]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/sched.h
mm: relocate 'write_protect_seq' in struct mm_struct
[mirror_ubuntu-jammy-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
0584df9c 20#include <linux/irqflags.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10 29#include <linux/signal_types.h>
1446e1df 30#include <linux/syscall_user_dispatch.h>
5eca1c10
IM
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
2b69942f 33#include <linux/posix-timers.h>
d7822b1e 34#include <linux/rseq.h>
0cd39f46 35#include <linux/seqlock.h>
dfd402a4 36#include <linux/kcsan.h>
5fbda3ec 37#include <asm/kmap_size.h>
a3b6714e 38
5eca1c10 39/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 40struct audit_context;
c7af7877 41struct backing_dev_info;
bddd87c7 42struct bio_list;
73c10101 43struct blk_plug;
a10787e6 44struct bpf_local_storage;
3c93a0c0 45struct capture_control;
c7af7877 46struct cfs_rq;
c7af7877
IM
47struct fs_struct;
48struct futex_pi_state;
49struct io_context;
1875dc5b 50struct io_uring_task;
c7af7877 51struct mempolicy;
89076bc3 52struct nameidata;
c7af7877
IM
53struct nsproxy;
54struct perf_event_context;
55struct pid_namespace;
56struct pipe_inode_info;
57struct rcu_node;
58struct reclaim_state;
59struct robust_list_head;
3c93a0c0
QY
60struct root_domain;
61struct rq;
c7af7877
IM
62struct sched_attr;
63struct sched_param;
43ae34cb 64struct seq_file;
c7af7877
IM
65struct sighand_struct;
66struct signal_struct;
67struct task_delay_info;
4cf86d77 68struct task_group;
1da177e4 69
4a8342d2
LT
70/*
71 * Task state bitmask. NOTE! These bits are also
72 * encoded in fs/proc/array.c: get_task_state().
73 *
74 * We have two separate sets of flags: task->state
75 * is about runnability, while task->exit_state are
76 * about the task exiting. Confusing, but this way
77 * modifying one set can't modify the other one by
78 * mistake.
79 */
5eca1c10
IM
80
81/* Used in tsk->state: */
92c4bc9f
PZ
82#define TASK_RUNNING 0x0000
83#define TASK_INTERRUPTIBLE 0x0001
84#define TASK_UNINTERRUPTIBLE 0x0002
85#define __TASK_STOPPED 0x0004
86#define __TASK_TRACED 0x0008
5eca1c10 87/* Used in tsk->exit_state: */
92c4bc9f
PZ
88#define EXIT_DEAD 0x0010
89#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
90#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
91/* Used in tsk->state again: */
8ef9925b
PZ
92#define TASK_PARKED 0x0040
93#define TASK_DEAD 0x0080
94#define TASK_WAKEKILL 0x0100
95#define TASK_WAKING 0x0200
92c4bc9f
PZ
96#define TASK_NOLOAD 0x0400
97#define TASK_NEW 0x0800
98#define TASK_STATE_MAX 0x1000
5eca1c10 99
5eca1c10
IM
100/* Convenience macros for the sake of set_current_state: */
101#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
102#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
103#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
104
105#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
106
107/* Convenience macros for the sake of wake_up(): */
108#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
109
110/* get_task_state(): */
111#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
112 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
113 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
114 TASK_PARKED)
5eca1c10
IM
115
116#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
117
118#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
119
120#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
121
8eb23b9f
PZ
122#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
123
b5bf9a90
PZ
124/*
125 * Special states are those that do not use the normal wait-loop pattern. See
126 * the comment with set_special_state().
127 */
128#define is_special_task_state(state) \
1cef1150 129 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 130
8eb23b9f
PZ
131#define __set_current_state(state_value) \
132 do { \
b5bf9a90 133 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
134 current->task_state_change = _THIS_IP_; \
135 current->state = (state_value); \
136 } while (0)
b5bf9a90 137
8eb23b9f
PZ
138#define set_current_state(state_value) \
139 do { \
b5bf9a90 140 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 141 current->task_state_change = _THIS_IP_; \
a2250238 142 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
143 } while (0)
144
b5bf9a90
PZ
145#define set_special_state(state_value) \
146 do { \
147 unsigned long flags; /* may shadow */ \
148 WARN_ON_ONCE(!is_special_task_state(state_value)); \
149 raw_spin_lock_irqsave(&current->pi_lock, flags); \
150 current->task_state_change = _THIS_IP_; \
151 current->state = (state_value); \
152 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
153 } while (0)
8eb23b9f 154#else
498d0c57
AM
155/*
156 * set_current_state() includes a barrier so that the write of current->state
157 * is correctly serialised wrt the caller's subsequent test of whether to
158 * actually sleep:
159 *
a2250238 160 * for (;;) {
498d0c57 161 * set_current_state(TASK_UNINTERRUPTIBLE);
58877d34
PZ
162 * if (CONDITION)
163 * break;
a2250238
PZ
164 *
165 * schedule();
166 * }
167 * __set_current_state(TASK_RUNNING);
168 *
169 * If the caller does not need such serialisation (because, for instance, the
58877d34 170 * CONDITION test and condition change and wakeup are under the same lock) then
a2250238
PZ
171 * use __set_current_state().
172 *
173 * The above is typically ordered against the wakeup, which does:
174 *
58877d34 175 * CONDITION = 1;
b5bf9a90 176 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 177 *
58877d34
PZ
178 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
179 * accessing p->state.
a2250238
PZ
180 *
181 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
182 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
183 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 184 *
b5bf9a90 185 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 186 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
187 * a problem either because that will result in one extra go around the loop
188 * and our @cond test will save the day.
498d0c57 189 *
a2250238 190 * Also see the comments of try_to_wake_up().
498d0c57 191 */
b5bf9a90
PZ
192#define __set_current_state(state_value) \
193 current->state = (state_value)
194
195#define set_current_state(state_value) \
196 smp_store_mb(current->state, (state_value))
197
198/*
199 * set_special_state() should be used for those states when the blocking task
200 * can not use the regular condition based wait-loop. In that case we must
201 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
202 * will not collide with our state change.
203 */
204#define set_special_state(state_value) \
205 do { \
206 unsigned long flags; /* may shadow */ \
207 raw_spin_lock_irqsave(&current->pi_lock, flags); \
208 current->state = (state_value); \
209 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
210 } while (0)
211
8eb23b9f
PZ
212#endif
213
5eca1c10
IM
214/* Task command name length: */
215#define TASK_COMM_LEN 16
1da177e4 216
1da177e4
LT
217extern void scheduler_tick(void);
218
5eca1c10
IM
219#define MAX_SCHEDULE_TIMEOUT LONG_MAX
220
221extern long schedule_timeout(long timeout);
222extern long schedule_timeout_interruptible(long timeout);
223extern long schedule_timeout_killable(long timeout);
224extern long schedule_timeout_uninterruptible(long timeout);
225extern long schedule_timeout_idle(long timeout);
1da177e4 226asmlinkage void schedule(void);
c5491ea7 227extern void schedule_preempt_disabled(void);
19c95f26 228asmlinkage void preempt_schedule_irq(void);
1da177e4 229
10ab5643
TH
230extern int __must_check io_schedule_prepare(void);
231extern void io_schedule_finish(int token);
9cff8ade 232extern long io_schedule_timeout(long timeout);
10ab5643 233extern void io_schedule(void);
9cff8ade 234
d37f761d 235/**
0ba42a59 236 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
237 * @utime: time spent in user mode
238 * @stime: time spent in system mode
9d7fb042 239 * @lock: protects the above two fields
d37f761d 240 *
9d7fb042
PZ
241 * Stores previous user/system time values such that we can guarantee
242 * monotonicity.
d37f761d 243 */
9d7fb042
PZ
244struct prev_cputime {
245#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
246 u64 utime;
247 u64 stime;
248 raw_spinlock_t lock;
9d7fb042 249#endif
d37f761d
FW
250};
251
bac5b6b6
FW
252enum vtime_state {
253 /* Task is sleeping or running in a CPU with VTIME inactive: */
254 VTIME_INACTIVE = 0,
14faf6fc
FW
255 /* Task is idle */
256 VTIME_IDLE,
bac5b6b6
FW
257 /* Task runs in kernelspace in a CPU with VTIME active: */
258 VTIME_SYS,
14faf6fc
FW
259 /* Task runs in userspace in a CPU with VTIME active: */
260 VTIME_USER,
e6d5bf3e
FW
261 /* Task runs as guests in a CPU with VTIME active: */
262 VTIME_GUEST,
bac5b6b6
FW
263};
264
265struct vtime {
266 seqcount_t seqcount;
267 unsigned long long starttime;
268 enum vtime_state state;
802f4a82 269 unsigned int cpu;
2a42eb95
WL
270 u64 utime;
271 u64 stime;
272 u64 gtime;
bac5b6b6
FW
273};
274
69842cba
PB
275/*
276 * Utilization clamp constraints.
277 * @UCLAMP_MIN: Minimum utilization
278 * @UCLAMP_MAX: Maximum utilization
279 * @UCLAMP_CNT: Utilization clamp constraints count
280 */
281enum uclamp_id {
282 UCLAMP_MIN = 0,
283 UCLAMP_MAX,
284 UCLAMP_CNT
285};
286
f9a25f77
MP
287#ifdef CONFIG_SMP
288extern struct root_domain def_root_domain;
289extern struct mutex sched_domains_mutex;
290#endif
291
1da177e4 292struct sched_info {
7f5f8e8d 293#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
294 /* Cumulative counters: */
295
296 /* # of times we have run on this CPU: */
297 unsigned long pcount;
298
299 /* Time spent waiting on a runqueue: */
300 unsigned long long run_delay;
301
302 /* Timestamps: */
303
304 /* When did we last run on a CPU? */
305 unsigned long long last_arrival;
306
307 /* When were we last queued to run? */
308 unsigned long long last_queued;
1da177e4 309
f6db8347 310#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 311};
1da177e4 312
6ecdd749
YD
313/*
314 * Integer metrics need fixed point arithmetic, e.g., sched/fair
315 * has a few: load, load_avg, util_avg, freq, and capacity.
316 *
317 * We define a basic fixed point arithmetic range, and then formalize
318 * all these metrics based on that basic range.
319 */
5eca1c10
IM
320# define SCHED_FIXEDPOINT_SHIFT 10
321# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 322
69842cba
PB
323/* Increase resolution of cpu_capacity calculations */
324# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
325# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
326
20b8a59f 327struct load_weight {
5eca1c10
IM
328 unsigned long weight;
329 u32 inv_weight;
20b8a59f
IM
330};
331
7f65ea42
PB
332/**
333 * struct util_est - Estimation utilization of FAIR tasks
334 * @enqueued: instantaneous estimated utilization of a task/cpu
335 * @ewma: the Exponential Weighted Moving Average (EWMA)
336 * utilization of a task
337 *
338 * Support data structure to track an Exponential Weighted Moving Average
339 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
340 * average each time a task completes an activation. Sample's weight is chosen
341 * so that the EWMA will be relatively insensitive to transient changes to the
342 * task's workload.
343 *
344 * The enqueued attribute has a slightly different meaning for tasks and cpus:
345 * - task: the task's util_avg at last task dequeue time
346 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
347 * Thus, the util_est.enqueued of a task represents the contribution on the
348 * estimated utilization of the CPU where that task is currently enqueued.
349 *
350 * Only for tasks we track a moving average of the past instantaneous
351 * estimated utilization. This allows to absorb sporadic drops in utilization
352 * of an otherwise almost periodic task.
68d7a190
DE
353 *
354 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
355 * updates. When a task is dequeued, its util_est should not be updated if its
356 * util_avg has not been updated in the meantime.
357 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
358 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
359 * for a task) it is safe to use MSB.
7f65ea42
PB
360 */
361struct util_est {
362 unsigned int enqueued;
363 unsigned int ewma;
364#define UTIL_EST_WEIGHT_SHIFT 2
68d7a190 365#define UTIL_AVG_UNCHANGED 0x80000000
317d359d 366} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 367
9d89c257 368/*
9f683953 369 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 370 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
371 *
372 * [load_avg definition]
373 *
374 * load_avg = runnable% * scale_load_down(load)
375 *
9f683953
VG
376 * [runnable_avg definition]
377 *
378 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 379 *
7b595334
YD
380 * [util_avg definition]
381 *
382 * util_avg = running% * SCHED_CAPACITY_SCALE
383 *
9f683953
VG
384 * where runnable% is the time ratio that a sched_entity is runnable and
385 * running% the time ratio that a sched_entity is running.
386 *
387 * For cfs_rq, they are the aggregated values of all runnable and blocked
388 * sched_entities.
7b595334 389 *
c1b7b8d4 390 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
9f683953
VG
391 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
392 * for computing those signals (see update_rq_clock_pelt())
7b595334 393 *
23127296
VG
394 * N.B., the above ratios (runnable% and running%) themselves are in the
395 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
396 * to as large a range as necessary. This is for example reflected by
397 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
398 *
399 * [Overflow issue]
400 *
401 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
402 * with the highest load (=88761), always runnable on a single cfs_rq,
403 * and should not overflow as the number already hits PID_MAX_LIMIT.
404 *
405 * For all other cases (including 32-bit kernels), struct load_weight's
406 * weight will overflow first before we do, because:
407 *
408 * Max(load_avg) <= Max(load.weight)
409 *
410 * Then it is the load_weight's responsibility to consider overflow
411 * issues.
9d89c257 412 */
9d85f21c 413struct sched_avg {
5eca1c10
IM
414 u64 last_update_time;
415 u64 load_sum;
9f683953 416 u64 runnable_sum;
5eca1c10
IM
417 u32 util_sum;
418 u32 period_contrib;
419 unsigned long load_avg;
9f683953 420 unsigned long runnable_avg;
5eca1c10 421 unsigned long util_avg;
7f65ea42 422 struct util_est util_est;
317d359d 423} ____cacheline_aligned;
9d85f21c 424
41acab88 425struct sched_statistics {
7f5f8e8d 426#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
427 u64 wait_start;
428 u64 wait_max;
429 u64 wait_count;
430 u64 wait_sum;
431 u64 iowait_count;
432 u64 iowait_sum;
433
434 u64 sleep_start;
435 u64 sleep_max;
436 s64 sum_sleep_runtime;
437
438 u64 block_start;
439 u64 block_max;
440 u64 exec_max;
441 u64 slice_max;
442
443 u64 nr_migrations_cold;
444 u64 nr_failed_migrations_affine;
445 u64 nr_failed_migrations_running;
446 u64 nr_failed_migrations_hot;
447 u64 nr_forced_migrations;
448
449 u64 nr_wakeups;
450 u64 nr_wakeups_sync;
451 u64 nr_wakeups_migrate;
452 u64 nr_wakeups_local;
453 u64 nr_wakeups_remote;
454 u64 nr_wakeups_affine;
455 u64 nr_wakeups_affine_attempts;
456 u64 nr_wakeups_passive;
457 u64 nr_wakeups_idle;
41acab88 458#endif
7f5f8e8d 459};
41acab88
LDM
460
461struct sched_entity {
5eca1c10
IM
462 /* For load-balancing: */
463 struct load_weight load;
464 struct rb_node run_node;
465 struct list_head group_node;
466 unsigned int on_rq;
41acab88 467
5eca1c10
IM
468 u64 exec_start;
469 u64 sum_exec_runtime;
470 u64 vruntime;
471 u64 prev_sum_exec_runtime;
41acab88 472
5eca1c10 473 u64 nr_migrations;
41acab88 474
5eca1c10 475 struct sched_statistics statistics;
94c18227 476
20b8a59f 477#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
478 int depth;
479 struct sched_entity *parent;
20b8a59f 480 /* rq on which this entity is (to be) queued: */
5eca1c10 481 struct cfs_rq *cfs_rq;
20b8a59f 482 /* rq "owned" by this entity/group: */
5eca1c10 483 struct cfs_rq *my_q;
9f683953
VG
484 /* cached value of my_q->h_nr_running */
485 unsigned long runnable_weight;
20b8a59f 486#endif
8bd75c77 487
141965c7 488#ifdef CONFIG_SMP
5a107804
JO
489 /*
490 * Per entity load average tracking.
491 *
492 * Put into separate cache line so it does not
493 * collide with read-mostly values above.
494 */
317d359d 495 struct sched_avg avg;
9d85f21c 496#endif
20b8a59f 497};
70b97a7f 498
fa717060 499struct sched_rt_entity {
5eca1c10
IM
500 struct list_head run_list;
501 unsigned long timeout;
502 unsigned long watchdog_stamp;
503 unsigned int time_slice;
504 unsigned short on_rq;
505 unsigned short on_list;
506
507 struct sched_rt_entity *back;
052f1dc7 508#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 509 struct sched_rt_entity *parent;
6f505b16 510 /* rq on which this entity is (to be) queued: */
5eca1c10 511 struct rt_rq *rt_rq;
6f505b16 512 /* rq "owned" by this entity/group: */
5eca1c10 513 struct rt_rq *my_q;
6f505b16 514#endif
3859a271 515} __randomize_layout;
fa717060 516
aab03e05 517struct sched_dl_entity {
5eca1c10 518 struct rb_node rb_node;
aab03e05
DF
519
520 /*
521 * Original scheduling parameters. Copied here from sched_attr
4027d080 522 * during sched_setattr(), they will remain the same until
523 * the next sched_setattr().
aab03e05 524 */
5eca1c10
IM
525 u64 dl_runtime; /* Maximum runtime for each instance */
526 u64 dl_deadline; /* Relative deadline of each instance */
527 u64 dl_period; /* Separation of two instances (period) */
54d6d303 528 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 529 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
530
531 /*
532 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 533 * they are continuously updated during task execution. Note that
aab03e05
DF
534 * the remaining runtime could be < 0 in case we are in overrun.
535 */
5eca1c10
IM
536 s64 runtime; /* Remaining runtime for this instance */
537 u64 deadline; /* Absolute deadline for this instance */
538 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
539
540 /*
541 * Some bool flags:
542 *
543 * @dl_throttled tells if we exhausted the runtime. If so, the
544 * task has to wait for a replenishment to be performed at the
545 * next firing of dl_timer.
546 *
2d3d891d
DF
547 * @dl_boosted tells if we are boosted due to DI. If so we are
548 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
549 * exit the critical section);
550 *
5eca1c10 551 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 552 * all its available runtime during the last job.
209a0cbd
LA
553 *
554 * @dl_non_contending tells if the task is inactive while still
555 * contributing to the active utilization. In other words, it
556 * indicates if the inactive timer has been armed and its handler
557 * has not been executed yet. This flag is useful to avoid race
558 * conditions between the inactive timer handler and the wakeup
559 * code.
34be3930
JL
560 *
561 * @dl_overrun tells if the task asked to be informed about runtime
562 * overruns.
aab03e05 563 */
aa5222e9 564 unsigned int dl_throttled : 1;
aa5222e9
DC
565 unsigned int dl_yielded : 1;
566 unsigned int dl_non_contending : 1;
34be3930 567 unsigned int dl_overrun : 1;
aab03e05
DF
568
569 /*
570 * Bandwidth enforcement timer. Each -deadline task has its
571 * own bandwidth to be enforced, thus we need one timer per task.
572 */
5eca1c10 573 struct hrtimer dl_timer;
209a0cbd
LA
574
575 /*
576 * Inactive timer, responsible for decreasing the active utilization
577 * at the "0-lag time". When a -deadline task blocks, it contributes
578 * to GRUB's active utilization until the "0-lag time", hence a
579 * timer is needed to decrease the active utilization at the correct
580 * time.
581 */
582 struct hrtimer inactive_timer;
2279f540
JL
583
584#ifdef CONFIG_RT_MUTEXES
585 /*
586 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
587 * pi_se points to the donor, otherwise points to the dl_se it belongs
588 * to (the original one/itself).
589 */
590 struct sched_dl_entity *pi_se;
591#endif
aab03e05 592};
8bd75c77 593
69842cba
PB
594#ifdef CONFIG_UCLAMP_TASK
595/* Number of utilization clamp buckets (shorter alias) */
596#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
597
598/*
599 * Utilization clamp for a scheduling entity
600 * @value: clamp value "assigned" to a se
601 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 602 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 603 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
604 *
605 * The bucket_id is the index of the clamp bucket matching the clamp value
606 * which is pre-computed and stored to avoid expensive integer divisions from
607 * the fast path.
e8f14172
PB
608 *
609 * The active bit is set whenever a task has got an "effective" value assigned,
610 * which can be different from the clamp value "requested" from user-space.
611 * This allows to know a task is refcounted in the rq's bucket corresponding
612 * to the "effective" bucket_id.
a509a7cd
PB
613 *
614 * The user_defined bit is set whenever a task has got a task-specific clamp
615 * value requested from userspace, i.e. the system defaults apply to this task
616 * just as a restriction. This allows to relax default clamps when a less
617 * restrictive task-specific value has been requested, thus allowing to
618 * implement a "nice" semantic. For example, a task running with a 20%
619 * default boost can still drop its own boosting to 0%.
69842cba
PB
620 */
621struct uclamp_se {
622 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
623 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 624 unsigned int active : 1;
a509a7cd 625 unsigned int user_defined : 1;
69842cba
PB
626};
627#endif /* CONFIG_UCLAMP_TASK */
628
1d082fd0
PM
629union rcu_special {
630 struct {
5eca1c10
IM
631 u8 blocked;
632 u8 need_qs;
05f41571 633 u8 exp_hint; /* Hint for performance. */
276c4104 634 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 635 } b; /* Bits. */
05f41571 636 u32 s; /* Set of bits. */
1d082fd0 637};
86848966 638
8dc85d54
PZ
639enum perf_event_task_context {
640 perf_invalid_context = -1,
641 perf_hw_context = 0,
89a1e187 642 perf_sw_context,
8dc85d54
PZ
643 perf_nr_task_contexts,
644};
645
eb61baf6
IM
646struct wake_q_node {
647 struct wake_q_node *next;
648};
649
5fbda3ec
TG
650struct kmap_ctrl {
651#ifdef CONFIG_KMAP_LOCAL
652 int idx;
653 pte_t pteval[KM_MAX_IDX];
654#endif
655};
656
1da177e4 657struct task_struct {
c65eacbe
AL
658#ifdef CONFIG_THREAD_INFO_IN_TASK
659 /*
660 * For reasons of header soup (see current_thread_info()), this
661 * must be the first element of task_struct.
662 */
5eca1c10 663 struct thread_info thread_info;
c65eacbe 664#endif
5eca1c10
IM
665 /* -1 unrunnable, 0 runnable, >0 stopped: */
666 volatile long state;
29e48ce8
KC
667
668 /*
669 * This begins the randomizable portion of task_struct. Only
670 * scheduling-critical items should be added above here.
671 */
672 randomized_struct_fields_start
673
5eca1c10 674 void *stack;
ec1d2819 675 refcount_t usage;
5eca1c10
IM
676 /* Per task flags (PF_*), defined further below: */
677 unsigned int flags;
678 unsigned int ptrace;
1da177e4 679
2dd73a4f 680#ifdef CONFIG_SMP
5eca1c10 681 int on_cpu;
8c4890d1 682 struct __call_single_node wake_entry;
c65eacbe 683#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
684 /* Current CPU: */
685 unsigned int cpu;
c65eacbe 686#endif
5eca1c10
IM
687 unsigned int wakee_flips;
688 unsigned long wakee_flip_decay_ts;
689 struct task_struct *last_wakee;
ac66f547 690
32e839dd
MG
691 /*
692 * recent_used_cpu is initially set as the last CPU used by a task
693 * that wakes affine another task. Waker/wakee relationships can
694 * push tasks around a CPU where each wakeup moves to the next one.
695 * Tracking a recently used CPU allows a quick search for a recently
696 * used CPU that may be idle.
697 */
698 int recent_used_cpu;
5eca1c10 699 int wake_cpu;
2dd73a4f 700#endif
5eca1c10
IM
701 int on_rq;
702
703 int prio;
704 int static_prio;
705 int normal_prio;
706 unsigned int rt_priority;
50e645a8 707
5eca1c10
IM
708 const struct sched_class *sched_class;
709 struct sched_entity se;
710 struct sched_rt_entity rt;
8323f26c 711#ifdef CONFIG_CGROUP_SCHED
5eca1c10 712 struct task_group *sched_task_group;
8323f26c 713#endif
5eca1c10 714 struct sched_dl_entity dl;
1da177e4 715
69842cba 716#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
717 /*
718 * Clamp values requested for a scheduling entity.
719 * Must be updated with task_rq_lock() held.
720 */
e8f14172 721 struct uclamp_se uclamp_req[UCLAMP_CNT];
13685c4a
QY
722 /*
723 * Effective clamp values used for a scheduling entity.
724 * Must be updated with task_rq_lock() held.
725 */
69842cba
PB
726 struct uclamp_se uclamp[UCLAMP_CNT];
727#endif
728
e107be36 729#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
730 /* List of struct preempt_notifier: */
731 struct hlist_head preempt_notifiers;
e107be36
AK
732#endif
733
6c5c9341 734#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 735 unsigned int btrace_seq;
6c5c9341 736#endif
1da177e4 737
5eca1c10
IM
738 unsigned int policy;
739 int nr_cpus_allowed;
3bd37062
SAS
740 const cpumask_t *cpus_ptr;
741 cpumask_t cpus_mask;
6d337eab 742 void *migration_pending;
74d862b6 743#ifdef CONFIG_SMP
a7c81556 744 unsigned short migration_disabled;
af449901 745#endif
a7c81556 746 unsigned short migration_flags;
1da177e4 747
a57eb940 748#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
749 int rcu_read_lock_nesting;
750 union rcu_special rcu_read_unlock_special;
751 struct list_head rcu_node_entry;
752 struct rcu_node *rcu_blocked_node;
28f6569a 753#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 754
8315f422 755#ifdef CONFIG_TASKS_RCU
5eca1c10 756 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
757 u8 rcu_tasks_holdout;
758 u8 rcu_tasks_idx;
5eca1c10 759 int rcu_tasks_idle_cpu;
ccdd29ff 760 struct list_head rcu_tasks_holdout_list;
8315f422 761#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 762
d5f177d3
PM
763#ifdef CONFIG_TASKS_TRACE_RCU
764 int trc_reader_nesting;
765 int trc_ipi_to_cpu;
276c4104 766 union rcu_special trc_reader_special;
d5f177d3
PM
767 bool trc_reader_checked;
768 struct list_head trc_holdout_list;
769#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
770
5eca1c10 771 struct sched_info sched_info;
1da177e4 772
5eca1c10 773 struct list_head tasks;
806c09a7 774#ifdef CONFIG_SMP
5eca1c10
IM
775 struct plist_node pushable_tasks;
776 struct rb_node pushable_dl_tasks;
806c09a7 777#endif
1da177e4 778
5eca1c10
IM
779 struct mm_struct *mm;
780 struct mm_struct *active_mm;
314ff785
IM
781
782 /* Per-thread vma caching: */
5eca1c10 783 struct vmacache vmacache;
314ff785 784
5eca1c10
IM
785#ifdef SPLIT_RSS_COUNTING
786 struct task_rss_stat rss_stat;
34e55232 787#endif
5eca1c10
IM
788 int exit_state;
789 int exit_code;
790 int exit_signal;
791 /* The signal sent when the parent dies: */
792 int pdeath_signal;
793 /* JOBCTL_*, siglock protected: */
794 unsigned long jobctl;
795
796 /* Used for emulating ABI behavior of previous Linux versions: */
797 unsigned int personality;
798
799 /* Scheduler bits, serialized by scheduler locks: */
800 unsigned sched_reset_on_fork:1;
801 unsigned sched_contributes_to_load:1;
802 unsigned sched_migrated:1;
eb414681
JW
803#ifdef CONFIG_PSI
804 unsigned sched_psi_wake_requeue:1;
805#endif
806
5eca1c10
IM
807 /* Force alignment to the next boundary: */
808 unsigned :0;
809
810 /* Unserialized, strictly 'current' */
811
f97bb527
PZ
812 /*
813 * This field must not be in the scheduler word above due to wakelist
814 * queueing no longer being serialized by p->on_cpu. However:
815 *
816 * p->XXX = X; ttwu()
817 * schedule() if (p->on_rq && ..) // false
818 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
819 * deactivate_task() ttwu_queue_wakelist())
820 * p->on_rq = 0; p->sched_remote_wakeup = Y;
821 *
822 * guarantees all stores of 'current' are visible before
823 * ->sched_remote_wakeup gets used, so it can be in this word.
824 */
825 unsigned sched_remote_wakeup:1;
826
5eca1c10
IM
827 /* Bit to tell LSMs we're in execve(): */
828 unsigned in_execve:1;
829 unsigned in_iowait:1;
830#ifndef TIF_RESTORE_SIGMASK
831 unsigned restore_sigmask:1;
7e781418 832#endif
626ebc41 833#ifdef CONFIG_MEMCG
29ef680a 834 unsigned in_user_fault:1;
127424c8 835#endif
ff303e66 836#ifdef CONFIG_COMPAT_BRK
5eca1c10 837 unsigned brk_randomized:1;
ff303e66 838#endif
77f88796
TH
839#ifdef CONFIG_CGROUPS
840 /* disallow userland-initiated cgroup migration */
841 unsigned no_cgroup_migration:1;
76f969e8
RG
842 /* task is frozen/stopped (used by the cgroup freezer) */
843 unsigned frozen:1;
77f88796 844#endif
d09d8df3 845#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
846 unsigned use_memdelay:1;
847#endif
1066d1b6
YS
848#ifdef CONFIG_PSI
849 /* Stalled due to lack of memory */
850 unsigned in_memstall:1;
851#endif
8e9b16c4
ST
852#ifdef CONFIG_PAGE_OWNER
853 /* Used by page_owner=on to detect recursion in page tracking. */
854 unsigned in_page_owner:1;
855#endif
6f185c29 856
5eca1c10 857 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 858
5eca1c10 859 struct restart_block restart_block;
f56141e3 860
5eca1c10
IM
861 pid_t pid;
862 pid_t tgid;
0a425405 863
050e9baa 864#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
865 /* Canary value for the -fstack-protector GCC feature: */
866 unsigned long stack_canary;
1314562a 867#endif
4d1d61a6 868 /*
5eca1c10 869 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 870 * older sibling, respectively. (p->father can be replaced with
f470021a 871 * p->real_parent->pid)
1da177e4 872 */
5eca1c10
IM
873
874 /* Real parent process: */
875 struct task_struct __rcu *real_parent;
876
877 /* Recipient of SIGCHLD, wait4() reports: */
878 struct task_struct __rcu *parent;
879
1da177e4 880 /*
5eca1c10 881 * Children/sibling form the list of natural children:
1da177e4 882 */
5eca1c10
IM
883 struct list_head children;
884 struct list_head sibling;
885 struct task_struct *group_leader;
1da177e4 886
f470021a 887 /*
5eca1c10
IM
888 * 'ptraced' is the list of tasks this task is using ptrace() on.
889 *
f470021a 890 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 891 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 892 */
5eca1c10
IM
893 struct list_head ptraced;
894 struct list_head ptrace_entry;
f470021a 895
1da177e4 896 /* PID/PID hash table linkage. */
2c470475
EB
897 struct pid *thread_pid;
898 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
899 struct list_head thread_group;
900 struct list_head thread_node;
901
902 struct completion *vfork_done;
1da177e4 903
5eca1c10
IM
904 /* CLONE_CHILD_SETTID: */
905 int __user *set_child_tid;
1da177e4 906
5eca1c10
IM
907 /* CLONE_CHILD_CLEARTID: */
908 int __user *clear_child_tid;
909
3bfe6106
JA
910 /* PF_IO_WORKER */
911 void *pf_io_worker;
912
5eca1c10
IM
913 u64 utime;
914 u64 stime;
40565b5a 915#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
916 u64 utimescaled;
917 u64 stimescaled;
40565b5a 918#endif
5eca1c10
IM
919 u64 gtime;
920 struct prev_cputime prev_cputime;
6a61671b 921#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 922 struct vtime vtime;
d99ca3b9 923#endif
d027d45d
FW
924
925#ifdef CONFIG_NO_HZ_FULL
5eca1c10 926 atomic_t tick_dep_mask;
d027d45d 927#endif
5eca1c10
IM
928 /* Context switch counts: */
929 unsigned long nvcsw;
930 unsigned long nivcsw;
931
932 /* Monotonic time in nsecs: */
933 u64 start_time;
934
935 /* Boot based time in nsecs: */
cf25e24d 936 u64 start_boottime;
5eca1c10
IM
937
938 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
939 unsigned long min_flt;
940 unsigned long maj_flt;
1da177e4 941
2b69942f
TG
942 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
943 struct posix_cputimers posix_cputimers;
1da177e4 944
1fb497dd
TG
945#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
946 struct posix_cputimers_work posix_cputimers_work;
947#endif
948
5eca1c10
IM
949 /* Process credentials: */
950
951 /* Tracer's credentials at attach: */
952 const struct cred __rcu *ptracer_cred;
953
954 /* Objective and real subjective task credentials (COW): */
955 const struct cred __rcu *real_cred;
956
957 /* Effective (overridable) subjective task credentials (COW): */
958 const struct cred __rcu *cred;
959
7743c48e
DH
960#ifdef CONFIG_KEYS
961 /* Cached requested key. */
962 struct key *cached_requested_key;
963#endif
964
5eca1c10
IM
965 /*
966 * executable name, excluding path.
967 *
968 * - normally initialized setup_new_exec()
969 * - access it with [gs]et_task_comm()
970 * - lock it with task_lock()
971 */
972 char comm[TASK_COMM_LEN];
973
974 struct nameidata *nameidata;
975
3d5b6fcc 976#ifdef CONFIG_SYSVIPC
5eca1c10
IM
977 struct sysv_sem sysvsem;
978 struct sysv_shm sysvshm;
3d5b6fcc 979#endif
e162b39a 980#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 981 unsigned long last_switch_count;
a2e51445 982 unsigned long last_switch_time;
82a1fcb9 983#endif
5eca1c10
IM
984 /* Filesystem information: */
985 struct fs_struct *fs;
986
987 /* Open file information: */
988 struct files_struct *files;
989
0f212204
JA
990#ifdef CONFIG_IO_URING
991 struct io_uring_task *io_uring;
992#endif
993
5eca1c10
IM
994 /* Namespaces: */
995 struct nsproxy *nsproxy;
996
997 /* Signal handlers: */
998 struct signal_struct *signal;
913292c9 999 struct sighand_struct __rcu *sighand;
4bad58eb 1000 struct sigqueue *sigqueue_cache;
5eca1c10
IM
1001 sigset_t blocked;
1002 sigset_t real_blocked;
1003 /* Restored if set_restore_sigmask() was used: */
1004 sigset_t saved_sigmask;
1005 struct sigpending pending;
1006 unsigned long sas_ss_sp;
1007 size_t sas_ss_size;
1008 unsigned int sas_ss_flags;
1009
1010 struct callback_head *task_works;
1011
4b7d248b 1012#ifdef CONFIG_AUDIT
bfef93a5 1013#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
1014 struct audit_context *audit_context;
1015#endif
5eca1c10
IM
1016 kuid_t loginuid;
1017 unsigned int sessionid;
bfef93a5 1018#endif
5eca1c10 1019 struct seccomp seccomp;
1446e1df 1020 struct syscall_user_dispatch syscall_dispatch;
5eca1c10
IM
1021
1022 /* Thread group tracking: */
d1e7fd64
EB
1023 u64 parent_exec_id;
1024 u64 self_exec_id;
1da177e4 1025
5eca1c10
IM
1026 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1027 spinlock_t alloc_lock;
1da177e4 1028
b29739f9 1029 /* Protection of the PI data structures: */
5eca1c10 1030 raw_spinlock_t pi_lock;
b29739f9 1031
5eca1c10 1032 struct wake_q_node wake_q;
76751049 1033
23f78d4a 1034#ifdef CONFIG_RT_MUTEXES
5eca1c10 1035 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 1036 struct rb_root_cached pi_waiters;
e96a7705
XP
1037 /* Updated under owner's pi_lock and rq lock */
1038 struct task_struct *pi_top_task;
5eca1c10
IM
1039 /* Deadlock detection and priority inheritance handling: */
1040 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1041#endif
1042
408894ee 1043#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
1044 /* Mutex deadlock detection: */
1045 struct mutex_waiter *blocked_on;
408894ee 1046#endif
5eca1c10 1047
312364f3
DV
1048#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1049 int non_block_count;
1050#endif
1051
de30a2b3 1052#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c 1053 struct irqtrace_events irqtrace;
de8f5e4f 1054 unsigned int hardirq_threaded;
c86e9b98 1055 u64 hardirq_chain_key;
5eca1c10
IM
1056 int softirqs_enabled;
1057 int softirq_context;
40db1739 1058 int irq_config;
de30a2b3 1059#endif
728b478d
TG
1060#ifdef CONFIG_PREEMPT_RT
1061 int softirq_disable_cnt;
1062#endif
5eca1c10 1063
fbb9ce95 1064#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1065# define MAX_LOCK_DEPTH 48UL
1066 u64 curr_chain_key;
1067 int lockdep_depth;
1068 unsigned int lockdep_recursion;
1069 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1070#endif
5eca1c10 1071
5cf53f3c 1072#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
5eca1c10 1073 unsigned int in_ubsan;
c6d30853 1074#endif
408894ee 1075
5eca1c10
IM
1076 /* Journalling filesystem info: */
1077 void *journal_info;
1da177e4 1078
5eca1c10
IM
1079 /* Stacked block device info: */
1080 struct bio_list *bio_list;
d89d8796 1081
73c10101 1082#ifdef CONFIG_BLOCK
5eca1c10
IM
1083 /* Stack plugging: */
1084 struct blk_plug *plug;
73c10101
JA
1085#endif
1086
5eca1c10
IM
1087 /* VM state: */
1088 struct reclaim_state *reclaim_state;
1089
1090 struct backing_dev_info *backing_dev_info;
1da177e4 1091
5eca1c10 1092 struct io_context *io_context;
1da177e4 1093
5e1f0f09
MG
1094#ifdef CONFIG_COMPACTION
1095 struct capture_control *capture_control;
1096#endif
5eca1c10
IM
1097 /* Ptrace state: */
1098 unsigned long ptrace_message;
ae7795bc 1099 kernel_siginfo_t *last_siginfo;
1da177e4 1100
5eca1c10 1101 struct task_io_accounting ioac;
eb414681
JW
1102#ifdef CONFIG_PSI
1103 /* Pressure stall state */
1104 unsigned int psi_flags;
1105#endif
5eca1c10
IM
1106#ifdef CONFIG_TASK_XACCT
1107 /* Accumulated RSS usage: */
1108 u64 acct_rss_mem1;
1109 /* Accumulated virtual memory usage: */
1110 u64 acct_vm_mem1;
1111 /* stime + utime since last update: */
1112 u64 acct_timexpd;
1da177e4
LT
1113#endif
1114#ifdef CONFIG_CPUSETS
5eca1c10
IM
1115 /* Protected by ->alloc_lock: */
1116 nodemask_t mems_allowed;
3b03706f 1117 /* Sequence number to catch updates: */
b7505861 1118 seqcount_spinlock_t mems_allowed_seq;
5eca1c10
IM
1119 int cpuset_mem_spread_rotor;
1120 int cpuset_slab_spread_rotor;
1da177e4 1121#endif
ddbcc7e8 1122#ifdef CONFIG_CGROUPS
5eca1c10
IM
1123 /* Control Group info protected by css_set_lock: */
1124 struct css_set __rcu *cgroups;
1125 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1126 struct list_head cg_list;
ddbcc7e8 1127#endif
e6d42931 1128#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1129 u32 closid;
d6aaba61 1130 u32 rmid;
e02737d5 1131#endif
42b2dd0a 1132#ifdef CONFIG_FUTEX
5eca1c10 1133 struct robust_list_head __user *robust_list;
34f192c6
IM
1134#ifdef CONFIG_COMPAT
1135 struct compat_robust_list_head __user *compat_robust_list;
1136#endif
5eca1c10
IM
1137 struct list_head pi_state_list;
1138 struct futex_pi_state *pi_state_cache;
3f186d97 1139 struct mutex futex_exit_mutex;
3d4775df 1140 unsigned int futex_state;
c7aceaba 1141#endif
cdd6c482 1142#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1143 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1144 struct mutex perf_event_mutex;
1145 struct list_head perf_event_list;
a63eaf34 1146#endif
8f47b187 1147#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1148 unsigned long preempt_disable_ip;
8f47b187 1149#endif
c7aceaba 1150#ifdef CONFIG_NUMA
5eca1c10
IM
1151 /* Protected by alloc_lock: */
1152 struct mempolicy *mempolicy;
45816682 1153 short il_prev;
5eca1c10 1154 short pref_node_fork;
42b2dd0a 1155#endif
cbee9f88 1156#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1157 int numa_scan_seq;
1158 unsigned int numa_scan_period;
1159 unsigned int numa_scan_period_max;
1160 int numa_preferred_nid;
1161 unsigned long numa_migrate_retry;
1162 /* Migration stamp: */
1163 u64 node_stamp;
1164 u64 last_task_numa_placement;
1165 u64 last_sum_exec_runtime;
1166 struct callback_head numa_work;
1167
cb361d8c
JH
1168 /*
1169 * This pointer is only modified for current in syscall and
1170 * pagefault context (and for tasks being destroyed), so it can be read
1171 * from any of the following contexts:
1172 * - RCU read-side critical section
1173 * - current->numa_group from everywhere
1174 * - task's runqueue locked, task not running
1175 */
1176 struct numa_group __rcu *numa_group;
8c8a743c 1177
745d6147 1178 /*
44dba3d5
IM
1179 * numa_faults is an array split into four regions:
1180 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1181 * in this precise order.
1182 *
1183 * faults_memory: Exponential decaying average of faults on a per-node
1184 * basis. Scheduling placement decisions are made based on these
1185 * counts. The values remain static for the duration of a PTE scan.
1186 * faults_cpu: Track the nodes the process was running on when a NUMA
1187 * hinting fault was incurred.
1188 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1189 * during the current scan window. When the scan completes, the counts
1190 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1191 */
5eca1c10
IM
1192 unsigned long *numa_faults;
1193 unsigned long total_numa_faults;
745d6147 1194
04bb2f94
RR
1195 /*
1196 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1197 * scan window were remote/local or failed to migrate. The task scan
1198 * period is adapted based on the locality of the faults with different
1199 * weights depending on whether they were shared or private faults
04bb2f94 1200 */
5eca1c10 1201 unsigned long numa_faults_locality[3];
04bb2f94 1202
5eca1c10 1203 unsigned long numa_pages_migrated;
cbee9f88
PZ
1204#endif /* CONFIG_NUMA_BALANCING */
1205
d7822b1e
MD
1206#ifdef CONFIG_RSEQ
1207 struct rseq __user *rseq;
d7822b1e
MD
1208 u32 rseq_sig;
1209 /*
1210 * RmW on rseq_event_mask must be performed atomically
1211 * with respect to preemption.
1212 */
1213 unsigned long rseq_event_mask;
1214#endif
1215
5eca1c10 1216 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1217
3fbd7ee2
EB
1218 union {
1219 refcount_t rcu_users;
1220 struct rcu_head rcu;
1221 };
b92ce558 1222
5eca1c10
IM
1223 /* Cache last used pipe for splice(): */
1224 struct pipe_inode_info *splice_pipe;
5640f768 1225
5eca1c10 1226 struct page_frag task_frag;
5640f768 1227
47913d4e
IM
1228#ifdef CONFIG_TASK_DELAY_ACCT
1229 struct task_delay_info *delays;
f4f154fd 1230#endif
47913d4e 1231
f4f154fd 1232#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1233 int make_it_fail;
9049f2f6 1234 unsigned int fail_nth;
ca74e92b 1235#endif
9d823e8f 1236 /*
5eca1c10
IM
1237 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1238 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1239 */
5eca1c10
IM
1240 int nr_dirtied;
1241 int nr_dirtied_pause;
1242 /* Start of a write-and-pause period: */
1243 unsigned long dirty_paused_when;
9d823e8f 1244
9745512c 1245#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1246 int latency_record_count;
1247 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1248#endif
6976675d 1249 /*
5eca1c10 1250 * Time slack values; these are used to round up poll() and
6976675d
AV
1251 * select() etc timeout values. These are in nanoseconds.
1252 */
5eca1c10
IM
1253 u64 timer_slack_ns;
1254 u64 default_timer_slack_ns;
f8d570a4 1255
d73b4936 1256#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
5eca1c10 1257 unsigned int kasan_depth;
0b24becc 1258#endif
92c209ac 1259
dfd402a4
ME
1260#ifdef CONFIG_KCSAN
1261 struct kcsan_ctx kcsan_ctx;
92c209ac
ME
1262#ifdef CONFIG_TRACE_IRQFLAGS
1263 struct irqtrace_events kcsan_save_irqtrace;
1264#endif
dfd402a4 1265#endif
5eca1c10 1266
393824f6
PA
1267#if IS_ENABLED(CONFIG_KUNIT)
1268 struct kunit *kunit_test;
1269#endif
1270
fb52607a 1271#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1272 /* Index of current stored address in ret_stack: */
1273 int curr_ret_stack;
39eb456d 1274 int curr_ret_depth;
5eca1c10
IM
1275
1276 /* Stack of return addresses for return function tracing: */
1277 struct ftrace_ret_stack *ret_stack;
1278
1279 /* Timestamp for last schedule: */
1280 unsigned long long ftrace_timestamp;
1281
f201ae23
FW
1282 /*
1283 * Number of functions that haven't been traced
5eca1c10 1284 * because of depth overrun:
f201ae23 1285 */
5eca1c10
IM
1286 atomic_t trace_overrun;
1287
1288 /* Pause tracing: */
1289 atomic_t tracing_graph_pause;
f201ae23 1290#endif
5eca1c10 1291
ea4e2bc4 1292#ifdef CONFIG_TRACING
5eca1c10
IM
1293 /* State flags for use by tracers: */
1294 unsigned long trace;
1295
1296 /* Bitmask and counter of trace recursion: */
1297 unsigned long trace_recursion;
261842b7 1298#endif /* CONFIG_TRACING */
5eca1c10 1299
5c9a8750 1300#ifdef CONFIG_KCOV
eec028c9
AK
1301 /* See kernel/kcov.c for more details. */
1302
5eca1c10 1303 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1304 unsigned int kcov_mode;
5eca1c10
IM
1305
1306 /* Size of the kcov_area: */
1307 unsigned int kcov_size;
1308
1309 /* Buffer for coverage collection: */
1310 void *kcov_area;
1311
1312 /* KCOV descriptor wired with this task or NULL: */
1313 struct kcov *kcov;
eec028c9
AK
1314
1315 /* KCOV common handle for remote coverage collection: */
1316 u64 kcov_handle;
1317
1318 /* KCOV sequence number: */
1319 int kcov_sequence;
5ff3b30a
AK
1320
1321 /* Collect coverage from softirq context: */
1322 unsigned int kcov_softirq;
5c9a8750 1323#endif
5eca1c10 1324
6f185c29 1325#ifdef CONFIG_MEMCG
5eca1c10
IM
1326 struct mem_cgroup *memcg_in_oom;
1327 gfp_t memcg_oom_gfp_mask;
1328 int memcg_oom_order;
b23afb93 1329
5eca1c10
IM
1330 /* Number of pages to reclaim on returning to userland: */
1331 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1332
1333 /* Used by memcontrol for targeted memcg charge: */
1334 struct mem_cgroup *active_memcg;
569b846d 1335#endif
5eca1c10 1336
d09d8df3
JB
1337#ifdef CONFIG_BLK_CGROUP
1338 struct request_queue *throttle_queue;
1339#endif
1340
0326f5a9 1341#ifdef CONFIG_UPROBES
5eca1c10 1342 struct uprobe_task *utask;
0326f5a9 1343#endif
cafe5635 1344#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1345 unsigned int sequential_io;
1346 unsigned int sequential_io_avg;
cafe5635 1347#endif
5fbda3ec 1348 struct kmap_ctrl kmap_ctrl;
8eb23b9f 1349#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1350 unsigned long task_state_change;
8eb23b9f 1351#endif
5eca1c10 1352 int pagefault_disabled;
03049269 1353#ifdef CONFIG_MMU
5eca1c10 1354 struct task_struct *oom_reaper_list;
03049269 1355#endif
ba14a194 1356#ifdef CONFIG_VMAP_STACK
5eca1c10 1357 struct vm_struct *stack_vm_area;
ba14a194 1358#endif
68f24b08 1359#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1360 /* A live task holds one reference: */
f0b89d39 1361 refcount_t stack_refcount;
d83a7cb3
JP
1362#endif
1363#ifdef CONFIG_LIVEPATCH
1364 int patch_state;
0302e28d 1365#endif
e4e55b47
TH
1366#ifdef CONFIG_SECURITY
1367 /* Used by LSM modules for access restriction: */
1368 void *security;
68f24b08 1369#endif
a10787e6
SL
1370#ifdef CONFIG_BPF_SYSCALL
1371 /* Used by BPF task local storage */
1372 struct bpf_local_storage __rcu *bpf_storage;
1373#endif
29e48ce8 1374
afaef01c
AP
1375#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1376 unsigned long lowest_stack;
c8d12627 1377 unsigned long prev_lowest_stack;
afaef01c
AP
1378#endif
1379
5567d11c 1380#ifdef CONFIG_X86_MCE
c0ab7ffc
TL
1381 void __user *mce_vaddr;
1382 __u64 mce_kflags;
5567d11c 1383 u64 mce_addr;
17fae129
TL
1384 __u64 mce_ripv : 1,
1385 mce_whole_page : 1,
1386 __mce_reserved : 62;
5567d11c
PZ
1387 struct callback_head mce_kill_me;
1388#endif
1389
d741bf41
PZ
1390#ifdef CONFIG_KRETPROBES
1391 struct llist_head kretprobe_instances;
1392#endif
1393
29e48ce8
KC
1394 /*
1395 * New fields for task_struct should be added above here, so that
1396 * they are included in the randomized portion of task_struct.
1397 */
1398 randomized_struct_fields_end
1399
5eca1c10
IM
1400 /* CPU-specific state of this task: */
1401 struct thread_struct thread;
1402
1403 /*
1404 * WARNING: on x86, 'thread_struct' contains a variable-sized
1405 * structure. It *MUST* be at the end of 'task_struct'.
1406 *
1407 * Do not put anything below here!
1408 */
1da177e4
LT
1409};
1410
e868171a 1411static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1412{
2c470475 1413 return task->thread_pid;
22c935f4
EB
1414}
1415
7af57294
PE
1416/*
1417 * the helpers to get the task's different pids as they are seen
1418 * from various namespaces
1419 *
1420 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1421 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1422 * current.
7af57294
PE
1423 * task_xid_nr_ns() : id seen from the ns specified;
1424 *
7af57294
PE
1425 * see also pid_nr() etc in include/linux/pid.h
1426 */
5eca1c10 1427pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1428
e868171a 1429static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1430{
1431 return tsk->pid;
1432}
1433
5eca1c10 1434static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1435{
1436 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1437}
7af57294
PE
1438
1439static inline pid_t task_pid_vnr(struct task_struct *tsk)
1440{
52ee2dfd 1441 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1442}
1443
1444
e868171a 1445static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1446{
1447 return tsk->tgid;
1448}
1449
5eca1c10
IM
1450/**
1451 * pid_alive - check that a task structure is not stale
1452 * @p: Task structure to be checked.
1453 *
1454 * Test if a process is not yet dead (at most zombie state)
1455 * If pid_alive fails, then pointers within the task structure
1456 * can be stale and must not be dereferenced.
1457 *
1458 * Return: 1 if the process is alive. 0 otherwise.
1459 */
1460static inline int pid_alive(const struct task_struct *p)
1461{
2c470475 1462 return p->thread_pid != NULL;
5eca1c10 1463}
7af57294 1464
5eca1c10 1465static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1466{
52ee2dfd 1467 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1468}
1469
7af57294
PE
1470static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1471{
52ee2dfd 1472 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1473}
1474
1475
5eca1c10 1476static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1477{
52ee2dfd 1478 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1479}
1480
7af57294
PE
1481static inline pid_t task_session_vnr(struct task_struct *tsk)
1482{
52ee2dfd 1483 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1484}
1485
dd1c1f2f
ON
1486static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1487{
6883f81a 1488 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1489}
1490
1491static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1492{
6883f81a 1493 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1494}
1495
1496static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1497{
1498 pid_t pid = 0;
1499
1500 rcu_read_lock();
1501 if (pid_alive(tsk))
1502 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1503 rcu_read_unlock();
1504
1505 return pid;
1506}
1507
1508static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1509{
1510 return task_ppid_nr_ns(tsk, &init_pid_ns);
1511}
1512
5eca1c10 1513/* Obsolete, do not use: */
1b0f7ffd
ON
1514static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1515{
1516 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1517}
7af57294 1518
06eb6184
PZ
1519#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1520#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1521
1d48b080 1522static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1523{
1593baab
PZ
1524 unsigned int tsk_state = READ_ONCE(tsk->state);
1525 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1526
06eb6184
PZ
1527 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1528
06eb6184
PZ
1529 if (tsk_state == TASK_IDLE)
1530 state = TASK_REPORT_IDLE;
1531
1593baab
PZ
1532 return fls(state);
1533}
1534
1d48b080 1535static inline char task_index_to_char(unsigned int state)
1593baab 1536{
8ef9925b 1537 static const char state_char[] = "RSDTtXZPI";
1593baab 1538
06eb6184 1539 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1540
1593baab
PZ
1541 return state_char[state];
1542}
1543
1544static inline char task_state_to_char(struct task_struct *tsk)
1545{
1d48b080 1546 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1547}
1548
f400e198 1549/**
570f5241
SS
1550 * is_global_init - check if a task structure is init. Since init
1551 * is free to have sub-threads we need to check tgid.
3260259f
HK
1552 * @tsk: Task structure to be checked.
1553 *
1554 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1555 *
1556 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1557 */
e868171a 1558static inline int is_global_init(struct task_struct *tsk)
b461cc03 1559{
570f5241 1560 return task_tgid_nr(tsk) == 1;
b461cc03 1561}
b460cbc5 1562
9ec52099
CLG
1563extern struct pid *cad_pid;
1564
1da177e4
LT
1565/*
1566 * Per process flags
1567 */
01ccf592 1568#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
5eca1c10
IM
1569#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1570#define PF_EXITING 0x00000004 /* Getting shut down */
01ccf592 1571#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
5eca1c10
IM
1572#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1573#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1574#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1575#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1576#define PF_DUMPCORE 0x00000200 /* Dumped core */
1577#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1578#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1579#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1580#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1581#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1582#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1583#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1584#define PF_KSWAPD 0x00020000 /* I am kswapd */
1585#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1586#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1587#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1588 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1589#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1590#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1591#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
3bd37062 1592#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1593#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1a08ae36 1594#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
5eca1c10
IM
1595#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1596#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1597
1598/*
1599 * Only the _current_ task can read/write to tsk->flags, but other
1600 * tasks can access tsk->flags in readonly mode for example
1601 * with tsk_used_math (like during threaded core dumping).
1602 * There is however an exception to this rule during ptrace
1603 * or during fork: the ptracer task is allowed to write to the
1604 * child->flags of its traced child (same goes for fork, the parent
1605 * can write to the child->flags), because we're guaranteed the
1606 * child is not running and in turn not changing child->flags
1607 * at the same time the parent does it.
1608 */
5eca1c10
IM
1609#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1610#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1611#define clear_used_math() clear_stopped_child_used_math(current)
1612#define set_used_math() set_stopped_child_used_math(current)
1613
1da177e4
LT
1614#define conditional_stopped_child_used_math(condition, child) \
1615 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1616
1617#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1618
1da177e4
LT
1619#define copy_to_stopped_child_used_math(child) \
1620 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1621
1da177e4 1622/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1623#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1624#define used_math() tsk_used_math(current)
1da177e4 1625
62ec05dd
TG
1626static inline bool is_percpu_thread(void)
1627{
1628#ifdef CONFIG_SMP
1629 return (current->flags & PF_NO_SETAFFINITY) &&
1630 (current->nr_cpus_allowed == 1);
1631#else
1632 return true;
1633#endif
1634}
1635
1d4457f9 1636/* Per-process atomic flags. */
5eca1c10
IM
1637#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1638#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1639#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1640#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1641#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1642#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1643#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1644#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1645
e0e5070b
ZL
1646#define TASK_PFA_TEST(name, func) \
1647 static inline bool task_##func(struct task_struct *p) \
1648 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1649
e0e5070b
ZL
1650#define TASK_PFA_SET(name, func) \
1651 static inline void task_set_##func(struct task_struct *p) \
1652 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1653
e0e5070b
ZL
1654#define TASK_PFA_CLEAR(name, func) \
1655 static inline void task_clear_##func(struct task_struct *p) \
1656 { clear_bit(PFA_##name, &p->atomic_flags); }
1657
1658TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1659TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1660
2ad654bc
ZL
1661TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1662TASK_PFA_SET(SPREAD_PAGE, spread_page)
1663TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1664
1665TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1666TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1667TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1668
356e4bff
TG
1669TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1670TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1671TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1672
71368af9
WL
1673TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1674TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1675TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1676
356e4bff
TG
1677TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1678TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1679
9137bb27
TG
1680TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1681TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1682TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1683
1684TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1685TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1686
5eca1c10 1687static inline void
717a94b5 1688current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1689{
717a94b5
N
1690 current->flags &= ~flags;
1691 current->flags |= orig_flags & flags;
907aed48
MG
1692}
1693
5eca1c10
IM
1694extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1695extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1696#ifdef CONFIG_SMP
5eca1c10
IM
1697extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1698extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1699#else
5eca1c10 1700static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1701{
1702}
5eca1c10 1703static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1704{
96f874e2 1705 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1706 return -EINVAL;
1707 return 0;
1708}
1709#endif
e0ad9556 1710
fa93384f 1711extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1712extern void set_user_nice(struct task_struct *p, long nice);
1713extern int task_prio(const struct task_struct *p);
5eca1c10 1714
d0ea0268
DY
1715/**
1716 * task_nice - return the nice value of a given task.
1717 * @p: the task in question.
1718 *
1719 * Return: The nice value [ -20 ... 0 ... 19 ].
1720 */
1721static inline int task_nice(const struct task_struct *p)
1722{
1723 return PRIO_TO_NICE((p)->static_prio);
1724}
5eca1c10 1725
36c8b586
IM
1726extern int can_nice(const struct task_struct *p, const int nice);
1727extern int task_curr(const struct task_struct *p);
1da177e4 1728extern int idle_cpu(int cpu);
943d355d 1729extern int available_idle_cpu(int cpu);
5eca1c10
IM
1730extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1731extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
8b700983
PZ
1732extern void sched_set_fifo(struct task_struct *p);
1733extern void sched_set_fifo_low(struct task_struct *p);
1734extern void sched_set_normal(struct task_struct *p, int nice);
5eca1c10 1735extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1736extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1737extern struct task_struct *idle_task(int cpu);
5eca1c10 1738
c4f30608
PM
1739/**
1740 * is_idle_task - is the specified task an idle task?
fa757281 1741 * @p: the task in question.
e69f6186
YB
1742 *
1743 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1744 */
c94a88f3 1745static __always_inline bool is_idle_task(const struct task_struct *p)
c4f30608 1746{
c1de45ca 1747 return !!(p->flags & PF_IDLE);
c4f30608 1748}
5eca1c10 1749
36c8b586 1750extern struct task_struct *curr_task(int cpu);
a458ae2e 1751extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1752
1753void yield(void);
1754
1da177e4 1755union thread_union {
0500871f
DH
1756#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1757 struct task_struct task;
1758#endif
c65eacbe 1759#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1760 struct thread_info thread_info;
c65eacbe 1761#endif
1da177e4
LT
1762 unsigned long stack[THREAD_SIZE/sizeof(long)];
1763};
1764
0500871f
DH
1765#ifndef CONFIG_THREAD_INFO_IN_TASK
1766extern struct thread_info init_thread_info;
1767#endif
1768
1769extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1770
f3ac6067
IM
1771#ifdef CONFIG_THREAD_INFO_IN_TASK
1772static inline struct thread_info *task_thread_info(struct task_struct *task)
1773{
1774 return &task->thread_info;
1775}
1776#elif !defined(__HAVE_THREAD_FUNCTIONS)
1777# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1778#endif
1779
198fe21b
PE
1780/*
1781 * find a task by one of its numerical ids
1782 *
198fe21b
PE
1783 * find_task_by_pid_ns():
1784 * finds a task by its pid in the specified namespace
228ebcbe
PE
1785 * find_task_by_vpid():
1786 * finds a task by its virtual pid
198fe21b 1787 *
e49859e7 1788 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1789 */
1790
228ebcbe 1791extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1792extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1793
2ee08260
MR
1794/*
1795 * find a task by its virtual pid and get the task struct
1796 */
1797extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1798
b3c97528
HH
1799extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1800extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1801extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1802
1da177e4 1803#ifdef CONFIG_SMP
5eca1c10 1804extern void kick_process(struct task_struct *tsk);
1da177e4 1805#else
5eca1c10 1806static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1807#endif
1da177e4 1808
82b89778 1809extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1810
82b89778
AH
1811static inline void set_task_comm(struct task_struct *tsk, const char *from)
1812{
1813 __set_task_comm(tsk, from, false);
1814}
5eca1c10 1815
3756f640
AB
1816extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1817#define get_task_comm(buf, tsk) ({ \
1818 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1819 __get_task_comm(buf, sizeof(buf), tsk); \
1820})
1da177e4
LT
1821
1822#ifdef CONFIG_SMP
2a0a24eb
TG
1823static __always_inline void scheduler_ipi(void)
1824{
1825 /*
1826 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1827 * TIF_NEED_RESCHED remotely (for the first time) will also send
1828 * this IPI.
1829 */
1830 preempt_fold_need_resched();
1831}
85ba2d86 1832extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1833#else
184748cc 1834static inline void scheduler_ipi(void) { }
5eca1c10 1835static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1836{
1837 return 1;
1838}
1da177e4
LT
1839#endif
1840
5eca1c10
IM
1841/*
1842 * Set thread flags in other task's structures.
1843 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1844 */
1845static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1846{
a1261f54 1847 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1848}
1849
1850static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1851{
a1261f54 1852 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1853}
1854
93ee37c2
DM
1855static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1856 bool value)
1857{
1858 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1859}
1860
1da177e4
LT
1861static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1862{
a1261f54 1863 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1864}
1865
1866static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1867{
a1261f54 1868 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1869}
1870
1871static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1872{
a1261f54 1873 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1874}
1875
1876static inline void set_tsk_need_resched(struct task_struct *tsk)
1877{
1878 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1879}
1880
1881static inline void clear_tsk_need_resched(struct task_struct *tsk)
1882{
1883 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1884}
1885
8ae121ac
GH
1886static inline int test_tsk_need_resched(struct task_struct *tsk)
1887{
1888 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1889}
1890
1da177e4
LT
1891/*
1892 * cond_resched() and cond_resched_lock(): latency reduction via
1893 * explicit rescheduling in places that are safe. The return
1894 * value indicates whether a reschedule was done in fact.
1895 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1896 */
b965f1dd
PZI
1897#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1898extern int __cond_resched(void);
1899
1900#ifdef CONFIG_PREEMPT_DYNAMIC
1901
1902DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1903
1904static __always_inline int _cond_resched(void)
1905{
ef72661e 1906 return static_call_mod(cond_resched)();
b965f1dd
PZI
1907}
1908
35a773a0 1909#else
b965f1dd
PZI
1910
1911static inline int _cond_resched(void)
1912{
1913 return __cond_resched();
1914}
1915
1916#endif /* CONFIG_PREEMPT_DYNAMIC */
1917
1918#else
1919
35a773a0 1920static inline int _cond_resched(void) { return 0; }
b965f1dd
PZI
1921
1922#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
6f80bd98 1923
613afbf8 1924#define cond_resched() ({ \
3427445a 1925 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1926 _cond_resched(); \
1927})
6f80bd98 1928
613afbf8 1929extern int __cond_resched_lock(spinlock_t *lock);
f3d4b4b1
BG
1930extern int __cond_resched_rwlock_read(rwlock_t *lock);
1931extern int __cond_resched_rwlock_write(rwlock_t *lock);
613afbf8
FW
1932
1933#define cond_resched_lock(lock) ({ \
3427445a 1934 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1935 __cond_resched_lock(lock); \
1936})
1937
f3d4b4b1
BG
1938#define cond_resched_rwlock_read(lock) ({ \
1939 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1940 __cond_resched_rwlock_read(lock); \
1941})
1942
1943#define cond_resched_rwlock_write(lock) ({ \
1944 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1945 __cond_resched_rwlock_write(lock); \
1946})
1947
f6f3c437
SH
1948static inline void cond_resched_rcu(void)
1949{
1950#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1951 rcu_read_unlock();
1952 cond_resched();
1953 rcu_read_lock();
1954#endif
1955}
1956
1da177e4
LT
1957/*
1958 * Does a critical section need to be broken due to another
c1a280b6 1959 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 1960 * but a general need for low latency)
1da177e4 1961 */
95c354fe 1962static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1963{
c1a280b6 1964#ifdef CONFIG_PREEMPTION
95c354fe
NP
1965 return spin_is_contended(lock);
1966#else
1da177e4 1967 return 0;
95c354fe 1968#endif
1da177e4
LT
1969}
1970
a09a689a
BG
1971/*
1972 * Check if a rwlock is contended.
1973 * Returns non-zero if there is another task waiting on the rwlock.
1974 * Returns zero if the lock is not contended or the system / underlying
1975 * rwlock implementation does not support contention detection.
1976 * Technically does not depend on CONFIG_PREEMPTION, but a general need
1977 * for low latency.
1978 */
1979static inline int rwlock_needbreak(rwlock_t *lock)
1980{
1981#ifdef CONFIG_PREEMPTION
1982 return rwlock_is_contended(lock);
1983#else
1984 return 0;
1985#endif
1986}
1987
75f93fed
PZ
1988static __always_inline bool need_resched(void)
1989{
1990 return unlikely(tif_need_resched());
1991}
1992
1da177e4
LT
1993/*
1994 * Wrappers for p->thread_info->cpu access. No-op on UP.
1995 */
1996#ifdef CONFIG_SMP
1997
1998static inline unsigned int task_cpu(const struct task_struct *p)
1999{
c65eacbe 2000#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 2001 return READ_ONCE(p->cpu);
c65eacbe 2002#else
c546951d 2003 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 2004#endif
1da177e4
LT
2005}
2006
c65cc870 2007extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
2008
2009#else
2010
2011static inline unsigned int task_cpu(const struct task_struct *p)
2012{
2013 return 0;
2014}
2015
2016static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2017{
2018}
2019
2020#endif /* CONFIG_SMP */
2021
d9345c65
PX
2022/*
2023 * In order to reduce various lock holder preemption latencies provide an
2024 * interface to see if a vCPU is currently running or not.
2025 *
2026 * This allows us to terminate optimistic spin loops and block, analogous to
2027 * the native optimistic spin heuristic of testing if the lock owner task is
2028 * running or not.
2029 */
2030#ifndef vcpu_is_preempted
42fd8baa
QC
2031static inline bool vcpu_is_preempted(int cpu)
2032{
2033 return false;
2034}
d9345c65
PX
2035#endif
2036
96f874e2
RR
2037extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2038extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 2039
82455257
DH
2040#ifndef TASK_SIZE_OF
2041#define TASK_SIZE_OF(tsk) TASK_SIZE
2042#endif
2043
a5418be9
VK
2044#ifdef CONFIG_SMP
2045/* Returns effective CPU energy utilization, as seen by the scheduler */
2046unsigned long sched_cpu_util(int cpu, unsigned long max);
2047#endif /* CONFIG_SMP */
2048
d7822b1e
MD
2049#ifdef CONFIG_RSEQ
2050
2051/*
2052 * Map the event mask on the user-space ABI enum rseq_cs_flags
2053 * for direct mask checks.
2054 */
2055enum rseq_event_mask_bits {
2056 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2057 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2058 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2059};
2060
2061enum rseq_event_mask {
2062 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2063 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2064 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2065};
2066
2067static inline void rseq_set_notify_resume(struct task_struct *t)
2068{
2069 if (t->rseq)
2070 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2071}
2072
784e0300 2073void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 2074
784e0300
WD
2075static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2076 struct pt_regs *regs)
d7822b1e
MD
2077{
2078 if (current->rseq)
784e0300 2079 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2080}
2081
784e0300
WD
2082static inline void rseq_signal_deliver(struct ksignal *ksig,
2083 struct pt_regs *regs)
d7822b1e
MD
2084{
2085 preempt_disable();
2086 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2087 preempt_enable();
784e0300 2088 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
2089}
2090
2091/* rseq_preempt() requires preemption to be disabled. */
2092static inline void rseq_preempt(struct task_struct *t)
2093{
2094 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2095 rseq_set_notify_resume(t);
2096}
2097
2098/* rseq_migrate() requires preemption to be disabled. */
2099static inline void rseq_migrate(struct task_struct *t)
2100{
2101 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2102 rseq_set_notify_resume(t);
2103}
2104
2105/*
2106 * If parent process has a registered restartable sequences area, the
463f550f 2107 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
2108 */
2109static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2110{
463f550f 2111 if (clone_flags & CLONE_VM) {
d7822b1e 2112 t->rseq = NULL;
d7822b1e
MD
2113 t->rseq_sig = 0;
2114 t->rseq_event_mask = 0;
2115 } else {
2116 t->rseq = current->rseq;
d7822b1e
MD
2117 t->rseq_sig = current->rseq_sig;
2118 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
2119 }
2120}
2121
2122static inline void rseq_execve(struct task_struct *t)
2123{
2124 t->rseq = NULL;
d7822b1e
MD
2125 t->rseq_sig = 0;
2126 t->rseq_event_mask = 0;
2127}
2128
2129#else
2130
2131static inline void rseq_set_notify_resume(struct task_struct *t)
2132{
2133}
784e0300
WD
2134static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2135 struct pt_regs *regs)
d7822b1e
MD
2136{
2137}
784e0300
WD
2138static inline void rseq_signal_deliver(struct ksignal *ksig,
2139 struct pt_regs *regs)
d7822b1e
MD
2140{
2141}
2142static inline void rseq_preempt(struct task_struct *t)
2143{
2144}
2145static inline void rseq_migrate(struct task_struct *t)
2146{
2147}
2148static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2149{
2150}
2151static inline void rseq_execve(struct task_struct *t)
2152{
2153}
2154
2155#endif
2156
2157#ifdef CONFIG_DEBUG_RSEQ
2158
2159void rseq_syscall(struct pt_regs *regs);
2160
2161#else
2162
2163static inline void rseq_syscall(struct pt_regs *regs)
2164{
2165}
2166
2167#endif
2168
3c93a0c0
QY
2169const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2170char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2171int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2172
2173const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2174const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2175const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2176
2177int sched_trace_rq_cpu(struct rq *rq);
51cf18c9 2178int sched_trace_rq_cpu_capacity(struct rq *rq);
9d246053 2179int sched_trace_rq_nr_running(struct rq *rq);
3c93a0c0
QY
2180
2181const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2182
1da177e4 2183#endif