]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/sched/signal.h
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / include / linux / sched / signal.h
CommitLineData
3f07c014
IM
1#ifndef _LINUX_SCHED_SIGNAL_H
2#define _LINUX_SCHED_SIGNAL_H
3
b2d09103 4#include <linux/rculist.h>
f361bf4a 5#include <linux/signal.h>
3f07c014 6#include <linux/sched.h>
1e4bae64 7#include <linux/sched/jobctl.h>
9164bb4a 8#include <linux/sched/task.h>
2a1f062a 9#include <linux/cred.h>
3f07c014 10
c3edc401
IM
11/*
12 * Types defining task->signal and task->sighand and APIs using them:
13 */
14
15struct sighand_struct {
16 atomic_t count;
17 struct k_sigaction action[_NSIG];
18 spinlock_t siglock;
19 wait_queue_head_t signalfd_wqh;
20};
21
8d88460e
IM
22/*
23 * Per-process accounting stats:
24 */
25struct pacct_struct {
26 int ac_flag;
27 long ac_exitcode;
28 unsigned long ac_mem;
29 u64 ac_utime, ac_stime;
30 unsigned long ac_minflt, ac_majflt;
31};
32
33struct cpu_itimer {
34 u64 expires;
35 u64 incr;
36};
37
1050b27c
IM
38/*
39 * This is the atomic variant of task_cputime, which can be used for
40 * storing and updating task_cputime statistics without locking.
41 */
42struct task_cputime_atomic {
43 atomic64_t utime;
44 atomic64_t stime;
45 atomic64_t sum_exec_runtime;
46};
47
48#define INIT_CPUTIME_ATOMIC \
49 (struct task_cputime_atomic) { \
50 .utime = ATOMIC64_INIT(0), \
51 .stime = ATOMIC64_INIT(0), \
52 .sum_exec_runtime = ATOMIC64_INIT(0), \
53 }
54/**
55 * struct thread_group_cputimer - thread group interval timer counts
56 * @cputime_atomic: atomic thread group interval timers.
57 * @running: true when there are timers running and
58 * @cputime_atomic receives updates.
59 * @checking_timer: true when a thread in the group is in the
60 * process of checking for thread group timers.
61 *
62 * This structure contains the version of task_cputime, above, that is
63 * used for thread group CPU timer calculations.
64 */
65struct thread_group_cputimer {
66 struct task_cputime_atomic cputime_atomic;
67 bool running;
68 bool checking_timer;
69};
70
c3edc401
IM
71/*
72 * NOTE! "signal_struct" does not have its own
73 * locking, because a shared signal_struct always
74 * implies a shared sighand_struct, so locking
75 * sighand_struct is always a proper superset of
76 * the locking of signal_struct.
77 */
78struct signal_struct {
79 atomic_t sigcnt;
80 atomic_t live;
81 int nr_threads;
82 struct list_head thread_head;
83
84 wait_queue_head_t wait_chldexit; /* for wait4() */
85
86 /* current thread group signal load-balancing target: */
87 struct task_struct *curr_target;
88
89 /* shared signal handling: */
90 struct sigpending shared_pending;
91
92 /* thread group exit support */
93 int group_exit_code;
94 /* overloaded:
95 * - notify group_exit_task when ->count is equal to notify_count
96 * - everyone except group_exit_task is stopped during signal delivery
97 * of fatal signals, group_exit_task processes the signal.
98 */
99 int notify_count;
100 struct task_struct *group_exit_task;
101
102 /* thread group stop support, overloads group_exit_code too */
103 int group_stop_count;
104 unsigned int flags; /* see SIGNAL_* flags below */
105
106 /*
107 * PR_SET_CHILD_SUBREAPER marks a process, like a service
108 * manager, to re-parent orphan (double-forking) child processes
109 * to this process instead of 'init'. The service manager is
110 * able to receive SIGCHLD signals and is able to investigate
111 * the process until it calls wait(). All children of this
112 * process will inherit a flag if they should look for a
113 * child_subreaper process at exit.
114 */
115 unsigned int is_child_subreaper:1;
116 unsigned int has_child_subreaper:1;
117
118#ifdef CONFIG_POSIX_TIMERS
119
120 /* POSIX.1b Interval Timers */
121 int posix_timer_id;
122 struct list_head posix_timers;
123
124 /* ITIMER_REAL timer for the process */
125 struct hrtimer real_timer;
126 ktime_t it_real_incr;
127
128 /*
129 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
130 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
131 * values are defined to 0 and 1 respectively
132 */
133 struct cpu_itimer it[2];
134
135 /*
136 * Thread group totals for process CPU timers.
137 * See thread_group_cputimer(), et al, for details.
138 */
139 struct thread_group_cputimer cputimer;
140
141 /* Earliest-expiration cache. */
142 struct task_cputime cputime_expires;
143
144 struct list_head cpu_timers[3];
145
146#endif
147
148 struct pid *leader_pid;
149
150#ifdef CONFIG_NO_HZ_FULL
151 atomic_t tick_dep_mask;
152#endif
153
154 struct pid *tty_old_pgrp;
155
156 /* boolean value for session group leader */
157 int leader;
158
159 struct tty_struct *tty; /* NULL if no tty */
160
161#ifdef CONFIG_SCHED_AUTOGROUP
162 struct autogroup *autogroup;
163#endif
164 /*
165 * Cumulative resource counters for dead threads in the group,
166 * and for reaped dead child processes forked by this group.
167 * Live threads maintain their own counters and add to these
168 * in __exit_signal, except for the group leader.
169 */
170 seqlock_t stats_lock;
171 u64 utime, stime, cutime, cstime;
172 u64 gtime;
173 u64 cgtime;
174 struct prev_cputime prev_cputime;
175 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
176 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
177 unsigned long inblock, oublock, cinblock, coublock;
178 unsigned long maxrss, cmaxrss;
179 struct task_io_accounting ioac;
180
181 /*
182 * Cumulative ns of schedule CPU time fo dead threads in the
183 * group, not including a zombie group leader, (This only differs
184 * from jiffies_to_ns(utime + stime) if sched_clock uses something
185 * other than jiffies.)
186 */
187 unsigned long long sum_sched_runtime;
188
189 /*
190 * We don't bother to synchronize most readers of this at all,
191 * because there is no reader checking a limit that actually needs
192 * to get both rlim_cur and rlim_max atomically, and either one
193 * alone is a single word that can safely be read normally.
194 * getrlimit/setrlimit use task_lock(current->group_leader) to
195 * protect this instead of the siglock, because they really
196 * have no need to disable irqs.
197 */
198 struct rlimit rlim[RLIM_NLIMITS];
199
200#ifdef CONFIG_BSD_PROCESS_ACCT
201 struct pacct_struct pacct; /* per-process accounting information */
202#endif
203#ifdef CONFIG_TASKSTATS
204 struct taskstats *stats;
205#endif
206#ifdef CONFIG_AUDIT
207 unsigned audit_tty;
208 struct tty_audit_buf *tty_audit_buf;
209#endif
210
211 /*
212 * Thread is the potential origin of an oom condition; kill first on
213 * oom
214 */
215 bool oom_flag_origin;
216 short oom_score_adj; /* OOM kill score adjustment */
217 short oom_score_adj_min; /* OOM kill score adjustment min value.
218 * Only settable by CAP_SYS_RESOURCE. */
219 struct mm_struct *oom_mm; /* recorded mm when the thread group got
220 * killed by the oom killer */
221
222 struct mutex cred_guard_mutex; /* guard against foreign influences on
223 * credential calculations
224 * (notably. ptrace) */
3859a271 225} __randomize_layout;
c3edc401
IM
226
227/*
228 * Bits in flags field of signal_struct.
229 */
230#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
231#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
232#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
233#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
234/*
235 * Pending notifications to parent.
236 */
237#define SIGNAL_CLD_STOPPED 0x00000010
238#define SIGNAL_CLD_CONTINUED 0x00000020
239#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
240
241#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
242
243#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
244 SIGNAL_STOP_CONTINUED)
245
246static inline void signal_set_stop_flags(struct signal_struct *sig,
247 unsigned int flags)
248{
249 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
250 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
251}
252
253/* If true, all threads except ->group_exit_task have pending SIGKILL */
254static inline int signal_group_exit(const struct signal_struct *sig)
255{
256 return (sig->flags & SIGNAL_GROUP_EXIT) ||
257 (sig->group_exit_task != NULL);
258}
259
260extern void flush_signals(struct task_struct *);
261extern void ignore_signals(struct task_struct *);
262extern void flush_signal_handlers(struct task_struct *, int force_default);
263extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
264
265static inline int kernel_dequeue_signal(siginfo_t *info)
266{
267 struct task_struct *tsk = current;
268 siginfo_t __info;
269 int ret;
270
271 spin_lock_irq(&tsk->sighand->siglock);
272 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
273 spin_unlock_irq(&tsk->sighand->siglock);
274
275 return ret;
276}
277
278static inline void kernel_signal_stop(void)
279{
280 spin_lock_irq(&current->sighand->siglock);
281 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
282 __set_current_state(TASK_STOPPED);
283 spin_unlock_irq(&current->sighand->siglock);
284
285 schedule();
286}
287extern int send_sig_info(int, struct siginfo *, struct task_struct *);
288extern int force_sigsegv(int, struct task_struct *);
289extern int force_sig_info(int, struct siginfo *, struct task_struct *);
290extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
291extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
292extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
293 const struct cred *, u32);
294extern int kill_pgrp(struct pid *pid, int sig, int priv);
295extern int kill_pid(struct pid *pid, int sig, int priv);
c3edc401
IM
296extern __must_check bool do_notify_parent(struct task_struct *, int);
297extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
298extern void force_sig(int, struct task_struct *);
299extern int send_sig(int, struct task_struct *, int);
300extern int zap_other_threads(struct task_struct *p);
301extern struct sigqueue *sigqueue_alloc(void);
302extern void sigqueue_free(struct sigqueue *);
303extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
304extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
305
2a1f062a
IM
306static inline int restart_syscall(void)
307{
308 set_tsk_thread_flag(current, TIF_SIGPENDING);
309 return -ERESTARTNOINTR;
310}
311
312static inline int signal_pending(struct task_struct *p)
313{
314 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
315}
316
317static inline int __fatal_signal_pending(struct task_struct *p)
318{
319 return unlikely(sigismember(&p->pending.signal, SIGKILL));
320}
321
322static inline int fatal_signal_pending(struct task_struct *p)
323{
324 return signal_pending(p) && __fatal_signal_pending(p);
325}
326
327static inline int signal_pending_state(long state, struct task_struct *p)
328{
329 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
330 return 0;
331 if (!signal_pending(p))
332 return 0;
333
334 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
335}
336
337/*
338 * Reevaluate whether the task has signals pending delivery.
339 * Wake the task if so.
340 * This is required every time the blocked sigset_t changes.
341 * callers must hold sighand->siglock.
342 */
343extern void recalc_sigpending_and_wake(struct task_struct *t);
344extern void recalc_sigpending(void);
345
346extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
347
348static inline void signal_wake_up(struct task_struct *t, bool resume)
349{
350 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
351}
352static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
353{
354 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
355}
356
c3edc401
IM
357#ifdef TIF_RESTORE_SIGMASK
358/*
359 * Legacy restore_sigmask accessors. These are inefficient on
360 * SMP architectures because they require atomic operations.
361 */
362
363/**
364 * set_restore_sigmask() - make sure saved_sigmask processing gets done
365 *
366 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
367 * will run before returning to user mode, to process the flag. For
368 * all callers, TIF_SIGPENDING is already set or it's no harm to set
369 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
370 * arch code will notice on return to user mode, in case those bits
371 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
372 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
373 */
374static inline void set_restore_sigmask(void)
375{
376 set_thread_flag(TIF_RESTORE_SIGMASK);
377 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
378}
379static inline void clear_restore_sigmask(void)
380{
381 clear_thread_flag(TIF_RESTORE_SIGMASK);
382}
383static inline bool test_restore_sigmask(void)
384{
385 return test_thread_flag(TIF_RESTORE_SIGMASK);
386}
387static inline bool test_and_clear_restore_sigmask(void)
388{
389 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
390}
391
392#else /* TIF_RESTORE_SIGMASK */
393
394/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
395static inline void set_restore_sigmask(void)
396{
397 current->restore_sigmask = true;
398 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
399}
400static inline void clear_restore_sigmask(void)
401{
402 current->restore_sigmask = false;
403}
404static inline bool test_restore_sigmask(void)
405{
406 return current->restore_sigmask;
407}
408static inline bool test_and_clear_restore_sigmask(void)
409{
410 if (!current->restore_sigmask)
411 return false;
412 current->restore_sigmask = false;
413 return true;
414}
415#endif
416
417static inline void restore_saved_sigmask(void)
418{
419 if (test_and_clear_restore_sigmask())
420 __set_current_blocked(&current->saved_sigmask);
421}
422
423static inline sigset_t *sigmask_to_save(void)
424{
425 sigset_t *res = &current->blocked;
426 if (unlikely(test_restore_sigmask()))
427 res = &current->saved_sigmask;
428 return res;
429}
430
431static inline int kill_cad_pid(int sig, int priv)
432{
433 return kill_pid(cad_pid, sig, priv);
434}
435
436/* These can be the second arg to send_sig_info/send_group_sig_info. */
437#define SEND_SIG_NOINFO ((struct siginfo *) 0)
438#define SEND_SIG_PRIV ((struct siginfo *) 1)
439#define SEND_SIG_FORCED ((struct siginfo *) 2)
440
441/*
442 * True if we are on the alternate signal stack.
443 */
444static inline int on_sig_stack(unsigned long sp)
445{
446 /*
447 * If the signal stack is SS_AUTODISARM then, by construction, we
448 * can't be on the signal stack unless user code deliberately set
449 * SS_AUTODISARM when we were already on it.
450 *
451 * This improves reliability: if user state gets corrupted such that
452 * the stack pointer points very close to the end of the signal stack,
453 * then this check will enable the signal to be handled anyway.
454 */
455 if (current->sas_ss_flags & SS_AUTODISARM)
456 return 0;
457
458#ifdef CONFIG_STACK_GROWSUP
459 return sp >= current->sas_ss_sp &&
460 sp - current->sas_ss_sp < current->sas_ss_size;
461#else
462 return sp > current->sas_ss_sp &&
463 sp - current->sas_ss_sp <= current->sas_ss_size;
464#endif
465}
466
467static inline int sas_ss_flags(unsigned long sp)
468{
469 if (!current->sas_ss_size)
470 return SS_DISABLE;
471
472 return on_sig_stack(sp) ? SS_ONSTACK : 0;
473}
474
475static inline void sas_ss_reset(struct task_struct *p)
476{
477 p->sas_ss_sp = 0;
478 p->sas_ss_size = 0;
479 p->sas_ss_flags = SS_DISABLE;
480}
481
482static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
483{
484 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
485#ifdef CONFIG_STACK_GROWSUP
486 return current->sas_ss_sp;
487#else
488 return current->sas_ss_sp + current->sas_ss_size;
489#endif
490 return sp;
491}
492
493extern void __cleanup_sighand(struct sighand_struct *);
494extern void flush_itimer_signals(void);
495
496#define tasklist_empty() \
497 list_empty(&init_task.tasks)
498
499#define next_task(p) \
500 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
501
502#define for_each_process(p) \
503 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
504
505extern bool current_is_single_threaded(void);
506
507/*
508 * Careful: do_each_thread/while_each_thread is a double loop so
509 * 'break' will not work as expected - use goto instead.
510 */
511#define do_each_thread(g, t) \
512 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
513
514#define while_each_thread(g, t) \
515 while ((t = next_thread(t)) != g)
516
517#define __for_each_thread(signal, t) \
518 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
519
520#define for_each_thread(p, t) \
521 __for_each_thread((p)->signal, t)
522
523/* Careful: this is a double loop, 'break' won't work as expected. */
524#define for_each_process_thread(p, t) \
525 for_each_process(p) for_each_thread(p, t)
526
527typedef int (*proc_visitor)(struct task_struct *p, void *data);
528void walk_process_tree(struct task_struct *top, proc_visitor, void *);
529
530static inline int get_nr_threads(struct task_struct *tsk)
531{
532 return tsk->signal->nr_threads;
533}
534
535static inline bool thread_group_leader(struct task_struct *p)
536{
537 return p->exit_signal >= 0;
538}
539
540/* Do to the insanities of de_thread it is possible for a process
541 * to have the pid of the thread group leader without actually being
542 * the thread group leader. For iteration through the pids in proc
543 * all we care about is that we have a task with the appropriate
544 * pid, we don't actually care if we have the right task.
545 */
546static inline bool has_group_leader_pid(struct task_struct *p)
547{
548 return task_pid(p) == p->signal->leader_pid;
549}
550
551static inline
552bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
553{
554 return p1->signal == p2->signal;
555}
556
557static inline struct task_struct *next_thread(const struct task_struct *p)
558{
559 return list_entry_rcu(p->thread_group.next,
560 struct task_struct, thread_group);
561}
562
563static inline int thread_group_empty(struct task_struct *p)
564{
565 return list_empty(&p->thread_group);
566}
567
568#define delay_group_leader(p) \
569 (thread_group_leader(p) && !thread_group_empty(p))
570
571extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
572 unsigned long *flags);
573
574static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
575 unsigned long *flags)
576{
577 struct sighand_struct *ret;
578
579 ret = __lock_task_sighand(tsk, flags);
580 (void)__cond_lock(&tsk->sighand->siglock, ret);
581 return ret;
582}
583
584static inline void unlock_task_sighand(struct task_struct *tsk,
585 unsigned long *flags)
586{
587 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
588}
589
590static inline unsigned long task_rlimit(const struct task_struct *tsk,
591 unsigned int limit)
592{
593 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
594}
595
596static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
597 unsigned int limit)
598{
599 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
600}
601
602static inline unsigned long rlimit(unsigned int limit)
603{
604 return task_rlimit(current, limit);
605}
606
607static inline unsigned long rlimit_max(unsigned int limit)
608{
609 return task_rlimit_max(current, limit);
610}
611
3f07c014 612#endif /* _LINUX_SCHED_SIGNAL_H */