]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - include/linux/sched/signal.h
exec: Transform exec_update_mutex into a rw_semaphore
[mirror_ubuntu-kernels.git] / include / linux / sched / signal.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
3f07c014
IM
2#ifndef _LINUX_SCHED_SIGNAL_H
3#define _LINUX_SCHED_SIGNAL_H
4
b2d09103 5#include <linux/rculist.h>
f361bf4a 6#include <linux/signal.h>
3f07c014 7#include <linux/sched.h>
1e4bae64 8#include <linux/sched/jobctl.h>
9164bb4a 9#include <linux/sched/task.h>
2a1f062a 10#include <linux/cred.h>
d036bda7 11#include <linux/refcount.h>
2b69942f 12#include <linux/posix-timers.h>
4ef87322
PX
13#include <linux/mm_types.h>
14#include <asm/ptrace.h>
3f07c014 15
c3edc401
IM
16/*
17 * Types defining task->signal and task->sighand and APIs using them:
18 */
19
20struct sighand_struct {
c3edc401 21 spinlock_t siglock;
e2d9018e 22 refcount_t count;
c3edc401 23 wait_queue_head_t signalfd_wqh;
e2d9018e 24 struct k_sigaction action[_NSIG];
c3edc401
IM
25};
26
8d88460e
IM
27/*
28 * Per-process accounting stats:
29 */
30struct pacct_struct {
31 int ac_flag;
32 long ac_exitcode;
33 unsigned long ac_mem;
34 u64 ac_utime, ac_stime;
35 unsigned long ac_minflt, ac_majflt;
36};
37
38struct cpu_itimer {
39 u64 expires;
40 u64 incr;
41};
42
1050b27c
IM
43/*
44 * This is the atomic variant of task_cputime, which can be used for
45 * storing and updating task_cputime statistics without locking.
46 */
47struct task_cputime_atomic {
48 atomic64_t utime;
49 atomic64_t stime;
50 atomic64_t sum_exec_runtime;
51};
52
53#define INIT_CPUTIME_ATOMIC \
54 (struct task_cputime_atomic) { \
55 .utime = ATOMIC64_INIT(0), \
56 .stime = ATOMIC64_INIT(0), \
57 .sum_exec_runtime = ATOMIC64_INIT(0), \
58 }
59/**
60 * struct thread_group_cputimer - thread group interval timer counts
61 * @cputime_atomic: atomic thread group interval timers.
1050b27c
IM
62 *
63 * This structure contains the version of task_cputime, above, that is
64 * used for thread group CPU timer calculations.
65 */
66struct thread_group_cputimer {
67 struct task_cputime_atomic cputime_atomic;
1050b27c
IM
68};
69
c3ad2c3b
EB
70struct multiprocess_signals {
71 sigset_t signal;
72 struct hlist_node node;
73};
74
c3edc401
IM
75/*
76 * NOTE! "signal_struct" does not have its own
77 * locking, because a shared signal_struct always
78 * implies a shared sighand_struct, so locking
79 * sighand_struct is always a proper superset of
80 * the locking of signal_struct.
81 */
82struct signal_struct {
60d4de3f 83 refcount_t sigcnt;
c3edc401
IM
84 atomic_t live;
85 int nr_threads;
86 struct list_head thread_head;
87
88 wait_queue_head_t wait_chldexit; /* for wait4() */
89
90 /* current thread group signal load-balancing target: */
91 struct task_struct *curr_target;
92
93 /* shared signal handling: */
94 struct sigpending shared_pending;
95
c3ad2c3b
EB
96 /* For collecting multiprocess signals during fork */
97 struct hlist_head multiprocess;
98
c3edc401
IM
99 /* thread group exit support */
100 int group_exit_code;
101 /* overloaded:
102 * - notify group_exit_task when ->count is equal to notify_count
103 * - everyone except group_exit_task is stopped during signal delivery
104 * of fatal signals, group_exit_task processes the signal.
105 */
106 int notify_count;
107 struct task_struct *group_exit_task;
108
109 /* thread group stop support, overloads group_exit_code too */
110 int group_stop_count;
111 unsigned int flags; /* see SIGNAL_* flags below */
112
113 /*
114 * PR_SET_CHILD_SUBREAPER marks a process, like a service
115 * manager, to re-parent orphan (double-forking) child processes
116 * to this process instead of 'init'. The service manager is
117 * able to receive SIGCHLD signals and is able to investigate
118 * the process until it calls wait(). All children of this
119 * process will inherit a flag if they should look for a
120 * child_subreaper process at exit.
121 */
122 unsigned int is_child_subreaper:1;
123 unsigned int has_child_subreaper:1;
124
125#ifdef CONFIG_POSIX_TIMERS
126
127 /* POSIX.1b Interval Timers */
128 int posix_timer_id;
129 struct list_head posix_timers;
130
131 /* ITIMER_REAL timer for the process */
132 struct hrtimer real_timer;
133 ktime_t it_real_incr;
134
135 /*
136 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
137 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
138 * values are defined to 0 and 1 respectively
139 */
140 struct cpu_itimer it[2];
141
142 /*
143 * Thread group totals for process CPU timers.
144 * See thread_group_cputimer(), et al, for details.
145 */
146 struct thread_group_cputimer cputimer;
147
c3edc401 148#endif
2b69942f
TG
149 /* Empty if CONFIG_POSIX_TIMERS=n */
150 struct posix_cputimers posix_cputimers;
c3edc401 151
2c470475 152 /* PID/PID hash table linkage. */
2c470475 153 struct pid *pids[PIDTYPE_MAX];
c3edc401
IM
154
155#ifdef CONFIG_NO_HZ_FULL
156 atomic_t tick_dep_mask;
157#endif
158
159 struct pid *tty_old_pgrp;
160
161 /* boolean value for session group leader */
162 int leader;
163
164 struct tty_struct *tty; /* NULL if no tty */
165
166#ifdef CONFIG_SCHED_AUTOGROUP
167 struct autogroup *autogroup;
168#endif
169 /*
170 * Cumulative resource counters for dead threads in the group,
171 * and for reaped dead child processes forked by this group.
172 * Live threads maintain their own counters and add to these
173 * in __exit_signal, except for the group leader.
174 */
175 seqlock_t stats_lock;
176 u64 utime, stime, cutime, cstime;
177 u64 gtime;
178 u64 cgtime;
179 struct prev_cputime prev_cputime;
180 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
181 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
182 unsigned long inblock, oublock, cinblock, coublock;
183 unsigned long maxrss, cmaxrss;
184 struct task_io_accounting ioac;
185
186 /*
187 * Cumulative ns of schedule CPU time fo dead threads in the
188 * group, not including a zombie group leader, (This only differs
189 * from jiffies_to_ns(utime + stime) if sched_clock uses something
190 * other than jiffies.)
191 */
192 unsigned long long sum_sched_runtime;
193
194 /*
195 * We don't bother to synchronize most readers of this at all,
196 * because there is no reader checking a limit that actually needs
197 * to get both rlim_cur and rlim_max atomically, and either one
198 * alone is a single word that can safely be read normally.
199 * getrlimit/setrlimit use task_lock(current->group_leader) to
200 * protect this instead of the siglock, because they really
201 * have no need to disable irqs.
202 */
203 struct rlimit rlim[RLIM_NLIMITS];
204
205#ifdef CONFIG_BSD_PROCESS_ACCT
206 struct pacct_struct pacct; /* per-process accounting information */
207#endif
208#ifdef CONFIG_TASKSTATS
209 struct taskstats *stats;
210#endif
211#ifdef CONFIG_AUDIT
212 unsigned audit_tty;
213 struct tty_audit_buf *tty_audit_buf;
214#endif
215
216 /*
217 * Thread is the potential origin of an oom condition; kill first on
218 * oom
219 */
220 bool oom_flag_origin;
221 short oom_score_adj; /* OOM kill score adjustment */
222 short oom_score_adj_min; /* OOM kill score adjustment min value.
223 * Only settable by CAP_SYS_RESOURCE. */
224 struct mm_struct *oom_mm; /* recorded mm when the thread group got
225 * killed by the oom killer */
226
227 struct mutex cred_guard_mutex; /* guard against foreign influences on
228 * credential calculations
eea96732
EB
229 * (notably. ptrace)
230 * Deprecated do not use in new code.
f7cfd871 231 * Use exec_update_lock instead.
eea96732 232 */
f7cfd871
EB
233 struct rw_semaphore exec_update_lock; /* Held while task_struct is
234 * being updated during exec,
235 * and may have inconsistent
236 * permissions.
237 */
3859a271 238} __randomize_layout;
c3edc401
IM
239
240/*
241 * Bits in flags field of signal_struct.
242 */
243#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
244#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
245#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
246#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
247/*
248 * Pending notifications to parent.
249 */
250#define SIGNAL_CLD_STOPPED 0x00000010
251#define SIGNAL_CLD_CONTINUED 0x00000020
252#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
253
254#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
255
256#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
257 SIGNAL_STOP_CONTINUED)
258
259static inline void signal_set_stop_flags(struct signal_struct *sig,
260 unsigned int flags)
261{
262 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
263 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
264}
265
266/* If true, all threads except ->group_exit_task have pending SIGKILL */
267static inline int signal_group_exit(const struct signal_struct *sig)
268{
269 return (sig->flags & SIGNAL_GROUP_EXIT) ||
270 (sig->group_exit_task != NULL);
271}
272
273extern void flush_signals(struct task_struct *);
274extern void ignore_signals(struct task_struct *);
275extern void flush_signal_handlers(struct task_struct *, int force_default);
9e9291c7
AV
276extern int dequeue_signal(struct task_struct *task,
277 sigset_t *mask, kernel_siginfo_t *info);
c3edc401 278
961366a0 279static inline int kernel_dequeue_signal(void)
c3edc401 280{
9e9291c7 281 struct task_struct *task = current;
ae7795bc 282 kernel_siginfo_t __info;
c3edc401
IM
283 int ret;
284
9e9291c7
AV
285 spin_lock_irq(&task->sighand->siglock);
286 ret = dequeue_signal(task, &task->blocked, &__info);
287 spin_unlock_irq(&task->sighand->siglock);
c3edc401
IM
288
289 return ret;
290}
291
292static inline void kernel_signal_stop(void)
293{
294 spin_lock_irq(&current->sighand->siglock);
295 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
b5bf9a90 296 set_special_state(TASK_STOPPED);
c3edc401
IM
297 spin_unlock_irq(&current->sighand->siglock);
298
299 schedule();
300}
f8ec6601
EB
301#ifdef __ARCH_SI_TRAPNO
302# define ___ARCH_SI_TRAPNO(_a1) , _a1
303#else
304# define ___ARCH_SI_TRAPNO(_a1)
305#endif
306#ifdef __ia64__
307# define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
308#else
309# define ___ARCH_SI_IA64(_a1, _a2, _a3)
310#endif
311
91ca180d
EB
312int force_sig_fault_to_task(int sig, int code, void __user *addr
313 ___ARCH_SI_TRAPNO(int trapno)
314 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
315 , struct task_struct *t);
f8ec6601
EB
316int force_sig_fault(int sig, int code, void __user *addr
317 ___ARCH_SI_TRAPNO(int trapno)
2e1661d2 318 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
f8ec6601
EB
319int send_sig_fault(int sig, int code, void __user *addr
320 ___ARCH_SI_TRAPNO(int trapno)
321 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
322 , struct task_struct *t);
323
f8eac901 324int force_sig_mceerr(int code, void __user *, short);
38246735
EB
325int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
326
327int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
328int force_sig_pkuerr(void __user *addr, u32 pkey);
329
f71dd7dc
EB
330int force_sig_ptrace_errno_trap(int errno, void __user *addr);
331
ae7795bc 332extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
cb44c9a0 333extern void force_sigsegv(int sig);
a89e9b8a 334extern int force_sig_info(struct kernel_siginfo *);
ae7795bc
EB
335extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
336extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
70f1b0d3 337extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
6b4f3d01 338 const struct cred *);
c3edc401
IM
339extern int kill_pgrp(struct pid *pid, int sig, int priv);
340extern int kill_pid(struct pid *pid, int sig, int priv);
c3edc401
IM
341extern __must_check bool do_notify_parent(struct task_struct *, int);
342extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
3cf5d076 343extern void force_sig(int);
c3edc401
IM
344extern int send_sig(int, struct task_struct *, int);
345extern int zap_other_threads(struct task_struct *p);
346extern struct sigqueue *sigqueue_alloc(void);
347extern void sigqueue_free(struct sigqueue *);
24122c7f 348extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
c3edc401
IM
349extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
350
2a1f062a
IM
351static inline int restart_syscall(void)
352{
353 set_tsk_thread_flag(current, TIF_SIGPENDING);
354 return -ERESTARTNOINTR;
355}
356
357static inline int signal_pending(struct task_struct *p)
358{
359 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
360}
361
362static inline int __fatal_signal_pending(struct task_struct *p)
363{
364 return unlikely(sigismember(&p->pending.signal, SIGKILL));
365}
366
367static inline int fatal_signal_pending(struct task_struct *p)
368{
369 return signal_pending(p) && __fatal_signal_pending(p);
370}
371
372static inline int signal_pending_state(long state, struct task_struct *p)
373{
374 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
375 return 0;
376 if (!signal_pending(p))
377 return 0;
378
379 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
380}
381
4ef87322
PX
382/*
383 * This should only be used in fault handlers to decide whether we
384 * should stop the current fault routine to handle the signals
385 * instead, especially with the case where we've got interrupted with
386 * a VM_FAULT_RETRY.
387 */
388static inline bool fault_signal_pending(vm_fault_t fault_flags,
389 struct pt_regs *regs)
390{
391 return unlikely((fault_flags & VM_FAULT_RETRY) &&
8b9a65fd
PX
392 (fatal_signal_pending(current) ||
393 (user_mode(regs) && signal_pending(current))));
4ef87322
PX
394}
395
2a1f062a
IM
396/*
397 * Reevaluate whether the task has signals pending delivery.
398 * Wake the task if so.
399 * This is required every time the blocked sigset_t changes.
400 * callers must hold sighand->siglock.
401 */
402extern void recalc_sigpending_and_wake(struct task_struct *t);
403extern void recalc_sigpending(void);
088fe47c 404extern void calculate_sigpending(void);
2a1f062a
IM
405
406extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
407
408static inline void signal_wake_up(struct task_struct *t, bool resume)
409{
410 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
411}
412static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
413{
414 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
415}
416
924de3b8
EB
417void task_join_group_stop(struct task_struct *task);
418
c3edc401
IM
419#ifdef TIF_RESTORE_SIGMASK
420/*
421 * Legacy restore_sigmask accessors. These are inefficient on
422 * SMP architectures because they require atomic operations.
423 */
424
425/**
426 * set_restore_sigmask() - make sure saved_sigmask processing gets done
427 *
428 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
429 * will run before returning to user mode, to process the flag. For
430 * all callers, TIF_SIGPENDING is already set or it's no harm to set
431 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
432 * arch code will notice on return to user mode, in case those bits
433 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
434 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
435 */
436static inline void set_restore_sigmask(void)
437{
438 set_thread_flag(TIF_RESTORE_SIGMASK);
c3edc401 439}
fcfc2aa0 440
9e9291c7 441static inline void clear_tsk_restore_sigmask(struct task_struct *task)
fcfc2aa0 442{
9e9291c7 443 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
fcfc2aa0
AV
444}
445
c3edc401
IM
446static inline void clear_restore_sigmask(void)
447{
448 clear_thread_flag(TIF_RESTORE_SIGMASK);
449}
9e9291c7 450static inline bool test_tsk_restore_sigmask(struct task_struct *task)
fcfc2aa0 451{
9e9291c7 452 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
fcfc2aa0 453}
c3edc401
IM
454static inline bool test_restore_sigmask(void)
455{
456 return test_thread_flag(TIF_RESTORE_SIGMASK);
457}
458static inline bool test_and_clear_restore_sigmask(void)
459{
460 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
461}
462
463#else /* TIF_RESTORE_SIGMASK */
464
465/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
466static inline void set_restore_sigmask(void)
467{
468 current->restore_sigmask = true;
c3edc401 469}
9e9291c7 470static inline void clear_tsk_restore_sigmask(struct task_struct *task)
fcfc2aa0 471{
9e9291c7 472 task->restore_sigmask = false;
fcfc2aa0 473}
c3edc401
IM
474static inline void clear_restore_sigmask(void)
475{
476 current->restore_sigmask = false;
477}
478static inline bool test_restore_sigmask(void)
479{
480 return current->restore_sigmask;
481}
9e9291c7 482static inline bool test_tsk_restore_sigmask(struct task_struct *task)
fcfc2aa0 483{
9e9291c7 484 return task->restore_sigmask;
fcfc2aa0 485}
c3edc401
IM
486static inline bool test_and_clear_restore_sigmask(void)
487{
488 if (!current->restore_sigmask)
489 return false;
490 current->restore_sigmask = false;
491 return true;
492}
493#endif
494
495static inline void restore_saved_sigmask(void)
496{
497 if (test_and_clear_restore_sigmask())
498 __set_current_blocked(&current->saved_sigmask);
499}
500
b772434b
ON
501extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
502
503static inline void restore_saved_sigmask_unless(bool interrupted)
504{
505 if (interrupted)
506 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
507 else
508 restore_saved_sigmask();
509}
510
c3edc401
IM
511static inline sigset_t *sigmask_to_save(void)
512{
513 sigset_t *res = &current->blocked;
514 if (unlikely(test_restore_sigmask()))
515 res = &current->saved_sigmask;
516 return res;
517}
518
519static inline int kill_cad_pid(int sig, int priv)
520{
521 return kill_pid(cad_pid, sig, priv);
522}
523
524/* These can be the second arg to send_sig_info/send_group_sig_info. */
ae7795bc
EB
525#define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
526#define SEND_SIG_PRIV ((struct kernel_siginfo *) 1)
c3edc401
IM
527
528/*
529 * True if we are on the alternate signal stack.
530 */
531static inline int on_sig_stack(unsigned long sp)
532{
533 /*
534 * If the signal stack is SS_AUTODISARM then, by construction, we
535 * can't be on the signal stack unless user code deliberately set
536 * SS_AUTODISARM when we were already on it.
537 *
538 * This improves reliability: if user state gets corrupted such that
539 * the stack pointer points very close to the end of the signal stack,
540 * then this check will enable the signal to be handled anyway.
541 */
542 if (current->sas_ss_flags & SS_AUTODISARM)
543 return 0;
544
545#ifdef CONFIG_STACK_GROWSUP
546 return sp >= current->sas_ss_sp &&
547 sp - current->sas_ss_sp < current->sas_ss_size;
548#else
549 return sp > current->sas_ss_sp &&
550 sp - current->sas_ss_sp <= current->sas_ss_size;
551#endif
552}
553
554static inline int sas_ss_flags(unsigned long sp)
555{
556 if (!current->sas_ss_size)
557 return SS_DISABLE;
558
559 return on_sig_stack(sp) ? SS_ONSTACK : 0;
560}
561
562static inline void sas_ss_reset(struct task_struct *p)
563{
564 p->sas_ss_sp = 0;
565 p->sas_ss_size = 0;
566 p->sas_ss_flags = SS_DISABLE;
567}
568
569static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
570{
571 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
572#ifdef CONFIG_STACK_GROWSUP
573 return current->sas_ss_sp;
574#else
575 return current->sas_ss_sp + current->sas_ss_size;
576#endif
577 return sp;
578}
579
580extern void __cleanup_sighand(struct sighand_struct *);
581extern void flush_itimer_signals(void);
582
583#define tasklist_empty() \
584 list_empty(&init_task.tasks)
585
586#define next_task(p) \
587 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
588
589#define for_each_process(p) \
590 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
591
592extern bool current_is_single_threaded(void);
593
594/*
595 * Careful: do_each_thread/while_each_thread is a double loop so
596 * 'break' will not work as expected - use goto instead.
597 */
598#define do_each_thread(g, t) \
599 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
600
601#define while_each_thread(g, t) \
602 while ((t = next_thread(t)) != g)
603
604#define __for_each_thread(signal, t) \
605 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
606
607#define for_each_thread(p, t) \
608 __for_each_thread((p)->signal, t)
609
610/* Careful: this is a double loop, 'break' won't work as expected. */
611#define for_each_process_thread(p, t) \
612 for_each_process(p) for_each_thread(p, t)
613
614typedef int (*proc_visitor)(struct task_struct *p, void *data);
615void walk_process_tree(struct task_struct *top, proc_visitor, void *);
616
1fb53567
EB
617static inline
618struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
619{
2c470475
EB
620 struct pid *pid;
621 if (type == PIDTYPE_PID)
622 pid = task_pid(task);
623 else
624 pid = task->signal->pids[type];
625 return pid;
1fb53567
EB
626}
627
7a36094d
EB
628static inline struct pid *task_tgid(struct task_struct *task)
629{
6883f81a 630 return task->signal->pids[PIDTYPE_TGID];
7a36094d
EB
631}
632
2c470475
EB
633/*
634 * Without tasklist or RCU lock it is not safe to dereference
635 * the result of task_pgrp/task_session even if task == current,
636 * we can race with another thread doing sys_setsid/sys_setpgid.
637 */
638static inline struct pid *task_pgrp(struct task_struct *task)
639{
640 return task->signal->pids[PIDTYPE_PGID];
641}
642
643static inline struct pid *task_session(struct task_struct *task)
644{
645 return task->signal->pids[PIDTYPE_SID];
646}
647
9e9291c7 648static inline int get_nr_threads(struct task_struct *task)
c3edc401 649{
9e9291c7 650 return task->signal->nr_threads;
c3edc401
IM
651}
652
653static inline bool thread_group_leader(struct task_struct *p)
654{
655 return p->exit_signal >= 0;
656}
657
c3edc401
IM
658static inline
659bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
660{
661 return p1->signal == p2->signal;
662}
663
664static inline struct task_struct *next_thread(const struct task_struct *p)
665{
666 return list_entry_rcu(p->thread_group.next,
667 struct task_struct, thread_group);
668}
669
670static inline int thread_group_empty(struct task_struct *p)
671{
672 return list_empty(&p->thread_group);
673}
674
675#define delay_group_leader(p) \
676 (thread_group_leader(p) && !thread_group_empty(p))
677
38fd525a
EB
678extern bool thread_group_exited(struct pid *pid);
679
9e9291c7 680extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
c3edc401
IM
681 unsigned long *flags);
682
9e9291c7 683static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
c3edc401
IM
684 unsigned long *flags)
685{
686 struct sighand_struct *ret;
687
9e9291c7
AV
688 ret = __lock_task_sighand(task, flags);
689 (void)__cond_lock(&task->sighand->siglock, ret);
c3edc401
IM
690 return ret;
691}
692
9e9291c7 693static inline void unlock_task_sighand(struct task_struct *task,
c3edc401
IM
694 unsigned long *flags)
695{
9e9291c7 696 spin_unlock_irqrestore(&task->sighand->siglock, *flags);
c3edc401
IM
697}
698
9e9291c7 699static inline unsigned long task_rlimit(const struct task_struct *task,
c3edc401
IM
700 unsigned int limit)
701{
9e9291c7 702 return READ_ONCE(task->signal->rlim[limit].rlim_cur);
c3edc401
IM
703}
704
9e9291c7 705static inline unsigned long task_rlimit_max(const struct task_struct *task,
c3edc401
IM
706 unsigned int limit)
707{
9e9291c7 708 return READ_ONCE(task->signal->rlim[limit].rlim_max);
c3edc401
IM
709}
710
711static inline unsigned long rlimit(unsigned int limit)
712{
713 return task_rlimit(current, limit);
714}
715
716static inline unsigned long rlimit_max(unsigned int limit)
717{
718 return task_rlimit_max(current, limit);
719}
720
3f07c014 721#endif /* _LINUX_SCHED_SIGNAL_H */