177 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
178 * @head: structure to be used for queueing the RCU updates.
179 * @func: actual callback function to be invoked after the grace period
180 *
181 * The callback function will be invoked some time after a full grace
182 * period elapses, in other words after all currently executing RCU
183 * read-side critical sections have completed. call_rcu_sched() assumes
184 * that the read-side critical sections end on enabling of preemption
185 * or on voluntary preemption.
186 * RCU read-side critical sections are delimited by :
187 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
188 * OR
189 * anything that disables preemption.
190 * These may be nested.
f0a0e6f2
PM
191 *
192 * See the description of call_rcu() for more detailed information on
193 * memory ordering guarantees.
2c42818e 194 */
584dc4ce
TB
195void call_rcu_sched(struct rcu_head *head,
196 void (*func)(struct rcu_head *rcu));
2c42818e 197
584dc4ce 198void synchronize_sched(void);
03b042bf 199
a3dc3fb1
PM
200#ifdef CONFIG_PREEMPT_RCU
201
584dc4ce
TB
202void __rcu_read_lock(void);
203void __rcu_read_unlock(void);
204void rcu_read_unlock_special(struct task_struct *t);
7b0b759b
PM
205void synchronize_rcu(void);
206
a3dc3fb1
PM
207/*
208 * Defined as a macro as it is a very low level header included from
209 * areas that don't even know about current. This gives the rcu_read_lock()
210 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
211 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
212 */
213#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
214
7b0b759b
PM
215#else /* #ifdef CONFIG_PREEMPT_RCU */
216
217static inline void __rcu_read_lock(void)
218{
219 preempt_disable();
220}
221
222static inline void __rcu_read_unlock(void)
223{
224 preempt_enable();
225}
226
227static inline void synchronize_rcu(void)
228{
229 synchronize_sched();
230}
231
232static inline int rcu_preempt_depth(void)
233{
234 return 0;
235}
236
237#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
238
239/* Internal to kernel */
584dc4ce
TB
240void rcu_init(void);
241void rcu_sched_qs(int cpu);
242void rcu_bh_qs(int cpu);
243void rcu_check_callbacks(int cpu, int user);
7b0b759b 244struct notifier_block;
584dc4ce
TB
245void rcu_idle_enter(void);
246void rcu_idle_exit(void);
247void rcu_irq_enter(void);
248void rcu_irq_exit(void);
2b1d5024 249
61f38db3
RR
250#ifdef CONFIG_RCU_STALL_COMMON
251void rcu_sysrq_start(void);
252void rcu_sysrq_end(void);
253#else /* #ifdef CONFIG_RCU_STALL_COMMON */
254static inline void rcu_sysrq_start(void)
255{
256}
257static inline void rcu_sysrq_end(void)
258{
259}
260#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
261
2b1d5024 262#ifdef CONFIG_RCU_USER_QS
584dc4ce
TB
263void rcu_user_enter(void);
264void rcu_user_exit(void);
2b1d5024
FW
265#else
266static inline void rcu_user_enter(void) { }
267static inline void rcu_user_exit(void) { }
4d9a5d43
FW
268static inline void rcu_user_hooks_switch(struct task_struct *prev,
269 struct task_struct *next) { }
2b1d5024
FW
270#endif /* CONFIG_RCU_USER_QS */
271
8a2ecf47
PM
272/**
273 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
274 * @a: Code that RCU needs to pay attention to.
275 *
276 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
277 * in the inner idle loop, that is, between the rcu_idle_enter() and
278 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
279 * critical sections. However, things like powertop need tracepoints
280 * in the inner idle loop.
281 *
282 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
283 * will tell RCU that it needs to pay attending, invoke its argument
284 * (in this example, a call to the do_something_with_RCU() function),
285 * and then tell RCU to go back to ignoring this CPU. It is permissible
286 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
287 * quite limited. If deeper nesting is required, it will be necessary
288 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
8a2ecf47
PM
289 */
290#define RCU_NONIDLE(a) \
291 do { \
b4270ee3 292 rcu_irq_enter(); \
8a2ecf47 293 do { a; } while (0); \
b4270ee3 294 rcu_irq_exit(); \
8a2ecf47
PM
295 } while (0)
296
cc6783f7 297#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
584dc4ce 298bool __rcu_is_watching(void);
cc6783f7
PM
299#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
300
2c42818e
PM
301/*
302 * Infrastructure to implement the synchronize_() primitives in
303 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
304 */
305
306typedef void call_rcu_func_t(struct rcu_head *head,
307 void (*func)(struct rcu_head *head));
308void wait_rcu_gp(call_rcu_func_t crf);
309
f41d911f 310#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
64db4cff 311#include <linux/rcutree.h>
127781d1 312#elif defined(CONFIG_TINY_RCU)
9b1d82fa 313#include <linux/rcutiny.h>
64db4cff
PM
314#else
315#error "Unknown RCU implementation specified to kernel configuration"
6b3ef48a 316#endif
01c1c660 317
551d55a9
MD
318/*
319 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
320 * initialization and destruction of rcu_head on the stack. rcu_head structures
321 * allocated dynamically in the heap or defined statically don't need any
322 * initialization.
323 */
324#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
546a9d85
PM
325void init_rcu_head(struct rcu_head *head);
326void destroy_rcu_head(struct rcu_head *head);
584dc4ce
TB
327void init_rcu_head_on_stack(struct rcu_head *head);
328void destroy_rcu_head_on_stack(struct rcu_head *head);
551d55a9 329#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
546a9d85
PM
330static inline void init_rcu_head(struct rcu_head *head)
331{
332}
333
334static inline void destroy_rcu_head(struct rcu_head *head)
335{
336}
337
4376030a
MD
338static inline void init_rcu_head_on_stack(struct rcu_head *head)
339{
340}
341
342static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
343{
344}
551d55a9 345#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
4376030a 346
c0d6d01b
PM
347#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
348bool rcu_lockdep_current_cpu_online(void);
349#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
350static inline bool rcu_lockdep_current_cpu_online(void)
351{
521d24ee 352 return true;
c0d6d01b
PM
353}
354#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
355
bc33f24b 356#ifdef CONFIG_DEBUG_LOCK_ALLOC
632ee200 357
00f49e57
FW
358static inline void rcu_lock_acquire(struct lockdep_map *map)
359{
fb9edbe9 360 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
00f49e57
FW
361}
362
363static inline void rcu_lock_release(struct lockdep_map *map)
364{
00f49e57
FW
365 lock_release(map, 1, _THIS_IP_);
366}
367
bc33f24b 368extern struct lockdep_map rcu_lock_map;
632ee200 369extern struct lockdep_map rcu_bh_lock_map;
632ee200 370extern struct lockdep_map rcu_sched_lock_map;
24ef659a 371extern struct lockdep_map rcu_callback_map;
a235c091 372int debug_lockdep_rcu_enabled(void);
54dbf96c 373
85b39d30 374int rcu_read_lock_held(void);
584dc4ce 375int rcu_read_lock_bh_held(void);
632ee200
PM
376
377/**
ca5ecddf 378 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
632ee200 379 *
d20200b5
PM
380 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
381 * RCU-sched read-side critical section. In absence of
382 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
383 * critical section unless it can prove otherwise. Note that disabling
384 * of preemption (including disabling irqs) counts as an RCU-sched
ca5ecddf
PM
385 * read-side critical section. This is useful for debug checks in functions
386 * that required that they be called within an RCU-sched read-side
387 * critical section.
54dbf96c 388 *
32c141a0
PM
389 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
390 * and while lockdep is disabled.
e6b80a3b
FW
391 *
392 * Note that if the CPU is in the idle loop from an RCU point of
393 * view (ie: that we are in the section between rcu_idle_enter() and
394 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
395 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
396 * that are in such a section, considering these as in extended quiescent
397 * state, so such a CPU is effectively never in an RCU read-side critical
398 * section regardless of what RCU primitives it invokes. This state of
399 * affairs is required --- we need to keep an RCU-free window in idle
400 * where the CPU may possibly enter into low power mode. This way we can
401 * notice an extended quiescent state to other CPUs that started a grace
402 * period. Otherwise we would delay any grace period as long as we run in
403 * the idle task.
c0d6d01b
PM
404 *
405 * Similarly, we avoid claiming an SRCU read lock held if the current
406 * CPU is offline.
632ee200 407 */
bdd4e85d 408#ifdef CONFIG_PREEMPT_COUNT
632ee200
PM
409static inline int rcu_read_lock_sched_held(void)
410{
411 int lockdep_opinion = 0;
412
54dbf96c
PM
413 if (!debug_lockdep_rcu_enabled())
414 return 1;
5c173eb8 415 if (!rcu_is_watching())
e6b80a3b 416 return 0;
c0d6d01b
PM
417 if (!rcu_lockdep_current_cpu_online())
418 return 0;
632ee200
PM
419 if (debug_locks)
420 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
0cff810f 421 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
632ee200 422}
bdd4e85d 423#else /* #ifdef CONFIG_PREEMPT_COUNT */
e6033e3b
PM
424static inline int rcu_read_lock_sched_held(void)
425{
426 return 1;
632ee200 427}
bdd4e85d 428#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
632ee200
PM
429
430#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
431
d8ab29f8
PM
432# define rcu_lock_acquire(a) do { } while (0)
433# define rcu_lock_release(a) do { } while (0)
632ee200
PM
434
435static inline int rcu_read_lock_held(void)
436{
437 return 1;
438}
439
440static inline int rcu_read_lock_bh_held(void)
441{
442 return 1;
443}
444
bdd4e85d 445#ifdef CONFIG_PREEMPT_COUNT
632ee200
PM
446static inline int rcu_read_lock_sched_held(void)
447{
bbad9379 448 return preempt_count() != 0 || irqs_disabled();
632ee200 449}
bdd4e85d 450#else /* #ifdef CONFIG_PREEMPT_COUNT */
e6033e3b
PM
451static inline int rcu_read_lock_sched_held(void)
452{
453 return 1;
632ee200 454}
bdd4e85d 455#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
632ee200
PM
456
457#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
458
459#ifdef CONFIG_PROVE_RCU
460
4221a991
TH
461/**
462 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
463 * @c: condition to check
b3fbab05 464 * @s: informative message
4221a991 465 */
b3fbab05 466#define rcu_lockdep_assert(c, s) \
2b3fc35f 467 do { \
7ccaba53 468 static bool __section(.data.unlikely) __warned; \
2b3fc35f
LJ
469 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
470 __warned = true; \
b3fbab05 471 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
2b3fc35f
LJ
472 } \
473 } while (0)
474
50406b98
PM
475#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
476static inline void rcu_preempt_sleep_check(void)
477{
478 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
5cf05ad7 479 "Illegal context switch in RCU read-side critical section");
50406b98
PM
480}
481#else /* #ifdef CONFIG_PROVE_RCU */
482static inline void rcu_preempt_sleep_check(void)
483{
484}
485#endif /* #else #ifdef CONFIG_PROVE_RCU */
486
b3fbab05
PM
487#define rcu_sleep_check() \
488 do { \
50406b98 489 rcu_preempt_sleep_check(); \
b3fbab05 490 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
41f4abd9 491 "Illegal context switch in RCU-bh read-side critical section"); \
b3fbab05 492 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
41f4abd9 493 "Illegal context switch in RCU-sched read-side critical section"); \
b3fbab05
PM
494 } while (0)
495
ca5ecddf
PM
496#else /* #ifdef CONFIG_PROVE_RCU */
497
b3fbab05
PM
498#define rcu_lockdep_assert(c, s) do { } while (0)
499#define rcu_sleep_check() do { } while (0)
ca5ecddf
PM
500
501#endif /* #else #ifdef CONFIG_PROVE_RCU */
502
503/*
504 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
505 * and rcu_assign_pointer(). Some of these could be folded into their
506 * callers, but they are left separate in order to ease introduction of
507 * multiple flavors of pointers to match the multiple flavors of RCU
508 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
509 * the future.
510 */
53ecfba2
PM
511
512#ifdef __CHECKER__
513#define rcu_dereference_sparse(p, space) \
514 ((void)(((typeof(*p) space *)p) == p))
515#else /* #ifdef __CHECKER__ */
516#define rcu_dereference_sparse(p, space)
517#endif /* #else #ifdef __CHECKER__ */
518
ca5ecddf 519#define __rcu_access_pointer(p, space) \
0adab9b9
JP
520({ \
521 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
522 rcu_dereference_sparse(p, space); \
523 ((typeof(*p) __force __kernel *)(_________p1)); \
524})
ca5ecddf 525#define __rcu_dereference_check(p, c, space) \
0adab9b9
JP
526({ \
527 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
528 rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
529 rcu_dereference_sparse(p, space); \
530 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
531 ((typeof(*p) __force __kernel *)(_________p1)); \
532})
ca5ecddf 533#define __rcu_dereference_protected(p, c, space) \
0adab9b9
JP
534({ \
535 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
536 rcu_dereference_sparse(p, space); \
537 ((typeof(*p) __force __kernel *)(p)); \
538})
ca5ecddf 539
a4dd9925 540#define __rcu_access_index(p, space) \
0adab9b9
JP
541({ \
542 typeof(p) _________p1 = ACCESS_ONCE(p); \
543 rcu_dereference_sparse(p, space); \
544 (_________p1); \
545})
ca5ecddf 546#define __rcu_dereference_index_check(p, c) \
0adab9b9
JP
547({ \
548 typeof(p) _________p1 = ACCESS_ONCE(p); \
549 rcu_lockdep_assert(c, \
550 "suspicious rcu_dereference_index_check() usage"); \
551 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
552 (_________p1); \
553})
462225ae
PM
554
555/**
556 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
557 * @v: The value to statically initialize with.
558 */
559#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
560
561/**
562 * rcu_assign_pointer() - assign to RCU-protected pointer
563 * @p: pointer to assign to
564 * @v: value to assign (publish)
565 *
566 * Assigns the specified value to the specified RCU-protected
567 * pointer, ensuring that any concurrent RCU readers will see
568 * any prior initialization.
569 *
570 * Inserts memory barriers on architectures that require them
571 * (which is most of them), and also prevents the compiler from
572 * reordering the code that initializes the structure after the pointer
573 * assignment. More importantly, this call documents which pointers
574 * will be dereferenced by RCU read-side code.
575 *
576 * In some special cases, you may use RCU_INIT_POINTER() instead
577 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
578 * to the fact that it does not constrain either the CPU or the compiler.
579 * That said, using RCU_INIT_POINTER() when you should have used
580 * rcu_assign_pointer() is a very bad thing that results in
581 * impossible-to-diagnose memory corruption. So please be careful.
582 * See the RCU_INIT_POINTER() comment header for details.
583 *
584 * Note that rcu_assign_pointer() evaluates each of its arguments only
585 * once, appearances notwithstanding. One of the "extra" evaluations
586 * is in typeof() and the other visible only to sparse (__CHECKER__),
587 * neither of which actually execute the argument. As with most cpp
588 * macros, this execute-arguments-only-once property is important, so
589 * please be careful when making changes to rcu_assign_pointer() and the
590 * other macros that it invokes.
591 */
88c18630 592#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
ca5ecddf
PM
593
594/**
595 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
596 * @p: The pointer to read
597 *
598 * Return the value of the specified RCU-protected pointer, but omit the
599 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
600 * when the value of this pointer is accessed, but the pointer is not
601 * dereferenced, for example, when testing an RCU-protected pointer against
602 * NULL. Although rcu_access_pointer() may also be used in cases where
603 * update-side locks prevent the value of the pointer from changing, you
604 * should instead use rcu_dereference_protected() for this use case.
5e1ee6e1
PM
605 *
606 * It is also permissible to use rcu_access_pointer() when read-side
607 * access to the pointer was removed at least one grace period ago, as
608 * is the case in the context of the RCU callback that is freeing up
609 * the data, or after a synchronize_rcu() returns. This can be useful
610 * when tearing down multi-linked structures after a grace period
611 * has elapsed.
ca5ecddf
PM
612 */
613#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
614
632ee200 615/**
ca5ecddf 616 * rcu_dereference_check() - rcu_dereference with debug checking
c08c68dd
DH
617 * @p: The pointer to read, prior to dereferencing
618 * @c: The conditions under which the dereference will take place
632ee200 619 *
c08c68dd 620 * Do an rcu_dereference(), but check that the conditions under which the
ca5ecddf
PM
621 * dereference will take place are correct. Typically the conditions
622 * indicate the various locking conditions that should be held at that
623 * point. The check should return true if the conditions are satisfied.
624 * An implicit check for being in an RCU read-side critical section
625 * (rcu_read_lock()) is included.
c08c68dd
DH
626 *
627 * For example:
628 *
ca5ecddf 629 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
c08c68dd
DH
630 *
631 * could be used to indicate to lockdep that foo->bar may only be dereferenced
ca5ecddf 632 * if either rcu_read_lock() is held, or that the lock required to replace
c08c68dd
DH
633 * the bar struct at foo->bar is held.
634 *
635 * Note that the list of conditions may also include indications of when a lock
636 * need not be held, for example during initialisation or destruction of the
637 * target struct:
638 *
ca5ecddf 639 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
c08c68dd 640 * atomic_read(&foo->usage) == 0);
ca5ecddf
PM
641 *
642 * Inserts memory barriers on architectures that require them
643 * (currently only the Alpha), prevents the compiler from refetching
644 * (and from merging fetches), and, more importantly, documents exactly
645 * which pointers are protected by RCU and checks that the pointer is
646 * annotated as __rcu.
632ee200
PM
647 */
648#define rcu_dereference_check(p, c) \
ca5ecddf
PM
649 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
650
651/**
652 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
653 * @p: The pointer to read, prior to dereferencing
654 * @c: The conditions under which the dereference will take place
655 *
656 * This is the RCU-bh counterpart to rcu_dereference_check().
657 */
658#define rcu_dereference_bh_check(p, c) \
659 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
632ee200 660
b62730ba 661/**
ca5ecddf
PM
662 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
663 * @p: The pointer to read, prior to dereferencing
664 * @c: The conditions under which the dereference will take place
665 *
666 * This is the RCU-sched counterpart to rcu_dereference_check().
667 */
668#define rcu_dereference_sched_check(p, c) \
669 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
670 __rcu)
671
672#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
673
12bcbe66
SR
674/*
675 * The tracing infrastructure traces RCU (we want that), but unfortunately
676 * some of the RCU checks causes tracing to lock up the system.
677 *
678 * The tracing version of rcu_dereference_raw() must not call
679 * rcu_read_lock_held().
680 */
681#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
682
a4dd9925
PM
683/**
684 * rcu_access_index() - fetch RCU index with no dereferencing
685 * @p: The index to read
686 *
687 * Return the value of the specified RCU-protected index, but omit the
688 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
689 * when the value of this index is accessed, but the index is not
690 * dereferenced, for example, when testing an RCU-protected index against
691 * -1. Although rcu_access_index() may also be used in cases where
692 * update-side locks prevent the value of the index from changing, you
693 * should instead use rcu_dereference_index_protected() for this use case.
694 */
695#define rcu_access_index(p) __rcu_access_index((p), __rcu)
696
ca5ecddf
PM
697/**
698 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
699 * @p: The pointer to read, prior to dereferencing
700 * @c: The conditions under which the dereference will take place
701 *
702 * Similar to rcu_dereference_check(), but omits the sparse checking.
703 * This allows rcu_dereference_index_check() to be used on integers,
704 * which can then be used as array indices. Attempting to use
705 * rcu_dereference_check() on an integer will give compiler warnings
706 * because the sparse address-space mechanism relies on dereferencing
707 * the RCU-protected pointer. Dereferencing integers is not something
708 * that even gcc will put up with.
709 *
710 * Note that this function does not implicitly check for RCU read-side
711 * critical sections. If this function gains lots of uses, it might
712 * make sense to provide versions for each flavor of RCU, but it does
713 * not make sense as of early 2010.
714 */
715#define rcu_dereference_index_check(p, c) \
716 __rcu_dereference_index_check((p), (c))
717
718/**
719 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
720 * @p: The pointer to read, prior to dereferencing
721 * @c: The conditions under which the dereference will take place
b62730ba
PM
722 *
723 * Return the value of the specified RCU-protected pointer, but omit
724 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
725 * is useful in cases where update-side locks prevent the value of the
726 * pointer from changing. Please note that this primitive does -not-
727 * prevent the compiler from repeating this reference or combining it
728 * with other references, so it should not be used without protection
729 * of appropriate locks.
ca5ecddf
PM
730 *
731 * This function is only for update-side use. Using this function
732 * when protected only by rcu_read_lock() will result in infrequent
733 * but very ugly failures.
b62730ba
PM
734 */
735#define rcu_dereference_protected(p, c) \
ca5ecddf 736 __rcu_dereference_protected((p), (c), __rcu)
b62730ba 737
bc33f24b 738
b62730ba 739/**
ca5ecddf
PM
740 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
741 * @p: The pointer to read, prior to dereferencing
b62730ba 742 *
ca5ecddf 743 * This is a simple wrapper around rcu_dereference_check().
b62730ba 744 */
ca5ecddf 745#define rcu_dereference(p) rcu_dereference_check(p, 0)
b62730ba 746
1da177e4 747/**
ca5ecddf
PM
748 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
749 * @p: The pointer to read, prior to dereferencing
750 *
751 * Makes rcu_dereference_check() do the dirty work.
752 */
753#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
754
755/**
756 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
757 * @p: The pointer to read, prior to dereferencing
758 *
759 * Makes rcu_dereference_check() do the dirty work.
760 */
761#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
762
763/**
764 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
1da177e4 765 *
9b06e818 766 * When synchronize_rcu() is invoked on one CPU while other CPUs
1da177e4 767 * are within RCU read-side critical sections, then the
9b06e818 768 * synchronize_rcu() is guaranteed to block until after all the other
1da177e4
LT
769 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
770 * on one CPU while other CPUs are within RCU read-side critical
771 * sections, invocation of the corresponding RCU callback is deferred
772 * until after the all the other CPUs exit their critical sections.
773 *
774 * Note, however, that RCU callbacks are permitted to run concurrently
77d8485a 775 * with new RCU read-side critical sections. One way that this can happen
1da177e4
LT
776 * is via the following sequence of events: (1) CPU 0 enters an RCU
777 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
778 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
779 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
780 * callback is invoked. This is legal, because the RCU read-side critical
781 * section that was running concurrently with the call_rcu() (and which
782 * therefore might be referencing something that the corresponding RCU
783 * callback would free up) has completed before the corresponding
784 * RCU callback is invoked.
785 *
786 * RCU read-side critical sections may be nested. Any deferred actions
787 * will be deferred until the outermost RCU read-side critical section
788 * completes.
789 *
9079fd7c
PM
790 * You can avoid reading and understanding the next paragraph by
791 * following this rule: don't put anything in an rcu_read_lock() RCU
792 * read-side critical section that would block in a !PREEMPT kernel.
793 * But if you want the full story, read on!
794 *
ab74fdfd
PM
795 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
796 * it is illegal to block while in an RCU read-side critical section.
797 * In preemptible RCU implementations (TREE_PREEMPT_RCU) in CONFIG_PREEMPT
798 * kernel builds, RCU read-side critical sections may be preempted,
799 * but explicit blocking is illegal. Finally, in preemptible RCU
800 * implementations in real-time (with -rt patchset) kernel builds, RCU
801 * read-side critical sections may be preempted and they may also block, but
802 * only when acquiring spinlocks that are subject to priority inheritance.
1da177e4 803 */
bc33f24b
PM
804static inline void rcu_read_lock(void)
805{
806 __rcu_read_lock();
807 __acquire(RCU);
d8ab29f8 808 rcu_lock_acquire(&rcu_lock_map);
5c173eb8 809 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 810 "rcu_read_lock() used illegally while idle");
bc33f24b 811}
1da177e4 812
1da177e4
LT
813/*
814 * So where is rcu_write_lock()? It does not exist, as there is no
815 * way for writers to lock out RCU readers. This is a feature, not
816 * a bug -- this property is what provides RCU's performance benefits.
817 * Of course, writers must coordinate with each other. The normal
818 * spinlock primitives work well for this, but any other technique may be
819 * used as well. RCU does not care how the writers keep out of each
820 * others' way, as long as they do so.
821 */
3d76c082
PM
822
823/**
ca5ecddf 824 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
3d76c082 825 *
f27bc487
PM
826 * In most situations, rcu_read_unlock() is immune from deadlock.
827 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
828 * is responsible for deboosting, which it does via rt_mutex_unlock().
829 * Unfortunately, this function acquires the scheduler's runqueue and
830 * priority-inheritance spinlocks. This means that deadlock could result
831 * if the caller of rcu_read_unlock() already holds one of these locks or
832 * any lock that is ever acquired while holding them.
833 *
834 * That said, RCU readers are never priority boosted unless they were
835 * preempted. Therefore, one way to avoid deadlock is to make sure
836 * that preemption never happens within any RCU read-side critical
837 * section whose outermost rcu_read_unlock() is called with one of
838 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
839 * a number of ways, for example, by invoking preempt_disable() before
840 * critical section's outermost rcu_read_lock().
841 *
842 * Given that the set of locks acquired by rt_mutex_unlock() might change
843 * at any time, a somewhat more future-proofed approach is to make sure
844 * that that preemption never happens within any RCU read-side critical
845 * section whose outermost rcu_read_unlock() is called with irqs disabled.
846 * This approach relies on the fact that rt_mutex_unlock() currently only
847 * acquires irq-disabled locks.
848 *
849 * The second of these two approaches is best in most situations,
850 * however, the first approach can also be useful, at least to those
851 * developers willing to keep abreast of the set of locks acquired by
852 * rt_mutex_unlock().
853 *
3d76c082
PM
854 * See rcu_read_lock() for more information.
855 */
bc33f24b
PM
856static inline void rcu_read_unlock(void)
857{
5c173eb8 858 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 859 "rcu_read_unlock() used illegally while idle");
d8ab29f8 860 rcu_lock_release(&rcu_lock_map);
bc33f24b
PM
861 __release(RCU);
862 __rcu_read_unlock();
863}
1da177e4
LT
864
865/**
ca5ecddf 866 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
1da177e4
LT
867 *
868 * This is equivalent of rcu_read_lock(), but to be used when updates
ca5ecddf
PM
869 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
870 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
871 * softirq handler to be a quiescent state, a process in RCU read-side
872 * critical section must be protected by disabling softirqs. Read-side
873 * critical sections in interrupt context can use just rcu_read_lock(),
874 * though this should at least be commented to avoid confusing people
875 * reading the code.
3842a083
PM
876 *
877 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
878 * must occur in the same context, for example, it is illegal to invoke
879 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
880 * was invoked from some other task.
1da177e4 881 */
bc33f24b
PM
882static inline void rcu_read_lock_bh(void)
883{
6206ab9b 884 local_bh_disable();
bc33f24b 885 __acquire(RCU_BH);
d8ab29f8 886 rcu_lock_acquire(&rcu_bh_lock_map);
5c173eb8 887 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 888 "rcu_read_lock_bh() used illegally while idle");
bc33f24b 889}
1da177e4
LT
890
891/*
892 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
893 *
894 * See rcu_read_lock_bh() for more information.
895 */
bc33f24b
PM
896static inline void rcu_read_unlock_bh(void)
897{
5c173eb8 898 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 899 "rcu_read_unlock_bh() used illegally while idle");
d8ab29f8 900 rcu_lock_release(&rcu_bh_lock_map);
bc33f24b 901 __release(RCU_BH);
6206ab9b 902 local_bh_enable();
bc33f24b 903}
1da177e4 904
1c50b728 905/**
ca5ecddf 906 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
1c50b728 907 *
ca5ecddf
PM
908 * This is equivalent of rcu_read_lock(), but to be used when updates
909 * are being done using call_rcu_sched() or synchronize_rcu_sched().
910 * Read-side critical sections can also be introduced by anything that
911 * disables preemption, including local_irq_disable() and friends.
3842a083
PM
912 *
913 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
914 * must occur in the same context, for example, it is illegal to invoke
915 * rcu_read_unlock_sched() from process context if the matching
916 * rcu_read_lock_sched() was invoked from an NMI handler.
1c50b728 917 */
d6714c22
PM
918static inline void rcu_read_lock_sched(void)
919{
920 preempt_disable();
bc33f24b 921 __acquire(RCU_SCHED);
d8ab29f8 922 rcu_lock_acquire(&rcu_sched_lock_map);
5c173eb8 923 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 924 "rcu_read_lock_sched() used illegally while idle");
d6714c22 925}
1eba8f84
PM
926
927/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
7c614d64 928static inline notrace void rcu_read_lock_sched_notrace(void)
d6714c22
PM
929{
930 preempt_disable_notrace();
bc33f24b 931 __acquire(RCU_SCHED);
d6714c22 932}
1c50b728
MD
933
934/*
935 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
936 *
937 * See rcu_read_lock_sched for more information.
938 */
d6714c22
PM
939static inline void rcu_read_unlock_sched(void)
940{
5c173eb8 941 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 942 "rcu_read_unlock_sched() used illegally while idle");
d8ab29f8 943 rcu_lock_release(&rcu_sched_lock_map);
bc33f24b 944 __release(RCU_SCHED);
d6714c22
PM
945 preempt_enable();
946}
1eba8f84
PM
947
948/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
7c614d64 949static inline notrace void rcu_read_unlock_sched_notrace(void)
d6714c22 950{
bc33f24b 951 __release(RCU_SCHED);
d6714c22
PM
952 preempt_enable_notrace();
953}
1c50b728 954
ca5ecddf
PM
955/**
956 * RCU_INIT_POINTER() - initialize an RCU protected pointer
957 *
6846c0c5
PM
958 * Initialize an RCU-protected pointer in special cases where readers
959 * do not need ordering constraints on the CPU or the compiler. These
960 * special cases are:
961 *
962 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
963 * 2. The caller has taken whatever steps are required to prevent
964 * RCU readers from concurrently accessing this pointer -or-
965 * 3. The referenced data structure has already been exposed to
966 * readers either at compile time or via rcu_assign_pointer() -and-
967 * a. You have not made -any- reader-visible changes to
968 * this structure since then -or-
969 * b. It is OK for readers accessing this structure from its
970 * new location to see the old state of the structure. (For
971 * example, the changes were to statistical counters or to
972 * other state where exact synchronization is not required.)
973 *
974 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
975 * result in impossible-to-diagnose memory corruption. As in the structures
976 * will look OK in crash dumps, but any concurrent RCU readers might
977 * see pre-initialized values of the referenced data structure. So
978 * please be very careful how you use RCU_INIT_POINTER()!!!
979 *
980 * If you are creating an RCU-protected linked structure that is accessed
981 * by a single external-to-structure RCU-protected pointer, then you may
982 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
983 * pointers, but you must use rcu_assign_pointer() to initialize the
984 * external-to-structure pointer -after- you have completely initialized
985 * the reader-accessible portions of the linked structure.
71a9b269
PM
986 *
987 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
988 * ordering guarantees for either the CPU or the compiler.
ca5ecddf
PM
989 */
990#define RCU_INIT_POINTER(p, v) \
d1b88eb9 991 do { \
462225ae 992 p = RCU_INITIALIZER(v); \
d1b88eb9 993 } while (0)
9ab1544e 994
172708d0
PM
995/**
996 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
997 *
998 * GCC-style initialization for an RCU-protected pointer in a structure field.
999 */
1000#define RCU_POINTER_INITIALIZER(p, v) \
462225ae 1001 .p = RCU_INITIALIZER(v)
9ab1544e 1002
d8169d4c
JE
1003/*
1004 * Does the specified offset indicate that the corresponding rcu_head
1005 * structure can be handled by kfree_rcu()?
1006 */
1007#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1008
1009/*
1010 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1011 */
1012#define __kfree_rcu(head, offset) \
1013 do { \
1014 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
4fa3b6cb 1015 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
d8169d4c
JE
1016 } while (0)
1017
9ab1544e
LJ
1018/**
1019 * kfree_rcu() - kfree an object after a grace period.
1020 * @ptr: pointer to kfree
1021 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1022 *
1023 * Many rcu callbacks functions just call kfree() on the base structure.
1024 * These functions are trivial, but their size adds up, and furthermore
1025 * when they are used in a kernel module, that module must invoke the
1026 * high-latency rcu_barrier() function at module-unload time.
1027 *
1028 * The kfree_rcu() function handles this issue. Rather than encoding a
1029 * function address in the embedded rcu_head structure, kfree_rcu() instead
1030 * encodes the offset of the rcu_head structure within the base structure.
1031 * Because the functions are not allowed in the low-order 4096 bytes of
1032 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1033 * If the offset is larger than 4095 bytes, a compile-time error will
1034 * be generated in __kfree_rcu(). If this error is triggered, you can
1035 * either fall back to use of call_rcu() or rearrange the structure to
1036 * position the rcu_head structure into the first 4096 bytes.
1037 *
1038 * Note that the allowable offset might decrease in the future, for example,
1039 * to allow something like kmem_cache_free_rcu().
d8169d4c
JE
1040 *
1041 * The BUILD_BUG_ON check must not involve any function calls, hence the
1042 * checks are done in macros here.
9ab1544e
LJ
1043 */
1044#define kfree_rcu(ptr, rcu_head) \
1045 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1046
ffa83fb5
PM
1047#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
1048static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1049{
1050 *delta_jiffies = ULONG_MAX;
1051 return 0;
1052}
1053#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
1054
2f33b512
PM
1055#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1056static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1057#elif defined(CONFIG_RCU_NOCB_CPU)
584dc4ce 1058bool rcu_is_nocb_cpu(int cpu);
d1e43fa5
FW
1059#else
1060static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
2f33b512 1061#endif
d1e43fa5
FW
1062
1063
0edd1b17
PM
1064/* Only for use by adaptive-ticks code. */
1065#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
584dc4ce
TB
1066bool rcu_sys_is_idle(void);
1067void rcu_sysidle_force_exit(void);
0edd1b17
PM
1068#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1069
1070static inline bool rcu_sys_is_idle(void)
1071{
1072 return false;
1073}
1074
1075static inline void rcu_sysidle_force_exit(void)
1076{
1077}
1078
1079#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1080
1081
1da177e4 1082#endif /* __LINUX_RCUPDATE_H */