]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/sched.h
linux/kernel.h: fix overflow for DIV_ROUND_UP_ULL
[mirror_ubuntu-bionic-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
a3b6714e 24#include <linux/resource.h>
9745512c 25#include <linux/latencytop.h>
5eca1c10
IM
26#include <linux/sched/prio.h>
27#include <linux/signal_types.h>
28#include <linux/mm_types_task.h>
29#include <linux/task_io_accounting.h>
a3b6714e 30
5eca1c10 31/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 32struct audit_context;
c7af7877 33struct backing_dev_info;
bddd87c7 34struct bio_list;
73c10101 35struct blk_plug;
c7af7877 36struct cfs_rq;
c7af7877
IM
37struct fs_struct;
38struct futex_pi_state;
39struct io_context;
40struct mempolicy;
89076bc3 41struct nameidata;
c7af7877
IM
42struct nsproxy;
43struct perf_event_context;
44struct pid_namespace;
45struct pipe_inode_info;
46struct rcu_node;
47struct reclaim_state;
48struct robust_list_head;
49struct sched_attr;
50struct sched_param;
43ae34cb 51struct seq_file;
c7af7877
IM
52struct sighand_struct;
53struct signal_struct;
54struct task_delay_info;
4cf86d77 55struct task_group;
1da177e4 56
4a8342d2
LT
57/*
58 * Task state bitmask. NOTE! These bits are also
59 * encoded in fs/proc/array.c: get_task_state().
60 *
61 * We have two separate sets of flags: task->state
62 * is about runnability, while task->exit_state are
63 * about the task exiting. Confusing, but this way
64 * modifying one set can't modify the other one by
65 * mistake.
66 */
5eca1c10
IM
67
68/* Used in tsk->state: */
92c4bc9f
PZ
69#define TASK_RUNNING 0x0000
70#define TASK_INTERRUPTIBLE 0x0001
71#define TASK_UNINTERRUPTIBLE 0x0002
72#define __TASK_STOPPED 0x0004
73#define __TASK_TRACED 0x0008
5eca1c10 74/* Used in tsk->exit_state: */
92c4bc9f
PZ
75#define EXIT_DEAD 0x0010
76#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
77#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
78/* Used in tsk->state again: */
8ef9925b
PZ
79#define TASK_PARKED 0x0040
80#define TASK_DEAD 0x0080
81#define TASK_WAKEKILL 0x0100
82#define TASK_WAKING 0x0200
92c4bc9f
PZ
83#define TASK_NOLOAD 0x0400
84#define TASK_NEW 0x0800
85#define TASK_STATE_MAX 0x1000
5eca1c10 86
5eca1c10
IM
87/* Convenience macros for the sake of set_current_state: */
88#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
90#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
91
92#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93
94/* Convenience macros for the sake of wake_up(): */
95#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
96#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
97
98/* get_task_state(): */
99#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
5eca1c10
IM
103
104#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
1da177e4 113
8eb23b9f
PZ
114#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
ea19cfd1
PZ
116/*
117 * Special states are those that do not use the normal wait-loop pattern. See
118 * the comment with set_special_state().
119 */
120#define is_special_task_state(state) \
121 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_DEAD))
122
8eb23b9f
PZ
123#define __set_current_state(state_value) \
124 do { \
ea19cfd1 125 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
126 current->task_state_change = _THIS_IP_; \
127 current->state = (state_value); \
128 } while (0)
ea19cfd1 129
8eb23b9f
PZ
130#define set_current_state(state_value) \
131 do { \
ea19cfd1 132 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 133 current->task_state_change = _THIS_IP_; \
a2250238 134 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
135 } while (0)
136
ea19cfd1
PZ
137#define set_special_state(state_value) \
138 do { \
139 unsigned long flags; /* may shadow */ \
140 WARN_ON_ONCE(!is_special_task_state(state_value)); \
141 raw_spin_lock_irqsave(&current->pi_lock, flags); \
142 current->task_state_change = _THIS_IP_; \
143 current->state = (state_value); \
144 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
145 } while (0)
8eb23b9f 146#else
498d0c57
AM
147/*
148 * set_current_state() includes a barrier so that the write of current->state
149 * is correctly serialised wrt the caller's subsequent test of whether to
150 * actually sleep:
151 *
a2250238 152 * for (;;) {
498d0c57 153 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
154 * if (!need_sleep)
155 * break;
156 *
157 * schedule();
158 * }
159 * __set_current_state(TASK_RUNNING);
160 *
161 * If the caller does not need such serialisation (because, for instance, the
162 * condition test and condition change and wakeup are under the same lock) then
163 * use __set_current_state().
164 *
165 * The above is typically ordered against the wakeup, which does:
166 *
ea19cfd1
PZ
167 * need_sleep = false;
168 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238
PZ
169 *
170 * Where wake_up_state() (and all other wakeup primitives) imply enough
171 * barriers to order the store of the variable against wakeup.
172 *
173 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
174 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
175 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 176 *
ea19cfd1
PZ
177 * However, with slightly different timing the wakeup TASK_RUNNING store can
178 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
179 * a problem either because that will result in one extra go around the loop
180 * and our @cond test will save the day.
498d0c57 181 *
a2250238 182 * Also see the comments of try_to_wake_up().
498d0c57 183 */
ea19cfd1
PZ
184#define __set_current_state(state_value) \
185 current->state = (state_value)
186
187#define set_current_state(state_value) \
188 smp_store_mb(current->state, (state_value))
189
190/*
191 * set_special_state() should be used for those states when the blocking task
192 * can not use the regular condition based wait-loop. In that case we must
193 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
194 * will not collide with our state change.
195 */
196#define set_special_state(state_value) \
197 do { \
198 unsigned long flags; /* may shadow */ \
199 raw_spin_lock_irqsave(&current->pi_lock, flags); \
200 current->state = (state_value); \
201 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
202 } while (0)
203
8eb23b9f
PZ
204#endif
205
5eca1c10
IM
206/* Task command name length: */
207#define TASK_COMM_LEN 16
1da177e4 208
1da177e4
LT
209extern void scheduler_tick(void);
210
5eca1c10
IM
211#define MAX_SCHEDULE_TIMEOUT LONG_MAX
212
213extern long schedule_timeout(long timeout);
214extern long schedule_timeout_interruptible(long timeout);
215extern long schedule_timeout_killable(long timeout);
216extern long schedule_timeout_uninterruptible(long timeout);
217extern long schedule_timeout_idle(long timeout);
1da177e4 218asmlinkage void schedule(void);
c5491ea7 219extern void schedule_preempt_disabled(void);
1da177e4 220
10ab5643
TH
221extern int __must_check io_schedule_prepare(void);
222extern void io_schedule_finish(int token);
9cff8ade 223extern long io_schedule_timeout(long timeout);
10ab5643 224extern void io_schedule(void);
9cff8ade 225
d37f761d 226/**
0ba42a59 227 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
228 * @utime: time spent in user mode
229 * @stime: time spent in system mode
9d7fb042 230 * @lock: protects the above two fields
d37f761d 231 *
9d7fb042
PZ
232 * Stores previous user/system time values such that we can guarantee
233 * monotonicity.
d37f761d 234 */
9d7fb042
PZ
235struct prev_cputime {
236#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
237 u64 utime;
238 u64 stime;
239 raw_spinlock_t lock;
9d7fb042 240#endif
d37f761d
FW
241};
242
f06febc9
FM
243/**
244 * struct task_cputime - collected CPU time counts
5613fda9
FW
245 * @utime: time spent in user mode, in nanoseconds
246 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 247 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 248 *
9d7fb042
PZ
249 * This structure groups together three kinds of CPU time that are tracked for
250 * threads and thread groups. Most things considering CPU time want to group
251 * these counts together and treat all three of them in parallel.
f06febc9
FM
252 */
253struct task_cputime {
5eca1c10
IM
254 u64 utime;
255 u64 stime;
256 unsigned long long sum_exec_runtime;
f06febc9 257};
9d7fb042 258
5eca1c10
IM
259/* Alternate field names when used on cache expirations: */
260#define virt_exp utime
261#define prof_exp stime
262#define sched_exp sum_exec_runtime
f06febc9 263
bac5b6b6
FW
264enum vtime_state {
265 /* Task is sleeping or running in a CPU with VTIME inactive: */
266 VTIME_INACTIVE = 0,
267 /* Task runs in userspace in a CPU with VTIME active: */
268 VTIME_USER,
269 /* Task runs in kernelspace in a CPU with VTIME active: */
270 VTIME_SYS,
271};
272
273struct vtime {
274 seqcount_t seqcount;
275 unsigned long long starttime;
276 enum vtime_state state;
2a42eb95
WL
277 u64 utime;
278 u64 stime;
279 u64 gtime;
bac5b6b6
FW
280};
281
1da177e4 282struct sched_info {
7f5f8e8d 283#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
284 /* Cumulative counters: */
285
286 /* # of times we have run on this CPU: */
287 unsigned long pcount;
288
289 /* Time spent waiting on a runqueue: */
290 unsigned long long run_delay;
291
292 /* Timestamps: */
293
294 /* When did we last run on a CPU? */
295 unsigned long long last_arrival;
296
297 /* When were we last queued to run? */
298 unsigned long long last_queued;
1da177e4 299
f6db8347 300#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 301};
1da177e4 302
6ecdd749
YD
303/*
304 * Integer metrics need fixed point arithmetic, e.g., sched/fair
305 * has a few: load, load_avg, util_avg, freq, and capacity.
306 *
307 * We define a basic fixed point arithmetic range, and then formalize
308 * all these metrics based on that basic range.
309 */
5eca1c10
IM
310# define SCHED_FIXEDPOINT_SHIFT 10
311# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 312
20b8a59f 313struct load_weight {
5eca1c10
IM
314 unsigned long weight;
315 u32 inv_weight;
20b8a59f
IM
316};
317
9d89c257 318/*
7b595334
YD
319 * The load_avg/util_avg accumulates an infinite geometric series
320 * (see __update_load_avg() in kernel/sched/fair.c).
321 *
322 * [load_avg definition]
323 *
324 * load_avg = runnable% * scale_load_down(load)
325 *
326 * where runnable% is the time ratio that a sched_entity is runnable.
327 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 328 * blocked sched_entities.
7b595334
YD
329 *
330 * load_avg may also take frequency scaling into account:
331 *
332 * load_avg = runnable% * scale_load_down(load) * freq%
333 *
334 * where freq% is the CPU frequency normalized to the highest frequency.
335 *
336 * [util_avg definition]
337 *
338 * util_avg = running% * SCHED_CAPACITY_SCALE
339 *
340 * where running% is the time ratio that a sched_entity is running on
341 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
342 * and blocked sched_entities.
343 *
344 * util_avg may also factor frequency scaling and CPU capacity scaling:
345 *
346 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
347 *
348 * where freq% is the same as above, and capacity% is the CPU capacity
349 * normalized to the greatest capacity (due to uarch differences, etc).
350 *
351 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
352 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
353 * we therefore scale them to as large a range as necessary. This is for
354 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
355 *
356 * [Overflow issue]
357 *
358 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
359 * with the highest load (=88761), always runnable on a single cfs_rq,
360 * and should not overflow as the number already hits PID_MAX_LIMIT.
361 *
362 * For all other cases (including 32-bit kernels), struct load_weight's
363 * weight will overflow first before we do, because:
364 *
365 * Max(load_avg) <= Max(load.weight)
366 *
367 * Then it is the load_weight's responsibility to consider overflow
368 * issues.
9d89c257 369 */
9d85f21c 370struct sched_avg {
5eca1c10
IM
371 u64 last_update_time;
372 u64 load_sum;
1ea6c46a 373 u64 runnable_load_sum;
5eca1c10
IM
374 u32 util_sum;
375 u32 period_contrib;
376 unsigned long load_avg;
1ea6c46a 377 unsigned long runnable_load_avg;
5eca1c10 378 unsigned long util_avg;
9d85f21c
PT
379};
380
41acab88 381struct sched_statistics {
7f5f8e8d 382#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
383 u64 wait_start;
384 u64 wait_max;
385 u64 wait_count;
386 u64 wait_sum;
387 u64 iowait_count;
388 u64 iowait_sum;
389
390 u64 sleep_start;
391 u64 sleep_max;
392 s64 sum_sleep_runtime;
393
394 u64 block_start;
395 u64 block_max;
396 u64 exec_max;
397 u64 slice_max;
398
399 u64 nr_migrations_cold;
400 u64 nr_failed_migrations_affine;
401 u64 nr_failed_migrations_running;
402 u64 nr_failed_migrations_hot;
403 u64 nr_forced_migrations;
404
405 u64 nr_wakeups;
406 u64 nr_wakeups_sync;
407 u64 nr_wakeups_migrate;
408 u64 nr_wakeups_local;
409 u64 nr_wakeups_remote;
410 u64 nr_wakeups_affine;
411 u64 nr_wakeups_affine_attempts;
412 u64 nr_wakeups_passive;
413 u64 nr_wakeups_idle;
41acab88 414#endif
7f5f8e8d 415};
41acab88
LDM
416
417struct sched_entity {
5eca1c10
IM
418 /* For load-balancing: */
419 struct load_weight load;
1ea6c46a 420 unsigned long runnable_weight;
5eca1c10
IM
421 struct rb_node run_node;
422 struct list_head group_node;
423 unsigned int on_rq;
41acab88 424
5eca1c10
IM
425 u64 exec_start;
426 u64 sum_exec_runtime;
427 u64 vruntime;
428 u64 prev_sum_exec_runtime;
41acab88 429
5eca1c10 430 u64 nr_migrations;
41acab88 431
5eca1c10 432 struct sched_statistics statistics;
94c18227 433
20b8a59f 434#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
435 int depth;
436 struct sched_entity *parent;
20b8a59f 437 /* rq on which this entity is (to be) queued: */
5eca1c10 438 struct cfs_rq *cfs_rq;
20b8a59f 439 /* rq "owned" by this entity/group: */
5eca1c10 440 struct cfs_rq *my_q;
20b8a59f 441#endif
8bd75c77 442
141965c7 443#ifdef CONFIG_SMP
5a107804
JO
444 /*
445 * Per entity load average tracking.
446 *
447 * Put into separate cache line so it does not
448 * collide with read-mostly values above.
449 */
5eca1c10 450 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 451#endif
20b8a59f 452};
70b97a7f 453
fa717060 454struct sched_rt_entity {
5eca1c10
IM
455 struct list_head run_list;
456 unsigned long timeout;
457 unsigned long watchdog_stamp;
458 unsigned int time_slice;
459 unsigned short on_rq;
460 unsigned short on_list;
461
462 struct sched_rt_entity *back;
052f1dc7 463#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 464 struct sched_rt_entity *parent;
6f505b16 465 /* rq on which this entity is (to be) queued: */
5eca1c10 466 struct rt_rq *rt_rq;
6f505b16 467 /* rq "owned" by this entity/group: */
5eca1c10 468 struct rt_rq *my_q;
6f505b16 469#endif
3859a271 470} __randomize_layout;
fa717060 471
aab03e05 472struct sched_dl_entity {
5eca1c10 473 struct rb_node rb_node;
aab03e05
DF
474
475 /*
476 * Original scheduling parameters. Copied here from sched_attr
4027d080 477 * during sched_setattr(), they will remain the same until
478 * the next sched_setattr().
aab03e05 479 */
5eca1c10
IM
480 u64 dl_runtime; /* Maximum runtime for each instance */
481 u64 dl_deadline; /* Relative deadline of each instance */
482 u64 dl_period; /* Separation of two instances (period) */
54d6d303 483 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 484 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
485
486 /*
487 * Actual scheduling parameters. Initialized with the values above,
488 * they are continously updated during task execution. Note that
489 * the remaining runtime could be < 0 in case we are in overrun.
490 */
5eca1c10
IM
491 s64 runtime; /* Remaining runtime for this instance */
492 u64 deadline; /* Absolute deadline for this instance */
493 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
494
495 /*
496 * Some bool flags:
497 *
498 * @dl_throttled tells if we exhausted the runtime. If so, the
499 * task has to wait for a replenishment to be performed at the
500 * next firing of dl_timer.
501 *
2d3d891d
DF
502 * @dl_boosted tells if we are boosted due to DI. If so we are
503 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
504 * exit the critical section);
505 *
5eca1c10 506 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 507 * all its available runtime during the last job.
209a0cbd
LA
508 *
509 * @dl_non_contending tells if the task is inactive while still
510 * contributing to the active utilization. In other words, it
511 * indicates if the inactive timer has been armed and its handler
512 * has not been executed yet. This flag is useful to avoid race
513 * conditions between the inactive timer handler and the wakeup
514 * code.
aab03e05 515 */
aa5222e9
DC
516 unsigned int dl_throttled : 1;
517 unsigned int dl_boosted : 1;
518 unsigned int dl_yielded : 1;
519 unsigned int dl_non_contending : 1;
aab03e05
DF
520
521 /*
522 * Bandwidth enforcement timer. Each -deadline task has its
523 * own bandwidth to be enforced, thus we need one timer per task.
524 */
5eca1c10 525 struct hrtimer dl_timer;
209a0cbd
LA
526
527 /*
528 * Inactive timer, responsible for decreasing the active utilization
529 * at the "0-lag time". When a -deadline task blocks, it contributes
530 * to GRUB's active utilization until the "0-lag time", hence a
531 * timer is needed to decrease the active utilization at the correct
532 * time.
533 */
534 struct hrtimer inactive_timer;
aab03e05 535};
8bd75c77 536
1d082fd0
PM
537union rcu_special {
538 struct {
5eca1c10
IM
539 u8 blocked;
540 u8 need_qs;
541 u8 exp_need_qs;
542
543 /* Otherwise the compiler can store garbage here: */
544 u8 pad;
8203d6d0
PM
545 } b; /* Bits. */
546 u32 s; /* Set of bits. */
1d082fd0 547};
86848966 548
8dc85d54
PZ
549enum perf_event_task_context {
550 perf_invalid_context = -1,
551 perf_hw_context = 0,
89a1e187 552 perf_sw_context,
8dc85d54
PZ
553 perf_nr_task_contexts,
554};
555
eb61baf6
IM
556struct wake_q_node {
557 struct wake_q_node *next;
558};
559
1da177e4 560struct task_struct {
c65eacbe
AL
561#ifdef CONFIG_THREAD_INFO_IN_TASK
562 /*
563 * For reasons of header soup (see current_thread_info()), this
564 * must be the first element of task_struct.
565 */
5eca1c10 566 struct thread_info thread_info;
c65eacbe 567#endif
5eca1c10
IM
568 /* -1 unrunnable, 0 runnable, >0 stopped: */
569 volatile long state;
29e48ce8
KC
570
571 /*
572 * This begins the randomizable portion of task_struct. Only
573 * scheduling-critical items should be added above here.
574 */
575 randomized_struct_fields_start
576
5eca1c10
IM
577 void *stack;
578 atomic_t usage;
579 /* Per task flags (PF_*), defined further below: */
580 unsigned int flags;
581 unsigned int ptrace;
1da177e4 582
2dd73a4f 583#ifdef CONFIG_SMP
5eca1c10
IM
584 struct llist_node wake_entry;
585 int on_cpu;
c65eacbe 586#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
587 /* Current CPU: */
588 unsigned int cpu;
c65eacbe 589#endif
5eca1c10
IM
590 unsigned int wakee_flips;
591 unsigned long wakee_flip_decay_ts;
592 struct task_struct *last_wakee;
ac66f547 593
5eca1c10 594 int wake_cpu;
2dd73a4f 595#endif
5eca1c10
IM
596 int on_rq;
597
598 int prio;
599 int static_prio;
600 int normal_prio;
601 unsigned int rt_priority;
50e645a8 602
5eca1c10
IM
603 const struct sched_class *sched_class;
604 struct sched_entity se;
605 struct sched_rt_entity rt;
8323f26c 606#ifdef CONFIG_CGROUP_SCHED
5eca1c10 607 struct task_group *sched_task_group;
8323f26c 608#endif
5eca1c10 609 struct sched_dl_entity dl;
1da177e4 610
e107be36 611#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
612 /* List of struct preempt_notifier: */
613 struct hlist_head preempt_notifiers;
e107be36
AK
614#endif
615
6c5c9341 616#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 617 unsigned int btrace_seq;
6c5c9341 618#endif
1da177e4 619
5eca1c10
IM
620 unsigned int policy;
621 int nr_cpus_allowed;
622 cpumask_t cpus_allowed;
1da177e4 623
a57eb940 624#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
625 int rcu_read_lock_nesting;
626 union rcu_special rcu_read_unlock_special;
627 struct list_head rcu_node_entry;
628 struct rcu_node *rcu_blocked_node;
28f6569a 629#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 630
8315f422 631#ifdef CONFIG_TASKS_RCU
5eca1c10 632 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
633 u8 rcu_tasks_holdout;
634 u8 rcu_tasks_idx;
5eca1c10 635 int rcu_tasks_idle_cpu;
ccdd29ff 636 struct list_head rcu_tasks_holdout_list;
8315f422 637#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 638
5eca1c10 639 struct sched_info sched_info;
1da177e4 640
5eca1c10 641 struct list_head tasks;
806c09a7 642#ifdef CONFIG_SMP
5eca1c10
IM
643 struct plist_node pushable_tasks;
644 struct rb_node pushable_dl_tasks;
806c09a7 645#endif
1da177e4 646
5eca1c10
IM
647 struct mm_struct *mm;
648 struct mm_struct *active_mm;
314ff785
IM
649
650 /* Per-thread vma caching: */
5eca1c10 651 struct vmacache vmacache;
314ff785 652
5eca1c10
IM
653#ifdef SPLIT_RSS_COUNTING
654 struct task_rss_stat rss_stat;
34e55232 655#endif
5eca1c10
IM
656 int exit_state;
657 int exit_code;
658 int exit_signal;
659 /* The signal sent when the parent dies: */
660 int pdeath_signal;
661 /* JOBCTL_*, siglock protected: */
662 unsigned long jobctl;
663
664 /* Used for emulating ABI behavior of previous Linux versions: */
665 unsigned int personality;
666
667 /* Scheduler bits, serialized by scheduler locks: */
668 unsigned sched_reset_on_fork:1;
669 unsigned sched_contributes_to_load:1;
670 unsigned sched_migrated:1;
671 unsigned sched_remote_wakeup:1;
672 /* Force alignment to the next boundary: */
673 unsigned :0;
674
675 /* Unserialized, strictly 'current' */
676
677 /* Bit to tell LSMs we're in execve(): */
678 unsigned in_execve:1;
679 unsigned in_iowait:1;
680#ifndef TIF_RESTORE_SIGMASK
681 unsigned restore_sigmask:1;
7e781418 682#endif
626ebc41 683#ifdef CONFIG_MEMCG
5eca1c10 684 unsigned memcg_may_oom:1;
127424c8 685#ifndef CONFIG_SLOB
5eca1c10 686 unsigned memcg_kmem_skip_account:1;
6f185c29 687#endif
127424c8 688#endif
ff303e66 689#ifdef CONFIG_COMPAT_BRK
5eca1c10 690 unsigned brk_randomized:1;
ff303e66 691#endif
77f88796
TH
692#ifdef CONFIG_CGROUPS
693 /* disallow userland-initiated cgroup migration */
694 unsigned no_cgroup_migration:1;
695#endif
6f185c29 696
5eca1c10 697 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 698
5eca1c10 699 struct restart_block restart_block;
f56141e3 700
5eca1c10
IM
701 pid_t pid;
702 pid_t tgid;
0a425405 703
1314562a 704#ifdef CONFIG_CC_STACKPROTECTOR
5eca1c10
IM
705 /* Canary value for the -fstack-protector GCC feature: */
706 unsigned long stack_canary;
1314562a 707#endif
4d1d61a6 708 /*
5eca1c10 709 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 710 * older sibling, respectively. (p->father can be replaced with
f470021a 711 * p->real_parent->pid)
1da177e4 712 */
5eca1c10
IM
713
714 /* Real parent process: */
715 struct task_struct __rcu *real_parent;
716
717 /* Recipient of SIGCHLD, wait4() reports: */
718 struct task_struct __rcu *parent;
719
1da177e4 720 /*
5eca1c10 721 * Children/sibling form the list of natural children:
1da177e4 722 */
5eca1c10
IM
723 struct list_head children;
724 struct list_head sibling;
725 struct task_struct *group_leader;
1da177e4 726
f470021a 727 /*
5eca1c10
IM
728 * 'ptraced' is the list of tasks this task is using ptrace() on.
729 *
f470021a 730 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 731 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 732 */
5eca1c10
IM
733 struct list_head ptraced;
734 struct list_head ptrace_entry;
f470021a 735
1da177e4 736 /* PID/PID hash table linkage. */
5eca1c10
IM
737 struct pid_link pids[PIDTYPE_MAX];
738 struct list_head thread_group;
739 struct list_head thread_node;
740
741 struct completion *vfork_done;
1da177e4 742
5eca1c10
IM
743 /* CLONE_CHILD_SETTID: */
744 int __user *set_child_tid;
1da177e4 745
5eca1c10
IM
746 /* CLONE_CHILD_CLEARTID: */
747 int __user *clear_child_tid;
748
749 u64 utime;
750 u64 stime;
40565b5a 751#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
752 u64 utimescaled;
753 u64 stimescaled;
40565b5a 754#endif
5eca1c10
IM
755 u64 gtime;
756 struct prev_cputime prev_cputime;
6a61671b 757#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 758 struct vtime vtime;
d99ca3b9 759#endif
d027d45d
FW
760
761#ifdef CONFIG_NO_HZ_FULL
5eca1c10 762 atomic_t tick_dep_mask;
d027d45d 763#endif
5eca1c10
IM
764 /* Context switch counts: */
765 unsigned long nvcsw;
766 unsigned long nivcsw;
767
768 /* Monotonic time in nsecs: */
769 u64 start_time;
770
771 /* Boot based time in nsecs: */
772 u64 real_start_time;
773
774 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
775 unsigned long min_flt;
776 unsigned long maj_flt;
1da177e4 777
b18b6a9c 778#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
779 struct task_cputime cputime_expires;
780 struct list_head cpu_timers[3];
b18b6a9c 781#endif
1da177e4 782
5eca1c10
IM
783 /* Process credentials: */
784
785 /* Tracer's credentials at attach: */
786 const struct cred __rcu *ptracer_cred;
787
788 /* Objective and real subjective task credentials (COW): */
789 const struct cred __rcu *real_cred;
790
791 /* Effective (overridable) subjective task credentials (COW): */
792 const struct cred __rcu *cred;
793
794 /*
795 * executable name, excluding path.
796 *
797 * - normally initialized setup_new_exec()
798 * - access it with [gs]et_task_comm()
799 * - lock it with task_lock()
800 */
801 char comm[TASK_COMM_LEN];
802
803 struct nameidata *nameidata;
804
3d5b6fcc 805#ifdef CONFIG_SYSVIPC
5eca1c10
IM
806 struct sysv_sem sysvsem;
807 struct sysv_shm sysvshm;
3d5b6fcc 808#endif
e162b39a 809#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 810 unsigned long last_switch_count;
82a1fcb9 811#endif
5eca1c10
IM
812 /* Filesystem information: */
813 struct fs_struct *fs;
814
815 /* Open file information: */
816 struct files_struct *files;
817
818 /* Namespaces: */
819 struct nsproxy *nsproxy;
820
821 /* Signal handlers: */
822 struct signal_struct *signal;
823 struct sighand_struct *sighand;
824 sigset_t blocked;
825 sigset_t real_blocked;
826 /* Restored if set_restore_sigmask() was used: */
827 sigset_t saved_sigmask;
828 struct sigpending pending;
829 unsigned long sas_ss_sp;
830 size_t sas_ss_size;
831 unsigned int sas_ss_flags;
832
833 struct callback_head *task_works;
834
835 struct audit_context *audit_context;
bfef93a5 836#ifdef CONFIG_AUDITSYSCALL
5eca1c10
IM
837 kuid_t loginuid;
838 unsigned int sessionid;
bfef93a5 839#endif
5eca1c10
IM
840 struct seccomp seccomp;
841
842 /* Thread group tracking: */
843 u32 parent_exec_id;
844 u32 self_exec_id;
1da177e4 845
5eca1c10
IM
846 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
847 spinlock_t alloc_lock;
1da177e4 848
b29739f9 849 /* Protection of the PI data structures: */
5eca1c10 850 raw_spinlock_t pi_lock;
b29739f9 851
5eca1c10 852 struct wake_q_node wake_q;
76751049 853
23f78d4a 854#ifdef CONFIG_RT_MUTEXES
5eca1c10 855 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 856 struct rb_root_cached pi_waiters;
e96a7705
XP
857 /* Updated under owner's pi_lock and rq lock */
858 struct task_struct *pi_top_task;
5eca1c10
IM
859 /* Deadlock detection and priority inheritance handling: */
860 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
861#endif
862
408894ee 863#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
864 /* Mutex deadlock detection: */
865 struct mutex_waiter *blocked_on;
408894ee 866#endif
5eca1c10 867
de30a2b3 868#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
869 unsigned int irq_events;
870 unsigned long hardirq_enable_ip;
871 unsigned long hardirq_disable_ip;
872 unsigned int hardirq_enable_event;
873 unsigned int hardirq_disable_event;
874 int hardirqs_enabled;
875 int hardirq_context;
876 unsigned long softirq_disable_ip;
877 unsigned long softirq_enable_ip;
878 unsigned int softirq_disable_event;
879 unsigned int softirq_enable_event;
880 int softirqs_enabled;
881 int softirq_context;
de30a2b3 882#endif
5eca1c10 883
fbb9ce95 884#ifdef CONFIG_LOCKDEP
5eca1c10
IM
885# define MAX_LOCK_DEPTH 48UL
886 u64 curr_chain_key;
887 int lockdep_depth;
888 unsigned int lockdep_recursion;
889 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 890#endif
5eca1c10 891
c6d30853 892#ifdef CONFIG_UBSAN
5eca1c10 893 unsigned int in_ubsan;
c6d30853 894#endif
408894ee 895
5eca1c10
IM
896 /* Journalling filesystem info: */
897 void *journal_info;
1da177e4 898
5eca1c10
IM
899 /* Stacked block device info: */
900 struct bio_list *bio_list;
d89d8796 901
73c10101 902#ifdef CONFIG_BLOCK
5eca1c10
IM
903 /* Stack plugging: */
904 struct blk_plug *plug;
73c10101
JA
905#endif
906
5eca1c10
IM
907 /* VM state: */
908 struct reclaim_state *reclaim_state;
909
910 struct backing_dev_info *backing_dev_info;
1da177e4 911
5eca1c10 912 struct io_context *io_context;
1da177e4 913
5eca1c10
IM
914 /* Ptrace state: */
915 unsigned long ptrace_message;
916 siginfo_t *last_siginfo;
1da177e4 917
5eca1c10
IM
918 struct task_io_accounting ioac;
919#ifdef CONFIG_TASK_XACCT
920 /* Accumulated RSS usage: */
921 u64 acct_rss_mem1;
922 /* Accumulated virtual memory usage: */
923 u64 acct_vm_mem1;
924 /* stime + utime since last update: */
925 u64 acct_timexpd;
1da177e4
LT
926#endif
927#ifdef CONFIG_CPUSETS
5eca1c10
IM
928 /* Protected by ->alloc_lock: */
929 nodemask_t mems_allowed;
930 /* Seqence number to catch updates: */
931 seqcount_t mems_allowed_seq;
932 int cpuset_mem_spread_rotor;
933 int cpuset_slab_spread_rotor;
1da177e4 934#endif
ddbcc7e8 935#ifdef CONFIG_CGROUPS
5eca1c10
IM
936 /* Control Group info protected by css_set_lock: */
937 struct css_set __rcu *cgroups;
938 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
939 struct list_head cg_list;
ddbcc7e8 940#endif
f01d7d51 941#ifdef CONFIG_INTEL_RDT
0734ded1 942 u32 closid;
d6aaba61 943 u32 rmid;
e02737d5 944#endif
42b2dd0a 945#ifdef CONFIG_FUTEX
5eca1c10 946 struct robust_list_head __user *robust_list;
34f192c6
IM
947#ifdef CONFIG_COMPAT
948 struct compat_robust_list_head __user *compat_robust_list;
949#endif
5eca1c10
IM
950 struct list_head pi_state_list;
951 struct futex_pi_state *pi_state_cache;
c7aceaba 952#endif
cdd6c482 953#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
954 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
955 struct mutex perf_event_mutex;
956 struct list_head perf_event_list;
a63eaf34 957#endif
8f47b187 958#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 959 unsigned long preempt_disable_ip;
8f47b187 960#endif
c7aceaba 961#ifdef CONFIG_NUMA
5eca1c10
IM
962 /* Protected by alloc_lock: */
963 struct mempolicy *mempolicy;
45816682 964 short il_prev;
5eca1c10 965 short pref_node_fork;
42b2dd0a 966#endif
cbee9f88 967#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
968 int numa_scan_seq;
969 unsigned int numa_scan_period;
970 unsigned int numa_scan_period_max;
971 int numa_preferred_nid;
972 unsigned long numa_migrate_retry;
973 /* Migration stamp: */
974 u64 node_stamp;
975 u64 last_task_numa_placement;
976 u64 last_sum_exec_runtime;
977 struct callback_head numa_work;
978
979 struct list_head numa_entry;
980 struct numa_group *numa_group;
8c8a743c 981
745d6147 982 /*
44dba3d5
IM
983 * numa_faults is an array split into four regions:
984 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
985 * in this precise order.
986 *
987 * faults_memory: Exponential decaying average of faults on a per-node
988 * basis. Scheduling placement decisions are made based on these
989 * counts. The values remain static for the duration of a PTE scan.
990 * faults_cpu: Track the nodes the process was running on when a NUMA
991 * hinting fault was incurred.
992 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
993 * during the current scan window. When the scan completes, the counts
994 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 995 */
5eca1c10
IM
996 unsigned long *numa_faults;
997 unsigned long total_numa_faults;
745d6147 998
04bb2f94
RR
999 /*
1000 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1001 * scan window were remote/local or failed to migrate. The task scan
1002 * period is adapted based on the locality of the faults with different
1003 * weights depending on whether they were shared or private faults
04bb2f94 1004 */
5eca1c10 1005 unsigned long numa_faults_locality[3];
04bb2f94 1006
5eca1c10 1007 unsigned long numa_pages_migrated;
cbee9f88
PZ
1008#endif /* CONFIG_NUMA_BALANCING */
1009
5eca1c10 1010 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1011
5eca1c10 1012 struct rcu_head rcu;
b92ce558 1013
5eca1c10
IM
1014 /* Cache last used pipe for splice(): */
1015 struct pipe_inode_info *splice_pipe;
5640f768 1016
5eca1c10 1017 struct page_frag task_frag;
5640f768 1018
47913d4e
IM
1019#ifdef CONFIG_TASK_DELAY_ACCT
1020 struct task_delay_info *delays;
f4f154fd 1021#endif
47913d4e 1022
f4f154fd 1023#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1024 int make_it_fail;
9049f2f6 1025 unsigned int fail_nth;
ca74e92b 1026#endif
9d823e8f 1027 /*
5eca1c10
IM
1028 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1029 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1030 */
5eca1c10
IM
1031 int nr_dirtied;
1032 int nr_dirtied_pause;
1033 /* Start of a write-and-pause period: */
1034 unsigned long dirty_paused_when;
9d823e8f 1035
9745512c 1036#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1037 int latency_record_count;
1038 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1039#endif
6976675d 1040 /*
5eca1c10 1041 * Time slack values; these are used to round up poll() and
6976675d
AV
1042 * select() etc timeout values. These are in nanoseconds.
1043 */
5eca1c10
IM
1044 u64 timer_slack_ns;
1045 u64 default_timer_slack_ns;
f8d570a4 1046
0b24becc 1047#ifdef CONFIG_KASAN
5eca1c10 1048 unsigned int kasan_depth;
0b24becc 1049#endif
5eca1c10 1050
fb52607a 1051#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1052 /* Index of current stored address in ret_stack: */
1053 int curr_ret_stack;
01c8a158 1054 int curr_ret_depth;
5eca1c10
IM
1055
1056 /* Stack of return addresses for return function tracing: */
1057 struct ftrace_ret_stack *ret_stack;
1058
1059 /* Timestamp for last schedule: */
1060 unsigned long long ftrace_timestamp;
1061
f201ae23
FW
1062 /*
1063 * Number of functions that haven't been traced
5eca1c10 1064 * because of depth overrun:
f201ae23 1065 */
5eca1c10
IM
1066 atomic_t trace_overrun;
1067
1068 /* Pause tracing: */
1069 atomic_t tracing_graph_pause;
f201ae23 1070#endif
5eca1c10 1071
ea4e2bc4 1072#ifdef CONFIG_TRACING
5eca1c10
IM
1073 /* State flags for use by tracers: */
1074 unsigned long trace;
1075
1076 /* Bitmask and counter of trace recursion: */
1077 unsigned long trace_recursion;
261842b7 1078#endif /* CONFIG_TRACING */
5eca1c10 1079
5c9a8750 1080#ifdef CONFIG_KCOV
5eca1c10
IM
1081 /* Coverage collection mode enabled for this task (0 if disabled): */
1082 enum kcov_mode kcov_mode;
1083
1084 /* Size of the kcov_area: */
1085 unsigned int kcov_size;
1086
1087 /* Buffer for coverage collection: */
1088 void *kcov_area;
1089
1090 /* KCOV descriptor wired with this task or NULL: */
1091 struct kcov *kcov;
5c9a8750 1092#endif
5eca1c10 1093
6f185c29 1094#ifdef CONFIG_MEMCG
5eca1c10
IM
1095 struct mem_cgroup *memcg_in_oom;
1096 gfp_t memcg_oom_gfp_mask;
1097 int memcg_oom_order;
b23afb93 1098
5eca1c10
IM
1099 /* Number of pages to reclaim on returning to userland: */
1100 unsigned int memcg_nr_pages_over_high;
569b846d 1101#endif
5eca1c10 1102
0326f5a9 1103#ifdef CONFIG_UPROBES
5eca1c10 1104 struct uprobe_task *utask;
0326f5a9 1105#endif
cafe5635 1106#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1107 unsigned int sequential_io;
1108 unsigned int sequential_io_avg;
cafe5635 1109#endif
8eb23b9f 1110#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1111 unsigned long task_state_change;
8eb23b9f 1112#endif
5eca1c10 1113 int pagefault_disabled;
03049269 1114#ifdef CONFIG_MMU
5eca1c10 1115 struct task_struct *oom_reaper_list;
03049269 1116#endif
ba14a194 1117#ifdef CONFIG_VMAP_STACK
5eca1c10 1118 struct vm_struct *stack_vm_area;
ba14a194 1119#endif
68f24b08 1120#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
1121 /* A live task holds one reference: */
1122 atomic_t stack_refcount;
d83a7cb3
JP
1123#endif
1124#ifdef CONFIG_LIVEPATCH
1125 int patch_state;
0302e28d 1126#endif
e4e55b47
TH
1127#ifdef CONFIG_SECURITY
1128 /* Used by LSM modules for access restriction: */
1129 void *security;
68f24b08 1130#endif
29e48ce8
KC
1131
1132 /*
1133 * New fields for task_struct should be added above here, so that
1134 * they are included in the randomized portion of task_struct.
1135 */
1136 randomized_struct_fields_end
1137
5eca1c10
IM
1138 /* CPU-specific state of this task: */
1139 struct thread_struct thread;
1140
1141 /*
1142 * WARNING: on x86, 'thread_struct' contains a variable-sized
1143 * structure. It *MUST* be at the end of 'task_struct'.
1144 *
1145 * Do not put anything below here!
1146 */
1da177e4
LT
1147};
1148
e868171a 1149static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1150{
1151 return task->pids[PIDTYPE_PID].pid;
1152}
1153
e868171a 1154static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1155{
1156 return task->group_leader->pids[PIDTYPE_PID].pid;
1157}
1158
6dda81f4 1159/*
5eca1c10 1160 * Without tasklist or RCU lock it is not safe to dereference
6dda81f4
ON
1161 * the result of task_pgrp/task_session even if task == current,
1162 * we can race with another thread doing sys_setsid/sys_setpgid.
1163 */
e868171a 1164static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1165{
1166 return task->group_leader->pids[PIDTYPE_PGID].pid;
1167}
1168
e868171a 1169static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1170{
1171 return task->group_leader->pids[PIDTYPE_SID].pid;
1172}
1173
7af57294
PE
1174/*
1175 * the helpers to get the task's different pids as they are seen
1176 * from various namespaces
1177 *
1178 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1179 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1180 * current.
7af57294
PE
1181 * task_xid_nr_ns() : id seen from the ns specified;
1182 *
7af57294
PE
1183 * see also pid_nr() etc in include/linux/pid.h
1184 */
5eca1c10 1185pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1186
e868171a 1187static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1188{
1189 return tsk->pid;
1190}
1191
5eca1c10 1192static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1193{
1194 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1195}
7af57294
PE
1196
1197static inline pid_t task_pid_vnr(struct task_struct *tsk)
1198{
52ee2dfd 1199 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1200}
1201
1202
e868171a 1203static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1204{
1205 return tsk->tgid;
1206}
1207
5eca1c10
IM
1208/**
1209 * pid_alive - check that a task structure is not stale
1210 * @p: Task structure to be checked.
1211 *
1212 * Test if a process is not yet dead (at most zombie state)
1213 * If pid_alive fails, then pointers within the task structure
1214 * can be stale and must not be dereferenced.
1215 *
1216 * Return: 1 if the process is alive. 0 otherwise.
1217 */
1218static inline int pid_alive(const struct task_struct *p)
1219{
1220 return p->pids[PIDTYPE_PID].pid != NULL;
1221}
7af57294 1222
5eca1c10 1223static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1224{
52ee2dfd 1225 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1226}
1227
7af57294
PE
1228static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1229{
52ee2dfd 1230 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1231}
1232
1233
5eca1c10 1234static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1235{
52ee2dfd 1236 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1237}
1238
7af57294
PE
1239static inline pid_t task_session_vnr(struct task_struct *tsk)
1240{
52ee2dfd 1241 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1242}
1243
dd1c1f2f
ON
1244static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1245{
1246 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1247}
1248
1249static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1250{
1251 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1252}
1253
1254static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1255{
1256 pid_t pid = 0;
1257
1258 rcu_read_lock();
1259 if (pid_alive(tsk))
1260 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1261 rcu_read_unlock();
1262
1263 return pid;
1264}
1265
1266static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1267{
1268 return task_ppid_nr_ns(tsk, &init_pid_ns);
1269}
1270
5eca1c10 1271/* Obsolete, do not use: */
1b0f7ffd
ON
1272static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1273{
1274 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1275}
7af57294 1276
06eb6184
PZ
1277#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1278#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1279
1d48b080 1280static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1281{
1593baab
PZ
1282 unsigned int tsk_state = READ_ONCE(tsk->state);
1283 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1284
06eb6184
PZ
1285 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1286
06eb6184
PZ
1287 if (tsk_state == TASK_IDLE)
1288 state = TASK_REPORT_IDLE;
1289
1593baab
PZ
1290 return fls(state);
1291}
1292
1d48b080 1293static inline char task_index_to_char(unsigned int state)
1593baab 1294{
8ef9925b 1295 static const char state_char[] = "RSDTtXZPI";
1593baab 1296
06eb6184 1297 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1298
1593baab
PZ
1299 return state_char[state];
1300}
1301
1302static inline char task_state_to_char(struct task_struct *tsk)
1303{
1d48b080 1304 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1305}
1306
f400e198 1307/**
570f5241
SS
1308 * is_global_init - check if a task structure is init. Since init
1309 * is free to have sub-threads we need to check tgid.
3260259f
HK
1310 * @tsk: Task structure to be checked.
1311 *
1312 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1313 *
1314 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1315 */
e868171a 1316static inline int is_global_init(struct task_struct *tsk)
b461cc03 1317{
570f5241 1318 return task_tgid_nr(tsk) == 1;
b461cc03 1319}
b460cbc5 1320
9ec52099
CLG
1321extern struct pid *cad_pid;
1322
1da177e4
LT
1323/*
1324 * Per process flags
1325 */
5eca1c10
IM
1326#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1327#define PF_EXITING 0x00000004 /* Getting shut down */
1328#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1329#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1330#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1331#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1332#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1333#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1334#define PF_DUMPCORE 0x00000200 /* Dumped core */
1335#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1336#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1337#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1338#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1339#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1340#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1341#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1342#define PF_KSWAPD 0x00020000 /* I am kswapd */
1343#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1344#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1345#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1346#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1347#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1348#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1349#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1350#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1351#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1352#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1353#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1354
1355/*
1356 * Only the _current_ task can read/write to tsk->flags, but other
1357 * tasks can access tsk->flags in readonly mode for example
1358 * with tsk_used_math (like during threaded core dumping).
1359 * There is however an exception to this rule during ptrace
1360 * or during fork: the ptracer task is allowed to write to the
1361 * child->flags of its traced child (same goes for fork, the parent
1362 * can write to the child->flags), because we're guaranteed the
1363 * child is not running and in turn not changing child->flags
1364 * at the same time the parent does it.
1365 */
5eca1c10
IM
1366#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1367#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1368#define clear_used_math() clear_stopped_child_used_math(current)
1369#define set_used_math() set_stopped_child_used_math(current)
1370
1da177e4
LT
1371#define conditional_stopped_child_used_math(condition, child) \
1372 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1373
1374#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1375
1da177e4
LT
1376#define copy_to_stopped_child_used_math(child) \
1377 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1378
1da177e4 1379/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1380#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1381#define used_math() tsk_used_math(current)
1da177e4 1382
62ec05dd
TG
1383static inline bool is_percpu_thread(void)
1384{
1385#ifdef CONFIG_SMP
1386 return (current->flags & PF_NO_SETAFFINITY) &&
1387 (current->nr_cpus_allowed == 1);
1388#else
1389 return true;
1390#endif
1391}
1392
1d4457f9 1393/* Per-process atomic flags. */
5eca1c10
IM
1394#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1395#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1396#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
733f4234
TG
1397#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1398#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
ac40ad3b
TG
1399#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1400#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1d4457f9 1401
e0e5070b
ZL
1402#define TASK_PFA_TEST(name, func) \
1403 static inline bool task_##func(struct task_struct *p) \
1404 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1405
e0e5070b
ZL
1406#define TASK_PFA_SET(name, func) \
1407 static inline void task_set_##func(struct task_struct *p) \
1408 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1409
e0e5070b
ZL
1410#define TASK_PFA_CLEAR(name, func) \
1411 static inline void task_clear_##func(struct task_struct *p) \
1412 { clear_bit(PFA_##name, &p->atomic_flags); }
1413
1414TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1415TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1416
2ad654bc
ZL
1417TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1418TASK_PFA_SET(SPREAD_PAGE, spread_page)
1419TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1420
1421TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1422TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1423TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1424
733f4234
TG
1425TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1426TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1427TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1428
1429TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1430TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1431
ac40ad3b
TG
1432TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1433TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1434TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1435
1436TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1437TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1438
5eca1c10 1439static inline void
717a94b5 1440current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1441{
717a94b5
N
1442 current->flags &= ~flags;
1443 current->flags |= orig_flags & flags;
907aed48
MG
1444}
1445
5eca1c10
IM
1446extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1447extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1448#ifdef CONFIG_SMP
5eca1c10
IM
1449extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1450extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1451#else
5eca1c10 1452static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1453{
1454}
5eca1c10 1455static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1456{
96f874e2 1457 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1458 return -EINVAL;
1459 return 0;
1460}
1461#endif
e0ad9556 1462
6d0d2878
CB
1463#ifndef cpu_relax_yield
1464#define cpu_relax_yield() cpu_relax()
1465#endif
1466
fa93384f 1467extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1468extern void set_user_nice(struct task_struct *p, long nice);
1469extern int task_prio(const struct task_struct *p);
5eca1c10 1470
d0ea0268
DY
1471/**
1472 * task_nice - return the nice value of a given task.
1473 * @p: the task in question.
1474 *
1475 * Return: The nice value [ -20 ... 0 ... 19 ].
1476 */
1477static inline int task_nice(const struct task_struct *p)
1478{
1479 return PRIO_TO_NICE((p)->static_prio);
1480}
5eca1c10 1481
36c8b586
IM
1482extern int can_nice(const struct task_struct *p, const int nice);
1483extern int task_curr(const struct task_struct *p);
1da177e4 1484extern int idle_cpu(int cpu);
5eca1c10
IM
1485extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1486extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1487extern int sched_setattr(struct task_struct *, const struct sched_attr *);
36c8b586 1488extern struct task_struct *idle_task(int cpu);
5eca1c10 1489
c4f30608
PM
1490/**
1491 * is_idle_task - is the specified task an idle task?
fa757281 1492 * @p: the task in question.
e69f6186
YB
1493 *
1494 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1495 */
7061ca3b 1496static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1497{
c1de45ca 1498 return !!(p->flags & PF_IDLE);
c4f30608 1499}
5eca1c10 1500
36c8b586 1501extern struct task_struct *curr_task(int cpu);
a458ae2e 1502extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1503
1504void yield(void);
1505
1da177e4 1506union thread_union {
c65eacbe 1507#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1508 struct thread_info thread_info;
c65eacbe 1509#endif
1da177e4
LT
1510 unsigned long stack[THREAD_SIZE/sizeof(long)];
1511};
1512
f3ac6067
IM
1513#ifdef CONFIG_THREAD_INFO_IN_TASK
1514static inline struct thread_info *task_thread_info(struct task_struct *task)
1515{
1516 return &task->thread_info;
1517}
1518#elif !defined(__HAVE_THREAD_FUNCTIONS)
1519# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1520#endif
1521
198fe21b
PE
1522/*
1523 * find a task by one of its numerical ids
1524 *
198fe21b
PE
1525 * find_task_by_pid_ns():
1526 * finds a task by its pid in the specified namespace
228ebcbe
PE
1527 * find_task_by_vpid():
1528 * finds a task by its virtual pid
198fe21b 1529 *
e49859e7 1530 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1531 */
1532
228ebcbe 1533extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1534extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1535
b3c97528
HH
1536extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1537extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1538extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1539
1da177e4 1540#ifdef CONFIG_SMP
5eca1c10 1541extern void kick_process(struct task_struct *tsk);
1da177e4 1542#else
5eca1c10 1543static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1544#endif
1da177e4 1545
82b89778 1546extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1547
82b89778
AH
1548static inline void set_task_comm(struct task_struct *tsk, const char *from)
1549{
1550 __set_task_comm(tsk, from, false);
1551}
5eca1c10 1552
3756f640
AB
1553extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1554#define get_task_comm(buf, tsk) ({ \
1555 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1556 __get_task_comm(buf, sizeof(buf), tsk); \
1557})
1da177e4
LT
1558
1559#ifdef CONFIG_SMP
317f3941 1560void scheduler_ipi(void);
85ba2d86 1561extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1562#else
184748cc 1563static inline void scheduler_ipi(void) { }
5eca1c10 1564static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1565{
1566 return 1;
1567}
1da177e4
LT
1568#endif
1569
5eca1c10
IM
1570/*
1571 * Set thread flags in other task's structures.
1572 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1573 */
1574static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1575{
a1261f54 1576 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1577}
1578
1579static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1580{
a1261f54 1581 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1582}
1583
1584static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1585{
a1261f54 1586 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1587}
1588
1589static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1590{
a1261f54 1591 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1592}
1593
1594static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1595{
a1261f54 1596 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1597}
1598
1599static inline void set_tsk_need_resched(struct task_struct *tsk)
1600{
1601 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1602}
1603
1604static inline void clear_tsk_need_resched(struct task_struct *tsk)
1605{
1606 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1607}
1608
8ae121ac
GH
1609static inline int test_tsk_need_resched(struct task_struct *tsk)
1610{
1611 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1612}
1613
1da177e4
LT
1614/*
1615 * cond_resched() and cond_resched_lock(): latency reduction via
1616 * explicit rescheduling in places that are safe. The return
1617 * value indicates whether a reschedule was done in fact.
1618 * cond_resched_lock() will drop the spinlock before scheduling,
1619 * cond_resched_softirq() will enable bhs before scheduling.
1620 */
35a773a0 1621#ifndef CONFIG_PREEMPT
c3921ab7 1622extern int _cond_resched(void);
35a773a0
PZ
1623#else
1624static inline int _cond_resched(void) { return 0; }
1625#endif
6f80bd98 1626
613afbf8 1627#define cond_resched() ({ \
3427445a 1628 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1629 _cond_resched(); \
1630})
6f80bd98 1631
613afbf8
FW
1632extern int __cond_resched_lock(spinlock_t *lock);
1633
1634#define cond_resched_lock(lock) ({ \
3427445a 1635 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1636 __cond_resched_lock(lock); \
1637})
1638
1639extern int __cond_resched_softirq(void);
1640
75e1056f 1641#define cond_resched_softirq() ({ \
3427445a 1642 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 1643 __cond_resched_softirq(); \
613afbf8 1644})
1da177e4 1645
f6f3c437
SH
1646static inline void cond_resched_rcu(void)
1647{
1648#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1649 rcu_read_unlock();
1650 cond_resched();
1651 rcu_read_lock();
1652#endif
1653}
1654
1da177e4
LT
1655/*
1656 * Does a critical section need to be broken due to another
95c354fe
NP
1657 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1658 * but a general need for low latency)
1da177e4 1659 */
95c354fe 1660static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1661{
95c354fe
NP
1662#ifdef CONFIG_PREEMPT
1663 return spin_is_contended(lock);
1664#else
1da177e4 1665 return 0;
95c354fe 1666#endif
1da177e4
LT
1667}
1668
75f93fed
PZ
1669static __always_inline bool need_resched(void)
1670{
1671 return unlikely(tif_need_resched());
1672}
1673
1da177e4
LT
1674/*
1675 * Wrappers for p->thread_info->cpu access. No-op on UP.
1676 */
1677#ifdef CONFIG_SMP
1678
1679static inline unsigned int task_cpu(const struct task_struct *p)
1680{
c65eacbe 1681#ifdef CONFIG_THREAD_INFO_IN_TASK
fa7aebc0 1682 return READ_ONCE(p->cpu);
c65eacbe 1683#else
fa7aebc0 1684 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1685#endif
1da177e4
LT
1686}
1687
c65cc870 1688extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1689
1690#else
1691
1692static inline unsigned int task_cpu(const struct task_struct *p)
1693{
1694 return 0;
1695}
1696
1697static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1698{
1699}
1700
1701#endif /* CONFIG_SMP */
1702
d9345c65
PX
1703/*
1704 * In order to reduce various lock holder preemption latencies provide an
1705 * interface to see if a vCPU is currently running or not.
1706 *
1707 * This allows us to terminate optimistic spin loops and block, analogous to
1708 * the native optimistic spin heuristic of testing if the lock owner task is
1709 * running or not.
1710 */
1711#ifndef vcpu_is_preempted
1712# define vcpu_is_preempted(cpu) false
1713#endif
1714
96f874e2
RR
1715extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1716extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1717
82455257
DH
1718#ifndef TASK_SIZE_OF
1719#define TASK_SIZE_OF(tsk) TASK_SIZE
1720#endif
1721
1da177e4 1722#endif