]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - include/linux/sched/signal.h
fork: Have new threads join on-going signal group stops
[mirror_ubuntu-kernels.git] / include / linux / sched / signal.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
3f07c014
IM
2#ifndef _LINUX_SCHED_SIGNAL_H
3#define _LINUX_SCHED_SIGNAL_H
4
b2d09103 5#include <linux/rculist.h>
f361bf4a 6#include <linux/signal.h>
3f07c014 7#include <linux/sched.h>
1e4bae64 8#include <linux/sched/jobctl.h>
9164bb4a 9#include <linux/sched/task.h>
2a1f062a 10#include <linux/cred.h>
3f07c014 11
c3edc401
IM
12/*
13 * Types defining task->signal and task->sighand and APIs using them:
14 */
15
16struct sighand_struct {
17 atomic_t count;
18 struct k_sigaction action[_NSIG];
19 spinlock_t siglock;
20 wait_queue_head_t signalfd_wqh;
21};
22
8d88460e
IM
23/*
24 * Per-process accounting stats:
25 */
26struct pacct_struct {
27 int ac_flag;
28 long ac_exitcode;
29 unsigned long ac_mem;
30 u64 ac_utime, ac_stime;
31 unsigned long ac_minflt, ac_majflt;
32};
33
34struct cpu_itimer {
35 u64 expires;
36 u64 incr;
37};
38
1050b27c
IM
39/*
40 * This is the atomic variant of task_cputime, which can be used for
41 * storing and updating task_cputime statistics without locking.
42 */
43struct task_cputime_atomic {
44 atomic64_t utime;
45 atomic64_t stime;
46 atomic64_t sum_exec_runtime;
47};
48
49#define INIT_CPUTIME_ATOMIC \
50 (struct task_cputime_atomic) { \
51 .utime = ATOMIC64_INIT(0), \
52 .stime = ATOMIC64_INIT(0), \
53 .sum_exec_runtime = ATOMIC64_INIT(0), \
54 }
55/**
56 * struct thread_group_cputimer - thread group interval timer counts
57 * @cputime_atomic: atomic thread group interval timers.
58 * @running: true when there are timers running and
59 * @cputime_atomic receives updates.
60 * @checking_timer: true when a thread in the group is in the
61 * process of checking for thread group timers.
62 *
63 * This structure contains the version of task_cputime, above, that is
64 * used for thread group CPU timer calculations.
65 */
66struct thread_group_cputimer {
67 struct task_cputime_atomic cputime_atomic;
68 bool running;
69 bool checking_timer;
70};
71
c3edc401
IM
72/*
73 * NOTE! "signal_struct" does not have its own
74 * locking, because a shared signal_struct always
75 * implies a shared sighand_struct, so locking
76 * sighand_struct is always a proper superset of
77 * the locking of signal_struct.
78 */
79struct signal_struct {
80 atomic_t sigcnt;
81 atomic_t live;
82 int nr_threads;
83 struct list_head thread_head;
84
85 wait_queue_head_t wait_chldexit; /* for wait4() */
86
87 /* current thread group signal load-balancing target: */
88 struct task_struct *curr_target;
89
90 /* shared signal handling: */
91 struct sigpending shared_pending;
92
93 /* thread group exit support */
94 int group_exit_code;
95 /* overloaded:
96 * - notify group_exit_task when ->count is equal to notify_count
97 * - everyone except group_exit_task is stopped during signal delivery
98 * of fatal signals, group_exit_task processes the signal.
99 */
100 int notify_count;
101 struct task_struct *group_exit_task;
102
103 /* thread group stop support, overloads group_exit_code too */
104 int group_stop_count;
105 unsigned int flags; /* see SIGNAL_* flags below */
106
107 /*
108 * PR_SET_CHILD_SUBREAPER marks a process, like a service
109 * manager, to re-parent orphan (double-forking) child processes
110 * to this process instead of 'init'. The service manager is
111 * able to receive SIGCHLD signals and is able to investigate
112 * the process until it calls wait(). All children of this
113 * process will inherit a flag if they should look for a
114 * child_subreaper process at exit.
115 */
116 unsigned int is_child_subreaper:1;
117 unsigned int has_child_subreaper:1;
118
119#ifdef CONFIG_POSIX_TIMERS
120
121 /* POSIX.1b Interval Timers */
122 int posix_timer_id;
123 struct list_head posix_timers;
124
125 /* ITIMER_REAL timer for the process */
126 struct hrtimer real_timer;
127 ktime_t it_real_incr;
128
129 /*
130 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
131 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
132 * values are defined to 0 and 1 respectively
133 */
134 struct cpu_itimer it[2];
135
136 /*
137 * Thread group totals for process CPU timers.
138 * See thread_group_cputimer(), et al, for details.
139 */
140 struct thread_group_cputimer cputimer;
141
142 /* Earliest-expiration cache. */
143 struct task_cputime cputime_expires;
144
145 struct list_head cpu_timers[3];
146
147#endif
148
2c470475 149 /* PID/PID hash table linkage. */
2c470475 150 struct pid *pids[PIDTYPE_MAX];
c3edc401
IM
151
152#ifdef CONFIG_NO_HZ_FULL
153 atomic_t tick_dep_mask;
154#endif
155
156 struct pid *tty_old_pgrp;
157
158 /* boolean value for session group leader */
159 int leader;
160
161 struct tty_struct *tty; /* NULL if no tty */
162
163#ifdef CONFIG_SCHED_AUTOGROUP
164 struct autogroup *autogroup;
165#endif
166 /*
167 * Cumulative resource counters for dead threads in the group,
168 * and for reaped dead child processes forked by this group.
169 * Live threads maintain their own counters and add to these
170 * in __exit_signal, except for the group leader.
171 */
172 seqlock_t stats_lock;
173 u64 utime, stime, cutime, cstime;
174 u64 gtime;
175 u64 cgtime;
176 struct prev_cputime prev_cputime;
177 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
178 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
179 unsigned long inblock, oublock, cinblock, coublock;
180 unsigned long maxrss, cmaxrss;
181 struct task_io_accounting ioac;
182
183 /*
184 * Cumulative ns of schedule CPU time fo dead threads in the
185 * group, not including a zombie group leader, (This only differs
186 * from jiffies_to_ns(utime + stime) if sched_clock uses something
187 * other than jiffies.)
188 */
189 unsigned long long sum_sched_runtime;
190
191 /*
192 * We don't bother to synchronize most readers of this at all,
193 * because there is no reader checking a limit that actually needs
194 * to get both rlim_cur and rlim_max atomically, and either one
195 * alone is a single word that can safely be read normally.
196 * getrlimit/setrlimit use task_lock(current->group_leader) to
197 * protect this instead of the siglock, because they really
198 * have no need to disable irqs.
199 */
200 struct rlimit rlim[RLIM_NLIMITS];
201
202#ifdef CONFIG_BSD_PROCESS_ACCT
203 struct pacct_struct pacct; /* per-process accounting information */
204#endif
205#ifdef CONFIG_TASKSTATS
206 struct taskstats *stats;
207#endif
208#ifdef CONFIG_AUDIT
209 unsigned audit_tty;
210 struct tty_audit_buf *tty_audit_buf;
211#endif
212
213 /*
214 * Thread is the potential origin of an oom condition; kill first on
215 * oom
216 */
217 bool oom_flag_origin;
218 short oom_score_adj; /* OOM kill score adjustment */
219 short oom_score_adj_min; /* OOM kill score adjustment min value.
220 * Only settable by CAP_SYS_RESOURCE. */
221 struct mm_struct *oom_mm; /* recorded mm when the thread group got
222 * killed by the oom killer */
223
224 struct mutex cred_guard_mutex; /* guard against foreign influences on
225 * credential calculations
226 * (notably. ptrace) */
3859a271 227} __randomize_layout;
c3edc401
IM
228
229/*
230 * Bits in flags field of signal_struct.
231 */
232#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
233#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
234#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
235#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
236/*
237 * Pending notifications to parent.
238 */
239#define SIGNAL_CLD_STOPPED 0x00000010
240#define SIGNAL_CLD_CONTINUED 0x00000020
241#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
242
243#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
244
245#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
246 SIGNAL_STOP_CONTINUED)
247
248static inline void signal_set_stop_flags(struct signal_struct *sig,
249 unsigned int flags)
250{
251 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
252 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
253}
254
255/* If true, all threads except ->group_exit_task have pending SIGKILL */
256static inline int signal_group_exit(const struct signal_struct *sig)
257{
258 return (sig->flags & SIGNAL_GROUP_EXIT) ||
259 (sig->group_exit_task != NULL);
260}
261
262extern void flush_signals(struct task_struct *);
263extern void ignore_signals(struct task_struct *);
264extern void flush_signal_handlers(struct task_struct *, int force_default);
265extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
266
267static inline int kernel_dequeue_signal(siginfo_t *info)
268{
269 struct task_struct *tsk = current;
270 siginfo_t __info;
271 int ret;
272
273 spin_lock_irq(&tsk->sighand->siglock);
274 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
275 spin_unlock_irq(&tsk->sighand->siglock);
276
277 return ret;
278}
279
280static inline void kernel_signal_stop(void)
281{
282 spin_lock_irq(&current->sighand->siglock);
283 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
b5bf9a90 284 set_special_state(TASK_STOPPED);
c3edc401
IM
285 spin_unlock_irq(&current->sighand->siglock);
286
287 schedule();
288}
f8ec6601
EB
289#ifdef __ARCH_SI_TRAPNO
290# define ___ARCH_SI_TRAPNO(_a1) , _a1
291#else
292# define ___ARCH_SI_TRAPNO(_a1)
293#endif
294#ifdef __ia64__
295# define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
296#else
297# define ___ARCH_SI_IA64(_a1, _a2, _a3)
298#endif
299
300int force_sig_fault(int sig, int code, void __user *addr
301 ___ARCH_SI_TRAPNO(int trapno)
302 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
303 , struct task_struct *t);
304int send_sig_fault(int sig, int code, void __user *addr
305 ___ARCH_SI_TRAPNO(int trapno)
306 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
307 , struct task_struct *t);
308
38246735
EB
309int force_sig_mceerr(int code, void __user *, short, struct task_struct *);
310int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
311
312int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
313int force_sig_pkuerr(void __user *addr, u32 pkey);
314
f71dd7dc
EB
315int force_sig_ptrace_errno_trap(int errno, void __user *addr);
316
c3edc401
IM
317extern int send_sig_info(int, struct siginfo *, struct task_struct *);
318extern int force_sigsegv(int, struct task_struct *);
319extern int force_sig_info(int, struct siginfo *, struct task_struct *);
320extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
321extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
322extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
6b4f3d01 323 const struct cred *);
c3edc401
IM
324extern int kill_pgrp(struct pid *pid, int sig, int priv);
325extern int kill_pid(struct pid *pid, int sig, int priv);
c3edc401
IM
326extern __must_check bool do_notify_parent(struct task_struct *, int);
327extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
328extern void force_sig(int, struct task_struct *);
329extern int send_sig(int, struct task_struct *, int);
330extern int zap_other_threads(struct task_struct *p);
331extern struct sigqueue *sigqueue_alloc(void);
332extern void sigqueue_free(struct sigqueue *);
24122c7f 333extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
c3edc401
IM
334extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
335
2a1f062a
IM
336static inline int restart_syscall(void)
337{
338 set_tsk_thread_flag(current, TIF_SIGPENDING);
339 return -ERESTARTNOINTR;
340}
341
342static inline int signal_pending(struct task_struct *p)
343{
344 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
345}
346
347static inline int __fatal_signal_pending(struct task_struct *p)
348{
349 return unlikely(sigismember(&p->pending.signal, SIGKILL));
350}
351
352static inline int fatal_signal_pending(struct task_struct *p)
353{
354 return signal_pending(p) && __fatal_signal_pending(p);
355}
356
357static inline int signal_pending_state(long state, struct task_struct *p)
358{
359 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
360 return 0;
361 if (!signal_pending(p))
362 return 0;
363
364 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
365}
366
367/*
368 * Reevaluate whether the task has signals pending delivery.
369 * Wake the task if so.
370 * This is required every time the blocked sigset_t changes.
371 * callers must hold sighand->siglock.
372 */
373extern void recalc_sigpending_and_wake(struct task_struct *t);
374extern void recalc_sigpending(void);
088fe47c 375extern void calculate_sigpending(void);
2a1f062a
IM
376
377extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
378
379static inline void signal_wake_up(struct task_struct *t, bool resume)
380{
381 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
382}
383static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
384{
385 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
386}
387
924de3b8
EB
388void task_join_group_stop(struct task_struct *task);
389
c3edc401
IM
390#ifdef TIF_RESTORE_SIGMASK
391/*
392 * Legacy restore_sigmask accessors. These are inefficient on
393 * SMP architectures because they require atomic operations.
394 */
395
396/**
397 * set_restore_sigmask() - make sure saved_sigmask processing gets done
398 *
399 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
400 * will run before returning to user mode, to process the flag. For
401 * all callers, TIF_SIGPENDING is already set or it's no harm to set
402 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
403 * arch code will notice on return to user mode, in case those bits
404 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
405 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
406 */
407static inline void set_restore_sigmask(void)
408{
409 set_thread_flag(TIF_RESTORE_SIGMASK);
410 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
411}
412static inline void clear_restore_sigmask(void)
413{
414 clear_thread_flag(TIF_RESTORE_SIGMASK);
415}
416static inline bool test_restore_sigmask(void)
417{
418 return test_thread_flag(TIF_RESTORE_SIGMASK);
419}
420static inline bool test_and_clear_restore_sigmask(void)
421{
422 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
423}
424
425#else /* TIF_RESTORE_SIGMASK */
426
427/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
428static inline void set_restore_sigmask(void)
429{
430 current->restore_sigmask = true;
431 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
432}
433static inline void clear_restore_sigmask(void)
434{
435 current->restore_sigmask = false;
436}
437static inline bool test_restore_sigmask(void)
438{
439 return current->restore_sigmask;
440}
441static inline bool test_and_clear_restore_sigmask(void)
442{
443 if (!current->restore_sigmask)
444 return false;
445 current->restore_sigmask = false;
446 return true;
447}
448#endif
449
450static inline void restore_saved_sigmask(void)
451{
452 if (test_and_clear_restore_sigmask())
453 __set_current_blocked(&current->saved_sigmask);
454}
455
456static inline sigset_t *sigmask_to_save(void)
457{
458 sigset_t *res = &current->blocked;
459 if (unlikely(test_restore_sigmask()))
460 res = &current->saved_sigmask;
461 return res;
462}
463
464static inline int kill_cad_pid(int sig, int priv)
465{
466 return kill_pid(cad_pid, sig, priv);
467}
468
469/* These can be the second arg to send_sig_info/send_group_sig_info. */
470#define SEND_SIG_NOINFO ((struct siginfo *) 0)
471#define SEND_SIG_PRIV ((struct siginfo *) 1)
472#define SEND_SIG_FORCED ((struct siginfo *) 2)
473
474/*
475 * True if we are on the alternate signal stack.
476 */
477static inline int on_sig_stack(unsigned long sp)
478{
479 /*
480 * If the signal stack is SS_AUTODISARM then, by construction, we
481 * can't be on the signal stack unless user code deliberately set
482 * SS_AUTODISARM when we were already on it.
483 *
484 * This improves reliability: if user state gets corrupted such that
485 * the stack pointer points very close to the end of the signal stack,
486 * then this check will enable the signal to be handled anyway.
487 */
488 if (current->sas_ss_flags & SS_AUTODISARM)
489 return 0;
490
491#ifdef CONFIG_STACK_GROWSUP
492 return sp >= current->sas_ss_sp &&
493 sp - current->sas_ss_sp < current->sas_ss_size;
494#else
495 return sp > current->sas_ss_sp &&
496 sp - current->sas_ss_sp <= current->sas_ss_size;
497#endif
498}
499
500static inline int sas_ss_flags(unsigned long sp)
501{
502 if (!current->sas_ss_size)
503 return SS_DISABLE;
504
505 return on_sig_stack(sp) ? SS_ONSTACK : 0;
506}
507
508static inline void sas_ss_reset(struct task_struct *p)
509{
510 p->sas_ss_sp = 0;
511 p->sas_ss_size = 0;
512 p->sas_ss_flags = SS_DISABLE;
513}
514
515static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
516{
517 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
518#ifdef CONFIG_STACK_GROWSUP
519 return current->sas_ss_sp;
520#else
521 return current->sas_ss_sp + current->sas_ss_size;
522#endif
523 return sp;
524}
525
526extern void __cleanup_sighand(struct sighand_struct *);
527extern void flush_itimer_signals(void);
528
529#define tasklist_empty() \
530 list_empty(&init_task.tasks)
531
532#define next_task(p) \
533 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
534
535#define for_each_process(p) \
536 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
537
538extern bool current_is_single_threaded(void);
539
540/*
541 * Careful: do_each_thread/while_each_thread is a double loop so
542 * 'break' will not work as expected - use goto instead.
543 */
544#define do_each_thread(g, t) \
545 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
546
547#define while_each_thread(g, t) \
548 while ((t = next_thread(t)) != g)
549
550#define __for_each_thread(signal, t) \
551 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
552
553#define for_each_thread(p, t) \
554 __for_each_thread((p)->signal, t)
555
556/* Careful: this is a double loop, 'break' won't work as expected. */
557#define for_each_process_thread(p, t) \
558 for_each_process(p) for_each_thread(p, t)
559
560typedef int (*proc_visitor)(struct task_struct *p, void *data);
561void walk_process_tree(struct task_struct *top, proc_visitor, void *);
562
1fb53567
EB
563static inline
564struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
565{
2c470475
EB
566 struct pid *pid;
567 if (type == PIDTYPE_PID)
568 pid = task_pid(task);
569 else
570 pid = task->signal->pids[type];
571 return pid;
1fb53567
EB
572}
573
7a36094d
EB
574static inline struct pid *task_tgid(struct task_struct *task)
575{
6883f81a 576 return task->signal->pids[PIDTYPE_TGID];
7a36094d
EB
577}
578
2c470475
EB
579/*
580 * Without tasklist or RCU lock it is not safe to dereference
581 * the result of task_pgrp/task_session even if task == current,
582 * we can race with another thread doing sys_setsid/sys_setpgid.
583 */
584static inline struct pid *task_pgrp(struct task_struct *task)
585{
586 return task->signal->pids[PIDTYPE_PGID];
587}
588
589static inline struct pid *task_session(struct task_struct *task)
590{
591 return task->signal->pids[PIDTYPE_SID];
592}
593
c3edc401
IM
594static inline int get_nr_threads(struct task_struct *tsk)
595{
596 return tsk->signal->nr_threads;
597}
598
599static inline bool thread_group_leader(struct task_struct *p)
600{
601 return p->exit_signal >= 0;
602}
603
604/* Do to the insanities of de_thread it is possible for a process
605 * to have the pid of the thread group leader without actually being
606 * the thread group leader. For iteration through the pids in proc
607 * all we care about is that we have a task with the appropriate
608 * pid, we don't actually care if we have the right task.
609 */
610static inline bool has_group_leader_pid(struct task_struct *p)
611{
6883f81a 612 return task_pid(p) == task_tgid(p);
c3edc401
IM
613}
614
615static inline
616bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
617{
618 return p1->signal == p2->signal;
619}
620
621static inline struct task_struct *next_thread(const struct task_struct *p)
622{
623 return list_entry_rcu(p->thread_group.next,
624 struct task_struct, thread_group);
625}
626
627static inline int thread_group_empty(struct task_struct *p)
628{
629 return list_empty(&p->thread_group);
630}
631
632#define delay_group_leader(p) \
633 (thread_group_leader(p) && !thread_group_empty(p))
634
635extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
636 unsigned long *flags);
637
638static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
639 unsigned long *flags)
640{
641 struct sighand_struct *ret;
642
643 ret = __lock_task_sighand(tsk, flags);
644 (void)__cond_lock(&tsk->sighand->siglock, ret);
645 return ret;
646}
647
648static inline void unlock_task_sighand(struct task_struct *tsk,
649 unsigned long *flags)
650{
651 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
652}
653
654static inline unsigned long task_rlimit(const struct task_struct *tsk,
655 unsigned int limit)
656{
657 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
658}
659
660static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
661 unsigned int limit)
662{
663 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
664}
665
666static inline unsigned long rlimit(unsigned int limit)
667{
668 return task_rlimit(current, limit);
669}
670
671static inline unsigned long rlimit_max(unsigned int limit)
672{
673 return task_rlimit_max(current, limit);
674}
675
3f07c014 676#endif /* _LINUX_SCHED_SIGNAL_H */