]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/rcupdate.h
rcu: Add boot-up check for non-default CONFIG_RCU_FANOUT_LEAF values
[mirror_ubuntu-bionic-kernel.git] / include / linux / rcupdate.h
CommitLineData
1da177e4 1/*
a71fca58 2 * Read-Copy Update mechanism for mutual exclusion
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
1da177e4 17 *
01c1c660 18 * Copyright IBM Corporation, 2001
1da177e4
LT
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
a71fca58 21 *
595182bc 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
1da177e4
LT
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 29 * http://lse.sourceforge.net/locking/rcupdate.html
1da177e4
LT
30 *
31 */
32
33#ifndef __LINUX_RCUPDATE_H
34#define __LINUX_RCUPDATE_H
35
99098751 36#include <linux/types.h>
1da177e4
LT
37#include <linux/cache.h>
38#include <linux/spinlock.h>
39#include <linux/threads.h>
1da177e4
LT
40#include <linux/cpumask.h>
41#include <linux/seqlock.h>
851a67b8 42#include <linux/lockdep.h>
4446a36f 43#include <linux/completion.h>
551d55a9 44#include <linux/debugobjects.h>
187f1882 45#include <linux/bug.h>
ca5ecddf 46#include <linux/compiler.h>
88c18630 47#include <asm/barrier.h>
1da177e4 48
7a754743 49extern int rcu_expedited; /* for sysctl */
e5ab6772 50
ad0dc7f9
PM
51enum rcutorture_type {
52 RCU_FLAVOR,
53 RCU_BH_FLAVOR,
54 RCU_SCHED_FLAVOR,
69c60455 55 RCU_TASKS_FLAVOR,
ad0dc7f9
PM
56 SRCU_FLAVOR,
57 INVALID_RCU_FLAVOR
58};
59
28f6569a 60#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
ad0dc7f9
PM
61void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
62 unsigned long *gpnum, unsigned long *completed);
584dc4ce
TB
63void rcutorture_record_test_transition(void);
64void rcutorture_record_progress(unsigned long vernum);
65void do_trace_rcu_torture_read(const char *rcutorturename,
66 struct rcu_head *rhp,
67 unsigned long secs,
68 unsigned long c_old,
69 unsigned long c);
4a298656 70#else
ad0dc7f9
PM
71static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
72 int *flags,
73 unsigned long *gpnum,
74 unsigned long *completed)
75{
76 *flags = 0;
77 *gpnum = 0;
78 *completed = 0;
79}
4a298656
PM
80static inline void rcutorture_record_test_transition(void)
81{
82}
83static inline void rcutorture_record_progress(unsigned long vernum)
84{
85}
91afaf30 86#ifdef CONFIG_RCU_TRACE
584dc4ce
TB
87void do_trace_rcu_torture_read(const char *rcutorturename,
88 struct rcu_head *rhp,
89 unsigned long secs,
90 unsigned long c_old,
91 unsigned long c);
91afaf30 92#else
52494535
PM
93#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
94 do { } while (0)
91afaf30 95#endif
4a298656
PM
96#endif
97
e27fc964
TH
98#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
99#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
a3dc3fb1
PM
100#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
101#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
c0f4dfd4 102#define ulong2long(a) (*(long *)(&(a)))
a3dc3fb1 103
03b042bf 104/* Exported common interfaces */
2c42818e
PM
105
106#ifdef CONFIG_PREEMPT_RCU
107
108/**
109 * call_rcu() - Queue an RCU callback for invocation after a grace period.
110 * @head: structure to be used for queueing the RCU updates.
111 * @func: actual callback function to be invoked after the grace period
112 *
113 * The callback function will be invoked some time after a full grace
114 * period elapses, in other words after all pre-existing RCU read-side
115 * critical sections have completed. However, the callback function
116 * might well execute concurrently with RCU read-side critical sections
117 * that started after call_rcu() was invoked. RCU read-side critical
118 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
119 * and may be nested.
f0a0e6f2
PM
120 *
121 * Note that all CPUs must agree that the grace period extended beyond
122 * all pre-existing RCU read-side critical section. On systems with more
123 * than one CPU, this means that when "func()" is invoked, each CPU is
124 * guaranteed to have executed a full memory barrier since the end of its
125 * last RCU read-side critical section whose beginning preceded the call
126 * to call_rcu(). It also means that each CPU executing an RCU read-side
127 * critical section that continues beyond the start of "func()" must have
128 * executed a memory barrier after the call_rcu() but before the beginning
129 * of that RCU read-side critical section. Note that these guarantees
130 * include CPUs that are offline, idle, or executing in user mode, as
131 * well as CPUs that are executing in the kernel.
132 *
133 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
134 * resulting RCU callback function "func()", then both CPU A and CPU B are
135 * guaranteed to execute a full memory barrier during the time interval
136 * between the call to call_rcu() and the invocation of "func()" -- even
137 * if CPU A and CPU B are the same CPU (but again only if the system has
138 * more than one CPU).
2c42818e 139 */
584dc4ce
TB
140void call_rcu(struct rcu_head *head,
141 void (*func)(struct rcu_head *head));
2c42818e
PM
142
143#else /* #ifdef CONFIG_PREEMPT_RCU */
144
145/* In classic RCU, call_rcu() is just call_rcu_sched(). */
146#define call_rcu call_rcu_sched
147
148#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
149
150/**
151 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
152 * @head: structure to be used for queueing the RCU updates.
153 * @func: actual callback function to be invoked after the grace period
154 *
155 * The callback function will be invoked some time after a full grace
156 * period elapses, in other words after all currently executing RCU
157 * read-side critical sections have completed. call_rcu_bh() assumes
158 * that the read-side critical sections end on completion of a softirq
159 * handler. This means that read-side critical sections in process
160 * context must not be interrupted by softirqs. This interface is to be
161 * used when most of the read-side critical sections are in softirq context.
162 * RCU read-side critical sections are delimited by :
163 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
164 * OR
165 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
166 * These may be nested.
f0a0e6f2
PM
167 *
168 * See the description of call_rcu() for more detailed information on
169 * memory ordering guarantees.
2c42818e 170 */
584dc4ce
TB
171void call_rcu_bh(struct rcu_head *head,
172 void (*func)(struct rcu_head *head));
2c42818e
PM
173
174/**
175 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
176 * @head: structure to be used for queueing the RCU updates.
177 * @func: actual callback function to be invoked after the grace period
178 *
179 * The callback function will be invoked some time after a full grace
180 * period elapses, in other words after all currently executing RCU
181 * read-side critical sections have completed. call_rcu_sched() assumes
182 * that the read-side critical sections end on enabling of preemption
183 * or on voluntary preemption.
184 * RCU read-side critical sections are delimited by :
185 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
186 * OR
187 * anything that disables preemption.
188 * These may be nested.
f0a0e6f2
PM
189 *
190 * See the description of call_rcu() for more detailed information on
191 * memory ordering guarantees.
2c42818e 192 */
584dc4ce
TB
193void call_rcu_sched(struct rcu_head *head,
194 void (*func)(struct rcu_head *rcu));
2c42818e 195
584dc4ce 196void synchronize_sched(void);
03b042bf 197
ee376dbd
PM
198/*
199 * Structure allowing asynchronous waiting on RCU.
200 */
201struct rcu_synchronize {
202 struct rcu_head head;
203 struct completion completion;
204};
205void wakeme_after_rcu(struct rcu_head *head);
206
8315f422
PM
207/**
208 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
209 * @head: structure to be used for queueing the RCU updates.
210 * @func: actual callback function to be invoked after the grace period
211 *
212 * The callback function will be invoked some time after a full grace
213 * period elapses, in other words after all currently executing RCU
214 * read-side critical sections have completed. call_rcu_tasks() assumes
215 * that the read-side critical sections end at a voluntary context
216 * switch (not a preemption!), entry into idle, or transition to usermode
217 * execution. As such, there are no read-side primitives analogous to
218 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
219 * to determine that all tasks have passed through a safe state, not so
220 * much for data-strcuture synchronization.
221 *
222 * See the description of call_rcu() for more detailed information on
223 * memory ordering guarantees.
224 */
225void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
53c6d4ed
PM
226void synchronize_rcu_tasks(void);
227void rcu_barrier_tasks(void);
8315f422 228
a3dc3fb1
PM
229#ifdef CONFIG_PREEMPT_RCU
230
584dc4ce
TB
231void __rcu_read_lock(void);
232void __rcu_read_unlock(void);
233void rcu_read_unlock_special(struct task_struct *t);
7b0b759b
PM
234void synchronize_rcu(void);
235
a3dc3fb1
PM
236/*
237 * Defined as a macro as it is a very low level header included from
238 * areas that don't even know about current. This gives the rcu_read_lock()
239 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
240 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
241 */
242#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
243
7b0b759b
PM
244#else /* #ifdef CONFIG_PREEMPT_RCU */
245
246static inline void __rcu_read_lock(void)
247{
248 preempt_disable();
249}
250
251static inline void __rcu_read_unlock(void)
252{
253 preempt_enable();
254}
255
256static inline void synchronize_rcu(void)
257{
258 synchronize_sched();
259}
260
261static inline int rcu_preempt_depth(void)
262{
263 return 0;
264}
265
266#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
267
268/* Internal to kernel */
584dc4ce 269void rcu_init(void);
284a8c93
PM
270void rcu_sched_qs(void);
271void rcu_bh_qs(void);
c3377c2d 272void rcu_check_callbacks(int user);
7b0b759b 273struct notifier_block;
584dc4ce
TB
274void rcu_idle_enter(void);
275void rcu_idle_exit(void);
276void rcu_irq_enter(void);
277void rcu_irq_exit(void);
2b1d5024 278
61f38db3
RR
279#ifdef CONFIG_RCU_STALL_COMMON
280void rcu_sysrq_start(void);
281void rcu_sysrq_end(void);
282#else /* #ifdef CONFIG_RCU_STALL_COMMON */
283static inline void rcu_sysrq_start(void)
284{
285}
286static inline void rcu_sysrq_end(void)
287{
288}
289#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
290
2b1d5024 291#ifdef CONFIG_RCU_USER_QS
584dc4ce
TB
292void rcu_user_enter(void);
293void rcu_user_exit(void);
2b1d5024
FW
294#else
295static inline void rcu_user_enter(void) { }
296static inline void rcu_user_exit(void) { }
4d9a5d43
FW
297static inline void rcu_user_hooks_switch(struct task_struct *prev,
298 struct task_struct *next) { }
2b1d5024
FW
299#endif /* CONFIG_RCU_USER_QS */
300
f4579fc5
PM
301#ifdef CONFIG_RCU_NOCB_CPU
302void rcu_init_nohz(void);
303#else /* #ifdef CONFIG_RCU_NOCB_CPU */
304static inline void rcu_init_nohz(void)
305{
306}
307#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
308
8a2ecf47
PM
309/**
310 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
311 * @a: Code that RCU needs to pay attention to.
312 *
313 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
314 * in the inner idle loop, that is, between the rcu_idle_enter() and
315 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
316 * critical sections. However, things like powertop need tracepoints
317 * in the inner idle loop.
318 *
319 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
320 * will tell RCU that it needs to pay attending, invoke its argument
321 * (in this example, a call to the do_something_with_RCU() function),
322 * and then tell RCU to go back to ignoring this CPU. It is permissible
323 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
324 * quite limited. If deeper nesting is required, it will be necessary
325 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
8a2ecf47
PM
326 */
327#define RCU_NONIDLE(a) \
328 do { \
b4270ee3 329 rcu_irq_enter(); \
8a2ecf47 330 do { a; } while (0); \
b4270ee3 331 rcu_irq_exit(); \
8a2ecf47
PM
332 } while (0)
333
8315f422
PM
334/*
335 * Note a voluntary context switch for RCU-tasks benefit. This is a
336 * macro rather than an inline function to avoid #include hell.
337 */
338#ifdef CONFIG_TASKS_RCU
3f95aa81
PM
339#define TASKS_RCU(x) x
340extern struct srcu_struct tasks_rcu_exit_srcu;
8315f422
PM
341#define rcu_note_voluntary_context_switch(t) \
342 do { \
5cd37193 343 rcu_all_qs(); \
8315f422
PM
344 if (ACCESS_ONCE((t)->rcu_tasks_holdout)) \
345 ACCESS_ONCE((t)->rcu_tasks_holdout) = false; \
8315f422
PM
346 } while (0)
347#else /* #ifdef CONFIG_TASKS_RCU */
3f95aa81 348#define TASKS_RCU(x) do { } while (0)
5cd37193 349#define rcu_note_voluntary_context_switch(t) rcu_all_qs()
8315f422
PM
350#endif /* #else #ifdef CONFIG_TASKS_RCU */
351
bde6c3aa
PM
352/**
353 * cond_resched_rcu_qs - Report potential quiescent states to RCU
354 *
355 * This macro resembles cond_resched(), except that it is defined to
356 * report potential quiescent states to RCU-tasks even if the cond_resched()
357 * machinery were to be shut off, as some advocate for PREEMPT kernels.
358 */
359#define cond_resched_rcu_qs() \
360do { \
b6331ae8
PM
361 if (!cond_resched()) \
362 rcu_note_voluntary_context_switch(current); \
bde6c3aa
PM
363} while (0)
364
cc6783f7 365#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
584dc4ce 366bool __rcu_is_watching(void);
cc6783f7
PM
367#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
368
2c42818e
PM
369/*
370 * Infrastructure to implement the synchronize_() primitives in
371 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
372 */
373
374typedef void call_rcu_func_t(struct rcu_head *head,
375 void (*func)(struct rcu_head *head));
376void wait_rcu_gp(call_rcu_func_t crf);
377
28f6569a 378#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
64db4cff 379#include <linux/rcutree.h>
127781d1 380#elif defined(CONFIG_TINY_RCU)
9b1d82fa 381#include <linux/rcutiny.h>
64db4cff
PM
382#else
383#error "Unknown RCU implementation specified to kernel configuration"
6b3ef48a 384#endif
01c1c660 385
551d55a9
MD
386/*
387 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
388 * initialization and destruction of rcu_head on the stack. rcu_head structures
389 * allocated dynamically in the heap or defined statically don't need any
390 * initialization.
391 */
392#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
546a9d85
PM
393void init_rcu_head(struct rcu_head *head);
394void destroy_rcu_head(struct rcu_head *head);
584dc4ce
TB
395void init_rcu_head_on_stack(struct rcu_head *head);
396void destroy_rcu_head_on_stack(struct rcu_head *head);
551d55a9 397#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
546a9d85
PM
398static inline void init_rcu_head(struct rcu_head *head)
399{
400}
401
402static inline void destroy_rcu_head(struct rcu_head *head)
403{
404}
405
4376030a
MD
406static inline void init_rcu_head_on_stack(struct rcu_head *head)
407{
408}
409
410static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
411{
412}
551d55a9 413#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
4376030a 414
c0d6d01b
PM
415#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
416bool rcu_lockdep_current_cpu_online(void);
417#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
418static inline bool rcu_lockdep_current_cpu_online(void)
419{
521d24ee 420 return true;
c0d6d01b
PM
421}
422#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
423
bc33f24b 424#ifdef CONFIG_DEBUG_LOCK_ALLOC
632ee200 425
00f49e57
FW
426static inline void rcu_lock_acquire(struct lockdep_map *map)
427{
fb9edbe9 428 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
00f49e57
FW
429}
430
431static inline void rcu_lock_release(struct lockdep_map *map)
432{
00f49e57
FW
433 lock_release(map, 1, _THIS_IP_);
434}
435
bc33f24b 436extern struct lockdep_map rcu_lock_map;
632ee200 437extern struct lockdep_map rcu_bh_lock_map;
632ee200 438extern struct lockdep_map rcu_sched_lock_map;
24ef659a 439extern struct lockdep_map rcu_callback_map;
a235c091 440int debug_lockdep_rcu_enabled(void);
54dbf96c 441
85b39d30 442int rcu_read_lock_held(void);
584dc4ce 443int rcu_read_lock_bh_held(void);
632ee200
PM
444
445/**
ca5ecddf 446 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
632ee200 447 *
d20200b5
PM
448 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
449 * RCU-sched read-side critical section. In absence of
450 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
451 * critical section unless it can prove otherwise. Note that disabling
452 * of preemption (including disabling irqs) counts as an RCU-sched
ca5ecddf
PM
453 * read-side critical section. This is useful for debug checks in functions
454 * that required that they be called within an RCU-sched read-side
455 * critical section.
54dbf96c 456 *
32c141a0
PM
457 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
458 * and while lockdep is disabled.
e6b80a3b
FW
459 *
460 * Note that if the CPU is in the idle loop from an RCU point of
461 * view (ie: that we are in the section between rcu_idle_enter() and
462 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
463 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
464 * that are in such a section, considering these as in extended quiescent
465 * state, so such a CPU is effectively never in an RCU read-side critical
466 * section regardless of what RCU primitives it invokes. This state of
467 * affairs is required --- we need to keep an RCU-free window in idle
468 * where the CPU may possibly enter into low power mode. This way we can
469 * notice an extended quiescent state to other CPUs that started a grace
470 * period. Otherwise we would delay any grace period as long as we run in
471 * the idle task.
c0d6d01b
PM
472 *
473 * Similarly, we avoid claiming an SRCU read lock held if the current
474 * CPU is offline.
632ee200 475 */
bdd4e85d 476#ifdef CONFIG_PREEMPT_COUNT
632ee200
PM
477static inline int rcu_read_lock_sched_held(void)
478{
479 int lockdep_opinion = 0;
480
54dbf96c
PM
481 if (!debug_lockdep_rcu_enabled())
482 return 1;
5c173eb8 483 if (!rcu_is_watching())
e6b80a3b 484 return 0;
c0d6d01b
PM
485 if (!rcu_lockdep_current_cpu_online())
486 return 0;
632ee200
PM
487 if (debug_locks)
488 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
0cff810f 489 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
632ee200 490}
bdd4e85d 491#else /* #ifdef CONFIG_PREEMPT_COUNT */
e6033e3b
PM
492static inline int rcu_read_lock_sched_held(void)
493{
494 return 1;
632ee200 495}
bdd4e85d 496#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
632ee200
PM
497
498#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
499
d8ab29f8
PM
500# define rcu_lock_acquire(a) do { } while (0)
501# define rcu_lock_release(a) do { } while (0)
632ee200
PM
502
503static inline int rcu_read_lock_held(void)
504{
505 return 1;
506}
507
508static inline int rcu_read_lock_bh_held(void)
509{
510 return 1;
511}
512
bdd4e85d 513#ifdef CONFIG_PREEMPT_COUNT
632ee200
PM
514static inline int rcu_read_lock_sched_held(void)
515{
bbad9379 516 return preempt_count() != 0 || irqs_disabled();
632ee200 517}
bdd4e85d 518#else /* #ifdef CONFIG_PREEMPT_COUNT */
e6033e3b
PM
519static inline int rcu_read_lock_sched_held(void)
520{
521 return 1;
632ee200 522}
bdd4e85d 523#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
632ee200
PM
524
525#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
526
527#ifdef CONFIG_PROVE_RCU
528
4221a991
TH
529/**
530 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
531 * @c: condition to check
b3fbab05 532 * @s: informative message
4221a991 533 */
b3fbab05 534#define rcu_lockdep_assert(c, s) \
2b3fc35f 535 do { \
7ccaba53 536 static bool __section(.data.unlikely) __warned; \
2b3fc35f
LJ
537 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
538 __warned = true; \
b3fbab05 539 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
2b3fc35f
LJ
540 } \
541 } while (0)
542
50406b98
PM
543#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
544static inline void rcu_preempt_sleep_check(void)
545{
546 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
5cf05ad7 547 "Illegal context switch in RCU read-side critical section");
50406b98
PM
548}
549#else /* #ifdef CONFIG_PROVE_RCU */
550static inline void rcu_preempt_sleep_check(void)
551{
552}
553#endif /* #else #ifdef CONFIG_PROVE_RCU */
554
b3fbab05
PM
555#define rcu_sleep_check() \
556 do { \
50406b98 557 rcu_preempt_sleep_check(); \
b3fbab05 558 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
41f4abd9 559 "Illegal context switch in RCU-bh read-side critical section"); \
b3fbab05 560 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
41f4abd9 561 "Illegal context switch in RCU-sched read-side critical section"); \
b3fbab05
PM
562 } while (0)
563
ca5ecddf
PM
564#else /* #ifdef CONFIG_PROVE_RCU */
565
b3fbab05
PM
566#define rcu_lockdep_assert(c, s) do { } while (0)
567#define rcu_sleep_check() do { } while (0)
ca5ecddf
PM
568
569#endif /* #else #ifdef CONFIG_PROVE_RCU */
570
571/*
572 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
573 * and rcu_assign_pointer(). Some of these could be folded into their
574 * callers, but they are left separate in order to ease introduction of
575 * multiple flavors of pointers to match the multiple flavors of RCU
576 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
577 * the future.
578 */
53ecfba2
PM
579
580#ifdef __CHECKER__
581#define rcu_dereference_sparse(p, space) \
582 ((void)(((typeof(*p) space *)p) == p))
583#else /* #ifdef __CHECKER__ */
584#define rcu_dereference_sparse(p, space)
585#endif /* #else #ifdef __CHECKER__ */
586
ca5ecddf 587#define __rcu_access_pointer(p, space) \
0adab9b9
JP
588({ \
589 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
590 rcu_dereference_sparse(p, space); \
591 ((typeof(*p) __force __kernel *)(_________p1)); \
592})
ca5ecddf 593#define __rcu_dereference_check(p, c, space) \
0adab9b9 594({ \
ac59853c
PK
595 /* Dependency order vs. p above. */ \
596 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
0adab9b9
JP
597 rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
598 rcu_dereference_sparse(p, space); \
ac59853c 599 ((typeof(*p) __force __kernel *)(________p1)); \
0adab9b9 600})
ca5ecddf 601#define __rcu_dereference_protected(p, c, space) \
0adab9b9
JP
602({ \
603 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
604 rcu_dereference_sparse(p, space); \
605 ((typeof(*p) __force __kernel *)(p)); \
606})
ca5ecddf 607
a4dd9925 608#define __rcu_access_index(p, space) \
0adab9b9
JP
609({ \
610 typeof(p) _________p1 = ACCESS_ONCE(p); \
611 rcu_dereference_sparse(p, space); \
612 (_________p1); \
613})
ca5ecddf 614#define __rcu_dereference_index_check(p, c) \
0adab9b9 615({ \
ac59853c
PK
616 /* Dependency order vs. p above. */ \
617 typeof(p) _________p1 = lockless_dereference(p); \
0adab9b9
JP
618 rcu_lockdep_assert(c, \
619 "suspicious rcu_dereference_index_check() usage"); \
0adab9b9
JP
620 (_________p1); \
621})
462225ae
PM
622
623/**
624 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
625 * @v: The value to statically initialize with.
626 */
627#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
628
54ef6df3
PM
629/**
630 * lockless_dereference() - safely load a pointer for later dereference
631 * @p: The pointer to load
632 *
633 * Similar to rcu_dereference(), but for situations where the pointed-to
634 * object's lifetime is managed by something other than RCU. That
635 * "something other" might be reference counting or simple immortality.
636 */
637#define lockless_dereference(p) \
638({ \
639 typeof(p) _________p1 = ACCESS_ONCE(p); \
640 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
641 (_________p1); \
642})
643
462225ae
PM
644/**
645 * rcu_assign_pointer() - assign to RCU-protected pointer
646 * @p: pointer to assign to
647 * @v: value to assign (publish)
648 *
649 * Assigns the specified value to the specified RCU-protected
650 * pointer, ensuring that any concurrent RCU readers will see
651 * any prior initialization.
652 *
653 * Inserts memory barriers on architectures that require them
654 * (which is most of them), and also prevents the compiler from
655 * reordering the code that initializes the structure after the pointer
656 * assignment. More importantly, this call documents which pointers
657 * will be dereferenced by RCU read-side code.
658 *
659 * In some special cases, you may use RCU_INIT_POINTER() instead
660 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
661 * to the fact that it does not constrain either the CPU or the compiler.
662 * That said, using RCU_INIT_POINTER() when you should have used
663 * rcu_assign_pointer() is a very bad thing that results in
664 * impossible-to-diagnose memory corruption. So please be careful.
665 * See the RCU_INIT_POINTER() comment header for details.
666 *
667 * Note that rcu_assign_pointer() evaluates each of its arguments only
668 * once, appearances notwithstanding. One of the "extra" evaluations
669 * is in typeof() and the other visible only to sparse (__CHECKER__),
670 * neither of which actually execute the argument. As with most cpp
671 * macros, this execute-arguments-only-once property is important, so
672 * please be careful when making changes to rcu_assign_pointer() and the
673 * other macros that it invokes.
674 */
88c18630 675#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
ca5ecddf
PM
676
677/**
678 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
679 * @p: The pointer to read
680 *
681 * Return the value of the specified RCU-protected pointer, but omit the
682 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
683 * when the value of this pointer is accessed, but the pointer is not
684 * dereferenced, for example, when testing an RCU-protected pointer against
685 * NULL. Although rcu_access_pointer() may also be used in cases where
686 * update-side locks prevent the value of the pointer from changing, you
687 * should instead use rcu_dereference_protected() for this use case.
5e1ee6e1
PM
688 *
689 * It is also permissible to use rcu_access_pointer() when read-side
690 * access to the pointer was removed at least one grace period ago, as
691 * is the case in the context of the RCU callback that is freeing up
692 * the data, or after a synchronize_rcu() returns. This can be useful
693 * when tearing down multi-linked structures after a grace period
694 * has elapsed.
ca5ecddf
PM
695 */
696#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
697
632ee200 698/**
ca5ecddf 699 * rcu_dereference_check() - rcu_dereference with debug checking
c08c68dd
DH
700 * @p: The pointer to read, prior to dereferencing
701 * @c: The conditions under which the dereference will take place
632ee200 702 *
c08c68dd 703 * Do an rcu_dereference(), but check that the conditions under which the
ca5ecddf
PM
704 * dereference will take place are correct. Typically the conditions
705 * indicate the various locking conditions that should be held at that
706 * point. The check should return true if the conditions are satisfied.
707 * An implicit check for being in an RCU read-side critical section
708 * (rcu_read_lock()) is included.
c08c68dd
DH
709 *
710 * For example:
711 *
ca5ecddf 712 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
c08c68dd
DH
713 *
714 * could be used to indicate to lockdep that foo->bar may only be dereferenced
ca5ecddf 715 * if either rcu_read_lock() is held, or that the lock required to replace
c08c68dd
DH
716 * the bar struct at foo->bar is held.
717 *
718 * Note that the list of conditions may also include indications of when a lock
719 * need not be held, for example during initialisation or destruction of the
720 * target struct:
721 *
ca5ecddf 722 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
c08c68dd 723 * atomic_read(&foo->usage) == 0);
ca5ecddf
PM
724 *
725 * Inserts memory barriers on architectures that require them
726 * (currently only the Alpha), prevents the compiler from refetching
727 * (and from merging fetches), and, more importantly, documents exactly
728 * which pointers are protected by RCU and checks that the pointer is
729 * annotated as __rcu.
632ee200
PM
730 */
731#define rcu_dereference_check(p, c) \
ca5ecddf
PM
732 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
733
734/**
735 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
736 * @p: The pointer to read, prior to dereferencing
737 * @c: The conditions under which the dereference will take place
738 *
739 * This is the RCU-bh counterpart to rcu_dereference_check().
740 */
741#define rcu_dereference_bh_check(p, c) \
742 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
632ee200 743
b62730ba 744/**
ca5ecddf
PM
745 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
746 * @p: The pointer to read, prior to dereferencing
747 * @c: The conditions under which the dereference will take place
748 *
749 * This is the RCU-sched counterpart to rcu_dereference_check().
750 */
751#define rcu_dereference_sched_check(p, c) \
752 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
753 __rcu)
754
755#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
756
12bcbe66
SR
757/*
758 * The tracing infrastructure traces RCU (we want that), but unfortunately
759 * some of the RCU checks causes tracing to lock up the system.
760 *
761 * The tracing version of rcu_dereference_raw() must not call
762 * rcu_read_lock_held().
763 */
764#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
765
a4dd9925
PM
766/**
767 * rcu_access_index() - fetch RCU index with no dereferencing
768 * @p: The index to read
769 *
770 * Return the value of the specified RCU-protected index, but omit the
771 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
772 * when the value of this index is accessed, but the index is not
773 * dereferenced, for example, when testing an RCU-protected index against
774 * -1. Although rcu_access_index() may also be used in cases where
775 * update-side locks prevent the value of the index from changing, you
776 * should instead use rcu_dereference_index_protected() for this use case.
777 */
778#define rcu_access_index(p) __rcu_access_index((p), __rcu)
779
ca5ecddf
PM
780/**
781 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
782 * @p: The pointer to read, prior to dereferencing
783 * @c: The conditions under which the dereference will take place
784 *
785 * Similar to rcu_dereference_check(), but omits the sparse checking.
786 * This allows rcu_dereference_index_check() to be used on integers,
787 * which can then be used as array indices. Attempting to use
788 * rcu_dereference_check() on an integer will give compiler warnings
789 * because the sparse address-space mechanism relies on dereferencing
790 * the RCU-protected pointer. Dereferencing integers is not something
791 * that even gcc will put up with.
792 *
793 * Note that this function does not implicitly check for RCU read-side
794 * critical sections. If this function gains lots of uses, it might
795 * make sense to provide versions for each flavor of RCU, but it does
796 * not make sense as of early 2010.
797 */
798#define rcu_dereference_index_check(p, c) \
799 __rcu_dereference_index_check((p), (c))
800
801/**
802 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
803 * @p: The pointer to read, prior to dereferencing
804 * @c: The conditions under which the dereference will take place
b62730ba
PM
805 *
806 * Return the value of the specified RCU-protected pointer, but omit
807 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
808 * is useful in cases where update-side locks prevent the value of the
809 * pointer from changing. Please note that this primitive does -not-
810 * prevent the compiler from repeating this reference or combining it
811 * with other references, so it should not be used without protection
812 * of appropriate locks.
ca5ecddf
PM
813 *
814 * This function is only for update-side use. Using this function
815 * when protected only by rcu_read_lock() will result in infrequent
816 * but very ugly failures.
b62730ba
PM
817 */
818#define rcu_dereference_protected(p, c) \
ca5ecddf 819 __rcu_dereference_protected((p), (c), __rcu)
b62730ba 820
bc33f24b 821
b62730ba 822/**
ca5ecddf
PM
823 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
824 * @p: The pointer to read, prior to dereferencing
b62730ba 825 *
ca5ecddf 826 * This is a simple wrapper around rcu_dereference_check().
b62730ba 827 */
ca5ecddf 828#define rcu_dereference(p) rcu_dereference_check(p, 0)
b62730ba 829
1da177e4 830/**
ca5ecddf
PM
831 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
832 * @p: The pointer to read, prior to dereferencing
833 *
834 * Makes rcu_dereference_check() do the dirty work.
835 */
836#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
837
838/**
839 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
840 * @p: The pointer to read, prior to dereferencing
841 *
842 * Makes rcu_dereference_check() do the dirty work.
843 */
844#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
845
846/**
847 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
1da177e4 848 *
9b06e818 849 * When synchronize_rcu() is invoked on one CPU while other CPUs
1da177e4 850 * are within RCU read-side critical sections, then the
9b06e818 851 * synchronize_rcu() is guaranteed to block until after all the other
1da177e4
LT
852 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
853 * on one CPU while other CPUs are within RCU read-side critical
854 * sections, invocation of the corresponding RCU callback is deferred
855 * until after the all the other CPUs exit their critical sections.
856 *
857 * Note, however, that RCU callbacks are permitted to run concurrently
77d8485a 858 * with new RCU read-side critical sections. One way that this can happen
1da177e4
LT
859 * is via the following sequence of events: (1) CPU 0 enters an RCU
860 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
861 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
862 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
863 * callback is invoked. This is legal, because the RCU read-side critical
864 * section that was running concurrently with the call_rcu() (and which
865 * therefore might be referencing something that the corresponding RCU
866 * callback would free up) has completed before the corresponding
867 * RCU callback is invoked.
868 *
869 * RCU read-side critical sections may be nested. Any deferred actions
870 * will be deferred until the outermost RCU read-side critical section
871 * completes.
872 *
9079fd7c
PM
873 * You can avoid reading and understanding the next paragraph by
874 * following this rule: don't put anything in an rcu_read_lock() RCU
875 * read-side critical section that would block in a !PREEMPT kernel.
876 * But if you want the full story, read on!
877 *
ab74fdfd
PM
878 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
879 * it is illegal to block while in an RCU read-side critical section.
28f6569a 880 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
ab74fdfd
PM
881 * kernel builds, RCU read-side critical sections may be preempted,
882 * but explicit blocking is illegal. Finally, in preemptible RCU
883 * implementations in real-time (with -rt patchset) kernel builds, RCU
884 * read-side critical sections may be preempted and they may also block, but
885 * only when acquiring spinlocks that are subject to priority inheritance.
1da177e4 886 */
bc33f24b
PM
887static inline void rcu_read_lock(void)
888{
889 __rcu_read_lock();
890 __acquire(RCU);
d8ab29f8 891 rcu_lock_acquire(&rcu_lock_map);
5c173eb8 892 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 893 "rcu_read_lock() used illegally while idle");
bc33f24b 894}
1da177e4 895
1da177e4
LT
896/*
897 * So where is rcu_write_lock()? It does not exist, as there is no
898 * way for writers to lock out RCU readers. This is a feature, not
899 * a bug -- this property is what provides RCU's performance benefits.
900 * Of course, writers must coordinate with each other. The normal
901 * spinlock primitives work well for this, but any other technique may be
902 * used as well. RCU does not care how the writers keep out of each
903 * others' way, as long as they do so.
904 */
3d76c082
PM
905
906/**
ca5ecddf 907 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
3d76c082 908 *
f27bc487
PM
909 * In most situations, rcu_read_unlock() is immune from deadlock.
910 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
911 * is responsible for deboosting, which it does via rt_mutex_unlock().
912 * Unfortunately, this function acquires the scheduler's runqueue and
913 * priority-inheritance spinlocks. This means that deadlock could result
914 * if the caller of rcu_read_unlock() already holds one of these locks or
ce36f2f3
ON
915 * any lock that is ever acquired while holding them; or any lock which
916 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
917 * does not disable irqs while taking ->wait_lock.
f27bc487
PM
918 *
919 * That said, RCU readers are never priority boosted unless they were
920 * preempted. Therefore, one way to avoid deadlock is to make sure
921 * that preemption never happens within any RCU read-side critical
922 * section whose outermost rcu_read_unlock() is called with one of
923 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
924 * a number of ways, for example, by invoking preempt_disable() before
925 * critical section's outermost rcu_read_lock().
926 *
927 * Given that the set of locks acquired by rt_mutex_unlock() might change
928 * at any time, a somewhat more future-proofed approach is to make sure
929 * that that preemption never happens within any RCU read-side critical
930 * section whose outermost rcu_read_unlock() is called with irqs disabled.
931 * This approach relies on the fact that rt_mutex_unlock() currently only
932 * acquires irq-disabled locks.
933 *
934 * The second of these two approaches is best in most situations,
935 * however, the first approach can also be useful, at least to those
936 * developers willing to keep abreast of the set of locks acquired by
937 * rt_mutex_unlock().
938 *
3d76c082
PM
939 * See rcu_read_lock() for more information.
940 */
bc33f24b
PM
941static inline void rcu_read_unlock(void)
942{
5c173eb8 943 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 944 "rcu_read_unlock() used illegally while idle");
bc33f24b
PM
945 __release(RCU);
946 __rcu_read_unlock();
d24209bb 947 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
bc33f24b 948}
1da177e4
LT
949
950/**
ca5ecddf 951 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
1da177e4
LT
952 *
953 * This is equivalent of rcu_read_lock(), but to be used when updates
ca5ecddf
PM
954 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
955 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
956 * softirq handler to be a quiescent state, a process in RCU read-side
957 * critical section must be protected by disabling softirqs. Read-side
958 * critical sections in interrupt context can use just rcu_read_lock(),
959 * though this should at least be commented to avoid confusing people
960 * reading the code.
3842a083
PM
961 *
962 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
963 * must occur in the same context, for example, it is illegal to invoke
964 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
965 * was invoked from some other task.
1da177e4 966 */
bc33f24b
PM
967static inline void rcu_read_lock_bh(void)
968{
6206ab9b 969 local_bh_disable();
bc33f24b 970 __acquire(RCU_BH);
d8ab29f8 971 rcu_lock_acquire(&rcu_bh_lock_map);
5c173eb8 972 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 973 "rcu_read_lock_bh() used illegally while idle");
bc33f24b 974}
1da177e4
LT
975
976/*
977 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
978 *
979 * See rcu_read_lock_bh() for more information.
980 */
bc33f24b
PM
981static inline void rcu_read_unlock_bh(void)
982{
5c173eb8 983 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 984 "rcu_read_unlock_bh() used illegally while idle");
d8ab29f8 985 rcu_lock_release(&rcu_bh_lock_map);
bc33f24b 986 __release(RCU_BH);
6206ab9b 987 local_bh_enable();
bc33f24b 988}
1da177e4 989
1c50b728 990/**
ca5ecddf 991 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
1c50b728 992 *
ca5ecddf
PM
993 * This is equivalent of rcu_read_lock(), but to be used when updates
994 * are being done using call_rcu_sched() or synchronize_rcu_sched().
995 * Read-side critical sections can also be introduced by anything that
996 * disables preemption, including local_irq_disable() and friends.
3842a083
PM
997 *
998 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
999 * must occur in the same context, for example, it is illegal to invoke
1000 * rcu_read_unlock_sched() from process context if the matching
1001 * rcu_read_lock_sched() was invoked from an NMI handler.
1c50b728 1002 */
d6714c22
PM
1003static inline void rcu_read_lock_sched(void)
1004{
1005 preempt_disable();
bc33f24b 1006 __acquire(RCU_SCHED);
d8ab29f8 1007 rcu_lock_acquire(&rcu_sched_lock_map);
5c173eb8 1008 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 1009 "rcu_read_lock_sched() used illegally while idle");
d6714c22 1010}
1eba8f84
PM
1011
1012/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
7c614d64 1013static inline notrace void rcu_read_lock_sched_notrace(void)
d6714c22
PM
1014{
1015 preempt_disable_notrace();
bc33f24b 1016 __acquire(RCU_SCHED);
d6714c22 1017}
1c50b728
MD
1018
1019/*
1020 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
1021 *
1022 * See rcu_read_lock_sched for more information.
1023 */
d6714c22
PM
1024static inline void rcu_read_unlock_sched(void)
1025{
5c173eb8 1026 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 1027 "rcu_read_unlock_sched() used illegally while idle");
d8ab29f8 1028 rcu_lock_release(&rcu_sched_lock_map);
bc33f24b 1029 __release(RCU_SCHED);
d6714c22
PM
1030 preempt_enable();
1031}
1eba8f84
PM
1032
1033/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
7c614d64 1034static inline notrace void rcu_read_unlock_sched_notrace(void)
d6714c22 1035{
bc33f24b 1036 __release(RCU_SCHED);
d6714c22
PM
1037 preempt_enable_notrace();
1038}
1c50b728 1039
ca5ecddf
PM
1040/**
1041 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1042 *
6846c0c5
PM
1043 * Initialize an RCU-protected pointer in special cases where readers
1044 * do not need ordering constraints on the CPU or the compiler. These
1045 * special cases are:
1046 *
1047 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1048 * 2. The caller has taken whatever steps are required to prevent
1049 * RCU readers from concurrently accessing this pointer -or-
1050 * 3. The referenced data structure has already been exposed to
1051 * readers either at compile time or via rcu_assign_pointer() -and-
1052 * a. You have not made -any- reader-visible changes to
1053 * this structure since then -or-
1054 * b. It is OK for readers accessing this structure from its
1055 * new location to see the old state of the structure. (For
1056 * example, the changes were to statistical counters or to
1057 * other state where exact synchronization is not required.)
1058 *
1059 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1060 * result in impossible-to-diagnose memory corruption. As in the structures
1061 * will look OK in crash dumps, but any concurrent RCU readers might
1062 * see pre-initialized values of the referenced data structure. So
1063 * please be very careful how you use RCU_INIT_POINTER()!!!
1064 *
1065 * If you are creating an RCU-protected linked structure that is accessed
1066 * by a single external-to-structure RCU-protected pointer, then you may
1067 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1068 * pointers, but you must use rcu_assign_pointer() to initialize the
1069 * external-to-structure pointer -after- you have completely initialized
1070 * the reader-accessible portions of the linked structure.
71a9b269
PM
1071 *
1072 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1073 * ordering guarantees for either the CPU or the compiler.
ca5ecddf
PM
1074 */
1075#define RCU_INIT_POINTER(p, v) \
d1b88eb9 1076 do { \
1a6c9b26 1077 rcu_dereference_sparse(p, __rcu); \
462225ae 1078 p = RCU_INITIALIZER(v); \
d1b88eb9 1079 } while (0)
9ab1544e 1080
172708d0
PM
1081/**
1082 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1083 *
1084 * GCC-style initialization for an RCU-protected pointer in a structure field.
1085 */
1086#define RCU_POINTER_INITIALIZER(p, v) \
462225ae 1087 .p = RCU_INITIALIZER(v)
9ab1544e 1088
d8169d4c
JE
1089/*
1090 * Does the specified offset indicate that the corresponding rcu_head
1091 * structure can be handled by kfree_rcu()?
1092 */
1093#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1094
1095/*
1096 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1097 */
1098#define __kfree_rcu(head, offset) \
1099 do { \
1100 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
4fa3b6cb 1101 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
d8169d4c
JE
1102 } while (0)
1103
9ab1544e
LJ
1104/**
1105 * kfree_rcu() - kfree an object after a grace period.
1106 * @ptr: pointer to kfree
1107 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1108 *
1109 * Many rcu callbacks functions just call kfree() on the base structure.
1110 * These functions are trivial, but their size adds up, and furthermore
1111 * when they are used in a kernel module, that module must invoke the
1112 * high-latency rcu_barrier() function at module-unload time.
1113 *
1114 * The kfree_rcu() function handles this issue. Rather than encoding a
1115 * function address in the embedded rcu_head structure, kfree_rcu() instead
1116 * encodes the offset of the rcu_head structure within the base structure.
1117 * Because the functions are not allowed in the low-order 4096 bytes of
1118 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1119 * If the offset is larger than 4095 bytes, a compile-time error will
1120 * be generated in __kfree_rcu(). If this error is triggered, you can
1121 * either fall back to use of call_rcu() or rearrange the structure to
1122 * position the rcu_head structure into the first 4096 bytes.
1123 *
1124 * Note that the allowable offset might decrease in the future, for example,
1125 * to allow something like kmem_cache_free_rcu().
d8169d4c
JE
1126 *
1127 * The BUILD_BUG_ON check must not involve any function calls, hence the
1128 * checks are done in macros here.
9ab1544e
LJ
1129 */
1130#define kfree_rcu(ptr, rcu_head) \
1131 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1132
ffa83fb5 1133#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
aa6da514 1134static inline int rcu_needs_cpu(unsigned long *delta_jiffies)
ffa83fb5
PM
1135{
1136 *delta_jiffies = ULONG_MAX;
1137 return 0;
1138}
1139#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
1140
2f33b512
PM
1141#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1142static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1143#elif defined(CONFIG_RCU_NOCB_CPU)
584dc4ce 1144bool rcu_is_nocb_cpu(int cpu);
d1e43fa5
FW
1145#else
1146static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
2f33b512 1147#endif
d1e43fa5
FW
1148
1149
0edd1b17
PM
1150/* Only for use by adaptive-ticks code. */
1151#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
584dc4ce
TB
1152bool rcu_sys_is_idle(void);
1153void rcu_sysidle_force_exit(void);
0edd1b17
PM
1154#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1155
1156static inline bool rcu_sys_is_idle(void)
1157{
1158 return false;
1159}
1160
1161static inline void rcu_sysidle_force_exit(void)
1162{
1163}
1164
1165#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1166
1167
1da177e4 1168#endif /* __LINUX_RCUPDATE_H */