]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/rcupdate.h
rcu: Hide RCU_NOCB_CPU behind RCU_EXPERT
[mirror_ubuntu-bionic-kernel.git] / include / linux / rcupdate.h
CommitLineData
1da177e4 1/*
a71fca58 2 * Read-Copy Update mechanism for mutual exclusion
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
1da177e4 17 *
01c1c660 18 * Copyright IBM Corporation, 2001
1da177e4
LT
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
a71fca58 21 *
595182bc 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
1da177e4
LT
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 29 * http://lse.sourceforge.net/locking/rcupdate.html
1da177e4
LT
30 *
31 */
32
33#ifndef __LINUX_RCUPDATE_H
34#define __LINUX_RCUPDATE_H
35
99098751 36#include <linux/types.h>
1da177e4
LT
37#include <linux/cache.h>
38#include <linux/spinlock.h>
39#include <linux/threads.h>
1da177e4
LT
40#include <linux/cpumask.h>
41#include <linux/seqlock.h>
851a67b8 42#include <linux/lockdep.h>
4446a36f 43#include <linux/completion.h>
551d55a9 44#include <linux/debugobjects.h>
187f1882 45#include <linux/bug.h>
ca5ecddf 46#include <linux/compiler.h>
c1ad348b
TG
47#include <linux/ktime.h>
48
88c18630 49#include <asm/barrier.h>
1da177e4 50
7a754743 51extern int rcu_expedited; /* for sysctl */
e5ab6772 52
0d39482c
PM
53#ifdef CONFIG_TINY_RCU
54/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
55static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */
56{
57 return false;
58}
59
60static inline void rcu_expedite_gp(void)
61{
62}
63
64static inline void rcu_unexpedite_gp(void)
65{
66}
67#else /* #ifdef CONFIG_TINY_RCU */
68bool rcu_gp_is_expedited(void); /* Internal RCU use. */
69void rcu_expedite_gp(void);
70void rcu_unexpedite_gp(void);
71#endif /* #else #ifdef CONFIG_TINY_RCU */
72
ad0dc7f9
PM
73enum rcutorture_type {
74 RCU_FLAVOR,
75 RCU_BH_FLAVOR,
76 RCU_SCHED_FLAVOR,
69c60455 77 RCU_TASKS_FLAVOR,
ad0dc7f9
PM
78 SRCU_FLAVOR,
79 INVALID_RCU_FLAVOR
80};
81
28f6569a 82#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
ad0dc7f9
PM
83void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
84 unsigned long *gpnum, unsigned long *completed);
584dc4ce
TB
85void rcutorture_record_test_transition(void);
86void rcutorture_record_progress(unsigned long vernum);
87void do_trace_rcu_torture_read(const char *rcutorturename,
88 struct rcu_head *rhp,
89 unsigned long secs,
90 unsigned long c_old,
91 unsigned long c);
4a298656 92#else
ad0dc7f9
PM
93static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
94 int *flags,
95 unsigned long *gpnum,
96 unsigned long *completed)
97{
98 *flags = 0;
99 *gpnum = 0;
100 *completed = 0;
101}
4a298656
PM
102static inline void rcutorture_record_test_transition(void)
103{
104}
105static inline void rcutorture_record_progress(unsigned long vernum)
106{
107}
91afaf30 108#ifdef CONFIG_RCU_TRACE
584dc4ce
TB
109void do_trace_rcu_torture_read(const char *rcutorturename,
110 struct rcu_head *rhp,
111 unsigned long secs,
112 unsigned long c_old,
113 unsigned long c);
91afaf30 114#else
52494535
PM
115#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
116 do { } while (0)
91afaf30 117#endif
4a298656
PM
118#endif
119
e27fc964
TH
120#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
121#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
a3dc3fb1
PM
122#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
123#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
c0f4dfd4 124#define ulong2long(a) (*(long *)(&(a)))
a3dc3fb1 125
03b042bf 126/* Exported common interfaces */
2c42818e
PM
127
128#ifdef CONFIG_PREEMPT_RCU
129
130/**
131 * call_rcu() - Queue an RCU callback for invocation after a grace period.
132 * @head: structure to be used for queueing the RCU updates.
133 * @func: actual callback function to be invoked after the grace period
134 *
135 * The callback function will be invoked some time after a full grace
136 * period elapses, in other words after all pre-existing RCU read-side
137 * critical sections have completed. However, the callback function
138 * might well execute concurrently with RCU read-side critical sections
139 * that started after call_rcu() was invoked. RCU read-side critical
140 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
141 * and may be nested.
f0a0e6f2
PM
142 *
143 * Note that all CPUs must agree that the grace period extended beyond
144 * all pre-existing RCU read-side critical section. On systems with more
145 * than one CPU, this means that when "func()" is invoked, each CPU is
146 * guaranteed to have executed a full memory barrier since the end of its
147 * last RCU read-side critical section whose beginning preceded the call
148 * to call_rcu(). It also means that each CPU executing an RCU read-side
149 * critical section that continues beyond the start of "func()" must have
150 * executed a memory barrier after the call_rcu() but before the beginning
151 * of that RCU read-side critical section. Note that these guarantees
152 * include CPUs that are offline, idle, or executing in user mode, as
153 * well as CPUs that are executing in the kernel.
154 *
155 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
156 * resulting RCU callback function "func()", then both CPU A and CPU B are
157 * guaranteed to execute a full memory barrier during the time interval
158 * between the call to call_rcu() and the invocation of "func()" -- even
159 * if CPU A and CPU B are the same CPU (but again only if the system has
160 * more than one CPU).
2c42818e 161 */
584dc4ce
TB
162void call_rcu(struct rcu_head *head,
163 void (*func)(struct rcu_head *head));
2c42818e
PM
164
165#else /* #ifdef CONFIG_PREEMPT_RCU */
166
167/* In classic RCU, call_rcu() is just call_rcu_sched(). */
168#define call_rcu call_rcu_sched
169
170#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
171
172/**
173 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
174 * @head: structure to be used for queueing the RCU updates.
175 * @func: actual callback function to be invoked after the grace period
176 *
177 * The callback function will be invoked some time after a full grace
178 * period elapses, in other words after all currently executing RCU
179 * read-side critical sections have completed. call_rcu_bh() assumes
180 * that the read-side critical sections end on completion of a softirq
181 * handler. This means that read-side critical sections in process
182 * context must not be interrupted by softirqs. This interface is to be
183 * used when most of the read-side critical sections are in softirq context.
184 * RCU read-side critical sections are delimited by :
185 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
186 * OR
187 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
188 * These may be nested.
f0a0e6f2
PM
189 *
190 * See the description of call_rcu() for more detailed information on
191 * memory ordering guarantees.
2c42818e 192 */
584dc4ce
TB
193void call_rcu_bh(struct rcu_head *head,
194 void (*func)(struct rcu_head *head));
2c42818e
PM
195
196/**
197 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
198 * @head: structure to be used for queueing the RCU updates.
199 * @func: actual callback function to be invoked after the grace period
200 *
201 * The callback function will be invoked some time after a full grace
202 * period elapses, in other words after all currently executing RCU
203 * read-side critical sections have completed. call_rcu_sched() assumes
204 * that the read-side critical sections end on enabling of preemption
205 * or on voluntary preemption.
206 * RCU read-side critical sections are delimited by :
207 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
208 * OR
209 * anything that disables preemption.
210 * These may be nested.
f0a0e6f2
PM
211 *
212 * See the description of call_rcu() for more detailed information on
213 * memory ordering guarantees.
2c42818e 214 */
584dc4ce
TB
215void call_rcu_sched(struct rcu_head *head,
216 void (*func)(struct rcu_head *rcu));
2c42818e 217
584dc4ce 218void synchronize_sched(void);
03b042bf 219
ee376dbd
PM
220/*
221 * Structure allowing asynchronous waiting on RCU.
222 */
223struct rcu_synchronize {
224 struct rcu_head head;
225 struct completion completion;
226};
227void wakeme_after_rcu(struct rcu_head *head);
228
8315f422
PM
229/**
230 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
231 * @head: structure to be used for queueing the RCU updates.
232 * @func: actual callback function to be invoked after the grace period
233 *
234 * The callback function will be invoked some time after a full grace
235 * period elapses, in other words after all currently executing RCU
236 * read-side critical sections have completed. call_rcu_tasks() assumes
237 * that the read-side critical sections end at a voluntary context
238 * switch (not a preemption!), entry into idle, or transition to usermode
239 * execution. As such, there are no read-side primitives analogous to
240 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
241 * to determine that all tasks have passed through a safe state, not so
242 * much for data-strcuture synchronization.
243 *
244 * See the description of call_rcu() for more detailed information on
245 * memory ordering guarantees.
246 */
247void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
53c6d4ed
PM
248void synchronize_rcu_tasks(void);
249void rcu_barrier_tasks(void);
8315f422 250
a3dc3fb1
PM
251#ifdef CONFIG_PREEMPT_RCU
252
584dc4ce
TB
253void __rcu_read_lock(void);
254void __rcu_read_unlock(void);
255void rcu_read_unlock_special(struct task_struct *t);
7b0b759b
PM
256void synchronize_rcu(void);
257
a3dc3fb1
PM
258/*
259 * Defined as a macro as it is a very low level header included from
260 * areas that don't even know about current. This gives the rcu_read_lock()
261 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
262 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
263 */
264#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
265
7b0b759b
PM
266#else /* #ifdef CONFIG_PREEMPT_RCU */
267
268static inline void __rcu_read_lock(void)
269{
270 preempt_disable();
271}
272
273static inline void __rcu_read_unlock(void)
274{
275 preempt_enable();
276}
277
278static inline void synchronize_rcu(void)
279{
280 synchronize_sched();
281}
282
283static inline int rcu_preempt_depth(void)
284{
285 return 0;
286}
287
288#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
289
290/* Internal to kernel */
584dc4ce 291void rcu_init(void);
ee42571f 292void rcu_end_inkernel_boot(void);
284a8c93
PM
293void rcu_sched_qs(void);
294void rcu_bh_qs(void);
c3377c2d 295void rcu_check_callbacks(int user);
7b0b759b 296struct notifier_block;
88428cc5
PM
297int rcu_cpu_notify(struct notifier_block *self,
298 unsigned long action, void *hcpu);
2b1d5024 299
61f38db3
RR
300#ifdef CONFIG_RCU_STALL_COMMON
301void rcu_sysrq_start(void);
302void rcu_sysrq_end(void);
303#else /* #ifdef CONFIG_RCU_STALL_COMMON */
304static inline void rcu_sysrq_start(void)
305{
306}
307static inline void rcu_sysrq_end(void)
308{
309}
310#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
311
d1ec4c34 312#ifdef CONFIG_NO_HZ_FULL
584dc4ce
TB
313void rcu_user_enter(void);
314void rcu_user_exit(void);
2b1d5024
FW
315#else
316static inline void rcu_user_enter(void) { }
317static inline void rcu_user_exit(void) { }
4d9a5d43
FW
318static inline void rcu_user_hooks_switch(struct task_struct *prev,
319 struct task_struct *next) { }
d1ec4c34 320#endif /* CONFIG_NO_HZ_FULL */
2b1d5024 321
f4579fc5
PM
322#ifdef CONFIG_RCU_NOCB_CPU
323void rcu_init_nohz(void);
324#else /* #ifdef CONFIG_RCU_NOCB_CPU */
325static inline void rcu_init_nohz(void)
326{
327}
328#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
329
8a2ecf47
PM
330/**
331 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
332 * @a: Code that RCU needs to pay attention to.
333 *
334 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
335 * in the inner idle loop, that is, between the rcu_idle_enter() and
336 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
337 * critical sections. However, things like powertop need tracepoints
338 * in the inner idle loop.
339 *
340 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
341 * will tell RCU that it needs to pay attending, invoke its argument
342 * (in this example, a call to the do_something_with_RCU() function),
343 * and then tell RCU to go back to ignoring this CPU. It is permissible
344 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
345 * quite limited. If deeper nesting is required, it will be necessary
346 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
8a2ecf47
PM
347 */
348#define RCU_NONIDLE(a) \
349 do { \
b4270ee3 350 rcu_irq_enter(); \
8a2ecf47 351 do { a; } while (0); \
b4270ee3 352 rcu_irq_exit(); \
8a2ecf47
PM
353 } while (0)
354
8315f422
PM
355/*
356 * Note a voluntary context switch for RCU-tasks benefit. This is a
357 * macro rather than an inline function to avoid #include hell.
358 */
359#ifdef CONFIG_TASKS_RCU
3f95aa81
PM
360#define TASKS_RCU(x) x
361extern struct srcu_struct tasks_rcu_exit_srcu;
8315f422
PM
362#define rcu_note_voluntary_context_switch(t) \
363 do { \
5cd37193 364 rcu_all_qs(); \
7d0ae808
PM
365 if (READ_ONCE((t)->rcu_tasks_holdout)) \
366 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
8315f422
PM
367 } while (0)
368#else /* #ifdef CONFIG_TASKS_RCU */
3f95aa81 369#define TASKS_RCU(x) do { } while (0)
5cd37193 370#define rcu_note_voluntary_context_switch(t) rcu_all_qs()
8315f422
PM
371#endif /* #else #ifdef CONFIG_TASKS_RCU */
372
bde6c3aa
PM
373/**
374 * cond_resched_rcu_qs - Report potential quiescent states to RCU
375 *
376 * This macro resembles cond_resched(), except that it is defined to
377 * report potential quiescent states to RCU-tasks even if the cond_resched()
378 * machinery were to be shut off, as some advocate for PREEMPT kernels.
379 */
380#define cond_resched_rcu_qs() \
381do { \
b6331ae8
PM
382 if (!cond_resched()) \
383 rcu_note_voluntary_context_switch(current); \
bde6c3aa
PM
384} while (0)
385
cc6783f7 386#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
584dc4ce 387bool __rcu_is_watching(void);
cc6783f7
PM
388#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
389
2c42818e
PM
390/*
391 * Infrastructure to implement the synchronize_() primitives in
392 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
393 */
394
395typedef void call_rcu_func_t(struct rcu_head *head,
396 void (*func)(struct rcu_head *head));
397void wait_rcu_gp(call_rcu_func_t crf);
398
28f6569a 399#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
64db4cff 400#include <linux/rcutree.h>
127781d1 401#elif defined(CONFIG_TINY_RCU)
9b1d82fa 402#include <linux/rcutiny.h>
64db4cff
PM
403#else
404#error "Unknown RCU implementation specified to kernel configuration"
6b3ef48a 405#endif
01c1c660 406
551d55a9
MD
407/*
408 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
409 * initialization and destruction of rcu_head on the stack. rcu_head structures
410 * allocated dynamically in the heap or defined statically don't need any
411 * initialization.
412 */
413#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
546a9d85
PM
414void init_rcu_head(struct rcu_head *head);
415void destroy_rcu_head(struct rcu_head *head);
584dc4ce
TB
416void init_rcu_head_on_stack(struct rcu_head *head);
417void destroy_rcu_head_on_stack(struct rcu_head *head);
551d55a9 418#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
546a9d85
PM
419static inline void init_rcu_head(struct rcu_head *head)
420{
421}
422
423static inline void destroy_rcu_head(struct rcu_head *head)
424{
425}
426
4376030a
MD
427static inline void init_rcu_head_on_stack(struct rcu_head *head)
428{
429}
430
431static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
432{
433}
551d55a9 434#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
4376030a 435
c0d6d01b
PM
436#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
437bool rcu_lockdep_current_cpu_online(void);
438#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
439static inline bool rcu_lockdep_current_cpu_online(void)
440{
521d24ee 441 return true;
c0d6d01b
PM
442}
443#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
444
bc33f24b 445#ifdef CONFIG_DEBUG_LOCK_ALLOC
632ee200 446
00f49e57
FW
447static inline void rcu_lock_acquire(struct lockdep_map *map)
448{
fb9edbe9 449 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
00f49e57
FW
450}
451
452static inline void rcu_lock_release(struct lockdep_map *map)
453{
00f49e57
FW
454 lock_release(map, 1, _THIS_IP_);
455}
456
bc33f24b 457extern struct lockdep_map rcu_lock_map;
632ee200 458extern struct lockdep_map rcu_bh_lock_map;
632ee200 459extern struct lockdep_map rcu_sched_lock_map;
24ef659a 460extern struct lockdep_map rcu_callback_map;
a235c091 461int debug_lockdep_rcu_enabled(void);
54dbf96c 462
85b39d30 463int rcu_read_lock_held(void);
584dc4ce 464int rcu_read_lock_bh_held(void);
632ee200
PM
465
466/**
ca5ecddf 467 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
632ee200 468 *
d20200b5
PM
469 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
470 * RCU-sched read-side critical section. In absence of
471 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
d5671f6b 472 * critical section unless it can prove otherwise.
632ee200 473 */
bdd4e85d 474#ifdef CONFIG_PREEMPT_COUNT
d5671f6b 475int rcu_read_lock_sched_held(void);
bdd4e85d 476#else /* #ifdef CONFIG_PREEMPT_COUNT */
e6033e3b
PM
477static inline int rcu_read_lock_sched_held(void)
478{
479 return 1;
632ee200 480}
bdd4e85d 481#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
632ee200
PM
482
483#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
484
d8ab29f8
PM
485# define rcu_lock_acquire(a) do { } while (0)
486# define rcu_lock_release(a) do { } while (0)
632ee200
PM
487
488static inline int rcu_read_lock_held(void)
489{
490 return 1;
491}
492
493static inline int rcu_read_lock_bh_held(void)
494{
495 return 1;
496}
497
bdd4e85d 498#ifdef CONFIG_PREEMPT_COUNT
632ee200
PM
499static inline int rcu_read_lock_sched_held(void)
500{
bbad9379 501 return preempt_count() != 0 || irqs_disabled();
632ee200 502}
bdd4e85d 503#else /* #ifdef CONFIG_PREEMPT_COUNT */
e6033e3b
PM
504static inline int rcu_read_lock_sched_held(void)
505{
506 return 1;
632ee200 507}
bdd4e85d 508#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
632ee200
PM
509
510#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
511
512#ifdef CONFIG_PROVE_RCU
513
4221a991
TH
514/**
515 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
516 * @c: condition to check
b3fbab05 517 * @s: informative message
4221a991 518 */
b3fbab05 519#define rcu_lockdep_assert(c, s) \
2b3fc35f 520 do { \
7ccaba53 521 static bool __section(.data.unlikely) __warned; \
2b3fc35f
LJ
522 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
523 __warned = true; \
b3fbab05 524 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
2b3fc35f
LJ
525 } \
526 } while (0)
527
50406b98
PM
528#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
529static inline void rcu_preempt_sleep_check(void)
530{
531 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
5cf05ad7 532 "Illegal context switch in RCU read-side critical section");
50406b98
PM
533}
534#else /* #ifdef CONFIG_PROVE_RCU */
535static inline void rcu_preempt_sleep_check(void)
536{
537}
538#endif /* #else #ifdef CONFIG_PROVE_RCU */
539
b3fbab05
PM
540#define rcu_sleep_check() \
541 do { \
50406b98 542 rcu_preempt_sleep_check(); \
b3fbab05 543 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
41f4abd9 544 "Illegal context switch in RCU-bh read-side critical section"); \
b3fbab05 545 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
41f4abd9 546 "Illegal context switch in RCU-sched read-side critical section"); \
b3fbab05
PM
547 } while (0)
548
ca5ecddf
PM
549#else /* #ifdef CONFIG_PROVE_RCU */
550
b3fbab05
PM
551#define rcu_lockdep_assert(c, s) do { } while (0)
552#define rcu_sleep_check() do { } while (0)
ca5ecddf
PM
553
554#endif /* #else #ifdef CONFIG_PROVE_RCU */
555
556/*
557 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
558 * and rcu_assign_pointer(). Some of these could be folded into their
559 * callers, but they are left separate in order to ease introduction of
560 * multiple flavors of pointers to match the multiple flavors of RCU
561 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
562 * the future.
563 */
53ecfba2
PM
564
565#ifdef __CHECKER__
566#define rcu_dereference_sparse(p, space) \
567 ((void)(((typeof(*p) space *)p) == p))
568#else /* #ifdef __CHECKER__ */
569#define rcu_dereference_sparse(p, space)
570#endif /* #else #ifdef __CHECKER__ */
571
ca5ecddf 572#define __rcu_access_pointer(p, space) \
0adab9b9 573({ \
7d0ae808 574 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
0adab9b9
JP
575 rcu_dereference_sparse(p, space); \
576 ((typeof(*p) __force __kernel *)(_________p1)); \
577})
ca5ecddf 578#define __rcu_dereference_check(p, c, space) \
0adab9b9 579({ \
ac59853c
PK
580 /* Dependency order vs. p above. */ \
581 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
0adab9b9
JP
582 rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
583 rcu_dereference_sparse(p, space); \
ac59853c 584 ((typeof(*p) __force __kernel *)(________p1)); \
0adab9b9 585})
ca5ecddf 586#define __rcu_dereference_protected(p, c, space) \
0adab9b9
JP
587({ \
588 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
589 rcu_dereference_sparse(p, space); \
590 ((typeof(*p) __force __kernel *)(p)); \
591})
ca5ecddf 592
462225ae
PM
593/**
594 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
595 * @v: The value to statically initialize with.
596 */
597#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
598
599/**
600 * rcu_assign_pointer() - assign to RCU-protected pointer
601 * @p: pointer to assign to
602 * @v: value to assign (publish)
603 *
604 * Assigns the specified value to the specified RCU-protected
605 * pointer, ensuring that any concurrent RCU readers will see
606 * any prior initialization.
607 *
608 * Inserts memory barriers on architectures that require them
609 * (which is most of them), and also prevents the compiler from
610 * reordering the code that initializes the structure after the pointer
611 * assignment. More importantly, this call documents which pointers
612 * will be dereferenced by RCU read-side code.
613 *
614 * In some special cases, you may use RCU_INIT_POINTER() instead
615 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
616 * to the fact that it does not constrain either the CPU or the compiler.
617 * That said, using RCU_INIT_POINTER() when you should have used
618 * rcu_assign_pointer() is a very bad thing that results in
619 * impossible-to-diagnose memory corruption. So please be careful.
620 * See the RCU_INIT_POINTER() comment header for details.
621 *
622 * Note that rcu_assign_pointer() evaluates each of its arguments only
623 * once, appearances notwithstanding. One of the "extra" evaluations
624 * is in typeof() and the other visible only to sparse (__CHECKER__),
625 * neither of which actually execute the argument. As with most cpp
626 * macros, this execute-arguments-only-once property is important, so
627 * please be careful when making changes to rcu_assign_pointer() and the
628 * other macros that it invokes.
629 */
88c18630 630#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
ca5ecddf
PM
631
632/**
633 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
634 * @p: The pointer to read
635 *
636 * Return the value of the specified RCU-protected pointer, but omit the
7d0ae808 637 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
ca5ecddf
PM
638 * when the value of this pointer is accessed, but the pointer is not
639 * dereferenced, for example, when testing an RCU-protected pointer against
640 * NULL. Although rcu_access_pointer() may also be used in cases where
641 * update-side locks prevent the value of the pointer from changing, you
642 * should instead use rcu_dereference_protected() for this use case.
5e1ee6e1
PM
643 *
644 * It is also permissible to use rcu_access_pointer() when read-side
645 * access to the pointer was removed at least one grace period ago, as
646 * is the case in the context of the RCU callback that is freeing up
647 * the data, or after a synchronize_rcu() returns. This can be useful
648 * when tearing down multi-linked structures after a grace period
649 * has elapsed.
ca5ecddf
PM
650 */
651#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
652
632ee200 653/**
ca5ecddf 654 * rcu_dereference_check() - rcu_dereference with debug checking
c08c68dd
DH
655 * @p: The pointer to read, prior to dereferencing
656 * @c: The conditions under which the dereference will take place
632ee200 657 *
c08c68dd 658 * Do an rcu_dereference(), but check that the conditions under which the
ca5ecddf
PM
659 * dereference will take place are correct. Typically the conditions
660 * indicate the various locking conditions that should be held at that
661 * point. The check should return true if the conditions are satisfied.
662 * An implicit check for being in an RCU read-side critical section
663 * (rcu_read_lock()) is included.
c08c68dd
DH
664 *
665 * For example:
666 *
ca5ecddf 667 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
c08c68dd
DH
668 *
669 * could be used to indicate to lockdep that foo->bar may only be dereferenced
ca5ecddf 670 * if either rcu_read_lock() is held, or that the lock required to replace
c08c68dd
DH
671 * the bar struct at foo->bar is held.
672 *
673 * Note that the list of conditions may also include indications of when a lock
674 * need not be held, for example during initialisation or destruction of the
675 * target struct:
676 *
ca5ecddf 677 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
c08c68dd 678 * atomic_read(&foo->usage) == 0);
ca5ecddf
PM
679 *
680 * Inserts memory barriers on architectures that require them
681 * (currently only the Alpha), prevents the compiler from refetching
682 * (and from merging fetches), and, more importantly, documents exactly
683 * which pointers are protected by RCU and checks that the pointer is
684 * annotated as __rcu.
632ee200
PM
685 */
686#define rcu_dereference_check(p, c) \
b826565a 687 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
ca5ecddf
PM
688
689/**
690 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
691 * @p: The pointer to read, prior to dereferencing
692 * @c: The conditions under which the dereference will take place
693 *
694 * This is the RCU-bh counterpart to rcu_dereference_check().
695 */
696#define rcu_dereference_bh_check(p, c) \
b826565a 697 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
632ee200 698
b62730ba 699/**
ca5ecddf
PM
700 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
701 * @p: The pointer to read, prior to dereferencing
702 * @c: The conditions under which the dereference will take place
703 *
704 * This is the RCU-sched counterpart to rcu_dereference_check().
705 */
706#define rcu_dereference_sched_check(p, c) \
b826565a 707 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
ca5ecddf
PM
708 __rcu)
709
710#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
711
12bcbe66
SR
712/*
713 * The tracing infrastructure traces RCU (we want that), but unfortunately
714 * some of the RCU checks causes tracing to lock up the system.
715 *
716 * The tracing version of rcu_dereference_raw() must not call
717 * rcu_read_lock_held().
718 */
719#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
720
ca5ecddf
PM
721/**
722 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
723 * @p: The pointer to read, prior to dereferencing
724 * @c: The conditions under which the dereference will take place
b62730ba
PM
725 *
726 * Return the value of the specified RCU-protected pointer, but omit
7d0ae808 727 * both the smp_read_barrier_depends() and the READ_ONCE(). This
b62730ba
PM
728 * is useful in cases where update-side locks prevent the value of the
729 * pointer from changing. Please note that this primitive does -not-
730 * prevent the compiler from repeating this reference or combining it
731 * with other references, so it should not be used without protection
732 * of appropriate locks.
ca5ecddf
PM
733 *
734 * This function is only for update-side use. Using this function
735 * when protected only by rcu_read_lock() will result in infrequent
736 * but very ugly failures.
b62730ba
PM
737 */
738#define rcu_dereference_protected(p, c) \
ca5ecddf 739 __rcu_dereference_protected((p), (c), __rcu)
b62730ba 740
bc33f24b 741
b62730ba 742/**
ca5ecddf
PM
743 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
744 * @p: The pointer to read, prior to dereferencing
b62730ba 745 *
ca5ecddf 746 * This is a simple wrapper around rcu_dereference_check().
b62730ba 747 */
ca5ecddf 748#define rcu_dereference(p) rcu_dereference_check(p, 0)
b62730ba 749
1da177e4 750/**
ca5ecddf
PM
751 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
752 * @p: The pointer to read, prior to dereferencing
753 *
754 * Makes rcu_dereference_check() do the dirty work.
755 */
756#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
757
758/**
759 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
760 * @p: The pointer to read, prior to dereferencing
761 *
762 * Makes rcu_dereference_check() do the dirty work.
763 */
764#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
765
766/**
767 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
1da177e4 768 *
9b06e818 769 * When synchronize_rcu() is invoked on one CPU while other CPUs
1da177e4 770 * are within RCU read-side critical sections, then the
9b06e818 771 * synchronize_rcu() is guaranteed to block until after all the other
1da177e4
LT
772 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
773 * on one CPU while other CPUs are within RCU read-side critical
774 * sections, invocation of the corresponding RCU callback is deferred
775 * until after the all the other CPUs exit their critical sections.
776 *
777 * Note, however, that RCU callbacks are permitted to run concurrently
77d8485a 778 * with new RCU read-side critical sections. One way that this can happen
1da177e4
LT
779 * is via the following sequence of events: (1) CPU 0 enters an RCU
780 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
781 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
782 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
783 * callback is invoked. This is legal, because the RCU read-side critical
784 * section that was running concurrently with the call_rcu() (and which
785 * therefore might be referencing something that the corresponding RCU
786 * callback would free up) has completed before the corresponding
787 * RCU callback is invoked.
788 *
789 * RCU read-side critical sections may be nested. Any deferred actions
790 * will be deferred until the outermost RCU read-side critical section
791 * completes.
792 *
9079fd7c
PM
793 * You can avoid reading and understanding the next paragraph by
794 * following this rule: don't put anything in an rcu_read_lock() RCU
795 * read-side critical section that would block in a !PREEMPT kernel.
796 * But if you want the full story, read on!
797 *
ab74fdfd
PM
798 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
799 * it is illegal to block while in an RCU read-side critical section.
28f6569a 800 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
ab74fdfd
PM
801 * kernel builds, RCU read-side critical sections may be preempted,
802 * but explicit blocking is illegal. Finally, in preemptible RCU
803 * implementations in real-time (with -rt patchset) kernel builds, RCU
804 * read-side critical sections may be preempted and they may also block, but
805 * only when acquiring spinlocks that are subject to priority inheritance.
1da177e4 806 */
bc33f24b
PM
807static inline void rcu_read_lock(void)
808{
809 __rcu_read_lock();
810 __acquire(RCU);
d8ab29f8 811 rcu_lock_acquire(&rcu_lock_map);
5c173eb8 812 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 813 "rcu_read_lock() used illegally while idle");
bc33f24b 814}
1da177e4 815
1da177e4
LT
816/*
817 * So where is rcu_write_lock()? It does not exist, as there is no
818 * way for writers to lock out RCU readers. This is a feature, not
819 * a bug -- this property is what provides RCU's performance benefits.
820 * Of course, writers must coordinate with each other. The normal
821 * spinlock primitives work well for this, but any other technique may be
822 * used as well. RCU does not care how the writers keep out of each
823 * others' way, as long as they do so.
824 */
3d76c082
PM
825
826/**
ca5ecddf 827 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
3d76c082 828 *
f27bc487
PM
829 * In most situations, rcu_read_unlock() is immune from deadlock.
830 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
831 * is responsible for deboosting, which it does via rt_mutex_unlock().
832 * Unfortunately, this function acquires the scheduler's runqueue and
833 * priority-inheritance spinlocks. This means that deadlock could result
834 * if the caller of rcu_read_unlock() already holds one of these locks or
ce36f2f3
ON
835 * any lock that is ever acquired while holding them; or any lock which
836 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
837 * does not disable irqs while taking ->wait_lock.
f27bc487
PM
838 *
839 * That said, RCU readers are never priority boosted unless they were
840 * preempted. Therefore, one way to avoid deadlock is to make sure
841 * that preemption never happens within any RCU read-side critical
842 * section whose outermost rcu_read_unlock() is called with one of
843 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
844 * a number of ways, for example, by invoking preempt_disable() before
845 * critical section's outermost rcu_read_lock().
846 *
847 * Given that the set of locks acquired by rt_mutex_unlock() might change
848 * at any time, a somewhat more future-proofed approach is to make sure
849 * that that preemption never happens within any RCU read-side critical
850 * section whose outermost rcu_read_unlock() is called with irqs disabled.
851 * This approach relies on the fact that rt_mutex_unlock() currently only
852 * acquires irq-disabled locks.
853 *
854 * The second of these two approaches is best in most situations,
855 * however, the first approach can also be useful, at least to those
856 * developers willing to keep abreast of the set of locks acquired by
857 * rt_mutex_unlock().
858 *
3d76c082
PM
859 * See rcu_read_lock() for more information.
860 */
bc33f24b
PM
861static inline void rcu_read_unlock(void)
862{
5c173eb8 863 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 864 "rcu_read_unlock() used illegally while idle");
bc33f24b
PM
865 __release(RCU);
866 __rcu_read_unlock();
d24209bb 867 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
bc33f24b 868}
1da177e4
LT
869
870/**
ca5ecddf 871 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
1da177e4
LT
872 *
873 * This is equivalent of rcu_read_lock(), but to be used when updates
ca5ecddf
PM
874 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
875 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
876 * softirq handler to be a quiescent state, a process in RCU read-side
877 * critical section must be protected by disabling softirqs. Read-side
878 * critical sections in interrupt context can use just rcu_read_lock(),
879 * though this should at least be commented to avoid confusing people
880 * reading the code.
3842a083
PM
881 *
882 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
883 * must occur in the same context, for example, it is illegal to invoke
884 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
885 * was invoked from some other task.
1da177e4 886 */
bc33f24b
PM
887static inline void rcu_read_lock_bh(void)
888{
6206ab9b 889 local_bh_disable();
bc33f24b 890 __acquire(RCU_BH);
d8ab29f8 891 rcu_lock_acquire(&rcu_bh_lock_map);
5c173eb8 892 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 893 "rcu_read_lock_bh() used illegally while idle");
bc33f24b 894}
1da177e4
LT
895
896/*
897 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
898 *
899 * See rcu_read_lock_bh() for more information.
900 */
bc33f24b
PM
901static inline void rcu_read_unlock_bh(void)
902{
5c173eb8 903 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 904 "rcu_read_unlock_bh() used illegally while idle");
d8ab29f8 905 rcu_lock_release(&rcu_bh_lock_map);
bc33f24b 906 __release(RCU_BH);
6206ab9b 907 local_bh_enable();
bc33f24b 908}
1da177e4 909
1c50b728 910/**
ca5ecddf 911 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
1c50b728 912 *
ca5ecddf
PM
913 * This is equivalent of rcu_read_lock(), but to be used when updates
914 * are being done using call_rcu_sched() or synchronize_rcu_sched().
915 * Read-side critical sections can also be introduced by anything that
916 * disables preemption, including local_irq_disable() and friends.
3842a083
PM
917 *
918 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
919 * must occur in the same context, for example, it is illegal to invoke
920 * rcu_read_unlock_sched() from process context if the matching
921 * rcu_read_lock_sched() was invoked from an NMI handler.
1c50b728 922 */
d6714c22
PM
923static inline void rcu_read_lock_sched(void)
924{
925 preempt_disable();
bc33f24b 926 __acquire(RCU_SCHED);
d8ab29f8 927 rcu_lock_acquire(&rcu_sched_lock_map);
5c173eb8 928 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 929 "rcu_read_lock_sched() used illegally while idle");
d6714c22 930}
1eba8f84
PM
931
932/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
7c614d64 933static inline notrace void rcu_read_lock_sched_notrace(void)
d6714c22
PM
934{
935 preempt_disable_notrace();
bc33f24b 936 __acquire(RCU_SCHED);
d6714c22 937}
1c50b728
MD
938
939/*
940 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
941 *
942 * See rcu_read_lock_sched for more information.
943 */
d6714c22
PM
944static inline void rcu_read_unlock_sched(void)
945{
5c173eb8 946 rcu_lockdep_assert(rcu_is_watching(),
bde23c68 947 "rcu_read_unlock_sched() used illegally while idle");
d8ab29f8 948 rcu_lock_release(&rcu_sched_lock_map);
bc33f24b 949 __release(RCU_SCHED);
d6714c22
PM
950 preempt_enable();
951}
1eba8f84
PM
952
953/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
7c614d64 954static inline notrace void rcu_read_unlock_sched_notrace(void)
d6714c22 955{
bc33f24b 956 __release(RCU_SCHED);
d6714c22
PM
957 preempt_enable_notrace();
958}
1c50b728 959
ca5ecddf
PM
960/**
961 * RCU_INIT_POINTER() - initialize an RCU protected pointer
962 *
6846c0c5
PM
963 * Initialize an RCU-protected pointer in special cases where readers
964 * do not need ordering constraints on the CPU or the compiler. These
965 * special cases are:
966 *
967 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
968 * 2. The caller has taken whatever steps are required to prevent
969 * RCU readers from concurrently accessing this pointer -or-
970 * 3. The referenced data structure has already been exposed to
971 * readers either at compile time or via rcu_assign_pointer() -and-
972 * a. You have not made -any- reader-visible changes to
973 * this structure since then -or-
974 * b. It is OK for readers accessing this structure from its
975 * new location to see the old state of the structure. (For
976 * example, the changes were to statistical counters or to
977 * other state where exact synchronization is not required.)
978 *
979 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
980 * result in impossible-to-diagnose memory corruption. As in the structures
981 * will look OK in crash dumps, but any concurrent RCU readers might
982 * see pre-initialized values of the referenced data structure. So
983 * please be very careful how you use RCU_INIT_POINTER()!!!
984 *
985 * If you are creating an RCU-protected linked structure that is accessed
986 * by a single external-to-structure RCU-protected pointer, then you may
987 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
988 * pointers, but you must use rcu_assign_pointer() to initialize the
989 * external-to-structure pointer -after- you have completely initialized
990 * the reader-accessible portions of the linked structure.
71a9b269
PM
991 *
992 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
993 * ordering guarantees for either the CPU or the compiler.
ca5ecddf
PM
994 */
995#define RCU_INIT_POINTER(p, v) \
d1b88eb9 996 do { \
1a6c9b26 997 rcu_dereference_sparse(p, __rcu); \
462225ae 998 p = RCU_INITIALIZER(v); \
d1b88eb9 999 } while (0)
9ab1544e 1000
172708d0
PM
1001/**
1002 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1003 *
1004 * GCC-style initialization for an RCU-protected pointer in a structure field.
1005 */
1006#define RCU_POINTER_INITIALIZER(p, v) \
462225ae 1007 .p = RCU_INITIALIZER(v)
9ab1544e 1008
d8169d4c
JE
1009/*
1010 * Does the specified offset indicate that the corresponding rcu_head
1011 * structure can be handled by kfree_rcu()?
1012 */
1013#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1014
1015/*
1016 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1017 */
1018#define __kfree_rcu(head, offset) \
1019 do { \
1020 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
4fa3b6cb 1021 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
d8169d4c
JE
1022 } while (0)
1023
9ab1544e
LJ
1024/**
1025 * kfree_rcu() - kfree an object after a grace period.
1026 * @ptr: pointer to kfree
1027 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1028 *
1029 * Many rcu callbacks functions just call kfree() on the base structure.
1030 * These functions are trivial, but their size adds up, and furthermore
1031 * when they are used in a kernel module, that module must invoke the
1032 * high-latency rcu_barrier() function at module-unload time.
1033 *
1034 * The kfree_rcu() function handles this issue. Rather than encoding a
1035 * function address in the embedded rcu_head structure, kfree_rcu() instead
1036 * encodes the offset of the rcu_head structure within the base structure.
1037 * Because the functions are not allowed in the low-order 4096 bytes of
1038 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1039 * If the offset is larger than 4095 bytes, a compile-time error will
1040 * be generated in __kfree_rcu(). If this error is triggered, you can
1041 * either fall back to use of call_rcu() or rearrange the structure to
1042 * position the rcu_head structure into the first 4096 bytes.
1043 *
1044 * Note that the allowable offset might decrease in the future, for example,
1045 * to allow something like kmem_cache_free_rcu().
d8169d4c
JE
1046 *
1047 * The BUILD_BUG_ON check must not involve any function calls, hence the
1048 * checks are done in macros here.
9ab1544e
LJ
1049 */
1050#define kfree_rcu(ptr, rcu_head) \
1051 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1052
3382adbc 1053#ifdef CONFIG_TINY_RCU
c1ad348b 1054static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
ffa83fb5 1055{
c1ad348b 1056 *nextevt = KTIME_MAX;
ffa83fb5
PM
1057 return 0;
1058}
3382adbc 1059#endif /* #ifdef CONFIG_TINY_RCU */
ffa83fb5 1060
2f33b512
PM
1061#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1062static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1063#elif defined(CONFIG_RCU_NOCB_CPU)
584dc4ce 1064bool rcu_is_nocb_cpu(int cpu);
d1e43fa5
FW
1065#else
1066static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
2f33b512 1067#endif
d1e43fa5
FW
1068
1069
0edd1b17
PM
1070/* Only for use by adaptive-ticks code. */
1071#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
584dc4ce
TB
1072bool rcu_sys_is_idle(void);
1073void rcu_sysidle_force_exit(void);
0edd1b17
PM
1074#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1075
1076static inline bool rcu_sys_is_idle(void)
1077{
1078 return false;
1079}
1080
1081static inline void rcu_sysidle_force_exit(void)
1082{
1083}
1084
1085#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1086
1087
1da177e4 1088#endif /* __LINUX_RCUPDATE_H */