]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/reiserfs_fs.h
kill-the-BKL/reiserfs: release the write lock on flush_commit_list()
[mirror_ubuntu-artful-kernel.git] / include / linux / reiserfs_fs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5 /* this file has an amazingly stupid
bd4c625c
LT
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
1da177e4
LT
10
11#ifndef _LINUX_REISER_FS_H
12#define _LINUX_REISER_FS_H
13
14#include <linux/types.h>
e18fa700
JG
15#include <linux/magic.h>
16
1da177e4
LT
17#ifdef __KERNEL__
18#include <linux/slab.h>
19#include <linux/interrupt.h>
20#include <linux/sched.h>
21#include <linux/workqueue.h>
22#include <asm/unaligned.h>
23#include <linux/bitops.h>
24#include <linux/proc_fs.h>
25#include <linux/smp_lock.h>
26#include <linux/buffer_head.h>
27#include <linux/reiserfs_fs_i.h>
28#include <linux/reiserfs_fs_sb.h>
29#endif
30
31/*
32 * include/linux/reiser_fs.h
33 *
34 * Reiser File System constants and structures
35 *
36 */
37
750e1c18
JSR
38/* ioctl's command */
39#define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
40/* define following flags to be the same as in ext2, so that chattr(1),
41 lsattr(1) will work with us. */
42#define REISERFS_IOC_GETFLAGS FS_IOC_GETFLAGS
43#define REISERFS_IOC_SETFLAGS FS_IOC_SETFLAGS
44#define REISERFS_IOC_GETVERSION FS_IOC_GETVERSION
45#define REISERFS_IOC_SETVERSION FS_IOC_SETVERSION
46
47#ifdef __KERNEL__
48/* the 32 bit compat definitions with int argument */
49#define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
50#define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
51#define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
52#define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
53#define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
54
8ebc4232
FW
55/*
56 * Locking primitives. The write lock is a per superblock
57 * special mutex that has properties close to the Big Kernel Lock
58 * which was used in the previous locking scheme.
59 */
60void reiserfs_write_lock(struct super_block *s);
61void reiserfs_write_unlock(struct super_block *s);
daf88c89
FW
62int reiserfs_write_lock_once(struct super_block *s);
63void reiserfs_write_unlock_once(struct super_block *s, int lock_depth);
750e1c18 64
750e1c18
JSR
65struct fid;
66
1da177e4
LT
67/* in reading the #defines, it may help to understand that they employ
68 the following abbreviations:
69
70 B = Buffer
71 I = Item header
72 H = Height within the tree (should be changed to LEV)
73 N = Number of the item in the node
74 STAT = stat data
75 DEH = Directory Entry Header
76 EC = Entry Count
77 E = Entry number
78 UL = Unsigned Long
79 BLKH = BLocK Header
80 UNFM = UNForMatted node
81 DC = Disk Child
82 P = Path
83
84 These #defines are named by concatenating these abbreviations,
85 where first comes the arguments, and last comes the return value,
86 of the macro.
87
88*/
89
90#define USE_INODE_GENERATION_COUNTER
91
92#define REISERFS_PREALLOCATE
93#define DISPLACE_NEW_PACKING_LOCALITIES
94#define PREALLOCATION_SIZE 9
95
96/* n must be power of 2 */
97#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
98
99// to be ok for alpha and others we have to align structures to 8 byte
100// boundary.
101// FIXME: do not change 4 by anything else: there is code which relies on that
102#define ROUND_UP(x) _ROUND_UP(x,8LL)
103
104/* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
105** messages.
106*/
bd4c625c 107#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
1da177e4 108
45b03d5e
JM
109void __reiserfs_warning(struct super_block *s, const char *id,
110 const char *func, const char *fmt, ...);
111#define reiserfs_warning(s, id, fmt, args...) \
112 __reiserfs_warning(s, id, __func__, fmt, ##args)
1da177e4
LT
113/* assertions handling */
114
115/** always check a condition and panic if it's false. */
c3a9c210
JM
116#define __RASSERT(cond, scond, format, args...) \
117do { \
118 if (!(cond)) \
119 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
120 __FILE__ ":%i:%s: " format "\n", \
121 in_interrupt() ? -1 : task_pid_nr(current), \
122 __LINE__, __func__ , ##args); \
123} while (0)
1da177e4 124
2d954d06
AV
125#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
126
1da177e4 127#if defined( CONFIG_REISERFS_CHECK )
2d954d06 128#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
1da177e4
LT
129#else
130#define RFALSE( cond, format, args... ) do {;} while( 0 )
131#endif
132
133#define CONSTF __attribute_const__
134/*
135 * Disk Data Structures
136 */
137
138/***************************************************************************/
139/* SUPER BLOCK */
140/***************************************************************************/
141
142/*
143 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
144 * the version in RAM is part of a larger structure containing fields never written to disk.
145 */
bd4c625c
LT
146#define UNSET_HASH 0 // read_super will guess about, what hash names
147 // in directories were sorted with
1da177e4
LT
148#define TEA_HASH 1
149#define YURA_HASH 2
150#define R5_HASH 3
151#define DEFAULT_HASH R5_HASH
152
1da177e4 153struct journal_params {
bd4c625c
LT
154 __le32 jp_journal_1st_block; /* where does journal start from on its
155 * device */
156 __le32 jp_journal_dev; /* journal device st_rdev */
157 __le32 jp_journal_size; /* size of the journal */
158 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */
159 __le32 jp_journal_magic; /* random value made on fs creation (this
160 * was sb_journal_block_count) */
161 __le32 jp_journal_max_batch; /* max number of blocks to batch into a
162 * trans */
163 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async
164 * commit be */
165 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
166 * be */
1da177e4
LT
167};
168
169/* this is the super from 3.5.X, where X >= 10 */
bd4c625c
LT
170struct reiserfs_super_block_v1 {
171 __le32 s_block_count; /* blocks count */
172 __le32 s_free_blocks; /* free blocks count */
173 __le32 s_root_block; /* root block number */
174 struct journal_params s_journal;
175 __le16 s_blocksize; /* block size */
176 __le16 s_oid_maxsize; /* max size of object id array, see
177 * get_objectid() commentary */
178 __le16 s_oid_cursize; /* current size of object id array */
179 __le16 s_umount_state; /* this is set to 1 when filesystem was
180 * umounted, to 2 - when not */
181 char s_magic[10]; /* reiserfs magic string indicates that
182 * file system is reiserfs:
183 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
184 __le16 s_fs_state; /* it is set to used by fsck to mark which
185 * phase of rebuilding is done */
186 __le32 s_hash_function_code; /* indicate, what hash function is being use
187 * to sort names in a directory*/
188 __le16 s_tree_height; /* height of disk tree */
189 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address
190 * each block of file system */
191 __le16 s_version; /* this field is only reliable on filesystem
192 * with non-standard journal */
193 __le16 s_reserved_for_journal; /* size in blocks of journal area on main
194 * device, we need to keep after
195 * making fs with non-standard journal */
1da177e4
LT
196} __attribute__ ((__packed__));
197
198#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
199
200/* this is the on disk super block */
bd4c625c
LT
201struct reiserfs_super_block {
202 struct reiserfs_super_block_v1 s_v1;
203 __le32 s_inode_generation;
204 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */
205 unsigned char s_uuid[16]; /* filesystem unique identifier */
206 unsigned char s_label[16]; /* filesystem volume label */
702d21c6
JM
207 __le16 s_mnt_count; /* Count of mounts since last fsck */
208 __le16 s_max_mnt_count; /* Maximum mounts before check */
209 __le32 s_lastcheck; /* Timestamp of last fsck */
210 __le32 s_check_interval; /* Interval between checks */
211 char s_unused[76]; /* zero filled by mkreiserfs and
bd4c625c
LT
212 * reiserfs_convert_objectid_map_v1()
213 * so any additions must be updated
214 * there as well. */
215} __attribute__ ((__packed__));
1da177e4
LT
216
217#define SB_SIZE (sizeof(struct reiserfs_super_block))
218
219#define REISERFS_VERSION_1 0
220#define REISERFS_VERSION_2 2
221
1da177e4
LT
222// on-disk super block fields converted to cpu form
223#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
224#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
225#define SB_BLOCKSIZE(s) \
226 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
227#define SB_BLOCK_COUNT(s) \
228 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
229#define SB_FREE_BLOCKS(s) \
230 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
231#define SB_REISERFS_MAGIC(s) \
232 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
233#define SB_ROOT_BLOCK(s) \
234 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
235#define SB_TREE_HEIGHT(s) \
236 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
237#define SB_REISERFS_STATE(s) \
238 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
239#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
240#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
241
242#define PUT_SB_BLOCK_COUNT(s, val) \
243 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
244#define PUT_SB_FREE_BLOCKS(s, val) \
245 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
246#define PUT_SB_ROOT_BLOCK(s, val) \
247 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
248#define PUT_SB_TREE_HEIGHT(s, val) \
249 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
250#define PUT_SB_REISERFS_STATE(s, val) \
bd4c625c 251 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1da177e4
LT
252#define PUT_SB_VERSION(s, val) \
253 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
254#define PUT_SB_BMAP_NR(s, val) \
255 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
256
1da177e4
LT
257#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
258#define SB_ONDISK_JOURNAL_SIZE(s) \
259 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
260#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
261 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
262#define SB_ONDISK_JOURNAL_DEVICE(s) \
263 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
264#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
b8cc936f 265 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1da177e4
LT
266
267#define is_block_in_log_or_reserved_area(s, block) \
268 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
269 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
270 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
bd4c625c 271 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1da177e4 272
bd4c625c
LT
273int is_reiserfs_3_5(struct reiserfs_super_block *rs);
274int is_reiserfs_3_6(struct reiserfs_super_block *rs);
275int is_reiserfs_jr(struct reiserfs_super_block *rs);
1da177e4
LT
276
277/* ReiserFS leaves the first 64k unused, so that partition labels have
278 enough space. If someone wants to write a fancy bootloader that
279 needs more than 64k, let us know, and this will be increased in size.
280 This number must be larger than than the largest block size on any
281 platform, or code will break. -Hans */
282#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
283#define REISERFS_FIRST_BLOCK unused_define
284#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
285
286/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
287#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
288
289// reiserfs internal error code (used by search_by_key adn fix_nodes))
290#define CARRY_ON 0
291#define REPEAT_SEARCH -1
292#define IO_ERROR -2
293#define NO_DISK_SPACE -3
294#define NO_BALANCING_NEEDED (-4)
295#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
296#define QUOTA_EXCEEDED -6
297
298typedef __u32 b_blocknr_t;
3e8962be 299typedef __le32 unp_t;
1da177e4
LT
300
301struct unfm_nodeinfo {
bd4c625c
LT
302 unp_t unfm_nodenum;
303 unsigned short unfm_freespace;
1da177e4
LT
304};
305
306/* there are two formats of keys: 3.5 and 3.6
307 */
308#define KEY_FORMAT_3_5 0
309#define KEY_FORMAT_3_6 1
310
311/* there are two stat datas */
312#define STAT_DATA_V1 0
313#define STAT_DATA_V2 1
314
1da177e4
LT
315static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
316{
317 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
318}
319
320static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
321{
322 return sb->s_fs_info;
323}
324
cb680c1b
JM
325/* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
326 * which overflows on large file systems. */
13d8bcd2 327static inline __u32 reiserfs_bmap_count(struct super_block *sb)
cb680c1b
JM
328{
329 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
330}
331
332static inline int bmap_would_wrap(unsigned bmap_nr)
333{
334 return bmap_nr > ((1LL << 16) - 1);
335}
336
1da177e4
LT
337/** this says about version of key of all items (but stat data) the
338 object consists of */
339#define get_inode_item_key_version( inode ) \
340 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
341
342#define set_inode_item_key_version( inode, version ) \
343 ({ if((version)==KEY_FORMAT_3_6) \
344 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
345 else \
346 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
347
348#define get_inode_sd_version(inode) \
349 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
350
351#define set_inode_sd_version(inode, version) \
352 ({ if((version)==STAT_DATA_V2) \
353 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
354 else \
355 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
356
357/* This is an aggressive tail suppression policy, I am hoping it
358 improves our benchmarks. The principle behind it is that percentage
359 space saving is what matters, not absolute space saving. This is
360 non-intuitive, but it helps to understand it if you consider that the
361 cost to access 4 blocks is not much more than the cost to access 1
362 block, if you have to do a seek and rotate. A tail risks a
363 non-linear disk access that is significant as a percentage of total
364 time cost for a 4 block file and saves an amount of space that is
365 less significant as a percentage of space, or so goes the hypothesis.
366 -Hans */
367#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
368(\
369 (!(n_tail_size)) || \
370 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
371 ( (n_file_size) >= (n_block_size) * 4 ) || \
372 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
373 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
374 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
375 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
376 ( ( (n_file_size) >= (n_block_size) ) && \
377 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
378)
379
380/* Another strategy for tails, this one means only create a tail if all the
381 file would fit into one DIRECT item.
382 Primary intention for this one is to increase performance by decreasing
383 seeking.
bd4c625c 384*/
1da177e4
LT
385#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
386(\
387 (!(n_tail_size)) || \
388 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
389)
390
1da177e4
LT
391/*
392 * values for s_umount_state field
393 */
394#define REISERFS_VALID_FS 1
395#define REISERFS_ERROR_FS 2
396
397//
398// there are 5 item types currently
399//
400#define TYPE_STAT_DATA 0
401#define TYPE_INDIRECT 1
402#define TYPE_DIRECT 2
bd4c625c
LT
403#define TYPE_DIRENTRY 3
404#define TYPE_MAXTYPE 3
405#define TYPE_ANY 15 // FIXME: comment is required
1da177e4
LT
406
407/***************************************************************************/
408/* KEY & ITEM HEAD */
409/***************************************************************************/
410
411//
412// directories use this key as well as old files
413//
414struct offset_v1 {
bd4c625c
LT
415 __le32 k_offset;
416 __le32 k_uniqueness;
1da177e4
LT
417} __attribute__ ((__packed__));
418
419struct offset_v2 {
f8e08a84 420 __le64 v;
1da177e4
LT
421} __attribute__ ((__packed__));
422
bd4c625c 423static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1da177e4 424{
f8e08a84 425 __u8 type = le64_to_cpu(v2->v) >> 60;
bd4c625c 426 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1da177e4 427}
bd4c625c
LT
428
429static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1da177e4 430{
bd4c625c
LT
431 v2->v =
432 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1da177e4 433}
bd4c625c
LT
434
435static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1da177e4 436{
bd4c625c 437 return le64_to_cpu(v2->v) & (~0ULL >> 4);
1da177e4
LT
438}
439
bd4c625c
LT
440static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
441{
442 offset &= (~0ULL >> 4);
443 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1da177e4 444}
1da177e4
LT
445
446/* Key of an item determines its location in the S+tree, and
447 is composed of 4 components */
448struct reiserfs_key {
bd4c625c
LT
449 __le32 k_dir_id; /* packing locality: by default parent
450 directory object id */
451 __le32 k_objectid; /* object identifier */
452 union {
453 struct offset_v1 k_offset_v1;
454 struct offset_v2 k_offset_v2;
455 } __attribute__ ((__packed__)) u;
1da177e4
LT
456} __attribute__ ((__packed__));
457
6a3a16f2 458struct in_core_key {
bd4c625c
LT
459 __u32 k_dir_id; /* packing locality: by default parent
460 directory object id */
461 __u32 k_objectid; /* object identifier */
462 __u64 k_offset;
463 __u8 k_type;
6b9f5829 464};
1da177e4
LT
465
466struct cpu_key {
bd4c625c
LT
467 struct in_core_key on_disk_key;
468 int version;
469 int key_length; /* 3 in all cases but direct2indirect and
470 indirect2direct conversion */
1da177e4
LT
471};
472
473/* Our function for comparing keys can compare keys of different
474 lengths. It takes as a parameter the length of the keys it is to
475 compare. These defines are used in determining what is to be passed
476 to it as that parameter. */
477#define REISERFS_FULL_KEY_LEN 4
478#define REISERFS_SHORT_KEY_LEN 2
479
480/* The result of the key compare */
481#define FIRST_GREATER 1
482#define SECOND_GREATER -1
483#define KEYS_IDENTICAL 0
484#define KEY_FOUND 1
485#define KEY_NOT_FOUND 0
486
487#define KEY_SIZE (sizeof(struct reiserfs_key))
488#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
489
490/* return values for search_by_key and clones */
491#define ITEM_FOUND 1
492#define ITEM_NOT_FOUND 0
493#define ENTRY_FOUND 1
494#define ENTRY_NOT_FOUND 0
495#define DIRECTORY_NOT_FOUND -1
496#define REGULAR_FILE_FOUND -2
497#define DIRECTORY_FOUND -3
498#define BYTE_FOUND 1
499#define BYTE_NOT_FOUND 0
500#define FILE_NOT_FOUND -1
501
502#define POSITION_FOUND 1
503#define POSITION_NOT_FOUND 0
504
505// return values for reiserfs_find_entry and search_by_entry_key
506#define NAME_FOUND 1
507#define NAME_NOT_FOUND 0
508#define GOTO_PREVIOUS_ITEM 2
509#define NAME_FOUND_INVISIBLE 3
510
511/* Everything in the filesystem is stored as a set of items. The
512 item head contains the key of the item, its free space (for
513 indirect items) and specifies the location of the item itself
514 within the block. */
515
bd4c625c 516struct item_head {
1da177e4
LT
517 /* Everything in the tree is found by searching for it based on
518 * its key.*/
519 struct reiserfs_key ih_key;
520 union {
521 /* The free space in the last unformatted node of an
522 indirect item if this is an indirect item. This
523 equals 0xFFFF iff this is a direct item or stat data
524 item. Note that the key, not this field, is used to
525 determine the item type, and thus which field this
526 union contains. */
3e8962be 527 __le16 ih_free_space_reserved;
1da177e4
LT
528 /* Iff this is a directory item, this field equals the
529 number of directory entries in the directory item. */
3e8962be 530 __le16 ih_entry_count;
1da177e4 531 } __attribute__ ((__packed__)) u;
bd4c625c
LT
532 __le16 ih_item_len; /* total size of the item body */
533 __le16 ih_item_location; /* an offset to the item body
534 * within the block */
535 __le16 ih_version; /* 0 for all old items, 2 for new
536 ones. Highest bit is set by fsck
537 temporary, cleaned after all
538 done */
1da177e4
LT
539} __attribute__ ((__packed__));
540/* size of item header */
541#define IH_SIZE (sizeof(struct item_head))
542
543#define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
544#define ih_version(ih) le16_to_cpu((ih)->ih_version)
545#define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
546#define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
547#define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
548
549#define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
550#define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
551#define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
552#define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
553#define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
554
1da177e4
LT
555#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
556
557#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
558#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
559
560/* these operate on indirect items, where you've got an array of ints
561** at a possibly unaligned location. These are a noop on ia32
562**
563** p is the array of __u32, i is the index into the array, v is the value
564** to store there.
565*/
8b5ac31e
HH
566#define get_block_num(p, i) get_unaligned_le32((p) + (i))
567#define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1da177e4
LT
568
569//
570// in old version uniqueness field shows key type
571//
572#define V1_SD_UNIQUENESS 0
573#define V1_INDIRECT_UNIQUENESS 0xfffffffe
574#define V1_DIRECT_UNIQUENESS 0xffffffff
575#define V1_DIRENTRY_UNIQUENESS 500
bd4c625c 576#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
1da177e4
LT
577
578//
579// here are conversion routines
580//
bd4c625c
LT
581static inline int uniqueness2type(__u32 uniqueness) CONSTF;
582static inline int uniqueness2type(__u32 uniqueness)
1da177e4 583{
bd4c625c
LT
584 switch ((int)uniqueness) {
585 case V1_SD_UNIQUENESS:
586 return TYPE_STAT_DATA;
587 case V1_INDIRECT_UNIQUENESS:
588 return TYPE_INDIRECT;
589 case V1_DIRECT_UNIQUENESS:
590 return TYPE_DIRECT;
591 case V1_DIRENTRY_UNIQUENESS:
592 return TYPE_DIRENTRY;
1da177e4 593 case V1_ANY_UNIQUENESS:
fd7cb031 594 default:
bd4c625c
LT
595 return TYPE_ANY;
596 }
1da177e4
LT
597}
598
bd4c625c
LT
599static inline __u32 type2uniqueness(int type) CONSTF;
600static inline __u32 type2uniqueness(int type)
1da177e4 601{
bd4c625c
LT
602 switch (type) {
603 case TYPE_STAT_DATA:
604 return V1_SD_UNIQUENESS;
605 case TYPE_INDIRECT:
606 return V1_INDIRECT_UNIQUENESS;
607 case TYPE_DIRECT:
608 return V1_DIRECT_UNIQUENESS;
609 case TYPE_DIRENTRY:
610 return V1_DIRENTRY_UNIQUENESS;
1da177e4 611 case TYPE_ANY:
fd7cb031 612 default:
bd4c625c
LT
613 return V1_ANY_UNIQUENESS;
614 }
1da177e4
LT
615}
616
617//
618// key is pointer to on disk key which is stored in le, result is cpu,
619// there is no way to get version of object from key, so, provide
620// version to these defines
621//
bd4c625c
LT
622static inline loff_t le_key_k_offset(int version,
623 const struct reiserfs_key *key)
1da177e4 624{
bd4c625c
LT
625 return (version == KEY_FORMAT_3_5) ?
626 le32_to_cpu(key->u.k_offset_v1.k_offset) :
627 offset_v2_k_offset(&(key->u.k_offset_v2));
1da177e4
LT
628}
629
bd4c625c 630static inline loff_t le_ih_k_offset(const struct item_head *ih)
1da177e4 631{
bd4c625c 632 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1da177e4
LT
633}
634
bd4c625c 635static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1da177e4 636{
bd4c625c
LT
637 return (version == KEY_FORMAT_3_5) ?
638 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
639 offset_v2_k_type(&(key->u.k_offset_v2));
1da177e4
LT
640}
641
bd4c625c 642static inline loff_t le_ih_k_type(const struct item_head *ih)
1da177e4 643{
bd4c625c 644 return le_key_k_type(ih_version(ih), &(ih->ih_key));
1da177e4
LT
645}
646
bd4c625c
LT
647static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
648 loff_t offset)
1da177e4 649{
bd4c625c
LT
650 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */
651 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
1da177e4
LT
652}
653
bd4c625c 654static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1da177e4 655{
bd4c625c 656 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1da177e4
LT
657}
658
bd4c625c
LT
659static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
660 int type)
1da177e4 661{
bd4c625c
LT
662 (version == KEY_FORMAT_3_5) ?
663 (void)(key->u.k_offset_v1.k_uniqueness =
664 cpu_to_le32(type2uniqueness(type)))
665 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
1da177e4 666}
1d965fe0 667
bd4c625c 668static inline void set_le_ih_k_type(struct item_head *ih, int type)
1da177e4 669{
bd4c625c 670 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1da177e4
LT
671}
672
1d965fe0
JM
673static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
674{
675 return le_key_k_type(version, key) == TYPE_DIRENTRY;
676}
677
678static inline int is_direct_le_key(int version, struct reiserfs_key *key)
679{
680 return le_key_k_type(version, key) == TYPE_DIRECT;
681}
682
683static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
684{
685 return le_key_k_type(version, key) == TYPE_INDIRECT;
686}
687
688static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
689{
690 return le_key_k_type(version, key) == TYPE_STAT_DATA;
691}
1da177e4
LT
692
693//
694// item header has version.
695//
1d965fe0
JM
696static inline int is_direntry_le_ih(struct item_head *ih)
697{
698 return is_direntry_le_key(ih_version(ih), &ih->ih_key);
699}
700
701static inline int is_direct_le_ih(struct item_head *ih)
702{
703 return is_direct_le_key(ih_version(ih), &ih->ih_key);
704}
705
706static inline int is_indirect_le_ih(struct item_head *ih)
707{
708 return is_indirect_le_key(ih_version(ih), &ih->ih_key);
709}
710
711static inline int is_statdata_le_ih(struct item_head *ih)
712{
713 return is_statdata_le_key(ih_version(ih), &ih->ih_key);
714}
1da177e4 715
1da177e4
LT
716//
717// key is pointer to cpu key, result is cpu
718//
bd4c625c 719static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1da177e4 720{
bd4c625c 721 return key->on_disk_key.k_offset;
1da177e4
LT
722}
723
bd4c625c 724static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1da177e4 725{
bd4c625c 726 return key->on_disk_key.k_type;
1da177e4
LT
727}
728
bd4c625c 729static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1da177e4 730{
6b9f5829 731 key->on_disk_key.k_offset = offset;
1da177e4
LT
732}
733
bd4c625c 734static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1da177e4 735{
6b9f5829 736 key->on_disk_key.k_type = type;
1da177e4
LT
737}
738
bd4c625c 739static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1da177e4 740{
bd4c625c 741 key->on_disk_key.k_offset--;
1da177e4
LT
742}
743
1da177e4
LT
744#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
745#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
746#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
747#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
748
1da177e4
LT
749/* are these used ? */
750#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
751#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
752#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
753#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
754
d68caa95
JM
755#define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
756 (!COMP_SHORT_KEYS(ih, key) && \
757 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1da177e4 758
bd4c625c 759/* maximal length of item */
1da177e4
LT
760#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
761#define MIN_ITEM_LEN 1
762
1da177e4
LT
763/* object identifier for root dir */
764#define REISERFS_ROOT_OBJECTID 2
765#define REISERFS_ROOT_PARENT_OBJECTID 1
750e1c18 766
1da177e4
LT
767extern struct reiserfs_key root_key;
768
1da177e4
LT
769/*
770 * Picture represents a leaf of the S+tree
771 * ______________________________________________________
772 * | | Array of | | |
773 * |Block | Object-Item | F r e e | Objects- |
774 * | head | Headers | S p a c e | Items |
775 * |______|_______________|___________________|___________|
776 */
777
778/* Header of a disk block. More precisely, header of a formatted leaf
779 or internal node, and not the header of an unformatted node. */
bd4c625c
LT
780struct block_head {
781 __le16 blk_level; /* Level of a block in the tree. */
782 __le16 blk_nr_item; /* Number of keys/items in a block. */
783 __le16 blk_free_space; /* Block free space in bytes. */
784 __le16 blk_reserved;
785 /* dump this in v4/planA */
786 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
1da177e4
LT
787};
788
789#define BLKH_SIZE (sizeof(struct block_head))
790#define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
791#define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
792#define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
793#define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
794#define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
795#define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
796#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
797#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
798#define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
799#define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
800
801/*
802 * values for blk_level field of the struct block_head
803 */
804
bd4c625c
LT
805#define FREE_LEVEL 0 /* when node gets removed from the tree its
806 blk_level is set to FREE_LEVEL. It is then
807 used to see whether the node is still in the
808 tree */
1da177e4 809
bd4c625c 810#define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
1da177e4
LT
811
812/* Given the buffer head of a formatted node, resolve to the block head of that node. */
ad31a4fc 813#define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
1da177e4 814/* Number of items that are in buffer. */
ad31a4fc
JM
815#define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
816#define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
817#define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
1da177e4 818
ad31a4fc
JM
819#define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
820#define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
821#define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1da177e4 822
1da177e4 823/* Get right delimiting key. -- little endian */
ad31a4fc 824#define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
1da177e4
LT
825
826/* Does the buffer contain a disk leaf. */
ad31a4fc 827#define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1da177e4
LT
828
829/* Does the buffer contain a disk internal node */
ad31a4fc
JM
830#define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
831 && B_LEVEL(bh) <= MAX_HEIGHT)
1da177e4 832
1da177e4
LT
833/***************************************************************************/
834/* STAT DATA */
835/***************************************************************************/
836
1da177e4
LT
837//
838// old stat data is 32 bytes long. We are going to distinguish new one by
839// different size
840//
bd4c625c
LT
841struct stat_data_v1 {
842 __le16 sd_mode; /* file type, permissions */
843 __le16 sd_nlink; /* number of hard links */
844 __le16 sd_uid; /* owner */
845 __le16 sd_gid; /* group */
846 __le32 sd_size; /* file size */
847 __le32 sd_atime; /* time of last access */
848 __le32 sd_mtime; /* time file was last modified */
849 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
850 union {
851 __le32 sd_rdev;
852 __le32 sd_blocks; /* number of blocks file uses */
853 } __attribute__ ((__packed__)) u;
854 __le32 sd_first_direct_byte; /* first byte of file which is stored
855 in a direct item: except that if it
856 equals 1 it is a symlink and if it
857 equals ~(__u32)0 there is no
858 direct item. The existence of this
859 field really grates on me. Let's
860 replace it with a macro based on
861 sd_size and our tail suppression
862 policy. Someday. -Hans */
1da177e4
LT
863} __attribute__ ((__packed__));
864
865#define SD_V1_SIZE (sizeof(struct stat_data_v1))
866#define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
867#define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
868#define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
869#define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
870#define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
871#define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
872#define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
873#define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
874#define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
875#define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
876#define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
877#define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
878#define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
879#define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
880#define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
881#define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
882#define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
883#define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
884#define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
885#define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
886#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
887#define sd_v1_first_direct_byte(sdp) \
888 (le32_to_cpu((sdp)->sd_first_direct_byte))
889#define set_sd_v1_first_direct_byte(sdp,v) \
890 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
891
1da177e4
LT
892/* inode flags stored in sd_attrs (nee sd_reserved) */
893
894/* we want common flags to have the same values as in ext2,
895 so chattr(1) will work without problems */
36695673
DH
896#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
897#define REISERFS_APPEND_FL FS_APPEND_FL
898#define REISERFS_SYNC_FL FS_SYNC_FL
899#define REISERFS_NOATIME_FL FS_NOATIME_FL
900#define REISERFS_NODUMP_FL FS_NODUMP_FL
901#define REISERFS_SECRM_FL FS_SECRM_FL
902#define REISERFS_UNRM_FL FS_UNRM_FL
903#define REISERFS_COMPR_FL FS_COMPR_FL
904#define REISERFS_NOTAIL_FL FS_NOTAIL_FL
1da177e4
LT
905
906/* persistent flags that file inherits from the parent directory */
907#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
908 REISERFS_SYNC_FL | \
909 REISERFS_NOATIME_FL | \
910 REISERFS_NODUMP_FL | \
911 REISERFS_SECRM_FL | \
912 REISERFS_COMPR_FL | \
913 REISERFS_NOTAIL_FL )
914
915/* Stat Data on disk (reiserfs version of UFS disk inode minus the
916 address blocks) */
917struct stat_data {
bd4c625c
LT
918 __le16 sd_mode; /* file type, permissions */
919 __le16 sd_attrs; /* persistent inode flags */
920 __le32 sd_nlink; /* number of hard links */
921 __le64 sd_size; /* file size */
922 __le32 sd_uid; /* owner */
923 __le32 sd_gid; /* group */
924 __le32 sd_atime; /* time of last access */
925 __le32 sd_mtime; /* time file was last modified */
926 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
927 __le32 sd_blocks;
928 union {
929 __le32 sd_rdev;
930 __le32 sd_generation;
931 //__le32 sd_first_direct_byte;
932 /* first byte of file which is stored in a
933 direct item: except that if it equals 1
934 it is a symlink and if it equals
935 ~(__u32)0 there is no direct item. The
936 existence of this field really grates
937 on me. Let's replace it with a macro
938 based on sd_size and our tail
939 suppression policy? */
940 } __attribute__ ((__packed__)) u;
1da177e4
LT
941} __attribute__ ((__packed__));
942//
943// this is 44 bytes long
944//
945#define SD_SIZE (sizeof(struct stat_data))
946#define SD_V2_SIZE SD_SIZE
947#define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
948#define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
949#define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
950/* sd_reserved */
951/* set_sd_reserved */
952#define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
953#define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
954#define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
955#define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
956#define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
957#define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
958#define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
959#define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
960#define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
961#define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
962#define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
963#define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
964#define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
965#define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
966#define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
967#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
968#define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
969#define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
970#define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
971#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
972#define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
973#define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
974
1da177e4
LT
975/***************************************************************************/
976/* DIRECTORY STRUCTURE */
977/***************************************************************************/
978/*
979 Picture represents the structure of directory items
980 ________________________________________________
981 | Array of | | | | | |
982 | directory |N-1| N-2 | .... | 1st |0th|
983 | entry headers | | | | | |
984 |_______________|___|_____|________|_______|___|
985 <---- directory entries ------>
986
987 First directory item has k_offset component 1. We store "." and ".."
988 in one item, always, we never split "." and ".." into differing
989 items. This makes, among other things, the code for removing
990 directories simpler. */
991#define SD_OFFSET 0
992#define SD_UNIQUENESS 0
993#define DOT_OFFSET 1
994#define DOT_DOT_OFFSET 2
995#define DIRENTRY_UNIQUENESS 500
996
997/* */
998#define FIRST_ITEM_OFFSET 1
999
1000/*
1001 Q: How to get key of object pointed to by entry from entry?
1002
1003 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1004 of object, entry points to */
1005
1006/* NOT IMPLEMENTED:
1007 Directory will someday contain stat data of object */
1008
bd4c625c
LT
1009struct reiserfs_de_head {
1010 __le32 deh_offset; /* third component of the directory entry key */
1011 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
1012 by directory entry */
1013 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
1014 __le16 deh_location; /* offset of name in the whole item */
1015 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
1016 entry is hidden (unlinked) */
1da177e4
LT
1017} __attribute__ ((__packed__));
1018#define DEH_SIZE sizeof(struct reiserfs_de_head)
1019#define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1020#define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1021#define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1022#define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1023#define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1024
1025#define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1026#define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1027#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1028#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1029#define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1030
1031/* empty directory contains two entries "." and ".." and their headers */
1032#define EMPTY_DIR_SIZE \
1033(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1034
1035/* old format directories have this size when empty */
1036#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1037
bd4c625c 1038#define DEH_Statdata 0 /* not used now */
1da177e4
LT
1039#define DEH_Visible 2
1040
1041/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1042#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1043# define ADDR_UNALIGNED_BITS (3)
1044#endif
1045
1046/* These are only used to manipulate deh_state.
1047 * Because of this, we'll use the ext2_ bit routines,
1048 * since they are little endian */
1049#ifdef ADDR_UNALIGNED_BITS
1050
1051# define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1052# define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1053
1054# define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1055# define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1056# define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1057
1058#else
1059
1060# define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
1061# define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
1062# define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
1063
1064#endif
1065
1066#define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1067#define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1068#define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1069#define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1070
1071#define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1072#define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1073#define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1074
bd4c625c
LT
1075extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1076 __le32 par_dirid, __le32 par_objid);
1077extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1078 __le32 par_dirid, __le32 par_objid);
1da177e4
LT
1079
1080/* array of the entry headers */
1081 /* get item body */
1082#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1083#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1084
1085/* length of the directory entry in directory item. This define
1086 calculates length of i-th directory entry using directory entry
1087 locations from dir entry head. When it calculates length of 0-th
1088 directory entry, it uses length of whole item in place of entry
1089 location of the non-existent following entry in the calculation.
1090 See picture above.*/
1091/*
1092#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1093((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1094*/
bd4c625c
LT
1095static inline int entry_length(const struct buffer_head *bh,
1096 const struct item_head *ih, int pos_in_item)
1da177e4 1097{
bd4c625c 1098 struct reiserfs_de_head *deh;
1da177e4 1099
bd4c625c
LT
1100 deh = B_I_DEH(bh, ih) + pos_in_item;
1101 if (pos_in_item)
1102 return deh_location(deh - 1) - deh_location(deh);
1da177e4 1103
bd4c625c 1104 return ih_item_len(ih) - deh_location(deh);
1da177e4
LT
1105}
1106
1da177e4
LT
1107/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1108#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1109
1da177e4
LT
1110/* name by bh, ih and entry_num */
1111#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1112
1113// two entries per block (at least)
1114#define REISERFS_MAX_NAME(block_size) 255
1115
1da177e4
LT
1116/* this structure is used for operations on directory entries. It is
1117 not a disk structure. */
1118/* When reiserfs_find_entry or search_by_entry_key find directory
1119 entry, they return filled reiserfs_dir_entry structure */
bd4c625c
LT
1120struct reiserfs_dir_entry {
1121 struct buffer_head *de_bh;
1122 int de_item_num;
1123 struct item_head *de_ih;
1124 int de_entry_num;
1125 struct reiserfs_de_head *de_deh;
1126 int de_entrylen;
1127 int de_namelen;
1128 char *de_name;
3af1efe8 1129 unsigned long *de_gen_number_bit_string;
bd4c625c
LT
1130
1131 __u32 de_dir_id;
1132 __u32 de_objectid;
1133
1134 struct cpu_key de_entry_key;
1da177e4 1135};
bd4c625c 1136
1da177e4
LT
1137/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1138
1139/* pointer to file name, stored in entry */
1140#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1141
1142/* length of name */
1143#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1144(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1145
1da177e4
LT
1146/* hash value occupies bits from 7 up to 30 */
1147#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1148/* generation number occupies 7 bits starting from 0 up to 6 */
1149#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1150#define MAX_GENERATION_NUMBER 127
1151
1152#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1153
1da177e4
LT
1154/*
1155 * Picture represents an internal node of the reiserfs tree
1156 * ______________________________________________________
1157 * | | Array of | Array of | Free |
1158 * |block | keys | pointers | space |
1159 * | head | N | N+1 | |
1160 * |______|_______________|___________________|___________|
1161 */
1162
1163/***************************************************************************/
1164/* DISK CHILD */
1165/***************************************************************************/
1166/* Disk child pointer: The pointer from an internal node of the tree
1167 to a node that is on disk. */
1168struct disk_child {
bd4c625c
LT
1169 __le32 dc_block_number; /* Disk child's block number. */
1170 __le16 dc_size; /* Disk child's used space. */
1171 __le16 dc_reserved;
1da177e4
LT
1172};
1173
1174#define DC_SIZE (sizeof(struct disk_child))
1175#define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1176#define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1177#define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1178#define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1179
1180/* Get disk child by buffer header and position in the tree node. */
ad31a4fc
JM
1181#define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
1182((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1da177e4
LT
1183
1184/* Get disk child number by buffer header and position in the tree node. */
ad31a4fc
JM
1185#define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1186#define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1187 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1da177e4 1188
bd4c625c 1189 /* maximal value of field child_size in structure disk_child */
1da177e4
LT
1190 /* child size is the combined size of all items and their headers */
1191#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1192
1193/* amount of used space in buffer (not including block head) */
1194#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1195
1196/* max and min number of keys in internal node */
1197#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1198#define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1199
1200/***************************************************************************/
1201/* PATH STRUCTURES AND DEFINES */
1202/***************************************************************************/
1203
1da177e4
LT
1204/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1205 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1206 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1207 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1208 position of the block_number of the next node if it is looking through an internal node. If it
1209 is looking through a leaf node bin_search will find the position of the item which has key either
1210 equal to given key, or which is the maximal key less than the given key. */
1211
bd4c625c
LT
1212struct path_element {
1213 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */
1214 int pe_position; /* Position in the tree node which is placed in the */
1215 /* buffer above. */
1da177e4
LT
1216};
1217
bd4c625c
LT
1218#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1219#define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1220#define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1da177e4 1221
bd4c625c
LT
1222#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1223#define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1da177e4
LT
1224
1225/* We need to keep track of who the ancestors of nodes are. When we
1226 perform a search we record which nodes were visited while
1227 descending the tree looking for the node we searched for. This list
1228 of nodes is called the path. This information is used while
1229 performing balancing. Note that this path information may become
1230 invalid, and this means we must check it when using it to see if it
1231 is still valid. You'll need to read search_by_key and the comments
1232 in it, especially about decrement_counters_in_path(), to understand
1233 this structure.
1234
1235Paths make the code so much harder to work with and debug.... An
1236enormous number of bugs are due to them, and trying to write or modify
1237code that uses them just makes my head hurt. They are based on an
1238excessive effort to avoid disturbing the precious VFS code.:-( The
1239gods only know how we are going to SMP the code that uses them.
1240znodes are the way! */
1241
bd4c625c
LT
1242#define PATH_READA 0x1 /* do read ahead */
1243#define PATH_READA_BACK 0x2 /* read backwards */
1da177e4 1244
fec6d055 1245struct treepath {
bd4c625c
LT
1246 int path_length; /* Length of the array above. */
1247 int reada;
1248 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1249 int pos_in_item;
1da177e4
LT
1250};
1251
1252#define pos_in_item(path) ((path)->pos_in_item)
1253
1254#define INITIALIZE_PATH(var) \
fec6d055 1255struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1da177e4
LT
1256
1257/* Get path element by path and path position. */
d68caa95 1258#define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
1da177e4
LT
1259
1260/* Get buffer header at the path by path and path position. */
d68caa95 1261#define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1da177e4
LT
1262
1263/* Get position in the element at the path by path and path position. */
d68caa95 1264#define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1da177e4 1265
d68caa95 1266#define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1da177e4 1267 /* you know, to the person who didn't
bd4c625c
LT
1268 write this the macro name does not
1269 at first suggest what it does.
1270 Maybe POSITION_FROM_PATH_END? Or
1271 maybe we should just focus on
1272 dumping paths... -Hans */
d68caa95 1273#define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1da177e4 1274
d68caa95 1275#define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1da177e4
LT
1276
1277/* in do_balance leaf has h == 0 in contrast with path structure,
1278 where root has level == 0. That is why we need these defines */
d68caa95 1279#define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */
bd4c625c
LT
1280#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1281#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1282#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1da177e4 1283
d68caa95 1284#define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1da177e4
LT
1285
1286#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1287#define get_ih(path) PATH_PITEM_HEAD(path)
1288#define get_item_pos(path) PATH_LAST_POSITION(path)
1289#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1290#define item_moved(ih,path) comp_items(ih, path)
1291#define path_changed(ih,path) comp_items (ih, path)
1292
1da177e4
LT
1293/***************************************************************************/
1294/* MISC */
1295/***************************************************************************/
1296
1297/* Size of pointer to the unformatted node. */
1298#define UNFM_P_SIZE (sizeof(unp_t))
1299#define UNFM_P_SHIFT 2
1300
1301// in in-core inode key is stored on le form
1302#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1303
1304#define MAX_UL_INT 0xffffffff
1305#define MAX_INT 0x7ffffff
1306#define MAX_US_INT 0xffff
1307
1308// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1309#define U32_MAX (~(__u32)0)
1310
bd4c625c 1311static inline loff_t max_reiserfs_offset(struct inode *inode)
1da177e4 1312{
bd4c625c
LT
1313 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1314 return (loff_t) U32_MAX;
1da177e4 1315
bd4c625c 1316 return (loff_t) ((~(__u64) 0) >> 4);
1da177e4
LT
1317}
1318
1da177e4
LT
1319/*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1320#define MAX_KEY_OBJECTID MAX_UL_INT
1321
1da177e4
LT
1322#define MAX_B_NUM MAX_UL_INT
1323#define MAX_FC_NUM MAX_US_INT
1324
1da177e4
LT
1325/* the purpose is to detect overflow of an unsigned short */
1326#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1327
1da177e4 1328/* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
bd4c625c
LT
1329#define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1330#define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1da177e4
LT
1331
1332#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1333#define get_generation(s) atomic_read (&fs_generation(s))
1334#define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1335#define __fs_changed(gen,s) (gen != get_generation (s))
f32049dc
FW
1336#define fs_changed(gen,s) \
1337({ \
1338 reiserfs_write_unlock(s); \
1339 cond_resched(); \
1340 reiserfs_write_lock(s); \
1341 __fs_changed(gen, s); \
1342})
1da177e4 1343
1da177e4
LT
1344/***************************************************************************/
1345/* FIXATE NODES */
1346/***************************************************************************/
1347
1348#define VI_TYPE_LEFT_MERGEABLE 1
1349#define VI_TYPE_RIGHT_MERGEABLE 2
1350
1351/* To make any changes in the tree we always first find node, that
1352 contains item to be changed/deleted or place to insert a new
1353 item. We call this node S. To do balancing we need to decide what
1354 we will shift to left/right neighbor, or to a new node, where new
1355 item will be etc. To make this analysis simpler we build virtual
1356 node. Virtual node is an array of items, that will replace items of
1357 node S. (For instance if we are going to delete an item, virtual
1358 node does not contain it). Virtual node keeps information about
1359 item sizes and types, mergeability of first and last items, sizes
1360 of all entries in directory item. We use this array of items when
1361 calculating what we can shift to neighbors and how many nodes we
1362 have to have if we do not any shiftings, if we shift to left/right
1363 neighbor or to both. */
bd4c625c
LT
1364struct virtual_item {
1365 int vi_index; // index in the array of item operations
1366 unsigned short vi_type; // left/right mergeability
1367 unsigned short vi_item_len; /* length of item that it will have after balancing */
1368 struct item_head *vi_ih;
1369 const char *vi_item; // body of item (old or new)
1370 const void *vi_new_data; // 0 always but paste mode
1371 void *vi_uarea; // item specific area
1da177e4
LT
1372};
1373
bd4c625c
LT
1374struct virtual_node {
1375 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */
1376 unsigned short vn_nr_item; /* number of items in virtual node */
1377 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1378 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1379 short vn_affected_item_num;
1380 short vn_pos_in_item;
1381 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */
1382 const void *vn_data;
1383 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1da177e4
LT
1384};
1385
1386/* used by directory items when creating virtual nodes */
1387struct direntry_uarea {
bd4c625c
LT
1388 int flags;
1389 __u16 entry_count;
1390 __u16 entry_sizes[1];
1391} __attribute__ ((__packed__));
1da177e4
LT
1392
1393/***************************************************************************/
1394/* TREE BALANCE */
1395/***************************************************************************/
1396
1397/* This temporary structure is used in tree balance algorithms, and
1398 constructed as we go to the extent that its various parts are
1399 needed. It contains arrays of nodes that can potentially be
1400 involved in the balancing of node S, and parameters that define how
1401 each of the nodes must be balanced. Note that in these algorithms
1402 for balancing the worst case is to need to balance the current node
1403 S and the left and right neighbors and all of their parents plus
1404 create a new node. We implement S1 balancing for the leaf nodes
1405 and S0 balancing for the internal nodes (S1 and S0 are defined in
1406 our papers.)*/
1407
1408#define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1409
1410/* maximum number of FEB blocknrs on a single level */
1411#define MAX_AMOUNT_NEEDED 2
1412
1413/* someday somebody will prefix every field in this struct with tb_ */
bd4c625c
LT
1414struct tree_balance {
1415 int tb_mode;
1416 int need_balance_dirty;
1417 struct super_block *tb_sb;
1418 struct reiserfs_transaction_handle *transaction_handle;
fec6d055 1419 struct treepath *tb_path;
bd4c625c
LT
1420 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1421 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */
1422 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1423 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1424 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1425 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1426
1427 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1428 cur_blknum. */
1429 struct buffer_head *used[MAX_FEB_SIZE];
1430 struct buffer_head *thrown[MAX_FEB_SIZE];
1431 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1432 shifted to the left in order to balance the
1433 current node; for leaves includes item that
1434 will be partially shifted; for internal
1435 nodes, it is the number of child pointers
1436 rather than items. It includes the new item
1437 being created. The code sometimes subtracts
1438 one to get the number of wholly shifted
1439 items for other purposes. */
1440 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1441 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1442 S[h] to its item number within the node CFL[h] */
1443 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1444 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1445 S[h]. A negative value means removing. */
1446 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1447 balancing on the level h of the tree. If 0 then S is
1448 being deleted, if 1 then S is remaining and no new nodes
1449 are being created, if 2 or 3 then 1 or 2 new nodes is
1450 being created */
1451
1452 /* fields that are used only for balancing leaves of the tree */
1453 int cur_blknum; /* number of empty blocks having been already allocated */
1454 int s0num; /* number of items that fall into left most node when S[0] splits */
1455 int s1num; /* number of items that fall into first new node when S[0] splits */
1456 int s2num; /* number of items that fall into second new node when S[0] splits */
1457 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1458 /* most liquid item that cannot be shifted from S[0] entirely */
1459 /* if -1 then nothing will be partially shifted */
1460 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1461 /* most liquid item that cannot be shifted from S[0] entirely */
1462 /* if -1 then nothing will be partially shifted */
1463 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1464 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1465 int s2bytes;
1466 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1467 char *vn_buf; /* kmalloced memory. Used to create
1da177e4
LT
1468 virtual node and keep map of
1469 dirtied bitmap blocks */
bd4c625c
LT
1470 int vn_buf_size; /* size of the vn_buf */
1471 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */
1da177e4 1472
bd4c625c
LT
1473 int fs_gen; /* saved value of `reiserfs_generation' counter
1474 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1da177e4 1475#ifdef DISPLACE_NEW_PACKING_LOCALITIES
bd4c625c
LT
1476 struct in_core_key key; /* key pointer, to pass to block allocator or
1477 another low-level subsystem */
1da177e4 1478#endif
bd4c625c 1479};
1da177e4
LT
1480
1481/* These are modes of balancing */
1482
1483/* When inserting an item. */
1484#define M_INSERT 'i'
1485/* When inserting into (directories only) or appending onto an already
1486 existant item. */
1487#define M_PASTE 'p'
1488/* When deleting an item. */
1489#define M_DELETE 'd'
1490/* When truncating an item or removing an entry from a (directory) item. */
1491#define M_CUT 'c'
1492
1493/* used when balancing on leaf level skipped (in reiserfsck) */
1494#define M_INTERNAL 'n'
1495
1496/* When further balancing is not needed, then do_balance does not need
1497 to be called. */
1498#define M_SKIP_BALANCING 's'
1499#define M_CONVERT 'v'
1500
1501/* modes of leaf_move_items */
1502#define LEAF_FROM_S_TO_L 0
1503#define LEAF_FROM_S_TO_R 1
1504#define LEAF_FROM_R_TO_L 2
1505#define LEAF_FROM_L_TO_R 3
1506#define LEAF_FROM_S_TO_SNEW 4
1507
1508#define FIRST_TO_LAST 0
1509#define LAST_TO_FIRST 1
1510
1511/* used in do_balance for passing parent of node information that has
1512 been gotten from tb struct */
1513struct buffer_info {
bd4c625c
LT
1514 struct tree_balance *tb;
1515 struct buffer_head *bi_bh;
1516 struct buffer_head *bi_parent;
1517 int bi_position;
1da177e4
LT
1518};
1519
c3a9c210
JM
1520static inline struct super_block *sb_from_tb(struct tree_balance *tb)
1521{
1522 return tb ? tb->tb_sb : NULL;
1523}
1524
1525static inline struct super_block *sb_from_bi(struct buffer_info *bi)
1526{
1527 return bi ? sb_from_tb(bi->tb) : NULL;
1528}
1529
1da177e4
LT
1530/* there are 4 types of items: stat data, directory item, indirect, direct.
1531+-------------------+------------+--------------+------------+
1532| | k_offset | k_uniqueness | mergeable? |
1533+-------------------+------------+--------------+------------+
1534| stat data | 0 | 0 | no |
1535+-------------------+------------+--------------+------------+
1536| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1537| non 1st directory | hash value | | yes |
1538| item | | | |
1539+-------------------+------------+--------------+------------+
1540| indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1541+-------------------+------------+--------------+------------+
1542| direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1543+-------------------+------------+--------------+------------+
1544*/
1545
1546struct item_operations {
bd4c625c
LT
1547 int (*bytes_number) (struct item_head * ih, int block_size);
1548 void (*decrement_key) (struct cpu_key *);
1549 int (*is_left_mergeable) (struct reiserfs_key * ih,
1550 unsigned long bsize);
1551 void (*print_item) (struct item_head *, char *item);
1552 void (*check_item) (struct item_head *, char *item);
1553
1554 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1555 int is_affected, int insert_size);
1556 int (*check_left) (struct virtual_item * vi, int free,
1557 int start_skip, int end_skip);
1558 int (*check_right) (struct virtual_item * vi, int free);
1559 int (*part_size) (struct virtual_item * vi, int from, int to);
1560 int (*unit_num) (struct virtual_item * vi);
1561 void (*print_vi) (struct virtual_item * vi);
1da177e4
LT
1562};
1563
bd4c625c 1564extern struct item_operations *item_ops[TYPE_ANY + 1];
1da177e4
LT
1565
1566#define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1567#define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1568#define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1569#define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1570#define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1571#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1572#define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1573#define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1574#define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1575#define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1576
1da177e4
LT
1577#define COMP_SHORT_KEYS comp_short_keys
1578
1579/* number of blocks pointed to by the indirect item */
d68caa95 1580#define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
1da177e4
LT
1581
1582/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1583#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1584
1585/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1586
bd4c625c 1587/* get the item header */
1da177e4
LT
1588#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1589
1590/* get key */
1591#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1592
1593/* get the key */
1594#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1595
1596/* get item body */
1597#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1598
1599/* get the stat data by the buffer header and the item order */
1600#define B_N_STAT_DATA(bh,nr) \
1601( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1602
1603 /* following defines use reiserfs buffer header and item header */
1604
1605/* get stat-data */
1606#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1607
1608// this is 3976 for size==4096
1609#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1610
1611/* indirect items consist of entries which contain blocknrs, pos
1612 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1613 blocknr contained by the entry pos points to */
1614#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1615#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1616
1617struct reiserfs_iget_args {
bd4c625c
LT
1618 __u32 objectid;
1619 __u32 dirid;
1620};
1da177e4
LT
1621
1622/***************************************************************************/
1623/* FUNCTION DECLARATIONS */
1624/***************************************************************************/
1625
1da177e4
LT
1626#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1627
1628#define journal_trans_half(blocksize) \
1629 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1630
1631/* journal.c see journal.c for all the comments here */
1632
1633/* first block written in a commit. */
1634struct reiserfs_journal_desc {
bd4c625c
LT
1635 __le32 j_trans_id; /* id of commit */
1636 __le32 j_len; /* length of commit. len +1 is the commit block */
1637 __le32 j_mount_id; /* mount id of this trans */
1638 __le32 j_realblock[1]; /* real locations for each block */
1639};
1da177e4
LT
1640
1641#define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1642#define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1643#define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1644
1645#define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1646#define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1647#define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1648
1649/* last block written in a commit */
1650struct reiserfs_journal_commit {
bd4c625c
LT
1651 __le32 j_trans_id; /* must match j_trans_id from the desc block */
1652 __le32 j_len; /* ditto */
1653 __le32 j_realblock[1]; /* real locations for each block */
1654};
1da177e4
LT
1655
1656#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1657#define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1658#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1659
1660#define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1661#define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1662
1663/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1664** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1665** and this transaction does not need to be replayed.
1666*/
1667struct reiserfs_journal_header {
bd4c625c
LT
1668 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */
1669 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */
1670 __le32 j_mount_id;
1671 /* 12 */ struct journal_params jh_journal;
1672};
1da177e4
LT
1673
1674/* biggest tunable defines are right here */
bd4c625c
LT
1675#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1676#define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1da177e4 1677#define JOURNAL_TRANS_MIN_DEFAULT 256
bd4c625c 1678#define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1da177e4 1679#define JOURNAL_MIN_RATIO 2
bd4c625c 1680#define JOURNAL_MAX_COMMIT_AGE 30
1da177e4
LT
1681#define JOURNAL_MAX_TRANS_AGE 30
1682#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
0ab2621e
JM
1683#define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
1684 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
1685 REISERFS_QUOTA_TRANS_BLOCKS(sb)))
1686
1da177e4 1687#ifdef CONFIG_QUOTA
556a2a45
JK
1688/* We need to update data and inode (atime) */
1689#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1690/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1691#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1692(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1693/* same as with INIT */
1694#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1695(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1da177e4 1696#else
556a2a45
JK
1697#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1698#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1699#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1da177e4
LT
1700#endif
1701
1702/* both of these can be as low as 1, or as high as you want. The min is the
1703** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1704** as needed, and released when transactions are committed. On release, if
1705** the current number of nodes is > max, the node is freed, otherwise,
1706** it is put on a free list for faster use later.
1707*/
bd4c625c
LT
1708#define REISERFS_MIN_BITMAP_NODES 10
1709#define REISERFS_MAX_BITMAP_NODES 100
1da177e4 1710
bd4c625c 1711#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1da177e4
LT
1712#define JBH_HASH_MASK 8191
1713
1714#define _jhashfn(sb,block) \
1715 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1716 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1717#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1718
1719// We need these to make journal.c code more readable
1720#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1721#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1722#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1723
1724enum reiserfs_bh_state_bits {
bd4c625c
LT
1725 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
1726 BH_JDirty_wait,
1727 BH_JNew, /* disk block was taken off free list before
1728 * being in a finished transaction, or
1729 * written to disk. Can be reused immed. */
1730 BH_JPrepared,
1731 BH_JRestore_dirty,
1732 BH_JTest, // debugging only will go away
1da177e4
LT
1733};
1734
1735BUFFER_FNS(JDirty, journaled);
1736TAS_BUFFER_FNS(JDirty, journaled);
1737BUFFER_FNS(JDirty_wait, journal_dirty);
1738TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1739BUFFER_FNS(JNew, journal_new);
1740TAS_BUFFER_FNS(JNew, journal_new);
1741BUFFER_FNS(JPrepared, journal_prepared);
1742TAS_BUFFER_FNS(JPrepared, journal_prepared);
1743BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1744TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1745BUFFER_FNS(JTest, journal_test);
1746TAS_BUFFER_FNS(JTest, journal_test);
1747
1748/*
1749** transaction handle which is passed around for all journal calls
1750*/
1751struct reiserfs_transaction_handle {
bd4c625c
LT
1752 struct super_block *t_super; /* super for this FS when journal_begin was
1753 called. saves calls to reiserfs_get_super
1754 also used by nested transactions to make
1755 sure they are nesting on the right FS
1756 _must_ be first in the handle
1757 */
1758 int t_refcount;
1759 int t_blocks_logged; /* number of blocks this writer has logged */
1760 int t_blocks_allocated; /* number of blocks this writer allocated */
600ed416 1761 unsigned int t_trans_id; /* sanity check, equals the current trans id */
bd4c625c
LT
1762 void *t_handle_save; /* save existing current->journal_info */
1763 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1764 should be displaced from others */
1765 struct list_head t_list;
1766};
1da177e4
LT
1767
1768/* used to keep track of ordered and tail writes, attached to the buffer
1769 * head through b_journal_head.
1770 */
1771struct reiserfs_jh {
bd4c625c
LT
1772 struct reiserfs_journal_list *jl;
1773 struct buffer_head *bh;
1774 struct list_head list;
1da177e4
LT
1775};
1776
1777void reiserfs_free_jh(struct buffer_head *bh);
1778int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1779int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
bd4c625c
LT
1780int journal_mark_dirty(struct reiserfs_transaction_handle *,
1781 struct super_block *, struct buffer_head *bh);
1782
1783static inline int reiserfs_file_data_log(struct inode *inode)
1784{
1785 if (reiserfs_data_log(inode->i_sb) ||
1786 (REISERFS_I(inode)->i_flags & i_data_log))
1787 return 1;
1788 return 0;
1da177e4
LT
1789}
1790
bd4c625c
LT
1791static inline int reiserfs_transaction_running(struct super_block *s)
1792{
1793 struct reiserfs_transaction_handle *th = current->journal_info;
1794 if (th && th->t_super == s)
1795 return 1;
1796 if (th && th->t_super == NULL)
1797 BUG();
1798 return 0;
1da177e4
LT
1799}
1800
23f9e0f8
AZ
1801static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1802{
1803 return th->t_blocks_allocated - th->t_blocks_logged;
1804}
1805
bd4c625c
LT
1806struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1807 super_block
1808 *,
1809 int count);
1da177e4
LT
1810int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1811int reiserfs_commit_page(struct inode *inode, struct page *page,
bd4c625c 1812 unsigned from, unsigned to);
1da177e4 1813int reiserfs_flush_old_commits(struct super_block *);
bd4c625c
LT
1814int reiserfs_commit_for_inode(struct inode *);
1815int reiserfs_inode_needs_commit(struct inode *);
1816void reiserfs_update_inode_transaction(struct inode *);
1817void reiserfs_wait_on_write_block(struct super_block *s);
1818void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1819void reiserfs_allow_writes(struct super_block *s);
1820void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1821int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1822 int wait);
1823void reiserfs_restore_prepared_buffer(struct super_block *,
1824 struct buffer_head *bh);
1825int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1826 unsigned int);
1827int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1828int journal_release_error(struct reiserfs_transaction_handle *,
1829 struct super_block *);
1830int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1831 unsigned long);
1832int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1833 unsigned long);
1834int journal_mark_freed(struct reiserfs_transaction_handle *,
1835 struct super_block *, b_blocknr_t blocknr);
1836int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
a9dd3643
JM
1837int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
1838 int bit_nr, int searchall, b_blocknr_t *next);
bd4c625c 1839int journal_begin(struct reiserfs_transaction_handle *,
a9dd3643 1840 struct super_block *sb, unsigned long);
bd4c625c 1841int journal_join_abort(struct reiserfs_transaction_handle *,
a9dd3643 1842 struct super_block *sb, unsigned long);
32e8b106 1843void reiserfs_abort_journal(struct super_block *sb, int errno);
bd4c625c
LT
1844void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1845int reiserfs_allocate_list_bitmaps(struct super_block *s,
3ee16670 1846 struct reiserfs_list_bitmap *, unsigned int);
bd4c625c
LT
1847
1848void add_save_link(struct reiserfs_transaction_handle *th,
1849 struct inode *inode, int truncate);
1850int remove_save_link(struct inode *inode, int truncate);
1da177e4
LT
1851
1852/* objectid.c */
bd4c625c
LT
1853__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1854void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1855 __u32 objectid_to_release);
1856int reiserfs_convert_objectid_map_v1(struct super_block *);
1da177e4
LT
1857
1858/* stree.c */
1859int B_IS_IN_TREE(const struct buffer_head *);
d68caa95
JM
1860extern void copy_item_head(struct item_head *to,
1861 const struct item_head *from);
1da177e4
LT
1862
1863// first key is in cpu form, second - le
bd4c625c
LT
1864extern int comp_short_keys(const struct reiserfs_key *le_key,
1865 const struct cpu_key *cpu_key);
1866extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1da177e4
LT
1867
1868// both are in le form
bd4c625c
LT
1869extern int comp_le_keys(const struct reiserfs_key *,
1870 const struct reiserfs_key *);
1871extern int comp_short_le_keys(const struct reiserfs_key *,
1872 const struct reiserfs_key *);
1da177e4
LT
1873
1874//
1875// get key version from on disk key - kludge
1876//
bd4c625c 1877static inline int le_key_version(const struct reiserfs_key *key)
1da177e4 1878{
bd4c625c 1879 int type;
1da177e4 1880
bd4c625c
LT
1881 type = offset_v2_k_type(&(key->u.k_offset_v2));
1882 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1883 && type != TYPE_DIRENTRY)
1884 return KEY_FORMAT_3_5;
1885
1886 return KEY_FORMAT_3_6;
1da177e4 1887
1da177e4
LT
1888}
1889
bd4c625c
LT
1890static inline void copy_key(struct reiserfs_key *to,
1891 const struct reiserfs_key *from)
1892{
1893 memcpy(to, from, KEY_SIZE);
1894}
1da177e4 1895
d68caa95
JM
1896int comp_items(const struct item_head *stored_ih, const struct treepath *path);
1897const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
a9dd3643 1898 const struct super_block *sb);
bd4c625c 1899int search_by_key(struct super_block *, const struct cpu_key *,
fec6d055 1900 struct treepath *, int);
1da177e4 1901#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
a9dd3643 1902int search_for_position_by_key(struct super_block *sb,
d68caa95
JM
1903 const struct cpu_key *cpu_key,
1904 struct treepath *search_path);
ad31a4fc 1905extern void decrement_bcount(struct buffer_head *bh);
d68caa95
JM
1906void decrement_counters_in_path(struct treepath *search_path);
1907void pathrelse(struct treepath *search_path);
fec6d055 1908int reiserfs_check_path(struct treepath *p);
d68caa95 1909void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
bd4c625c
LT
1910
1911int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
fec6d055 1912 struct treepath *path,
bd4c625c
LT
1913 const struct cpu_key *key,
1914 struct item_head *ih,
1915 struct inode *inode, const char *body);
1916
1917int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
fec6d055 1918 struct treepath *path,
bd4c625c
LT
1919 const struct cpu_key *key,
1920 struct inode *inode,
1921 const char *body, int paste_size);
1922
1923int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
fec6d055 1924 struct treepath *path,
bd4c625c
LT
1925 struct cpu_key *key,
1926 struct inode *inode,
1927 struct page *page, loff_t new_file_size);
1928
1929int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
fec6d055 1930 struct treepath *path,
bd4c625c 1931 const struct cpu_key *key,
d68caa95 1932 struct inode *inode, struct buffer_head *un_bh);
bd4c625c
LT
1933
1934void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1935 struct inode *inode, struct reiserfs_key *key);
1936int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
995c762e 1937 struct inode *inode);
bd4c625c 1938int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
995c762e 1939 struct inode *inode, struct page *,
bd4c625c 1940 int update_timestamps);
1da177e4
LT
1941
1942#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1943#define file_size(inode) ((inode)->i_size)
1944#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1945
1946#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1947!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1948
bd4c625c 1949void padd_item(char *item, int total_length, int length);
1da177e4
LT
1950
1951/* inode.c */
1952/* args for the create parameter of reiserfs_get_block */
bd4c625c
LT
1953#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
1954#define GET_BLOCK_CREATE 1 /* add anything you need to find block */
1955#define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
1956#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
1b1dcc1b 1957#define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
bd4c625c
LT
1958#define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
1959
bd4c625c
LT
1960void reiserfs_read_locked_inode(struct inode *inode,
1961 struct reiserfs_iget_args *args);
1962int reiserfs_find_actor(struct inode *inode, void *p);
1963int reiserfs_init_locked_inode(struct inode *inode, void *p);
1964void reiserfs_delete_inode(struct inode *inode);
1965int reiserfs_write_inode(struct inode *inode, int);
1966int reiserfs_get_block(struct inode *inode, sector_t block,
1967 struct buffer_head *bh_result, int create);
be55caf1
CH
1968struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1969 int fh_len, int fh_type);
1970struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1971 int fh_len, int fh_type);
bd4c625c
LT
1972int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1973 int connectable);
1974
1975int reiserfs_truncate_file(struct inode *, int update_timestamps);
1976void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
1977 int type, int key_length);
1978void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
1979 int version,
1980 loff_t offset, int type, int length, int entry_count);
1981struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
1982
57fe60df 1983struct reiserfs_security_handle;
bd4c625c
LT
1984int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1985 struct inode *dir, int mode,
1986 const char *symname, loff_t i_size,
57fe60df
JM
1987 struct dentry *dentry, struct inode *inode,
1988 struct reiserfs_security_handle *security);
bd4c625c
LT
1989
1990void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1991 struct inode *inode, loff_t size);
1da177e4
LT
1992
1993static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
bd4c625c 1994 struct inode *inode)
1da177e4 1995{
bd4c625c 1996 reiserfs_update_sd_size(th, inode, inode->i_size);
1da177e4
LT
1997}
1998
bd4c625c
LT
1999void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
2000void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
1da177e4
LT
2001int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
2002
2003/* namei.c */
bd4c625c
LT
2004void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
2005int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
fec6d055 2006 struct treepath *path, struct reiserfs_dir_entry *de);
bd4c625c 2007struct dentry *reiserfs_get_parent(struct dentry *);
1da177e4
LT
2008/* procfs.c */
2009
2010#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
2011#define REISERFS_PROC_INFO
2012#else
2013#undef REISERFS_PROC_INFO
2014#endif
2015
bd4c625c
LT
2016int reiserfs_proc_info_init(struct super_block *sb);
2017int reiserfs_proc_info_done(struct super_block *sb);
2018struct proc_dir_entry *reiserfs_proc_register_global(char *name,
2019 read_proc_t * func);
2020void reiserfs_proc_unregister_global(const char *name);
2021int reiserfs_proc_info_global_init(void);
2022int reiserfs_proc_info_global_done(void);
2023int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset,
2024 int count, int *eof, void *data);
1da177e4
LT
2025
2026#if defined( REISERFS_PROC_INFO )
2027
2028#define PROC_EXP( e ) e
2029
2030#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2031#define PROC_INFO_MAX( sb, field, value ) \
2032 __PINFO( sb ).field = \
2033 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2034#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2035#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2036#define PROC_INFO_BH_STAT( sb, bh, level ) \
2037 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
2038 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
2039 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2040#else
2041#define PROC_EXP( e )
2042#define VOID_V ( ( void ) 0 )
2043#define PROC_INFO_MAX( sb, field, value ) VOID_V
2044#define PROC_INFO_INC( sb, field ) VOID_V
2045#define PROC_INFO_ADD( sb, field, val ) VOID_V
ad31a4fc 2046#define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
1da177e4
LT
2047#endif
2048
2049/* dir.c */
c5ef1c42
AV
2050extern const struct inode_operations reiserfs_dir_inode_operations;
2051extern const struct inode_operations reiserfs_symlink_inode_operations;
2052extern const struct inode_operations reiserfs_special_inode_operations;
4b6f5d20 2053extern const struct file_operations reiserfs_dir_operations;
a41f1a47 2054int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *);
1da177e4
LT
2055
2056/* tail_conversion.c */
bd4c625c 2057int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
fec6d055 2058 struct treepath *, struct buffer_head *, loff_t);
bd4c625c 2059int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
fec6d055 2060 struct page *, struct treepath *, const struct cpu_key *,
bd4c625c
LT
2061 loff_t, char *);
2062void reiserfs_unmap_buffer(struct buffer_head *);
1da177e4
LT
2063
2064/* file.c */
c5ef1c42 2065extern const struct inode_operations reiserfs_file_inode_operations;
4b6f5d20 2066extern const struct file_operations reiserfs_file_operations;
f5e54d6e 2067extern const struct address_space_operations reiserfs_address_space_operations;
1da177e4
LT
2068
2069/* fix_nodes.c */
1da177e4 2070
a063ae17 2071int fix_nodes(int n_op_mode, struct tree_balance *tb,
d68caa95 2072 struct item_head *ins_ih, const void *);
bd4c625c 2073void unfix_nodes(struct tree_balance *);
1da177e4
LT
2074
2075/* prints.c */
c3a9c210
JM
2076void __reiserfs_panic(struct super_block *s, const char *id,
2077 const char *function, const char *fmt, ...)
bd4c625c 2078 __attribute__ ((noreturn));
c3a9c210
JM
2079#define reiserfs_panic(s, id, fmt, args...) \
2080 __reiserfs_panic(s, id, __func__, fmt, ##args)
1e5e59d4
JM
2081void __reiserfs_error(struct super_block *s, const char *id,
2082 const char *function, const char *fmt, ...);
2083#define reiserfs_error(s, id, fmt, args...) \
2084 __reiserfs_error(s, id, __func__, fmt, ##args)
bd4c625c
LT
2085void reiserfs_info(struct super_block *s, const char *fmt, ...);
2086void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2087void print_indirect_item(struct buffer_head *bh, int item_num);
2088void store_print_tb(struct tree_balance *tb);
2089void print_cur_tb(char *mes);
2090void print_de(struct reiserfs_dir_entry *de);
2091void print_bi(struct buffer_info *bi, char *mes);
2092#define PRINT_LEAF_ITEMS 1 /* print all items */
2093#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2094#define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2095void print_block(struct buffer_head *bh, ...);
2096void print_bmap(struct super_block *s, int silent);
2097void print_bmap_block(int i, char *data, int size, int silent);
1da177e4 2098/*void print_super_block (struct super_block * s, char * mes);*/
bd4c625c
LT
2099void print_objectid_map(struct super_block *s);
2100void print_block_head(struct buffer_head *bh, char *mes);
2101void check_leaf(struct buffer_head *bh);
2102void check_internal(struct buffer_head *bh);
2103void print_statistics(struct super_block *s);
2104char *reiserfs_hashname(int code);
1da177e4
LT
2105
2106/* lbalance.c */
bd4c625c
LT
2107int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2108 int mov_bytes, struct buffer_head *Snew);
2109int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2110int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2111void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2112 int del_num, int del_bytes);
2113void leaf_insert_into_buf(struct buffer_info *bi, int before,
2114 struct item_head *inserted_item_ih,
2115 const char *inserted_item_body, int zeros_number);
2116void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2117 int pos_in_item, int paste_size, const char *body,
2118 int zeros_number);
2119void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2120 int pos_in_item, int cut_size);
eba00305 2121void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
bd4c625c
LT
2122 int new_entry_count, struct reiserfs_de_head *new_dehs,
2123 const char *records, int paste_size);
1da177e4 2124/* ibalance.c */
bd4c625c
LT
2125int balance_internal(struct tree_balance *, int, int, struct item_head *,
2126 struct buffer_head **);
1da177e4
LT
2127
2128/* do_balance.c */
bd4c625c
LT
2129void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2130 struct buffer_head *bh, int flag);
1da177e4
LT
2131#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2132#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2133
bd4c625c
LT
2134void do_balance(struct tree_balance *tb, struct item_head *ih,
2135 const char *body, int flag);
2136void reiserfs_invalidate_buffer(struct tree_balance *tb,
2137 struct buffer_head *bh);
1da177e4 2138
bd4c625c
LT
2139int get_left_neighbor_position(struct tree_balance *tb, int h);
2140int get_right_neighbor_position(struct tree_balance *tb, int h);
2141void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2142 struct buffer_head *, int);
2143void make_empty_node(struct buffer_info *);
2144struct buffer_head *get_FEB(struct tree_balance *);
1da177e4
LT
2145
2146/* bitmap.c */
2147
2148/* structure contains hints for block allocator, and it is a container for
2149 * arguments, such as node, search path, transaction_handle, etc. */
bd4c625c
LT
2150struct __reiserfs_blocknr_hint {
2151 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */
3ee16670 2152 sector_t block; /* file offset, in blocks */
bd4c625c 2153 struct in_core_key key;
fec6d055 2154 struct treepath *path; /* search path, used by allocator to deternine search_start by
bd4c625c
LT
2155 * various ways */
2156 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2157 * bitmap blocks changes */
2158 b_blocknr_t beg, end;
2159 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
1da177e4
LT
2160 * between different block allocator procedures
2161 * (determine_search_start() and others) */
bd4c625c
LT
2162 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2163 * function that do actual allocation */
1da177e4 2164
bd4c625c 2165 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
1da177e4 2166 * formatted/unformatted blocks with/without preallocation */
bd4c625c 2167 unsigned preallocate:1;
1da177e4
LT
2168};
2169
2170typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2171
bd4c625c
LT
2172int reiserfs_parse_alloc_options(struct super_block *, char *);
2173void reiserfs_init_alloc_options(struct super_block *s);
1da177e4
LT
2174
2175/*
2176 * given a directory, this will tell you what packing locality
2177 * to use for a new object underneat it. The locality is returned
2178 * in disk byte order (le).
2179 */
3e8962be 2180__le32 reiserfs_choose_packing(struct inode *dir);
1da177e4 2181
6f01046b
JM
2182int reiserfs_init_bitmap_cache(struct super_block *sb);
2183void reiserfs_free_bitmap_cache(struct super_block *sb);
2184void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2185struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
bd4c625c
LT
2186int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2187void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2188 b_blocknr_t, int for_unformatted);
2189int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2190 int);
9adeb1b4 2191static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
bd4c625c
LT
2192 b_blocknr_t * new_blocknrs,
2193 int amount_needed)
1da177e4 2194{
bd4c625c
LT
2195 reiserfs_blocknr_hint_t hint = {
2196 .th = tb->transaction_handle,
2197 .path = tb->tb_path,
2198 .inode = NULL,
2199 .key = tb->key,
2200 .block = 0,
2201 .formatted_node = 1
2202 };
2203 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2204 0);
1da177e4
LT
2205}
2206
9adeb1b4 2207static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
bd4c625c
LT
2208 *th, struct inode *inode,
2209 b_blocknr_t * new_blocknrs,
3ee16670
JM
2210 struct treepath *path,
2211 sector_t block)
1da177e4 2212{
bd4c625c
LT
2213 reiserfs_blocknr_hint_t hint = {
2214 .th = th,
2215 .path = path,
2216 .inode = inode,
2217 .block = block,
2218 .formatted_node = 0,
2219 .preallocate = 0
2220 };
2221 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
1da177e4
LT
2222}
2223
2224#ifdef REISERFS_PREALLOCATE
9adeb1b4 2225static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
bd4c625c
LT
2226 *th, struct inode *inode,
2227 b_blocknr_t * new_blocknrs,
3ee16670
JM
2228 struct treepath *path,
2229 sector_t block)
1da177e4 2230{
bd4c625c
LT
2231 reiserfs_blocknr_hint_t hint = {
2232 .th = th,
2233 .path = path,
2234 .inode = inode,
2235 .block = block,
2236 .formatted_node = 0,
2237 .preallocate = 1
2238 };
2239 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
1da177e4
LT
2240}
2241
bd4c625c
LT
2242void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2243 struct inode *inode);
2244void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
1da177e4 2245#endif
1da177e4
LT
2246
2247/* hashes.c */
bd4c625c
LT
2248__u32 keyed_hash(const signed char *msg, int len);
2249__u32 yura_hash(const signed char *msg, int len);
2250__u32 r5_hash(const signed char *msg, int len);
1da177e4
LT
2251
2252/* the ext2 bit routines adjust for big or little endian as
2253** appropriate for the arch, so in our laziness we use them rather
2254** than using the bit routines they call more directly. These
2255** routines must be used when changing on disk bitmaps. */
2256#define reiserfs_test_and_set_le_bit ext2_set_bit
2257#define reiserfs_test_and_clear_le_bit ext2_clear_bit
2258#define reiserfs_test_le_bit ext2_test_bit
2259#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2260
2261/* sometimes reiserfs_truncate may require to allocate few new blocks
2262 to perform indirect2direct conversion. People probably used to
2263 think, that truncate should work without problems on a filesystem
2264 without free disk space. They may complain that they can not
2265 truncate due to lack of free disk space. This spare space allows us
2266 to not worry about it. 500 is probably too much, but it should be
2267 absolutely safe */
2268#define SPARE_SPACE 500
2269
1da177e4 2270/* prototypes from ioctl.c */
bd4c625c
LT
2271int reiserfs_ioctl(struct inode *inode, struct file *filp,
2272 unsigned int cmd, unsigned long arg);
52b499c4
DH
2273long reiserfs_compat_ioctl(struct file *filp,
2274 unsigned int cmd, unsigned long arg);
d5dee5c3 2275int reiserfs_unpack(struct inode *inode, struct file *filp);
bd4c625c 2276
11d9f653 2277#endif /* __KERNEL__ */
bd4c625c 2278
bd4c625c 2279#endif /* _LINUX_REISER_FS_H */