]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/sched.h
Merge branch 'spi-5.1' into spi-linus
[mirror_ubuntu-jammy-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10
IM
27#include <linux/sched/prio.h>
28#include <linux/signal_types.h>
eb414681 29#include <linux/psi_types.h>
5eca1c10
IM
30#include <linux/mm_types_task.h>
31#include <linux/task_io_accounting.h>
d7822b1e 32#include <linux/rseq.h>
a3b6714e 33
5eca1c10 34/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 35struct audit_context;
c7af7877 36struct backing_dev_info;
bddd87c7 37struct bio_list;
73c10101 38struct blk_plug;
c7af7877 39struct cfs_rq;
c7af7877
IM
40struct fs_struct;
41struct futex_pi_state;
42struct io_context;
43struct mempolicy;
89076bc3 44struct nameidata;
c7af7877
IM
45struct nsproxy;
46struct perf_event_context;
47struct pid_namespace;
48struct pipe_inode_info;
49struct rcu_node;
50struct reclaim_state;
5e1f0f09 51struct capture_control;
c7af7877
IM
52struct robust_list_head;
53struct sched_attr;
54struct sched_param;
43ae34cb 55struct seq_file;
c7af7877
IM
56struct sighand_struct;
57struct signal_struct;
58struct task_delay_info;
4cf86d77 59struct task_group;
1da177e4 60
4a8342d2
LT
61/*
62 * Task state bitmask. NOTE! These bits are also
63 * encoded in fs/proc/array.c: get_task_state().
64 *
65 * We have two separate sets of flags: task->state
66 * is about runnability, while task->exit_state are
67 * about the task exiting. Confusing, but this way
68 * modifying one set can't modify the other one by
69 * mistake.
70 */
5eca1c10
IM
71
72/* Used in tsk->state: */
92c4bc9f
PZ
73#define TASK_RUNNING 0x0000
74#define TASK_INTERRUPTIBLE 0x0001
75#define TASK_UNINTERRUPTIBLE 0x0002
76#define __TASK_STOPPED 0x0004
77#define __TASK_TRACED 0x0008
5eca1c10 78/* Used in tsk->exit_state: */
92c4bc9f
PZ
79#define EXIT_DEAD 0x0010
80#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
81#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
82/* Used in tsk->state again: */
8ef9925b
PZ
83#define TASK_PARKED 0x0040
84#define TASK_DEAD 0x0080
85#define TASK_WAKEKILL 0x0100
86#define TASK_WAKING 0x0200
92c4bc9f
PZ
87#define TASK_NOLOAD 0x0400
88#define TASK_NEW 0x0800
89#define TASK_STATE_MAX 0x1000
5eca1c10 90
5eca1c10
IM
91/* Convenience macros for the sake of set_current_state: */
92#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
93#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
94#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
95
96#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
97
98/* Convenience macros for the sake of wake_up(): */
99#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
100
101/* get_task_state(): */
102#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
103 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
104 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
105 TASK_PARKED)
5eca1c10
IM
106
107#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
108
109#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
110
111#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
112
113#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
114 (task->flags & PF_FROZEN) == 0 && \
115 (task->state & TASK_NOLOAD) == 0)
1da177e4 116
8eb23b9f
PZ
117#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
118
b5bf9a90
PZ
119/*
120 * Special states are those that do not use the normal wait-loop pattern. See
121 * the comment with set_special_state().
122 */
123#define is_special_task_state(state) \
1cef1150 124 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 125
8eb23b9f
PZ
126#define __set_current_state(state_value) \
127 do { \
b5bf9a90 128 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
129 current->task_state_change = _THIS_IP_; \
130 current->state = (state_value); \
131 } while (0)
b5bf9a90 132
8eb23b9f
PZ
133#define set_current_state(state_value) \
134 do { \
b5bf9a90 135 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 136 current->task_state_change = _THIS_IP_; \
a2250238 137 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
138 } while (0)
139
b5bf9a90
PZ
140#define set_special_state(state_value) \
141 do { \
142 unsigned long flags; /* may shadow */ \
143 WARN_ON_ONCE(!is_special_task_state(state_value)); \
144 raw_spin_lock_irqsave(&current->pi_lock, flags); \
145 current->task_state_change = _THIS_IP_; \
146 current->state = (state_value); \
147 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
148 } while (0)
8eb23b9f 149#else
498d0c57
AM
150/*
151 * set_current_state() includes a barrier so that the write of current->state
152 * is correctly serialised wrt the caller's subsequent test of whether to
153 * actually sleep:
154 *
a2250238 155 * for (;;) {
498d0c57 156 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
157 * if (!need_sleep)
158 * break;
159 *
160 * schedule();
161 * }
162 * __set_current_state(TASK_RUNNING);
163 *
164 * If the caller does not need such serialisation (because, for instance, the
165 * condition test and condition change and wakeup are under the same lock) then
166 * use __set_current_state().
167 *
168 * The above is typically ordered against the wakeup, which does:
169 *
b5bf9a90
PZ
170 * need_sleep = false;
171 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 172 *
7696f991
AP
173 * where wake_up_state() executes a full memory barrier before accessing the
174 * task state.
a2250238
PZ
175 *
176 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
177 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
178 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 179 *
b5bf9a90 180 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 181 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
182 * a problem either because that will result in one extra go around the loop
183 * and our @cond test will save the day.
498d0c57 184 *
a2250238 185 * Also see the comments of try_to_wake_up().
498d0c57 186 */
b5bf9a90
PZ
187#define __set_current_state(state_value) \
188 current->state = (state_value)
189
190#define set_current_state(state_value) \
191 smp_store_mb(current->state, (state_value))
192
193/*
194 * set_special_state() should be used for those states when the blocking task
195 * can not use the regular condition based wait-loop. In that case we must
196 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
197 * will not collide with our state change.
198 */
199#define set_special_state(state_value) \
200 do { \
201 unsigned long flags; /* may shadow */ \
202 raw_spin_lock_irqsave(&current->pi_lock, flags); \
203 current->state = (state_value); \
204 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
205 } while (0)
206
8eb23b9f
PZ
207#endif
208
5eca1c10
IM
209/* Task command name length: */
210#define TASK_COMM_LEN 16
1da177e4 211
1da177e4
LT
212extern void scheduler_tick(void);
213
5eca1c10
IM
214#define MAX_SCHEDULE_TIMEOUT LONG_MAX
215
216extern long schedule_timeout(long timeout);
217extern long schedule_timeout_interruptible(long timeout);
218extern long schedule_timeout_killable(long timeout);
219extern long schedule_timeout_uninterruptible(long timeout);
220extern long schedule_timeout_idle(long timeout);
1da177e4 221asmlinkage void schedule(void);
c5491ea7 222extern void schedule_preempt_disabled(void);
1da177e4 223
10ab5643
TH
224extern int __must_check io_schedule_prepare(void);
225extern void io_schedule_finish(int token);
9cff8ade 226extern long io_schedule_timeout(long timeout);
10ab5643 227extern void io_schedule(void);
9cff8ade 228
d37f761d 229/**
0ba42a59 230 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
231 * @utime: time spent in user mode
232 * @stime: time spent in system mode
9d7fb042 233 * @lock: protects the above two fields
d37f761d 234 *
9d7fb042
PZ
235 * Stores previous user/system time values such that we can guarantee
236 * monotonicity.
d37f761d 237 */
9d7fb042
PZ
238struct prev_cputime {
239#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
240 u64 utime;
241 u64 stime;
242 raw_spinlock_t lock;
9d7fb042 243#endif
d37f761d
FW
244};
245
f06febc9
FM
246/**
247 * struct task_cputime - collected CPU time counts
5613fda9
FW
248 * @utime: time spent in user mode, in nanoseconds
249 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 250 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 251 *
9d7fb042
PZ
252 * This structure groups together three kinds of CPU time that are tracked for
253 * threads and thread groups. Most things considering CPU time want to group
254 * these counts together and treat all three of them in parallel.
f06febc9
FM
255 */
256struct task_cputime {
5eca1c10
IM
257 u64 utime;
258 u64 stime;
259 unsigned long long sum_exec_runtime;
f06febc9 260};
9d7fb042 261
5eca1c10
IM
262/* Alternate field names when used on cache expirations: */
263#define virt_exp utime
264#define prof_exp stime
265#define sched_exp sum_exec_runtime
f06febc9 266
bac5b6b6
FW
267enum vtime_state {
268 /* Task is sleeping or running in a CPU with VTIME inactive: */
269 VTIME_INACTIVE = 0,
270 /* Task runs in userspace in a CPU with VTIME active: */
271 VTIME_USER,
272 /* Task runs in kernelspace in a CPU with VTIME active: */
273 VTIME_SYS,
274};
275
276struct vtime {
277 seqcount_t seqcount;
278 unsigned long long starttime;
279 enum vtime_state state;
2a42eb95
WL
280 u64 utime;
281 u64 stime;
282 u64 gtime;
bac5b6b6
FW
283};
284
1da177e4 285struct sched_info {
7f5f8e8d 286#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
287 /* Cumulative counters: */
288
289 /* # of times we have run on this CPU: */
290 unsigned long pcount;
291
292 /* Time spent waiting on a runqueue: */
293 unsigned long long run_delay;
294
295 /* Timestamps: */
296
297 /* When did we last run on a CPU? */
298 unsigned long long last_arrival;
299
300 /* When were we last queued to run? */
301 unsigned long long last_queued;
1da177e4 302
f6db8347 303#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 304};
1da177e4 305
6ecdd749
YD
306/*
307 * Integer metrics need fixed point arithmetic, e.g., sched/fair
308 * has a few: load, load_avg, util_avg, freq, and capacity.
309 *
310 * We define a basic fixed point arithmetic range, and then formalize
311 * all these metrics based on that basic range.
312 */
5eca1c10
IM
313# define SCHED_FIXEDPOINT_SHIFT 10
314# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 315
20b8a59f 316struct load_weight {
5eca1c10
IM
317 unsigned long weight;
318 u32 inv_weight;
20b8a59f
IM
319};
320
7f65ea42
PB
321/**
322 * struct util_est - Estimation utilization of FAIR tasks
323 * @enqueued: instantaneous estimated utilization of a task/cpu
324 * @ewma: the Exponential Weighted Moving Average (EWMA)
325 * utilization of a task
326 *
327 * Support data structure to track an Exponential Weighted Moving Average
328 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
329 * average each time a task completes an activation. Sample's weight is chosen
330 * so that the EWMA will be relatively insensitive to transient changes to the
331 * task's workload.
332 *
333 * The enqueued attribute has a slightly different meaning for tasks and cpus:
334 * - task: the task's util_avg at last task dequeue time
335 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
336 * Thus, the util_est.enqueued of a task represents the contribution on the
337 * estimated utilization of the CPU where that task is currently enqueued.
338 *
339 * Only for tasks we track a moving average of the past instantaneous
340 * estimated utilization. This allows to absorb sporadic drops in utilization
341 * of an otherwise almost periodic task.
342 */
343struct util_est {
344 unsigned int enqueued;
345 unsigned int ewma;
346#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 347} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 348
9d89c257 349/*
7b595334
YD
350 * The load_avg/util_avg accumulates an infinite geometric series
351 * (see __update_load_avg() in kernel/sched/fair.c).
352 *
353 * [load_avg definition]
354 *
355 * load_avg = runnable% * scale_load_down(load)
356 *
357 * where runnable% is the time ratio that a sched_entity is runnable.
358 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 359 * blocked sched_entities.
7b595334 360 *
7b595334
YD
361 * [util_avg definition]
362 *
363 * util_avg = running% * SCHED_CAPACITY_SCALE
364 *
365 * where running% is the time ratio that a sched_entity is running on
366 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
367 * and blocked sched_entities.
368 *
23127296
VG
369 * load_avg and util_avg don't direcly factor frequency scaling and CPU
370 * capacity scaling. The scaling is done through the rq_clock_pelt that
371 * is used for computing those signals (see update_rq_clock_pelt())
7b595334 372 *
23127296
VG
373 * N.B., the above ratios (runnable% and running%) themselves are in the
374 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
375 * to as large a range as necessary. This is for example reflected by
376 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
377 *
378 * [Overflow issue]
379 *
380 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
381 * with the highest load (=88761), always runnable on a single cfs_rq,
382 * and should not overflow as the number already hits PID_MAX_LIMIT.
383 *
384 * For all other cases (including 32-bit kernels), struct load_weight's
385 * weight will overflow first before we do, because:
386 *
387 * Max(load_avg) <= Max(load.weight)
388 *
389 * Then it is the load_weight's responsibility to consider overflow
390 * issues.
9d89c257 391 */
9d85f21c 392struct sched_avg {
5eca1c10
IM
393 u64 last_update_time;
394 u64 load_sum;
1ea6c46a 395 u64 runnable_load_sum;
5eca1c10
IM
396 u32 util_sum;
397 u32 period_contrib;
398 unsigned long load_avg;
1ea6c46a 399 unsigned long runnable_load_avg;
5eca1c10 400 unsigned long util_avg;
7f65ea42 401 struct util_est util_est;
317d359d 402} ____cacheline_aligned;
9d85f21c 403
41acab88 404struct sched_statistics {
7f5f8e8d 405#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
406 u64 wait_start;
407 u64 wait_max;
408 u64 wait_count;
409 u64 wait_sum;
410 u64 iowait_count;
411 u64 iowait_sum;
412
413 u64 sleep_start;
414 u64 sleep_max;
415 s64 sum_sleep_runtime;
416
417 u64 block_start;
418 u64 block_max;
419 u64 exec_max;
420 u64 slice_max;
421
422 u64 nr_migrations_cold;
423 u64 nr_failed_migrations_affine;
424 u64 nr_failed_migrations_running;
425 u64 nr_failed_migrations_hot;
426 u64 nr_forced_migrations;
427
428 u64 nr_wakeups;
429 u64 nr_wakeups_sync;
430 u64 nr_wakeups_migrate;
431 u64 nr_wakeups_local;
432 u64 nr_wakeups_remote;
433 u64 nr_wakeups_affine;
434 u64 nr_wakeups_affine_attempts;
435 u64 nr_wakeups_passive;
436 u64 nr_wakeups_idle;
41acab88 437#endif
7f5f8e8d 438};
41acab88
LDM
439
440struct sched_entity {
5eca1c10
IM
441 /* For load-balancing: */
442 struct load_weight load;
1ea6c46a 443 unsigned long runnable_weight;
5eca1c10
IM
444 struct rb_node run_node;
445 struct list_head group_node;
446 unsigned int on_rq;
41acab88 447
5eca1c10
IM
448 u64 exec_start;
449 u64 sum_exec_runtime;
450 u64 vruntime;
451 u64 prev_sum_exec_runtime;
41acab88 452
5eca1c10 453 u64 nr_migrations;
41acab88 454
5eca1c10 455 struct sched_statistics statistics;
94c18227 456
20b8a59f 457#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
458 int depth;
459 struct sched_entity *parent;
20b8a59f 460 /* rq on which this entity is (to be) queued: */
5eca1c10 461 struct cfs_rq *cfs_rq;
20b8a59f 462 /* rq "owned" by this entity/group: */
5eca1c10 463 struct cfs_rq *my_q;
20b8a59f 464#endif
8bd75c77 465
141965c7 466#ifdef CONFIG_SMP
5a107804
JO
467 /*
468 * Per entity load average tracking.
469 *
470 * Put into separate cache line so it does not
471 * collide with read-mostly values above.
472 */
317d359d 473 struct sched_avg avg;
9d85f21c 474#endif
20b8a59f 475};
70b97a7f 476
fa717060 477struct sched_rt_entity {
5eca1c10
IM
478 struct list_head run_list;
479 unsigned long timeout;
480 unsigned long watchdog_stamp;
481 unsigned int time_slice;
482 unsigned short on_rq;
483 unsigned short on_list;
484
485 struct sched_rt_entity *back;
052f1dc7 486#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 487 struct sched_rt_entity *parent;
6f505b16 488 /* rq on which this entity is (to be) queued: */
5eca1c10 489 struct rt_rq *rt_rq;
6f505b16 490 /* rq "owned" by this entity/group: */
5eca1c10 491 struct rt_rq *my_q;
6f505b16 492#endif
3859a271 493} __randomize_layout;
fa717060 494
aab03e05 495struct sched_dl_entity {
5eca1c10 496 struct rb_node rb_node;
aab03e05
DF
497
498 /*
499 * Original scheduling parameters. Copied here from sched_attr
4027d080 500 * during sched_setattr(), they will remain the same until
501 * the next sched_setattr().
aab03e05 502 */
5eca1c10
IM
503 u64 dl_runtime; /* Maximum runtime for each instance */
504 u64 dl_deadline; /* Relative deadline of each instance */
505 u64 dl_period; /* Separation of two instances (period) */
54d6d303 506 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 507 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
508
509 /*
510 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 511 * they are continuously updated during task execution. Note that
aab03e05
DF
512 * the remaining runtime could be < 0 in case we are in overrun.
513 */
5eca1c10
IM
514 s64 runtime; /* Remaining runtime for this instance */
515 u64 deadline; /* Absolute deadline for this instance */
516 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
517
518 /*
519 * Some bool flags:
520 *
521 * @dl_throttled tells if we exhausted the runtime. If so, the
522 * task has to wait for a replenishment to be performed at the
523 * next firing of dl_timer.
524 *
2d3d891d
DF
525 * @dl_boosted tells if we are boosted due to DI. If so we are
526 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
527 * exit the critical section);
528 *
5eca1c10 529 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 530 * all its available runtime during the last job.
209a0cbd
LA
531 *
532 * @dl_non_contending tells if the task is inactive while still
533 * contributing to the active utilization. In other words, it
534 * indicates if the inactive timer has been armed and its handler
535 * has not been executed yet. This flag is useful to avoid race
536 * conditions between the inactive timer handler and the wakeup
537 * code.
34be3930
JL
538 *
539 * @dl_overrun tells if the task asked to be informed about runtime
540 * overruns.
aab03e05 541 */
aa5222e9
DC
542 unsigned int dl_throttled : 1;
543 unsigned int dl_boosted : 1;
544 unsigned int dl_yielded : 1;
545 unsigned int dl_non_contending : 1;
34be3930 546 unsigned int dl_overrun : 1;
aab03e05
DF
547
548 /*
549 * Bandwidth enforcement timer. Each -deadline task has its
550 * own bandwidth to be enforced, thus we need one timer per task.
551 */
5eca1c10 552 struct hrtimer dl_timer;
209a0cbd
LA
553
554 /*
555 * Inactive timer, responsible for decreasing the active utilization
556 * at the "0-lag time". When a -deadline task blocks, it contributes
557 * to GRUB's active utilization until the "0-lag time", hence a
558 * timer is needed to decrease the active utilization at the correct
559 * time.
560 */
561 struct hrtimer inactive_timer;
aab03e05 562};
8bd75c77 563
1d082fd0
PM
564union rcu_special {
565 struct {
5eca1c10
IM
566 u8 blocked;
567 u8 need_qs;
05f41571
PM
568 u8 exp_hint; /* Hint for performance. */
569 u8 pad; /* No garbage from compiler! */
8203d6d0 570 } b; /* Bits. */
05f41571 571 u32 s; /* Set of bits. */
1d082fd0 572};
86848966 573
8dc85d54
PZ
574enum perf_event_task_context {
575 perf_invalid_context = -1,
576 perf_hw_context = 0,
89a1e187 577 perf_sw_context,
8dc85d54
PZ
578 perf_nr_task_contexts,
579};
580
eb61baf6
IM
581struct wake_q_node {
582 struct wake_q_node *next;
583};
584
1da177e4 585struct task_struct {
c65eacbe
AL
586#ifdef CONFIG_THREAD_INFO_IN_TASK
587 /*
588 * For reasons of header soup (see current_thread_info()), this
589 * must be the first element of task_struct.
590 */
5eca1c10 591 struct thread_info thread_info;
c65eacbe 592#endif
5eca1c10
IM
593 /* -1 unrunnable, 0 runnable, >0 stopped: */
594 volatile long state;
29e48ce8
KC
595
596 /*
597 * This begins the randomizable portion of task_struct. Only
598 * scheduling-critical items should be added above here.
599 */
600 randomized_struct_fields_start
601
5eca1c10 602 void *stack;
ec1d2819 603 refcount_t usage;
5eca1c10
IM
604 /* Per task flags (PF_*), defined further below: */
605 unsigned int flags;
606 unsigned int ptrace;
1da177e4 607
2dd73a4f 608#ifdef CONFIG_SMP
5eca1c10
IM
609 struct llist_node wake_entry;
610 int on_cpu;
c65eacbe 611#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
612 /* Current CPU: */
613 unsigned int cpu;
c65eacbe 614#endif
5eca1c10
IM
615 unsigned int wakee_flips;
616 unsigned long wakee_flip_decay_ts;
617 struct task_struct *last_wakee;
ac66f547 618
32e839dd
MG
619 /*
620 * recent_used_cpu is initially set as the last CPU used by a task
621 * that wakes affine another task. Waker/wakee relationships can
622 * push tasks around a CPU where each wakeup moves to the next one.
623 * Tracking a recently used CPU allows a quick search for a recently
624 * used CPU that may be idle.
625 */
626 int recent_used_cpu;
5eca1c10 627 int wake_cpu;
2dd73a4f 628#endif
5eca1c10
IM
629 int on_rq;
630
631 int prio;
632 int static_prio;
633 int normal_prio;
634 unsigned int rt_priority;
50e645a8 635
5eca1c10
IM
636 const struct sched_class *sched_class;
637 struct sched_entity se;
638 struct sched_rt_entity rt;
8323f26c 639#ifdef CONFIG_CGROUP_SCHED
5eca1c10 640 struct task_group *sched_task_group;
8323f26c 641#endif
5eca1c10 642 struct sched_dl_entity dl;
1da177e4 643
e107be36 644#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
645 /* List of struct preempt_notifier: */
646 struct hlist_head preempt_notifiers;
e107be36
AK
647#endif
648
6c5c9341 649#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 650 unsigned int btrace_seq;
6c5c9341 651#endif
1da177e4 652
5eca1c10
IM
653 unsigned int policy;
654 int nr_cpus_allowed;
655 cpumask_t cpus_allowed;
1da177e4 656
a57eb940 657#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
658 int rcu_read_lock_nesting;
659 union rcu_special rcu_read_unlock_special;
660 struct list_head rcu_node_entry;
661 struct rcu_node *rcu_blocked_node;
28f6569a 662#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 663
8315f422 664#ifdef CONFIG_TASKS_RCU
5eca1c10 665 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
666 u8 rcu_tasks_holdout;
667 u8 rcu_tasks_idx;
5eca1c10 668 int rcu_tasks_idle_cpu;
ccdd29ff 669 struct list_head rcu_tasks_holdout_list;
8315f422 670#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 671
5eca1c10 672 struct sched_info sched_info;
1da177e4 673
5eca1c10 674 struct list_head tasks;
806c09a7 675#ifdef CONFIG_SMP
5eca1c10
IM
676 struct plist_node pushable_tasks;
677 struct rb_node pushable_dl_tasks;
806c09a7 678#endif
1da177e4 679
5eca1c10
IM
680 struct mm_struct *mm;
681 struct mm_struct *active_mm;
314ff785
IM
682
683 /* Per-thread vma caching: */
5eca1c10 684 struct vmacache vmacache;
314ff785 685
5eca1c10
IM
686#ifdef SPLIT_RSS_COUNTING
687 struct task_rss_stat rss_stat;
34e55232 688#endif
5eca1c10
IM
689 int exit_state;
690 int exit_code;
691 int exit_signal;
692 /* The signal sent when the parent dies: */
693 int pdeath_signal;
694 /* JOBCTL_*, siglock protected: */
695 unsigned long jobctl;
696
697 /* Used for emulating ABI behavior of previous Linux versions: */
698 unsigned int personality;
699
700 /* Scheduler bits, serialized by scheduler locks: */
701 unsigned sched_reset_on_fork:1;
702 unsigned sched_contributes_to_load:1;
703 unsigned sched_migrated:1;
704 unsigned sched_remote_wakeup:1;
eb414681
JW
705#ifdef CONFIG_PSI
706 unsigned sched_psi_wake_requeue:1;
707#endif
708
5eca1c10
IM
709 /* Force alignment to the next boundary: */
710 unsigned :0;
711
712 /* Unserialized, strictly 'current' */
713
714 /* Bit to tell LSMs we're in execve(): */
715 unsigned in_execve:1;
716 unsigned in_iowait:1;
717#ifndef TIF_RESTORE_SIGMASK
718 unsigned restore_sigmask:1;
7e781418 719#endif
626ebc41 720#ifdef CONFIG_MEMCG
29ef680a 721 unsigned in_user_fault:1;
127424c8 722#endif
ff303e66 723#ifdef CONFIG_COMPAT_BRK
5eca1c10 724 unsigned brk_randomized:1;
ff303e66 725#endif
77f88796
TH
726#ifdef CONFIG_CGROUPS
727 /* disallow userland-initiated cgroup migration */
728 unsigned no_cgroup_migration:1;
729#endif
d09d8df3
JB
730#ifdef CONFIG_BLK_CGROUP
731 /* to be used once the psi infrastructure lands upstream. */
732 unsigned use_memdelay:1;
733#endif
6f185c29 734
5eca1c10 735 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 736
5eca1c10 737 struct restart_block restart_block;
f56141e3 738
5eca1c10
IM
739 pid_t pid;
740 pid_t tgid;
0a425405 741
050e9baa 742#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
743 /* Canary value for the -fstack-protector GCC feature: */
744 unsigned long stack_canary;
1314562a 745#endif
4d1d61a6 746 /*
5eca1c10 747 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 748 * older sibling, respectively. (p->father can be replaced with
f470021a 749 * p->real_parent->pid)
1da177e4 750 */
5eca1c10
IM
751
752 /* Real parent process: */
753 struct task_struct __rcu *real_parent;
754
755 /* Recipient of SIGCHLD, wait4() reports: */
756 struct task_struct __rcu *parent;
757
1da177e4 758 /*
5eca1c10 759 * Children/sibling form the list of natural children:
1da177e4 760 */
5eca1c10
IM
761 struct list_head children;
762 struct list_head sibling;
763 struct task_struct *group_leader;
1da177e4 764
f470021a 765 /*
5eca1c10
IM
766 * 'ptraced' is the list of tasks this task is using ptrace() on.
767 *
f470021a 768 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 769 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 770 */
5eca1c10
IM
771 struct list_head ptraced;
772 struct list_head ptrace_entry;
f470021a 773
1da177e4 774 /* PID/PID hash table linkage. */
2c470475
EB
775 struct pid *thread_pid;
776 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
777 struct list_head thread_group;
778 struct list_head thread_node;
779
780 struct completion *vfork_done;
1da177e4 781
5eca1c10
IM
782 /* CLONE_CHILD_SETTID: */
783 int __user *set_child_tid;
1da177e4 784
5eca1c10
IM
785 /* CLONE_CHILD_CLEARTID: */
786 int __user *clear_child_tid;
787
788 u64 utime;
789 u64 stime;
40565b5a 790#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
791 u64 utimescaled;
792 u64 stimescaled;
40565b5a 793#endif
5eca1c10
IM
794 u64 gtime;
795 struct prev_cputime prev_cputime;
6a61671b 796#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 797 struct vtime vtime;
d99ca3b9 798#endif
d027d45d
FW
799
800#ifdef CONFIG_NO_HZ_FULL
5eca1c10 801 atomic_t tick_dep_mask;
d027d45d 802#endif
5eca1c10
IM
803 /* Context switch counts: */
804 unsigned long nvcsw;
805 unsigned long nivcsw;
806
807 /* Monotonic time in nsecs: */
808 u64 start_time;
809
810 /* Boot based time in nsecs: */
811 u64 real_start_time;
812
813 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
814 unsigned long min_flt;
815 unsigned long maj_flt;
1da177e4 816
b18b6a9c 817#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
818 struct task_cputime cputime_expires;
819 struct list_head cpu_timers[3];
b18b6a9c 820#endif
1da177e4 821
5eca1c10
IM
822 /* Process credentials: */
823
824 /* Tracer's credentials at attach: */
825 const struct cred __rcu *ptracer_cred;
826
827 /* Objective and real subjective task credentials (COW): */
828 const struct cred __rcu *real_cred;
829
830 /* Effective (overridable) subjective task credentials (COW): */
831 const struct cred __rcu *cred;
832
833 /*
834 * executable name, excluding path.
835 *
836 * - normally initialized setup_new_exec()
837 * - access it with [gs]et_task_comm()
838 * - lock it with task_lock()
839 */
840 char comm[TASK_COMM_LEN];
841
842 struct nameidata *nameidata;
843
3d5b6fcc 844#ifdef CONFIG_SYSVIPC
5eca1c10
IM
845 struct sysv_sem sysvsem;
846 struct sysv_shm sysvshm;
3d5b6fcc 847#endif
e162b39a 848#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 849 unsigned long last_switch_count;
a2e51445 850 unsigned long last_switch_time;
82a1fcb9 851#endif
5eca1c10
IM
852 /* Filesystem information: */
853 struct fs_struct *fs;
854
855 /* Open file information: */
856 struct files_struct *files;
857
858 /* Namespaces: */
859 struct nsproxy *nsproxy;
860
861 /* Signal handlers: */
862 struct signal_struct *signal;
863 struct sighand_struct *sighand;
864 sigset_t blocked;
865 sigset_t real_blocked;
866 /* Restored if set_restore_sigmask() was used: */
867 sigset_t saved_sigmask;
868 struct sigpending pending;
869 unsigned long sas_ss_sp;
870 size_t sas_ss_size;
871 unsigned int sas_ss_flags;
872
873 struct callback_head *task_works;
874
4b7d248b 875#ifdef CONFIG_AUDIT
bfef93a5 876#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
877 struct audit_context *audit_context;
878#endif
5eca1c10
IM
879 kuid_t loginuid;
880 unsigned int sessionid;
bfef93a5 881#endif
5eca1c10
IM
882 struct seccomp seccomp;
883
884 /* Thread group tracking: */
885 u32 parent_exec_id;
886 u32 self_exec_id;
1da177e4 887
5eca1c10
IM
888 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
889 spinlock_t alloc_lock;
1da177e4 890
b29739f9 891 /* Protection of the PI data structures: */
5eca1c10 892 raw_spinlock_t pi_lock;
b29739f9 893
5eca1c10 894 struct wake_q_node wake_q;
76751049 895
23f78d4a 896#ifdef CONFIG_RT_MUTEXES
5eca1c10 897 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 898 struct rb_root_cached pi_waiters;
e96a7705
XP
899 /* Updated under owner's pi_lock and rq lock */
900 struct task_struct *pi_top_task;
5eca1c10
IM
901 /* Deadlock detection and priority inheritance handling: */
902 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
903#endif
904
408894ee 905#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
906 /* Mutex deadlock detection: */
907 struct mutex_waiter *blocked_on;
408894ee 908#endif
5eca1c10 909
de30a2b3 910#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
911 unsigned int irq_events;
912 unsigned long hardirq_enable_ip;
913 unsigned long hardirq_disable_ip;
914 unsigned int hardirq_enable_event;
915 unsigned int hardirq_disable_event;
916 int hardirqs_enabled;
917 int hardirq_context;
918 unsigned long softirq_disable_ip;
919 unsigned long softirq_enable_ip;
920 unsigned int softirq_disable_event;
921 unsigned int softirq_enable_event;
922 int softirqs_enabled;
923 int softirq_context;
de30a2b3 924#endif
5eca1c10 925
fbb9ce95 926#ifdef CONFIG_LOCKDEP
5eca1c10
IM
927# define MAX_LOCK_DEPTH 48UL
928 u64 curr_chain_key;
929 int lockdep_depth;
930 unsigned int lockdep_recursion;
931 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 932#endif
5eca1c10 933
c6d30853 934#ifdef CONFIG_UBSAN
5eca1c10 935 unsigned int in_ubsan;
c6d30853 936#endif
408894ee 937
5eca1c10
IM
938 /* Journalling filesystem info: */
939 void *journal_info;
1da177e4 940
5eca1c10
IM
941 /* Stacked block device info: */
942 struct bio_list *bio_list;
d89d8796 943
73c10101 944#ifdef CONFIG_BLOCK
5eca1c10
IM
945 /* Stack plugging: */
946 struct blk_plug *plug;
73c10101
JA
947#endif
948
5eca1c10
IM
949 /* VM state: */
950 struct reclaim_state *reclaim_state;
951
952 struct backing_dev_info *backing_dev_info;
1da177e4 953
5eca1c10 954 struct io_context *io_context;
1da177e4 955
5e1f0f09
MG
956#ifdef CONFIG_COMPACTION
957 struct capture_control *capture_control;
958#endif
5eca1c10
IM
959 /* Ptrace state: */
960 unsigned long ptrace_message;
ae7795bc 961 kernel_siginfo_t *last_siginfo;
1da177e4 962
5eca1c10 963 struct task_io_accounting ioac;
eb414681
JW
964#ifdef CONFIG_PSI
965 /* Pressure stall state */
966 unsigned int psi_flags;
967#endif
5eca1c10
IM
968#ifdef CONFIG_TASK_XACCT
969 /* Accumulated RSS usage: */
970 u64 acct_rss_mem1;
971 /* Accumulated virtual memory usage: */
972 u64 acct_vm_mem1;
973 /* stime + utime since last update: */
974 u64 acct_timexpd;
1da177e4
LT
975#endif
976#ifdef CONFIG_CPUSETS
5eca1c10
IM
977 /* Protected by ->alloc_lock: */
978 nodemask_t mems_allowed;
979 /* Seqence number to catch updates: */
980 seqcount_t mems_allowed_seq;
981 int cpuset_mem_spread_rotor;
982 int cpuset_slab_spread_rotor;
1da177e4 983#endif
ddbcc7e8 984#ifdef CONFIG_CGROUPS
5eca1c10
IM
985 /* Control Group info protected by css_set_lock: */
986 struct css_set __rcu *cgroups;
987 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
988 struct list_head cg_list;
ddbcc7e8 989#endif
e6d42931 990#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 991 u32 closid;
d6aaba61 992 u32 rmid;
e02737d5 993#endif
42b2dd0a 994#ifdef CONFIG_FUTEX
5eca1c10 995 struct robust_list_head __user *robust_list;
34f192c6
IM
996#ifdef CONFIG_COMPAT
997 struct compat_robust_list_head __user *compat_robust_list;
998#endif
5eca1c10
IM
999 struct list_head pi_state_list;
1000 struct futex_pi_state *pi_state_cache;
c7aceaba 1001#endif
cdd6c482 1002#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1003 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1004 struct mutex perf_event_mutex;
1005 struct list_head perf_event_list;
a63eaf34 1006#endif
8f47b187 1007#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1008 unsigned long preempt_disable_ip;
8f47b187 1009#endif
c7aceaba 1010#ifdef CONFIG_NUMA
5eca1c10
IM
1011 /* Protected by alloc_lock: */
1012 struct mempolicy *mempolicy;
45816682 1013 short il_prev;
5eca1c10 1014 short pref_node_fork;
42b2dd0a 1015#endif
cbee9f88 1016#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1017 int numa_scan_seq;
1018 unsigned int numa_scan_period;
1019 unsigned int numa_scan_period_max;
1020 int numa_preferred_nid;
1021 unsigned long numa_migrate_retry;
1022 /* Migration stamp: */
1023 u64 node_stamp;
1024 u64 last_task_numa_placement;
1025 u64 last_sum_exec_runtime;
1026 struct callback_head numa_work;
1027
5eca1c10 1028 struct numa_group *numa_group;
8c8a743c 1029
745d6147 1030 /*
44dba3d5
IM
1031 * numa_faults is an array split into four regions:
1032 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1033 * in this precise order.
1034 *
1035 * faults_memory: Exponential decaying average of faults on a per-node
1036 * basis. Scheduling placement decisions are made based on these
1037 * counts. The values remain static for the duration of a PTE scan.
1038 * faults_cpu: Track the nodes the process was running on when a NUMA
1039 * hinting fault was incurred.
1040 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1041 * during the current scan window. When the scan completes, the counts
1042 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1043 */
5eca1c10
IM
1044 unsigned long *numa_faults;
1045 unsigned long total_numa_faults;
745d6147 1046
04bb2f94
RR
1047 /*
1048 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1049 * scan window were remote/local or failed to migrate. The task scan
1050 * period is adapted based on the locality of the faults with different
1051 * weights depending on whether they were shared or private faults
04bb2f94 1052 */
5eca1c10 1053 unsigned long numa_faults_locality[3];
04bb2f94 1054
5eca1c10 1055 unsigned long numa_pages_migrated;
cbee9f88
PZ
1056#endif /* CONFIG_NUMA_BALANCING */
1057
d7822b1e
MD
1058#ifdef CONFIG_RSEQ
1059 struct rseq __user *rseq;
1060 u32 rseq_len;
1061 u32 rseq_sig;
1062 /*
1063 * RmW on rseq_event_mask must be performed atomically
1064 * with respect to preemption.
1065 */
1066 unsigned long rseq_event_mask;
1067#endif
1068
5eca1c10 1069 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1070
5eca1c10 1071 struct rcu_head rcu;
b92ce558 1072
5eca1c10
IM
1073 /* Cache last used pipe for splice(): */
1074 struct pipe_inode_info *splice_pipe;
5640f768 1075
5eca1c10 1076 struct page_frag task_frag;
5640f768 1077
47913d4e
IM
1078#ifdef CONFIG_TASK_DELAY_ACCT
1079 struct task_delay_info *delays;
f4f154fd 1080#endif
47913d4e 1081
f4f154fd 1082#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1083 int make_it_fail;
9049f2f6 1084 unsigned int fail_nth;
ca74e92b 1085#endif
9d823e8f 1086 /*
5eca1c10
IM
1087 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1088 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1089 */
5eca1c10
IM
1090 int nr_dirtied;
1091 int nr_dirtied_pause;
1092 /* Start of a write-and-pause period: */
1093 unsigned long dirty_paused_when;
9d823e8f 1094
9745512c 1095#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1096 int latency_record_count;
1097 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1098#endif
6976675d 1099 /*
5eca1c10 1100 * Time slack values; these are used to round up poll() and
6976675d
AV
1101 * select() etc timeout values. These are in nanoseconds.
1102 */
5eca1c10
IM
1103 u64 timer_slack_ns;
1104 u64 default_timer_slack_ns;
f8d570a4 1105
0b24becc 1106#ifdef CONFIG_KASAN
5eca1c10 1107 unsigned int kasan_depth;
0b24becc 1108#endif
5eca1c10 1109
fb52607a 1110#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1111 /* Index of current stored address in ret_stack: */
1112 int curr_ret_stack;
39eb456d 1113 int curr_ret_depth;
5eca1c10
IM
1114
1115 /* Stack of return addresses for return function tracing: */
1116 struct ftrace_ret_stack *ret_stack;
1117
1118 /* Timestamp for last schedule: */
1119 unsigned long long ftrace_timestamp;
1120
f201ae23
FW
1121 /*
1122 * Number of functions that haven't been traced
5eca1c10 1123 * because of depth overrun:
f201ae23 1124 */
5eca1c10
IM
1125 atomic_t trace_overrun;
1126
1127 /* Pause tracing: */
1128 atomic_t tracing_graph_pause;
f201ae23 1129#endif
5eca1c10 1130
ea4e2bc4 1131#ifdef CONFIG_TRACING
5eca1c10
IM
1132 /* State flags for use by tracers: */
1133 unsigned long trace;
1134
1135 /* Bitmask and counter of trace recursion: */
1136 unsigned long trace_recursion;
261842b7 1137#endif /* CONFIG_TRACING */
5eca1c10 1138
5c9a8750 1139#ifdef CONFIG_KCOV
5eca1c10 1140 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1141 unsigned int kcov_mode;
5eca1c10
IM
1142
1143 /* Size of the kcov_area: */
1144 unsigned int kcov_size;
1145
1146 /* Buffer for coverage collection: */
1147 void *kcov_area;
1148
1149 /* KCOV descriptor wired with this task or NULL: */
1150 struct kcov *kcov;
5c9a8750 1151#endif
5eca1c10 1152
6f185c29 1153#ifdef CONFIG_MEMCG
5eca1c10
IM
1154 struct mem_cgroup *memcg_in_oom;
1155 gfp_t memcg_oom_gfp_mask;
1156 int memcg_oom_order;
b23afb93 1157
5eca1c10
IM
1158 /* Number of pages to reclaim on returning to userland: */
1159 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1160
1161 /* Used by memcontrol for targeted memcg charge: */
1162 struct mem_cgroup *active_memcg;
569b846d 1163#endif
5eca1c10 1164
d09d8df3
JB
1165#ifdef CONFIG_BLK_CGROUP
1166 struct request_queue *throttle_queue;
1167#endif
1168
0326f5a9 1169#ifdef CONFIG_UPROBES
5eca1c10 1170 struct uprobe_task *utask;
0326f5a9 1171#endif
cafe5635 1172#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1173 unsigned int sequential_io;
1174 unsigned int sequential_io_avg;
cafe5635 1175#endif
8eb23b9f 1176#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1177 unsigned long task_state_change;
8eb23b9f 1178#endif
5eca1c10 1179 int pagefault_disabled;
03049269 1180#ifdef CONFIG_MMU
5eca1c10 1181 struct task_struct *oom_reaper_list;
03049269 1182#endif
ba14a194 1183#ifdef CONFIG_VMAP_STACK
5eca1c10 1184 struct vm_struct *stack_vm_area;
ba14a194 1185#endif
68f24b08 1186#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1187 /* A live task holds one reference: */
f0b89d39 1188 refcount_t stack_refcount;
d83a7cb3
JP
1189#endif
1190#ifdef CONFIG_LIVEPATCH
1191 int patch_state;
0302e28d 1192#endif
e4e55b47
TH
1193#ifdef CONFIG_SECURITY
1194 /* Used by LSM modules for access restriction: */
1195 void *security;
68f24b08 1196#endif
29e48ce8 1197
afaef01c
AP
1198#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1199 unsigned long lowest_stack;
c8d12627 1200 unsigned long prev_lowest_stack;
afaef01c
AP
1201#endif
1202
29e48ce8
KC
1203 /*
1204 * New fields for task_struct should be added above here, so that
1205 * they are included in the randomized portion of task_struct.
1206 */
1207 randomized_struct_fields_end
1208
5eca1c10
IM
1209 /* CPU-specific state of this task: */
1210 struct thread_struct thread;
1211
1212 /*
1213 * WARNING: on x86, 'thread_struct' contains a variable-sized
1214 * structure. It *MUST* be at the end of 'task_struct'.
1215 *
1216 * Do not put anything below here!
1217 */
1da177e4
LT
1218};
1219
e868171a 1220static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1221{
2c470475 1222 return task->thread_pid;
22c935f4
EB
1223}
1224
7af57294
PE
1225/*
1226 * the helpers to get the task's different pids as they are seen
1227 * from various namespaces
1228 *
1229 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1230 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1231 * current.
7af57294
PE
1232 * task_xid_nr_ns() : id seen from the ns specified;
1233 *
7af57294
PE
1234 * see also pid_nr() etc in include/linux/pid.h
1235 */
5eca1c10 1236pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1237
e868171a 1238static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1239{
1240 return tsk->pid;
1241}
1242
5eca1c10 1243static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1244{
1245 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1246}
7af57294
PE
1247
1248static inline pid_t task_pid_vnr(struct task_struct *tsk)
1249{
52ee2dfd 1250 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1251}
1252
1253
e868171a 1254static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1255{
1256 return tsk->tgid;
1257}
1258
5eca1c10
IM
1259/**
1260 * pid_alive - check that a task structure is not stale
1261 * @p: Task structure to be checked.
1262 *
1263 * Test if a process is not yet dead (at most zombie state)
1264 * If pid_alive fails, then pointers within the task structure
1265 * can be stale and must not be dereferenced.
1266 *
1267 * Return: 1 if the process is alive. 0 otherwise.
1268 */
1269static inline int pid_alive(const struct task_struct *p)
1270{
2c470475 1271 return p->thread_pid != NULL;
5eca1c10 1272}
7af57294 1273
5eca1c10 1274static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1275{
52ee2dfd 1276 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1277}
1278
7af57294
PE
1279static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1280{
52ee2dfd 1281 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1282}
1283
1284
5eca1c10 1285static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1286{
52ee2dfd 1287 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1288}
1289
7af57294
PE
1290static inline pid_t task_session_vnr(struct task_struct *tsk)
1291{
52ee2dfd 1292 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1293}
1294
dd1c1f2f
ON
1295static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1296{
6883f81a 1297 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1298}
1299
1300static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1301{
6883f81a 1302 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1303}
1304
1305static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1306{
1307 pid_t pid = 0;
1308
1309 rcu_read_lock();
1310 if (pid_alive(tsk))
1311 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1312 rcu_read_unlock();
1313
1314 return pid;
1315}
1316
1317static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1318{
1319 return task_ppid_nr_ns(tsk, &init_pid_ns);
1320}
1321
5eca1c10 1322/* Obsolete, do not use: */
1b0f7ffd
ON
1323static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1324{
1325 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1326}
7af57294 1327
06eb6184
PZ
1328#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1329#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1330
1d48b080 1331static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1332{
1593baab
PZ
1333 unsigned int tsk_state = READ_ONCE(tsk->state);
1334 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1335
06eb6184
PZ
1336 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1337
06eb6184
PZ
1338 if (tsk_state == TASK_IDLE)
1339 state = TASK_REPORT_IDLE;
1340
1593baab
PZ
1341 return fls(state);
1342}
1343
1d48b080 1344static inline char task_index_to_char(unsigned int state)
1593baab 1345{
8ef9925b 1346 static const char state_char[] = "RSDTtXZPI";
1593baab 1347
06eb6184 1348 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1349
1593baab
PZ
1350 return state_char[state];
1351}
1352
1353static inline char task_state_to_char(struct task_struct *tsk)
1354{
1d48b080 1355 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1356}
1357
f400e198 1358/**
570f5241
SS
1359 * is_global_init - check if a task structure is init. Since init
1360 * is free to have sub-threads we need to check tgid.
3260259f
HK
1361 * @tsk: Task structure to be checked.
1362 *
1363 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1364 *
1365 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1366 */
e868171a 1367static inline int is_global_init(struct task_struct *tsk)
b461cc03 1368{
570f5241 1369 return task_tgid_nr(tsk) == 1;
b461cc03 1370}
b460cbc5 1371
9ec52099
CLG
1372extern struct pid *cad_pid;
1373
1da177e4
LT
1374/*
1375 * Per process flags
1376 */
5eca1c10
IM
1377#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1378#define PF_EXITING 0x00000004 /* Getting shut down */
1379#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1380#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1381#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1382#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1383#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1384#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1385#define PF_DUMPCORE 0x00000200 /* Dumped core */
1386#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1387#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1388#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1389#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1390#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1391#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1392#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1393#define PF_KSWAPD 0x00020000 /* I am kswapd */
1394#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1395#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1396#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1397#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1398#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1399#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
eb414681 1400#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
73ab1cb2 1401#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
5eca1c10
IM
1402#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1403#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1404#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
5eca1c10
IM
1405#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1406#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1407
1408/*
1409 * Only the _current_ task can read/write to tsk->flags, but other
1410 * tasks can access tsk->flags in readonly mode for example
1411 * with tsk_used_math (like during threaded core dumping).
1412 * There is however an exception to this rule during ptrace
1413 * or during fork: the ptracer task is allowed to write to the
1414 * child->flags of its traced child (same goes for fork, the parent
1415 * can write to the child->flags), because we're guaranteed the
1416 * child is not running and in turn not changing child->flags
1417 * at the same time the parent does it.
1418 */
5eca1c10
IM
1419#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1420#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1421#define clear_used_math() clear_stopped_child_used_math(current)
1422#define set_used_math() set_stopped_child_used_math(current)
1423
1da177e4
LT
1424#define conditional_stopped_child_used_math(condition, child) \
1425 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1426
1427#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1428
1da177e4
LT
1429#define copy_to_stopped_child_used_math(child) \
1430 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1431
1da177e4 1432/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1433#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1434#define used_math() tsk_used_math(current)
1da177e4 1435
62ec05dd
TG
1436static inline bool is_percpu_thread(void)
1437{
1438#ifdef CONFIG_SMP
1439 return (current->flags & PF_NO_SETAFFINITY) &&
1440 (current->nr_cpus_allowed == 1);
1441#else
1442 return true;
1443#endif
1444}
1445
1d4457f9 1446/* Per-process atomic flags. */
5eca1c10
IM
1447#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1448#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1449#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1450#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1451#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1452#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1453#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1454#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1455
e0e5070b
ZL
1456#define TASK_PFA_TEST(name, func) \
1457 static inline bool task_##func(struct task_struct *p) \
1458 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1459
e0e5070b
ZL
1460#define TASK_PFA_SET(name, func) \
1461 static inline void task_set_##func(struct task_struct *p) \
1462 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1463
e0e5070b
ZL
1464#define TASK_PFA_CLEAR(name, func) \
1465 static inline void task_clear_##func(struct task_struct *p) \
1466 { clear_bit(PFA_##name, &p->atomic_flags); }
1467
1468TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1469TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1470
2ad654bc
ZL
1471TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1472TASK_PFA_SET(SPREAD_PAGE, spread_page)
1473TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1474
1475TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1476TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1477TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1478
356e4bff
TG
1479TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1480TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1481TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1482
71368af9
WL
1483TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1484TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1485TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1486
356e4bff
TG
1487TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1488TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1489
9137bb27
TG
1490TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1491TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1492TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1493
1494TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1495TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1496
5eca1c10 1497static inline void
717a94b5 1498current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1499{
717a94b5
N
1500 current->flags &= ~flags;
1501 current->flags |= orig_flags & flags;
907aed48
MG
1502}
1503
5eca1c10
IM
1504extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1505extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1506#ifdef CONFIG_SMP
5eca1c10
IM
1507extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1508extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1509#else
5eca1c10 1510static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1511{
1512}
5eca1c10 1513static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1514{
96f874e2 1515 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1516 return -EINVAL;
1517 return 0;
1518}
1519#endif
e0ad9556 1520
6d0d2878
CB
1521#ifndef cpu_relax_yield
1522#define cpu_relax_yield() cpu_relax()
1523#endif
1524
fa93384f 1525extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1526extern void set_user_nice(struct task_struct *p, long nice);
1527extern int task_prio(const struct task_struct *p);
5eca1c10 1528
d0ea0268
DY
1529/**
1530 * task_nice - return the nice value of a given task.
1531 * @p: the task in question.
1532 *
1533 * Return: The nice value [ -20 ... 0 ... 19 ].
1534 */
1535static inline int task_nice(const struct task_struct *p)
1536{
1537 return PRIO_TO_NICE((p)->static_prio);
1538}
5eca1c10 1539
36c8b586
IM
1540extern int can_nice(const struct task_struct *p, const int nice);
1541extern int task_curr(const struct task_struct *p);
1da177e4 1542extern int idle_cpu(int cpu);
943d355d 1543extern int available_idle_cpu(int cpu);
5eca1c10
IM
1544extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1545extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1546extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1547extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1548extern struct task_struct *idle_task(int cpu);
5eca1c10 1549
c4f30608
PM
1550/**
1551 * is_idle_task - is the specified task an idle task?
fa757281 1552 * @p: the task in question.
e69f6186
YB
1553 *
1554 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1555 */
7061ca3b 1556static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1557{
c1de45ca 1558 return !!(p->flags & PF_IDLE);
c4f30608 1559}
5eca1c10 1560
36c8b586 1561extern struct task_struct *curr_task(int cpu);
a458ae2e 1562extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1563
1564void yield(void);
1565
1da177e4 1566union thread_union {
0500871f
DH
1567#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1568 struct task_struct task;
1569#endif
c65eacbe 1570#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1571 struct thread_info thread_info;
c65eacbe 1572#endif
1da177e4
LT
1573 unsigned long stack[THREAD_SIZE/sizeof(long)];
1574};
1575
0500871f
DH
1576#ifndef CONFIG_THREAD_INFO_IN_TASK
1577extern struct thread_info init_thread_info;
1578#endif
1579
1580extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1581
f3ac6067
IM
1582#ifdef CONFIG_THREAD_INFO_IN_TASK
1583static inline struct thread_info *task_thread_info(struct task_struct *task)
1584{
1585 return &task->thread_info;
1586}
1587#elif !defined(__HAVE_THREAD_FUNCTIONS)
1588# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1589#endif
1590
198fe21b
PE
1591/*
1592 * find a task by one of its numerical ids
1593 *
198fe21b
PE
1594 * find_task_by_pid_ns():
1595 * finds a task by its pid in the specified namespace
228ebcbe
PE
1596 * find_task_by_vpid():
1597 * finds a task by its virtual pid
198fe21b 1598 *
e49859e7 1599 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1600 */
1601
228ebcbe 1602extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1603extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1604
2ee08260
MR
1605/*
1606 * find a task by its virtual pid and get the task struct
1607 */
1608extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1609
b3c97528
HH
1610extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1611extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1612extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1613
1da177e4 1614#ifdef CONFIG_SMP
5eca1c10 1615extern void kick_process(struct task_struct *tsk);
1da177e4 1616#else
5eca1c10 1617static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1618#endif
1da177e4 1619
82b89778 1620extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1621
82b89778
AH
1622static inline void set_task_comm(struct task_struct *tsk, const char *from)
1623{
1624 __set_task_comm(tsk, from, false);
1625}
5eca1c10 1626
3756f640
AB
1627extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1628#define get_task_comm(buf, tsk) ({ \
1629 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1630 __get_task_comm(buf, sizeof(buf), tsk); \
1631})
1da177e4
LT
1632
1633#ifdef CONFIG_SMP
317f3941 1634void scheduler_ipi(void);
85ba2d86 1635extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1636#else
184748cc 1637static inline void scheduler_ipi(void) { }
5eca1c10 1638static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1639{
1640 return 1;
1641}
1da177e4
LT
1642#endif
1643
5eca1c10
IM
1644/*
1645 * Set thread flags in other task's structures.
1646 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1647 */
1648static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1649{
a1261f54 1650 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1651}
1652
1653static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1654{
a1261f54 1655 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1656}
1657
93ee37c2
DM
1658static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1659 bool value)
1660{
1661 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1662}
1663
1da177e4
LT
1664static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1665{
a1261f54 1666 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1667}
1668
1669static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1670{
a1261f54 1671 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1672}
1673
1674static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1675{
a1261f54 1676 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1677}
1678
1679static inline void set_tsk_need_resched(struct task_struct *tsk)
1680{
1681 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1682}
1683
1684static inline void clear_tsk_need_resched(struct task_struct *tsk)
1685{
1686 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1687}
1688
8ae121ac
GH
1689static inline int test_tsk_need_resched(struct task_struct *tsk)
1690{
1691 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1692}
1693
1da177e4
LT
1694/*
1695 * cond_resched() and cond_resched_lock(): latency reduction via
1696 * explicit rescheduling in places that are safe. The return
1697 * value indicates whether a reschedule was done in fact.
1698 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1699 */
35a773a0 1700#ifndef CONFIG_PREEMPT
c3921ab7 1701extern int _cond_resched(void);
35a773a0
PZ
1702#else
1703static inline int _cond_resched(void) { return 0; }
1704#endif
6f80bd98 1705
613afbf8 1706#define cond_resched() ({ \
3427445a 1707 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1708 _cond_resched(); \
1709})
6f80bd98 1710
613afbf8
FW
1711extern int __cond_resched_lock(spinlock_t *lock);
1712
1713#define cond_resched_lock(lock) ({ \
3427445a 1714 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1715 __cond_resched_lock(lock); \
1716})
1717
f6f3c437
SH
1718static inline void cond_resched_rcu(void)
1719{
1720#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1721 rcu_read_unlock();
1722 cond_resched();
1723 rcu_read_lock();
1724#endif
1725}
1726
1da177e4
LT
1727/*
1728 * Does a critical section need to be broken due to another
95c354fe
NP
1729 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1730 * but a general need for low latency)
1da177e4 1731 */
95c354fe 1732static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1733{
95c354fe
NP
1734#ifdef CONFIG_PREEMPT
1735 return spin_is_contended(lock);
1736#else
1da177e4 1737 return 0;
95c354fe 1738#endif
1da177e4
LT
1739}
1740
75f93fed
PZ
1741static __always_inline bool need_resched(void)
1742{
1743 return unlikely(tif_need_resched());
1744}
1745
1da177e4
LT
1746/*
1747 * Wrappers for p->thread_info->cpu access. No-op on UP.
1748 */
1749#ifdef CONFIG_SMP
1750
1751static inline unsigned int task_cpu(const struct task_struct *p)
1752{
c65eacbe 1753#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1754 return READ_ONCE(p->cpu);
c65eacbe 1755#else
c546951d 1756 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1757#endif
1da177e4
LT
1758}
1759
c65cc870 1760extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1761
1762#else
1763
1764static inline unsigned int task_cpu(const struct task_struct *p)
1765{
1766 return 0;
1767}
1768
1769static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1770{
1771}
1772
1773#endif /* CONFIG_SMP */
1774
d9345c65
PX
1775/*
1776 * In order to reduce various lock holder preemption latencies provide an
1777 * interface to see if a vCPU is currently running or not.
1778 *
1779 * This allows us to terminate optimistic spin loops and block, analogous to
1780 * the native optimistic spin heuristic of testing if the lock owner task is
1781 * running or not.
1782 */
1783#ifndef vcpu_is_preempted
1784# define vcpu_is_preempted(cpu) false
1785#endif
1786
96f874e2
RR
1787extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1788extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1789
82455257
DH
1790#ifndef TASK_SIZE_OF
1791#define TASK_SIZE_OF(tsk) TASK_SIZE
1792#endif
1793
d7822b1e
MD
1794#ifdef CONFIG_RSEQ
1795
1796/*
1797 * Map the event mask on the user-space ABI enum rseq_cs_flags
1798 * for direct mask checks.
1799 */
1800enum rseq_event_mask_bits {
1801 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1802 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1803 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1804};
1805
1806enum rseq_event_mask {
1807 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1808 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1809 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1810};
1811
1812static inline void rseq_set_notify_resume(struct task_struct *t)
1813{
1814 if (t->rseq)
1815 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1816}
1817
784e0300 1818void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1819
784e0300
WD
1820static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1821 struct pt_regs *regs)
d7822b1e
MD
1822{
1823 if (current->rseq)
784e0300 1824 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1825}
1826
784e0300
WD
1827static inline void rseq_signal_deliver(struct ksignal *ksig,
1828 struct pt_regs *regs)
d7822b1e
MD
1829{
1830 preempt_disable();
1831 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1832 preempt_enable();
784e0300 1833 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1834}
1835
1836/* rseq_preempt() requires preemption to be disabled. */
1837static inline void rseq_preempt(struct task_struct *t)
1838{
1839 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1840 rseq_set_notify_resume(t);
1841}
1842
1843/* rseq_migrate() requires preemption to be disabled. */
1844static inline void rseq_migrate(struct task_struct *t)
1845{
1846 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1847 rseq_set_notify_resume(t);
1848}
1849
1850/*
1851 * If parent process has a registered restartable sequences area, the
9a789fcf 1852 * child inherits. Only applies when forking a process, not a thread.
d7822b1e
MD
1853 */
1854static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1855{
1856 if (clone_flags & CLONE_THREAD) {
1857 t->rseq = NULL;
1858 t->rseq_len = 0;
1859 t->rseq_sig = 0;
1860 t->rseq_event_mask = 0;
1861 } else {
1862 t->rseq = current->rseq;
1863 t->rseq_len = current->rseq_len;
1864 t->rseq_sig = current->rseq_sig;
1865 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1866 }
1867}
1868
1869static inline void rseq_execve(struct task_struct *t)
1870{
1871 t->rseq = NULL;
1872 t->rseq_len = 0;
1873 t->rseq_sig = 0;
1874 t->rseq_event_mask = 0;
1875}
1876
1877#else
1878
1879static inline void rseq_set_notify_resume(struct task_struct *t)
1880{
1881}
784e0300
WD
1882static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1883 struct pt_regs *regs)
d7822b1e
MD
1884{
1885}
784e0300
WD
1886static inline void rseq_signal_deliver(struct ksignal *ksig,
1887 struct pt_regs *regs)
d7822b1e
MD
1888{
1889}
1890static inline void rseq_preempt(struct task_struct *t)
1891{
1892}
1893static inline void rseq_migrate(struct task_struct *t)
1894{
1895}
1896static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1897{
1898}
1899static inline void rseq_execve(struct task_struct *t)
1900{
1901}
1902
1903#endif
1904
73ab1cb2
TY
1905void __exit_umh(struct task_struct *tsk);
1906
1907static inline void exit_umh(struct task_struct *tsk)
1908{
1909 if (unlikely(tsk->flags & PF_UMH))
1910 __exit_umh(tsk);
1911}
1912
d7822b1e
MD
1913#ifdef CONFIG_DEBUG_RSEQ
1914
1915void rseq_syscall(struct pt_regs *regs);
1916
1917#else
1918
1919static inline void rseq_syscall(struct pt_regs *regs)
1920{
1921}
1922
1923#endif
1924
1da177e4 1925#endif