]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/sched.h
iommu/amd: Remove PD_DMA_OPS_MASK
[mirror_ubuntu-jammy-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10
IM
29#include <linux/signal_types.h>
30#include <linux/mm_types_task.h>
31#include <linux/task_io_accounting.h>
2b69942f 32#include <linux/posix-timers.h>
d7822b1e 33#include <linux/rseq.h>
a3b6714e 34
5eca1c10 35/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 36struct audit_context;
c7af7877 37struct backing_dev_info;
bddd87c7 38struct bio_list;
73c10101 39struct blk_plug;
3c93a0c0 40struct capture_control;
c7af7877 41struct cfs_rq;
c7af7877
IM
42struct fs_struct;
43struct futex_pi_state;
44struct io_context;
45struct mempolicy;
89076bc3 46struct nameidata;
c7af7877
IM
47struct nsproxy;
48struct perf_event_context;
49struct pid_namespace;
50struct pipe_inode_info;
51struct rcu_node;
52struct reclaim_state;
53struct robust_list_head;
3c93a0c0
QY
54struct root_domain;
55struct rq;
c7af7877
IM
56struct sched_attr;
57struct sched_param;
43ae34cb 58struct seq_file;
c7af7877
IM
59struct sighand_struct;
60struct signal_struct;
61struct task_delay_info;
4cf86d77 62struct task_group;
1da177e4 63
4a8342d2
LT
64/*
65 * Task state bitmask. NOTE! These bits are also
66 * encoded in fs/proc/array.c: get_task_state().
67 *
68 * We have two separate sets of flags: task->state
69 * is about runnability, while task->exit_state are
70 * about the task exiting. Confusing, but this way
71 * modifying one set can't modify the other one by
72 * mistake.
73 */
5eca1c10
IM
74
75/* Used in tsk->state: */
92c4bc9f
PZ
76#define TASK_RUNNING 0x0000
77#define TASK_INTERRUPTIBLE 0x0001
78#define TASK_UNINTERRUPTIBLE 0x0002
79#define __TASK_STOPPED 0x0004
80#define __TASK_TRACED 0x0008
5eca1c10 81/* Used in tsk->exit_state: */
92c4bc9f
PZ
82#define EXIT_DEAD 0x0010
83#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
84#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
85/* Used in tsk->state again: */
8ef9925b
PZ
86#define TASK_PARKED 0x0040
87#define TASK_DEAD 0x0080
88#define TASK_WAKEKILL 0x0100
89#define TASK_WAKING 0x0200
92c4bc9f
PZ
90#define TASK_NOLOAD 0x0400
91#define TASK_NEW 0x0800
92#define TASK_STATE_MAX 0x1000
5eca1c10 93
5eca1c10
IM
94/* Convenience macros for the sake of set_current_state: */
95#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
96#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
97#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
98
99#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
100
101/* Convenience macros for the sake of wake_up(): */
102#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
103
104/* get_task_state(): */
105#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
108 TASK_PARKED)
5eca1c10
IM
109
110#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
111
112#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
113
114#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
115
116#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
117 (task->flags & PF_FROZEN) == 0 && \
118 (task->state & TASK_NOLOAD) == 0)
1da177e4 119
8eb23b9f
PZ
120#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
121
b5bf9a90
PZ
122/*
123 * Special states are those that do not use the normal wait-loop pattern. See
124 * the comment with set_special_state().
125 */
126#define is_special_task_state(state) \
1cef1150 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 128
8eb23b9f
PZ
129#define __set_current_state(state_value) \
130 do { \
b5bf9a90 131 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
132 current->task_state_change = _THIS_IP_; \
133 current->state = (state_value); \
134 } while (0)
b5bf9a90 135
8eb23b9f
PZ
136#define set_current_state(state_value) \
137 do { \
b5bf9a90 138 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 139 current->task_state_change = _THIS_IP_; \
a2250238 140 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
141 } while (0)
142
b5bf9a90
PZ
143#define set_special_state(state_value) \
144 do { \
145 unsigned long flags; /* may shadow */ \
146 WARN_ON_ONCE(!is_special_task_state(state_value)); \
147 raw_spin_lock_irqsave(&current->pi_lock, flags); \
148 current->task_state_change = _THIS_IP_; \
149 current->state = (state_value); \
150 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
151 } while (0)
8eb23b9f 152#else
498d0c57
AM
153/*
154 * set_current_state() includes a barrier so that the write of current->state
155 * is correctly serialised wrt the caller's subsequent test of whether to
156 * actually sleep:
157 *
a2250238 158 * for (;;) {
498d0c57 159 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
160 * if (!need_sleep)
161 * break;
162 *
163 * schedule();
164 * }
165 * __set_current_state(TASK_RUNNING);
166 *
167 * If the caller does not need such serialisation (because, for instance, the
168 * condition test and condition change and wakeup are under the same lock) then
169 * use __set_current_state().
170 *
171 * The above is typically ordered against the wakeup, which does:
172 *
b5bf9a90
PZ
173 * need_sleep = false;
174 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 175 *
7696f991
AP
176 * where wake_up_state() executes a full memory barrier before accessing the
177 * task state.
a2250238
PZ
178 *
179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 182 *
b5bf9a90 183 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
185 * a problem either because that will result in one extra go around the loop
186 * and our @cond test will save the day.
498d0c57 187 *
a2250238 188 * Also see the comments of try_to_wake_up().
498d0c57 189 */
b5bf9a90
PZ
190#define __set_current_state(state_value) \
191 current->state = (state_value)
192
193#define set_current_state(state_value) \
194 smp_store_mb(current->state, (state_value))
195
196/*
197 * set_special_state() should be used for those states when the blocking task
198 * can not use the regular condition based wait-loop. In that case we must
199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
200 * will not collide with our state change.
201 */
202#define set_special_state(state_value) \
203 do { \
204 unsigned long flags; /* may shadow */ \
205 raw_spin_lock_irqsave(&current->pi_lock, flags); \
206 current->state = (state_value); \
207 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
208 } while (0)
209
8eb23b9f
PZ
210#endif
211
5eca1c10
IM
212/* Task command name length: */
213#define TASK_COMM_LEN 16
1da177e4 214
1da177e4
LT
215extern void scheduler_tick(void);
216
5eca1c10
IM
217#define MAX_SCHEDULE_TIMEOUT LONG_MAX
218
219extern long schedule_timeout(long timeout);
220extern long schedule_timeout_interruptible(long timeout);
221extern long schedule_timeout_killable(long timeout);
222extern long schedule_timeout_uninterruptible(long timeout);
223extern long schedule_timeout_idle(long timeout);
1da177e4 224asmlinkage void schedule(void);
c5491ea7 225extern void schedule_preempt_disabled(void);
19c95f26 226asmlinkage void preempt_schedule_irq(void);
1da177e4 227
10ab5643
TH
228extern int __must_check io_schedule_prepare(void);
229extern void io_schedule_finish(int token);
9cff8ade 230extern long io_schedule_timeout(long timeout);
10ab5643 231extern void io_schedule(void);
9cff8ade 232
d37f761d 233/**
0ba42a59 234 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
235 * @utime: time spent in user mode
236 * @stime: time spent in system mode
9d7fb042 237 * @lock: protects the above two fields
d37f761d 238 *
9d7fb042
PZ
239 * Stores previous user/system time values such that we can guarantee
240 * monotonicity.
d37f761d 241 */
9d7fb042
PZ
242struct prev_cputime {
243#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
244 u64 utime;
245 u64 stime;
246 raw_spinlock_t lock;
9d7fb042 247#endif
d37f761d
FW
248};
249
bac5b6b6
FW
250enum vtime_state {
251 /* Task is sleeping or running in a CPU with VTIME inactive: */
252 VTIME_INACTIVE = 0,
14faf6fc
FW
253 /* Task is idle */
254 VTIME_IDLE,
bac5b6b6
FW
255 /* Task runs in kernelspace in a CPU with VTIME active: */
256 VTIME_SYS,
14faf6fc
FW
257 /* Task runs in userspace in a CPU with VTIME active: */
258 VTIME_USER,
e6d5bf3e
FW
259 /* Task runs as guests in a CPU with VTIME active: */
260 VTIME_GUEST,
bac5b6b6
FW
261};
262
263struct vtime {
264 seqcount_t seqcount;
265 unsigned long long starttime;
266 enum vtime_state state;
802f4a82 267 unsigned int cpu;
2a42eb95
WL
268 u64 utime;
269 u64 stime;
270 u64 gtime;
bac5b6b6
FW
271};
272
69842cba
PB
273/*
274 * Utilization clamp constraints.
275 * @UCLAMP_MIN: Minimum utilization
276 * @UCLAMP_MAX: Maximum utilization
277 * @UCLAMP_CNT: Utilization clamp constraints count
278 */
279enum uclamp_id {
280 UCLAMP_MIN = 0,
281 UCLAMP_MAX,
282 UCLAMP_CNT
283};
284
f9a25f77
MP
285#ifdef CONFIG_SMP
286extern struct root_domain def_root_domain;
287extern struct mutex sched_domains_mutex;
288#endif
289
1da177e4 290struct sched_info {
7f5f8e8d 291#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
292 /* Cumulative counters: */
293
294 /* # of times we have run on this CPU: */
295 unsigned long pcount;
296
297 /* Time spent waiting on a runqueue: */
298 unsigned long long run_delay;
299
300 /* Timestamps: */
301
302 /* When did we last run on a CPU? */
303 unsigned long long last_arrival;
304
305 /* When were we last queued to run? */
306 unsigned long long last_queued;
1da177e4 307
f6db8347 308#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 309};
1da177e4 310
6ecdd749
YD
311/*
312 * Integer metrics need fixed point arithmetic, e.g., sched/fair
313 * has a few: load, load_avg, util_avg, freq, and capacity.
314 *
315 * We define a basic fixed point arithmetic range, and then formalize
316 * all these metrics based on that basic range.
317 */
5eca1c10
IM
318# define SCHED_FIXEDPOINT_SHIFT 10
319# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 320
69842cba
PB
321/* Increase resolution of cpu_capacity calculations */
322# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
323# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
324
20b8a59f 325struct load_weight {
5eca1c10
IM
326 unsigned long weight;
327 u32 inv_weight;
20b8a59f
IM
328};
329
7f65ea42
PB
330/**
331 * struct util_est - Estimation utilization of FAIR tasks
332 * @enqueued: instantaneous estimated utilization of a task/cpu
333 * @ewma: the Exponential Weighted Moving Average (EWMA)
334 * utilization of a task
335 *
336 * Support data structure to track an Exponential Weighted Moving Average
337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
338 * average each time a task completes an activation. Sample's weight is chosen
339 * so that the EWMA will be relatively insensitive to transient changes to the
340 * task's workload.
341 *
342 * The enqueued attribute has a slightly different meaning for tasks and cpus:
343 * - task: the task's util_avg at last task dequeue time
344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
345 * Thus, the util_est.enqueued of a task represents the contribution on the
346 * estimated utilization of the CPU where that task is currently enqueued.
347 *
348 * Only for tasks we track a moving average of the past instantaneous
349 * estimated utilization. This allows to absorb sporadic drops in utilization
350 * of an otherwise almost periodic task.
351 */
352struct util_est {
353 unsigned int enqueued;
354 unsigned int ewma;
355#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 356} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 357
9d89c257 358/*
9f683953 359 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 360 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
361 *
362 * [load_avg definition]
363 *
364 * load_avg = runnable% * scale_load_down(load)
365 *
9f683953
VG
366 * [runnable_avg definition]
367 *
368 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 369 *
7b595334
YD
370 * [util_avg definition]
371 *
372 * util_avg = running% * SCHED_CAPACITY_SCALE
373 *
9f683953
VG
374 * where runnable% is the time ratio that a sched_entity is runnable and
375 * running% the time ratio that a sched_entity is running.
376 *
377 * For cfs_rq, they are the aggregated values of all runnable and blocked
378 * sched_entities.
7b595334 379 *
9f683953
VG
380 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU
381 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
382 * for computing those signals (see update_rq_clock_pelt())
7b595334 383 *
23127296
VG
384 * N.B., the above ratios (runnable% and running%) themselves are in the
385 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
386 * to as large a range as necessary. This is for example reflected by
387 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
388 *
389 * [Overflow issue]
390 *
391 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
392 * with the highest load (=88761), always runnable on a single cfs_rq,
393 * and should not overflow as the number already hits PID_MAX_LIMIT.
394 *
395 * For all other cases (including 32-bit kernels), struct load_weight's
396 * weight will overflow first before we do, because:
397 *
398 * Max(load_avg) <= Max(load.weight)
399 *
400 * Then it is the load_weight's responsibility to consider overflow
401 * issues.
9d89c257 402 */
9d85f21c 403struct sched_avg {
5eca1c10
IM
404 u64 last_update_time;
405 u64 load_sum;
9f683953 406 u64 runnable_sum;
5eca1c10
IM
407 u32 util_sum;
408 u32 period_contrib;
409 unsigned long load_avg;
9f683953 410 unsigned long runnable_avg;
5eca1c10 411 unsigned long util_avg;
7f65ea42 412 struct util_est util_est;
317d359d 413} ____cacheline_aligned;
9d85f21c 414
41acab88 415struct sched_statistics {
7f5f8e8d 416#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
417 u64 wait_start;
418 u64 wait_max;
419 u64 wait_count;
420 u64 wait_sum;
421 u64 iowait_count;
422 u64 iowait_sum;
423
424 u64 sleep_start;
425 u64 sleep_max;
426 s64 sum_sleep_runtime;
427
428 u64 block_start;
429 u64 block_max;
430 u64 exec_max;
431 u64 slice_max;
432
433 u64 nr_migrations_cold;
434 u64 nr_failed_migrations_affine;
435 u64 nr_failed_migrations_running;
436 u64 nr_failed_migrations_hot;
437 u64 nr_forced_migrations;
438
439 u64 nr_wakeups;
440 u64 nr_wakeups_sync;
441 u64 nr_wakeups_migrate;
442 u64 nr_wakeups_local;
443 u64 nr_wakeups_remote;
444 u64 nr_wakeups_affine;
445 u64 nr_wakeups_affine_attempts;
446 u64 nr_wakeups_passive;
447 u64 nr_wakeups_idle;
41acab88 448#endif
7f5f8e8d 449};
41acab88
LDM
450
451struct sched_entity {
5eca1c10
IM
452 /* For load-balancing: */
453 struct load_weight load;
454 struct rb_node run_node;
455 struct list_head group_node;
456 unsigned int on_rq;
41acab88 457
5eca1c10
IM
458 u64 exec_start;
459 u64 sum_exec_runtime;
460 u64 vruntime;
461 u64 prev_sum_exec_runtime;
41acab88 462
5eca1c10 463 u64 nr_migrations;
41acab88 464
5eca1c10 465 struct sched_statistics statistics;
94c18227 466
20b8a59f 467#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
468 int depth;
469 struct sched_entity *parent;
20b8a59f 470 /* rq on which this entity is (to be) queued: */
5eca1c10 471 struct cfs_rq *cfs_rq;
20b8a59f 472 /* rq "owned" by this entity/group: */
5eca1c10 473 struct cfs_rq *my_q;
9f683953
VG
474 /* cached value of my_q->h_nr_running */
475 unsigned long runnable_weight;
20b8a59f 476#endif
8bd75c77 477
141965c7 478#ifdef CONFIG_SMP
5a107804
JO
479 /*
480 * Per entity load average tracking.
481 *
482 * Put into separate cache line so it does not
483 * collide with read-mostly values above.
484 */
317d359d 485 struct sched_avg avg;
9d85f21c 486#endif
20b8a59f 487};
70b97a7f 488
fa717060 489struct sched_rt_entity {
5eca1c10
IM
490 struct list_head run_list;
491 unsigned long timeout;
492 unsigned long watchdog_stamp;
493 unsigned int time_slice;
494 unsigned short on_rq;
495 unsigned short on_list;
496
497 struct sched_rt_entity *back;
052f1dc7 498#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 499 struct sched_rt_entity *parent;
6f505b16 500 /* rq on which this entity is (to be) queued: */
5eca1c10 501 struct rt_rq *rt_rq;
6f505b16 502 /* rq "owned" by this entity/group: */
5eca1c10 503 struct rt_rq *my_q;
6f505b16 504#endif
3859a271 505} __randomize_layout;
fa717060 506
aab03e05 507struct sched_dl_entity {
5eca1c10 508 struct rb_node rb_node;
aab03e05
DF
509
510 /*
511 * Original scheduling parameters. Copied here from sched_attr
4027d080 512 * during sched_setattr(), they will remain the same until
513 * the next sched_setattr().
aab03e05 514 */
5eca1c10
IM
515 u64 dl_runtime; /* Maximum runtime for each instance */
516 u64 dl_deadline; /* Relative deadline of each instance */
517 u64 dl_period; /* Separation of two instances (period) */
54d6d303 518 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 519 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
520
521 /*
522 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 523 * they are continuously updated during task execution. Note that
aab03e05
DF
524 * the remaining runtime could be < 0 in case we are in overrun.
525 */
5eca1c10
IM
526 s64 runtime; /* Remaining runtime for this instance */
527 u64 deadline; /* Absolute deadline for this instance */
528 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
529
530 /*
531 * Some bool flags:
532 *
533 * @dl_throttled tells if we exhausted the runtime. If so, the
534 * task has to wait for a replenishment to be performed at the
535 * next firing of dl_timer.
536 *
2d3d891d
DF
537 * @dl_boosted tells if we are boosted due to DI. If so we are
538 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
539 * exit the critical section);
540 *
5eca1c10 541 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 542 * all its available runtime during the last job.
209a0cbd
LA
543 *
544 * @dl_non_contending tells if the task is inactive while still
545 * contributing to the active utilization. In other words, it
546 * indicates if the inactive timer has been armed and its handler
547 * has not been executed yet. This flag is useful to avoid race
548 * conditions between the inactive timer handler and the wakeup
549 * code.
34be3930
JL
550 *
551 * @dl_overrun tells if the task asked to be informed about runtime
552 * overruns.
aab03e05 553 */
aa5222e9
DC
554 unsigned int dl_throttled : 1;
555 unsigned int dl_boosted : 1;
556 unsigned int dl_yielded : 1;
557 unsigned int dl_non_contending : 1;
34be3930 558 unsigned int dl_overrun : 1;
aab03e05
DF
559
560 /*
561 * Bandwidth enforcement timer. Each -deadline task has its
562 * own bandwidth to be enforced, thus we need one timer per task.
563 */
5eca1c10 564 struct hrtimer dl_timer;
209a0cbd
LA
565
566 /*
567 * Inactive timer, responsible for decreasing the active utilization
568 * at the "0-lag time". When a -deadline task blocks, it contributes
569 * to GRUB's active utilization until the "0-lag time", hence a
570 * timer is needed to decrease the active utilization at the correct
571 * time.
572 */
573 struct hrtimer inactive_timer;
aab03e05 574};
8bd75c77 575
69842cba
PB
576#ifdef CONFIG_UCLAMP_TASK
577/* Number of utilization clamp buckets (shorter alias) */
578#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
579
580/*
581 * Utilization clamp for a scheduling entity
582 * @value: clamp value "assigned" to a se
583 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 584 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 585 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
586 *
587 * The bucket_id is the index of the clamp bucket matching the clamp value
588 * which is pre-computed and stored to avoid expensive integer divisions from
589 * the fast path.
e8f14172
PB
590 *
591 * The active bit is set whenever a task has got an "effective" value assigned,
592 * which can be different from the clamp value "requested" from user-space.
593 * This allows to know a task is refcounted in the rq's bucket corresponding
594 * to the "effective" bucket_id.
a509a7cd
PB
595 *
596 * The user_defined bit is set whenever a task has got a task-specific clamp
597 * value requested from userspace, i.e. the system defaults apply to this task
598 * just as a restriction. This allows to relax default clamps when a less
599 * restrictive task-specific value has been requested, thus allowing to
600 * implement a "nice" semantic. For example, a task running with a 20%
601 * default boost can still drop its own boosting to 0%.
69842cba
PB
602 */
603struct uclamp_se {
604 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
605 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 606 unsigned int active : 1;
a509a7cd 607 unsigned int user_defined : 1;
69842cba
PB
608};
609#endif /* CONFIG_UCLAMP_TASK */
610
1d082fd0
PM
611union rcu_special {
612 struct {
5eca1c10
IM
613 u8 blocked;
614 u8 need_qs;
05f41571 615 u8 exp_hint; /* Hint for performance. */
23634ebc 616 u8 deferred_qs;
8203d6d0 617 } b; /* Bits. */
05f41571 618 u32 s; /* Set of bits. */
1d082fd0 619};
86848966 620
8dc85d54
PZ
621enum perf_event_task_context {
622 perf_invalid_context = -1,
623 perf_hw_context = 0,
89a1e187 624 perf_sw_context,
8dc85d54
PZ
625 perf_nr_task_contexts,
626};
627
eb61baf6
IM
628struct wake_q_node {
629 struct wake_q_node *next;
630};
631
1da177e4 632struct task_struct {
c65eacbe
AL
633#ifdef CONFIG_THREAD_INFO_IN_TASK
634 /*
635 * For reasons of header soup (see current_thread_info()), this
636 * must be the first element of task_struct.
637 */
5eca1c10 638 struct thread_info thread_info;
c65eacbe 639#endif
5eca1c10
IM
640 /* -1 unrunnable, 0 runnable, >0 stopped: */
641 volatile long state;
29e48ce8
KC
642
643 /*
644 * This begins the randomizable portion of task_struct. Only
645 * scheduling-critical items should be added above here.
646 */
647 randomized_struct_fields_start
648
5eca1c10 649 void *stack;
ec1d2819 650 refcount_t usage;
5eca1c10
IM
651 /* Per task flags (PF_*), defined further below: */
652 unsigned int flags;
653 unsigned int ptrace;
1da177e4 654
2dd73a4f 655#ifdef CONFIG_SMP
5eca1c10
IM
656 struct llist_node wake_entry;
657 int on_cpu;
c65eacbe 658#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
659 /* Current CPU: */
660 unsigned int cpu;
c65eacbe 661#endif
5eca1c10
IM
662 unsigned int wakee_flips;
663 unsigned long wakee_flip_decay_ts;
664 struct task_struct *last_wakee;
ac66f547 665
32e839dd
MG
666 /*
667 * recent_used_cpu is initially set as the last CPU used by a task
668 * that wakes affine another task. Waker/wakee relationships can
669 * push tasks around a CPU where each wakeup moves to the next one.
670 * Tracking a recently used CPU allows a quick search for a recently
671 * used CPU that may be idle.
672 */
673 int recent_used_cpu;
5eca1c10 674 int wake_cpu;
2dd73a4f 675#endif
5eca1c10
IM
676 int on_rq;
677
678 int prio;
679 int static_prio;
680 int normal_prio;
681 unsigned int rt_priority;
50e645a8 682
5eca1c10
IM
683 const struct sched_class *sched_class;
684 struct sched_entity se;
685 struct sched_rt_entity rt;
8323f26c 686#ifdef CONFIG_CGROUP_SCHED
5eca1c10 687 struct task_group *sched_task_group;
8323f26c 688#endif
5eca1c10 689 struct sched_dl_entity dl;
1da177e4 690
69842cba 691#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
692 /* Clamp values requested for a scheduling entity */
693 struct uclamp_se uclamp_req[UCLAMP_CNT];
694 /* Effective clamp values used for a scheduling entity */
69842cba
PB
695 struct uclamp_se uclamp[UCLAMP_CNT];
696#endif
697
e107be36 698#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
699 /* List of struct preempt_notifier: */
700 struct hlist_head preempt_notifiers;
e107be36
AK
701#endif
702
6c5c9341 703#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 704 unsigned int btrace_seq;
6c5c9341 705#endif
1da177e4 706
5eca1c10
IM
707 unsigned int policy;
708 int nr_cpus_allowed;
3bd37062
SAS
709 const cpumask_t *cpus_ptr;
710 cpumask_t cpus_mask;
1da177e4 711
a57eb940 712#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
713 int rcu_read_lock_nesting;
714 union rcu_special rcu_read_unlock_special;
715 struct list_head rcu_node_entry;
716 struct rcu_node *rcu_blocked_node;
28f6569a 717#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 718
8315f422 719#ifdef CONFIG_TASKS_RCU
5eca1c10 720 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
721 u8 rcu_tasks_holdout;
722 u8 rcu_tasks_idx;
5eca1c10 723 int rcu_tasks_idle_cpu;
ccdd29ff 724 struct list_head rcu_tasks_holdout_list;
8315f422 725#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 726
5eca1c10 727 struct sched_info sched_info;
1da177e4 728
5eca1c10 729 struct list_head tasks;
806c09a7 730#ifdef CONFIG_SMP
5eca1c10
IM
731 struct plist_node pushable_tasks;
732 struct rb_node pushable_dl_tasks;
806c09a7 733#endif
1da177e4 734
5eca1c10
IM
735 struct mm_struct *mm;
736 struct mm_struct *active_mm;
314ff785
IM
737
738 /* Per-thread vma caching: */
5eca1c10 739 struct vmacache vmacache;
314ff785 740
5eca1c10
IM
741#ifdef SPLIT_RSS_COUNTING
742 struct task_rss_stat rss_stat;
34e55232 743#endif
5eca1c10
IM
744 int exit_state;
745 int exit_code;
746 int exit_signal;
747 /* The signal sent when the parent dies: */
748 int pdeath_signal;
749 /* JOBCTL_*, siglock protected: */
750 unsigned long jobctl;
751
752 /* Used for emulating ABI behavior of previous Linux versions: */
753 unsigned int personality;
754
755 /* Scheduler bits, serialized by scheduler locks: */
756 unsigned sched_reset_on_fork:1;
757 unsigned sched_contributes_to_load:1;
758 unsigned sched_migrated:1;
759 unsigned sched_remote_wakeup:1;
eb414681
JW
760#ifdef CONFIG_PSI
761 unsigned sched_psi_wake_requeue:1;
762#endif
763
5eca1c10
IM
764 /* Force alignment to the next boundary: */
765 unsigned :0;
766
767 /* Unserialized, strictly 'current' */
768
769 /* Bit to tell LSMs we're in execve(): */
770 unsigned in_execve:1;
771 unsigned in_iowait:1;
772#ifndef TIF_RESTORE_SIGMASK
773 unsigned restore_sigmask:1;
7e781418 774#endif
626ebc41 775#ifdef CONFIG_MEMCG
29ef680a 776 unsigned in_user_fault:1;
127424c8 777#endif
ff303e66 778#ifdef CONFIG_COMPAT_BRK
5eca1c10 779 unsigned brk_randomized:1;
ff303e66 780#endif
77f88796
TH
781#ifdef CONFIG_CGROUPS
782 /* disallow userland-initiated cgroup migration */
783 unsigned no_cgroup_migration:1;
76f969e8
RG
784 /* task is frozen/stopped (used by the cgroup freezer) */
785 unsigned frozen:1;
77f88796 786#endif
d09d8df3 787#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
788 unsigned use_memdelay:1;
789#endif
1066d1b6
YS
790#ifdef CONFIG_PSI
791 /* Stalled due to lack of memory */
792 unsigned in_memstall:1;
793#endif
6f185c29 794
5eca1c10 795 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 796
5eca1c10 797 struct restart_block restart_block;
f56141e3 798
5eca1c10
IM
799 pid_t pid;
800 pid_t tgid;
0a425405 801
050e9baa 802#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
803 /* Canary value for the -fstack-protector GCC feature: */
804 unsigned long stack_canary;
1314562a 805#endif
4d1d61a6 806 /*
5eca1c10 807 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 808 * older sibling, respectively. (p->father can be replaced with
f470021a 809 * p->real_parent->pid)
1da177e4 810 */
5eca1c10
IM
811
812 /* Real parent process: */
813 struct task_struct __rcu *real_parent;
814
815 /* Recipient of SIGCHLD, wait4() reports: */
816 struct task_struct __rcu *parent;
817
1da177e4 818 /*
5eca1c10 819 * Children/sibling form the list of natural children:
1da177e4 820 */
5eca1c10
IM
821 struct list_head children;
822 struct list_head sibling;
823 struct task_struct *group_leader;
1da177e4 824
f470021a 825 /*
5eca1c10
IM
826 * 'ptraced' is the list of tasks this task is using ptrace() on.
827 *
f470021a 828 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 829 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 830 */
5eca1c10
IM
831 struct list_head ptraced;
832 struct list_head ptrace_entry;
f470021a 833
1da177e4 834 /* PID/PID hash table linkage. */
2c470475
EB
835 struct pid *thread_pid;
836 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
837 struct list_head thread_group;
838 struct list_head thread_node;
839
840 struct completion *vfork_done;
1da177e4 841
5eca1c10
IM
842 /* CLONE_CHILD_SETTID: */
843 int __user *set_child_tid;
1da177e4 844
5eca1c10
IM
845 /* CLONE_CHILD_CLEARTID: */
846 int __user *clear_child_tid;
847
848 u64 utime;
849 u64 stime;
40565b5a 850#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
851 u64 utimescaled;
852 u64 stimescaled;
40565b5a 853#endif
5eca1c10
IM
854 u64 gtime;
855 struct prev_cputime prev_cputime;
6a61671b 856#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 857 struct vtime vtime;
d99ca3b9 858#endif
d027d45d
FW
859
860#ifdef CONFIG_NO_HZ_FULL
5eca1c10 861 atomic_t tick_dep_mask;
d027d45d 862#endif
5eca1c10
IM
863 /* Context switch counts: */
864 unsigned long nvcsw;
865 unsigned long nivcsw;
866
867 /* Monotonic time in nsecs: */
868 u64 start_time;
869
870 /* Boot based time in nsecs: */
cf25e24d 871 u64 start_boottime;
5eca1c10
IM
872
873 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
874 unsigned long min_flt;
875 unsigned long maj_flt;
1da177e4 876
2b69942f
TG
877 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
878 struct posix_cputimers posix_cputimers;
1da177e4 879
5eca1c10
IM
880 /* Process credentials: */
881
882 /* Tracer's credentials at attach: */
883 const struct cred __rcu *ptracer_cred;
884
885 /* Objective and real subjective task credentials (COW): */
886 const struct cred __rcu *real_cred;
887
888 /* Effective (overridable) subjective task credentials (COW): */
889 const struct cred __rcu *cred;
890
7743c48e
DH
891#ifdef CONFIG_KEYS
892 /* Cached requested key. */
893 struct key *cached_requested_key;
894#endif
895
5eca1c10
IM
896 /*
897 * executable name, excluding path.
898 *
899 * - normally initialized setup_new_exec()
900 * - access it with [gs]et_task_comm()
901 * - lock it with task_lock()
902 */
903 char comm[TASK_COMM_LEN];
904
905 struct nameidata *nameidata;
906
3d5b6fcc 907#ifdef CONFIG_SYSVIPC
5eca1c10
IM
908 struct sysv_sem sysvsem;
909 struct sysv_shm sysvshm;
3d5b6fcc 910#endif
e162b39a 911#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 912 unsigned long last_switch_count;
a2e51445 913 unsigned long last_switch_time;
82a1fcb9 914#endif
5eca1c10
IM
915 /* Filesystem information: */
916 struct fs_struct *fs;
917
918 /* Open file information: */
919 struct files_struct *files;
920
921 /* Namespaces: */
922 struct nsproxy *nsproxy;
923
924 /* Signal handlers: */
925 struct signal_struct *signal;
913292c9 926 struct sighand_struct __rcu *sighand;
5eca1c10
IM
927 sigset_t blocked;
928 sigset_t real_blocked;
929 /* Restored if set_restore_sigmask() was used: */
930 sigset_t saved_sigmask;
931 struct sigpending pending;
932 unsigned long sas_ss_sp;
933 size_t sas_ss_size;
934 unsigned int sas_ss_flags;
935
936 struct callback_head *task_works;
937
4b7d248b 938#ifdef CONFIG_AUDIT
bfef93a5 939#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
940 struct audit_context *audit_context;
941#endif
5eca1c10
IM
942 kuid_t loginuid;
943 unsigned int sessionid;
bfef93a5 944#endif
5eca1c10
IM
945 struct seccomp seccomp;
946
947 /* Thread group tracking: */
d1e7fd64
EB
948 u64 parent_exec_id;
949 u64 self_exec_id;
1da177e4 950
5eca1c10
IM
951 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
952 spinlock_t alloc_lock;
1da177e4 953
b29739f9 954 /* Protection of the PI data structures: */
5eca1c10 955 raw_spinlock_t pi_lock;
b29739f9 956
5eca1c10 957 struct wake_q_node wake_q;
76751049 958
23f78d4a 959#ifdef CONFIG_RT_MUTEXES
5eca1c10 960 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 961 struct rb_root_cached pi_waiters;
e96a7705
XP
962 /* Updated under owner's pi_lock and rq lock */
963 struct task_struct *pi_top_task;
5eca1c10
IM
964 /* Deadlock detection and priority inheritance handling: */
965 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
966#endif
967
408894ee 968#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
969 /* Mutex deadlock detection: */
970 struct mutex_waiter *blocked_on;
408894ee 971#endif
5eca1c10 972
312364f3
DV
973#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
974 int non_block_count;
975#endif
976
de30a2b3 977#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10 978 unsigned int irq_events;
de8f5e4f 979 unsigned int hardirq_threaded;
5eca1c10
IM
980 unsigned long hardirq_enable_ip;
981 unsigned long hardirq_disable_ip;
982 unsigned int hardirq_enable_event;
983 unsigned int hardirq_disable_event;
984 int hardirqs_enabled;
985 int hardirq_context;
986 unsigned long softirq_disable_ip;
987 unsigned long softirq_enable_ip;
988 unsigned int softirq_disable_event;
989 unsigned int softirq_enable_event;
990 int softirqs_enabled;
991 int softirq_context;
40db1739 992 int irq_config;
de30a2b3 993#endif
5eca1c10 994
fbb9ce95 995#ifdef CONFIG_LOCKDEP
5eca1c10
IM
996# define MAX_LOCK_DEPTH 48UL
997 u64 curr_chain_key;
998 int lockdep_depth;
999 unsigned int lockdep_recursion;
1000 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1001#endif
5eca1c10 1002
c6d30853 1003#ifdef CONFIG_UBSAN
5eca1c10 1004 unsigned int in_ubsan;
c6d30853 1005#endif
408894ee 1006
5eca1c10
IM
1007 /* Journalling filesystem info: */
1008 void *journal_info;
1da177e4 1009
5eca1c10
IM
1010 /* Stacked block device info: */
1011 struct bio_list *bio_list;
d89d8796 1012
73c10101 1013#ifdef CONFIG_BLOCK
5eca1c10
IM
1014 /* Stack plugging: */
1015 struct blk_plug *plug;
73c10101
JA
1016#endif
1017
5eca1c10
IM
1018 /* VM state: */
1019 struct reclaim_state *reclaim_state;
1020
1021 struct backing_dev_info *backing_dev_info;
1da177e4 1022
5eca1c10 1023 struct io_context *io_context;
1da177e4 1024
5e1f0f09
MG
1025#ifdef CONFIG_COMPACTION
1026 struct capture_control *capture_control;
1027#endif
5eca1c10
IM
1028 /* Ptrace state: */
1029 unsigned long ptrace_message;
ae7795bc 1030 kernel_siginfo_t *last_siginfo;
1da177e4 1031
5eca1c10 1032 struct task_io_accounting ioac;
eb414681
JW
1033#ifdef CONFIG_PSI
1034 /* Pressure stall state */
1035 unsigned int psi_flags;
1036#endif
5eca1c10
IM
1037#ifdef CONFIG_TASK_XACCT
1038 /* Accumulated RSS usage: */
1039 u64 acct_rss_mem1;
1040 /* Accumulated virtual memory usage: */
1041 u64 acct_vm_mem1;
1042 /* stime + utime since last update: */
1043 u64 acct_timexpd;
1da177e4
LT
1044#endif
1045#ifdef CONFIG_CPUSETS
5eca1c10
IM
1046 /* Protected by ->alloc_lock: */
1047 nodemask_t mems_allowed;
1048 /* Seqence number to catch updates: */
1049 seqcount_t mems_allowed_seq;
1050 int cpuset_mem_spread_rotor;
1051 int cpuset_slab_spread_rotor;
1da177e4 1052#endif
ddbcc7e8 1053#ifdef CONFIG_CGROUPS
5eca1c10
IM
1054 /* Control Group info protected by css_set_lock: */
1055 struct css_set __rcu *cgroups;
1056 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1057 struct list_head cg_list;
ddbcc7e8 1058#endif
e6d42931 1059#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1060 u32 closid;
d6aaba61 1061 u32 rmid;
e02737d5 1062#endif
42b2dd0a 1063#ifdef CONFIG_FUTEX
5eca1c10 1064 struct robust_list_head __user *robust_list;
34f192c6
IM
1065#ifdef CONFIG_COMPAT
1066 struct compat_robust_list_head __user *compat_robust_list;
1067#endif
5eca1c10
IM
1068 struct list_head pi_state_list;
1069 struct futex_pi_state *pi_state_cache;
3f186d97 1070 struct mutex futex_exit_mutex;
3d4775df 1071 unsigned int futex_state;
c7aceaba 1072#endif
cdd6c482 1073#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1074 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1075 struct mutex perf_event_mutex;
1076 struct list_head perf_event_list;
a63eaf34 1077#endif
8f47b187 1078#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1079 unsigned long preempt_disable_ip;
8f47b187 1080#endif
c7aceaba 1081#ifdef CONFIG_NUMA
5eca1c10
IM
1082 /* Protected by alloc_lock: */
1083 struct mempolicy *mempolicy;
45816682 1084 short il_prev;
5eca1c10 1085 short pref_node_fork;
42b2dd0a 1086#endif
cbee9f88 1087#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1088 int numa_scan_seq;
1089 unsigned int numa_scan_period;
1090 unsigned int numa_scan_period_max;
1091 int numa_preferred_nid;
1092 unsigned long numa_migrate_retry;
1093 /* Migration stamp: */
1094 u64 node_stamp;
1095 u64 last_task_numa_placement;
1096 u64 last_sum_exec_runtime;
1097 struct callback_head numa_work;
1098
cb361d8c
JH
1099 /*
1100 * This pointer is only modified for current in syscall and
1101 * pagefault context (and for tasks being destroyed), so it can be read
1102 * from any of the following contexts:
1103 * - RCU read-side critical section
1104 * - current->numa_group from everywhere
1105 * - task's runqueue locked, task not running
1106 */
1107 struct numa_group __rcu *numa_group;
8c8a743c 1108
745d6147 1109 /*
44dba3d5
IM
1110 * numa_faults is an array split into four regions:
1111 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1112 * in this precise order.
1113 *
1114 * faults_memory: Exponential decaying average of faults on a per-node
1115 * basis. Scheduling placement decisions are made based on these
1116 * counts. The values remain static for the duration of a PTE scan.
1117 * faults_cpu: Track the nodes the process was running on when a NUMA
1118 * hinting fault was incurred.
1119 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1120 * during the current scan window. When the scan completes, the counts
1121 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1122 */
5eca1c10
IM
1123 unsigned long *numa_faults;
1124 unsigned long total_numa_faults;
745d6147 1125
04bb2f94
RR
1126 /*
1127 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1128 * scan window were remote/local or failed to migrate. The task scan
1129 * period is adapted based on the locality of the faults with different
1130 * weights depending on whether they were shared or private faults
04bb2f94 1131 */
5eca1c10 1132 unsigned long numa_faults_locality[3];
04bb2f94 1133
5eca1c10 1134 unsigned long numa_pages_migrated;
cbee9f88
PZ
1135#endif /* CONFIG_NUMA_BALANCING */
1136
d7822b1e
MD
1137#ifdef CONFIG_RSEQ
1138 struct rseq __user *rseq;
d7822b1e
MD
1139 u32 rseq_sig;
1140 /*
1141 * RmW on rseq_event_mask must be performed atomically
1142 * with respect to preemption.
1143 */
1144 unsigned long rseq_event_mask;
1145#endif
1146
5eca1c10 1147 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1148
3fbd7ee2
EB
1149 union {
1150 refcount_t rcu_users;
1151 struct rcu_head rcu;
1152 };
b92ce558 1153
5eca1c10
IM
1154 /* Cache last used pipe for splice(): */
1155 struct pipe_inode_info *splice_pipe;
5640f768 1156
5eca1c10 1157 struct page_frag task_frag;
5640f768 1158
47913d4e
IM
1159#ifdef CONFIG_TASK_DELAY_ACCT
1160 struct task_delay_info *delays;
f4f154fd 1161#endif
47913d4e 1162
f4f154fd 1163#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1164 int make_it_fail;
9049f2f6 1165 unsigned int fail_nth;
ca74e92b 1166#endif
9d823e8f 1167 /*
5eca1c10
IM
1168 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1169 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1170 */
5eca1c10
IM
1171 int nr_dirtied;
1172 int nr_dirtied_pause;
1173 /* Start of a write-and-pause period: */
1174 unsigned long dirty_paused_when;
9d823e8f 1175
9745512c 1176#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1177 int latency_record_count;
1178 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1179#endif
6976675d 1180 /*
5eca1c10 1181 * Time slack values; these are used to round up poll() and
6976675d
AV
1182 * select() etc timeout values. These are in nanoseconds.
1183 */
5eca1c10
IM
1184 u64 timer_slack_ns;
1185 u64 default_timer_slack_ns;
f8d570a4 1186
0b24becc 1187#ifdef CONFIG_KASAN
5eca1c10 1188 unsigned int kasan_depth;
0b24becc 1189#endif
5eca1c10 1190
fb52607a 1191#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1192 /* Index of current stored address in ret_stack: */
1193 int curr_ret_stack;
39eb456d 1194 int curr_ret_depth;
5eca1c10
IM
1195
1196 /* Stack of return addresses for return function tracing: */
1197 struct ftrace_ret_stack *ret_stack;
1198
1199 /* Timestamp for last schedule: */
1200 unsigned long long ftrace_timestamp;
1201
f201ae23
FW
1202 /*
1203 * Number of functions that haven't been traced
5eca1c10 1204 * because of depth overrun:
f201ae23 1205 */
5eca1c10
IM
1206 atomic_t trace_overrun;
1207
1208 /* Pause tracing: */
1209 atomic_t tracing_graph_pause;
f201ae23 1210#endif
5eca1c10 1211
ea4e2bc4 1212#ifdef CONFIG_TRACING
5eca1c10
IM
1213 /* State flags for use by tracers: */
1214 unsigned long trace;
1215
1216 /* Bitmask and counter of trace recursion: */
1217 unsigned long trace_recursion;
261842b7 1218#endif /* CONFIG_TRACING */
5eca1c10 1219
5c9a8750 1220#ifdef CONFIG_KCOV
eec028c9
AK
1221 /* See kernel/kcov.c for more details. */
1222
5eca1c10 1223 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1224 unsigned int kcov_mode;
5eca1c10
IM
1225
1226 /* Size of the kcov_area: */
1227 unsigned int kcov_size;
1228
1229 /* Buffer for coverage collection: */
1230 void *kcov_area;
1231
1232 /* KCOV descriptor wired with this task or NULL: */
1233 struct kcov *kcov;
eec028c9
AK
1234
1235 /* KCOV common handle for remote coverage collection: */
1236 u64 kcov_handle;
1237
1238 /* KCOV sequence number: */
1239 int kcov_sequence;
5c9a8750 1240#endif
5eca1c10 1241
6f185c29 1242#ifdef CONFIG_MEMCG
5eca1c10
IM
1243 struct mem_cgroup *memcg_in_oom;
1244 gfp_t memcg_oom_gfp_mask;
1245 int memcg_oom_order;
b23afb93 1246
5eca1c10
IM
1247 /* Number of pages to reclaim on returning to userland: */
1248 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1249
1250 /* Used by memcontrol for targeted memcg charge: */
1251 struct mem_cgroup *active_memcg;
569b846d 1252#endif
5eca1c10 1253
d09d8df3
JB
1254#ifdef CONFIG_BLK_CGROUP
1255 struct request_queue *throttle_queue;
1256#endif
1257
0326f5a9 1258#ifdef CONFIG_UPROBES
5eca1c10 1259 struct uprobe_task *utask;
0326f5a9 1260#endif
cafe5635 1261#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1262 unsigned int sequential_io;
1263 unsigned int sequential_io_avg;
cafe5635 1264#endif
8eb23b9f 1265#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1266 unsigned long task_state_change;
8eb23b9f 1267#endif
5eca1c10 1268 int pagefault_disabled;
03049269 1269#ifdef CONFIG_MMU
5eca1c10 1270 struct task_struct *oom_reaper_list;
03049269 1271#endif
ba14a194 1272#ifdef CONFIG_VMAP_STACK
5eca1c10 1273 struct vm_struct *stack_vm_area;
ba14a194 1274#endif
68f24b08 1275#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1276 /* A live task holds one reference: */
f0b89d39 1277 refcount_t stack_refcount;
d83a7cb3
JP
1278#endif
1279#ifdef CONFIG_LIVEPATCH
1280 int patch_state;
0302e28d 1281#endif
e4e55b47
TH
1282#ifdef CONFIG_SECURITY
1283 /* Used by LSM modules for access restriction: */
1284 void *security;
68f24b08 1285#endif
29e48ce8 1286
afaef01c
AP
1287#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1288 unsigned long lowest_stack;
c8d12627 1289 unsigned long prev_lowest_stack;
afaef01c
AP
1290#endif
1291
29e48ce8
KC
1292 /*
1293 * New fields for task_struct should be added above here, so that
1294 * they are included in the randomized portion of task_struct.
1295 */
1296 randomized_struct_fields_end
1297
5eca1c10
IM
1298 /* CPU-specific state of this task: */
1299 struct thread_struct thread;
1300
1301 /*
1302 * WARNING: on x86, 'thread_struct' contains a variable-sized
1303 * structure. It *MUST* be at the end of 'task_struct'.
1304 *
1305 * Do not put anything below here!
1306 */
1da177e4
LT
1307};
1308
e868171a 1309static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1310{
2c470475 1311 return task->thread_pid;
22c935f4
EB
1312}
1313
7af57294
PE
1314/*
1315 * the helpers to get the task's different pids as they are seen
1316 * from various namespaces
1317 *
1318 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1319 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1320 * current.
7af57294
PE
1321 * task_xid_nr_ns() : id seen from the ns specified;
1322 *
7af57294
PE
1323 * see also pid_nr() etc in include/linux/pid.h
1324 */
5eca1c10 1325pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1326
e868171a 1327static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1328{
1329 return tsk->pid;
1330}
1331
5eca1c10 1332static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1333{
1334 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1335}
7af57294
PE
1336
1337static inline pid_t task_pid_vnr(struct task_struct *tsk)
1338{
52ee2dfd 1339 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1340}
1341
1342
e868171a 1343static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1344{
1345 return tsk->tgid;
1346}
1347
5eca1c10
IM
1348/**
1349 * pid_alive - check that a task structure is not stale
1350 * @p: Task structure to be checked.
1351 *
1352 * Test if a process is not yet dead (at most zombie state)
1353 * If pid_alive fails, then pointers within the task structure
1354 * can be stale and must not be dereferenced.
1355 *
1356 * Return: 1 if the process is alive. 0 otherwise.
1357 */
1358static inline int pid_alive(const struct task_struct *p)
1359{
2c470475 1360 return p->thread_pid != NULL;
5eca1c10 1361}
7af57294 1362
5eca1c10 1363static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1364{
52ee2dfd 1365 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1366}
1367
7af57294
PE
1368static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1369{
52ee2dfd 1370 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1371}
1372
1373
5eca1c10 1374static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1375{
52ee2dfd 1376 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1377}
1378
7af57294
PE
1379static inline pid_t task_session_vnr(struct task_struct *tsk)
1380{
52ee2dfd 1381 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1382}
1383
dd1c1f2f
ON
1384static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1385{
6883f81a 1386 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1387}
1388
1389static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1390{
6883f81a 1391 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1392}
1393
1394static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1395{
1396 pid_t pid = 0;
1397
1398 rcu_read_lock();
1399 if (pid_alive(tsk))
1400 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1401 rcu_read_unlock();
1402
1403 return pid;
1404}
1405
1406static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1407{
1408 return task_ppid_nr_ns(tsk, &init_pid_ns);
1409}
1410
5eca1c10 1411/* Obsolete, do not use: */
1b0f7ffd
ON
1412static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1413{
1414 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1415}
7af57294 1416
06eb6184
PZ
1417#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1418#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1419
1d48b080 1420static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1421{
1593baab
PZ
1422 unsigned int tsk_state = READ_ONCE(tsk->state);
1423 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1424
06eb6184
PZ
1425 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1426
06eb6184
PZ
1427 if (tsk_state == TASK_IDLE)
1428 state = TASK_REPORT_IDLE;
1429
1593baab
PZ
1430 return fls(state);
1431}
1432
1d48b080 1433static inline char task_index_to_char(unsigned int state)
1593baab 1434{
8ef9925b 1435 static const char state_char[] = "RSDTtXZPI";
1593baab 1436
06eb6184 1437 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1438
1593baab
PZ
1439 return state_char[state];
1440}
1441
1442static inline char task_state_to_char(struct task_struct *tsk)
1443{
1d48b080 1444 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1445}
1446
f400e198 1447/**
570f5241
SS
1448 * is_global_init - check if a task structure is init. Since init
1449 * is free to have sub-threads we need to check tgid.
3260259f
HK
1450 * @tsk: Task structure to be checked.
1451 *
1452 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1453 *
1454 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1455 */
e868171a 1456static inline int is_global_init(struct task_struct *tsk)
b461cc03 1457{
570f5241 1458 return task_tgid_nr(tsk) == 1;
b461cc03 1459}
b460cbc5 1460
9ec52099
CLG
1461extern struct pid *cad_pid;
1462
1da177e4
LT
1463/*
1464 * Per process flags
1465 */
5eca1c10
IM
1466#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1467#define PF_EXITING 0x00000004 /* Getting shut down */
5eca1c10
IM
1468#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1469#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1470#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1471#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1472#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1473#define PF_DUMPCORE 0x00000200 /* Dumped core */
1474#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1475#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1476#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1477#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1478#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1479#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1480#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1481#define PF_KSWAPD 0x00020000 /* I am kswapd */
1482#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1483#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1484#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1485#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1486#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1487#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
73ab1cb2 1488#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
3bd37062 1489#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1490#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1491#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
771b53d0 1492#define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
5eca1c10
IM
1493#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1494#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1495
1496/*
1497 * Only the _current_ task can read/write to tsk->flags, but other
1498 * tasks can access tsk->flags in readonly mode for example
1499 * with tsk_used_math (like during threaded core dumping).
1500 * There is however an exception to this rule during ptrace
1501 * or during fork: the ptracer task is allowed to write to the
1502 * child->flags of its traced child (same goes for fork, the parent
1503 * can write to the child->flags), because we're guaranteed the
1504 * child is not running and in turn not changing child->flags
1505 * at the same time the parent does it.
1506 */
5eca1c10
IM
1507#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1508#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1509#define clear_used_math() clear_stopped_child_used_math(current)
1510#define set_used_math() set_stopped_child_used_math(current)
1511
1da177e4
LT
1512#define conditional_stopped_child_used_math(condition, child) \
1513 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1514
1515#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1516
1da177e4
LT
1517#define copy_to_stopped_child_used_math(child) \
1518 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1519
1da177e4 1520/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1521#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1522#define used_math() tsk_used_math(current)
1da177e4 1523
62ec05dd
TG
1524static inline bool is_percpu_thread(void)
1525{
1526#ifdef CONFIG_SMP
1527 return (current->flags & PF_NO_SETAFFINITY) &&
1528 (current->nr_cpus_allowed == 1);
1529#else
1530 return true;
1531#endif
1532}
1533
1d4457f9 1534/* Per-process atomic flags. */
5eca1c10
IM
1535#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1536#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1537#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1538#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1539#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1540#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1541#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1542#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1543
e0e5070b
ZL
1544#define TASK_PFA_TEST(name, func) \
1545 static inline bool task_##func(struct task_struct *p) \
1546 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1547
e0e5070b
ZL
1548#define TASK_PFA_SET(name, func) \
1549 static inline void task_set_##func(struct task_struct *p) \
1550 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1551
e0e5070b
ZL
1552#define TASK_PFA_CLEAR(name, func) \
1553 static inline void task_clear_##func(struct task_struct *p) \
1554 { clear_bit(PFA_##name, &p->atomic_flags); }
1555
1556TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1557TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1558
2ad654bc
ZL
1559TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1560TASK_PFA_SET(SPREAD_PAGE, spread_page)
1561TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1562
1563TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1564TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1565TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1566
356e4bff
TG
1567TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1568TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1569TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1570
71368af9
WL
1571TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1572TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1573TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1574
356e4bff
TG
1575TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1576TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1577
9137bb27
TG
1578TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1579TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1580TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1581
1582TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1583TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1584
5eca1c10 1585static inline void
717a94b5 1586current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1587{
717a94b5
N
1588 current->flags &= ~flags;
1589 current->flags |= orig_flags & flags;
907aed48
MG
1590}
1591
5eca1c10
IM
1592extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1593extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1594#ifdef CONFIG_SMP
5eca1c10
IM
1595extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1596extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1597#else
5eca1c10 1598static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1599{
1600}
5eca1c10 1601static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1602{
96f874e2 1603 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1604 return -EINVAL;
1605 return 0;
1606}
1607#endif
e0ad9556 1608
fa93384f 1609extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1610extern void set_user_nice(struct task_struct *p, long nice);
1611extern int task_prio(const struct task_struct *p);
5eca1c10 1612
d0ea0268
DY
1613/**
1614 * task_nice - return the nice value of a given task.
1615 * @p: the task in question.
1616 *
1617 * Return: The nice value [ -20 ... 0 ... 19 ].
1618 */
1619static inline int task_nice(const struct task_struct *p)
1620{
1621 return PRIO_TO_NICE((p)->static_prio);
1622}
5eca1c10 1623
36c8b586
IM
1624extern int can_nice(const struct task_struct *p, const int nice);
1625extern int task_curr(const struct task_struct *p);
1da177e4 1626extern int idle_cpu(int cpu);
943d355d 1627extern int available_idle_cpu(int cpu);
5eca1c10
IM
1628extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1629extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1630extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1631extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1632extern struct task_struct *idle_task(int cpu);
5eca1c10 1633
c4f30608
PM
1634/**
1635 * is_idle_task - is the specified task an idle task?
fa757281 1636 * @p: the task in question.
e69f6186
YB
1637 *
1638 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1639 */
7061ca3b 1640static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1641{
c1de45ca 1642 return !!(p->flags & PF_IDLE);
c4f30608 1643}
5eca1c10 1644
36c8b586 1645extern struct task_struct *curr_task(int cpu);
a458ae2e 1646extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1647
1648void yield(void);
1649
1da177e4 1650union thread_union {
0500871f
DH
1651#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1652 struct task_struct task;
1653#endif
c65eacbe 1654#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1655 struct thread_info thread_info;
c65eacbe 1656#endif
1da177e4
LT
1657 unsigned long stack[THREAD_SIZE/sizeof(long)];
1658};
1659
0500871f
DH
1660#ifndef CONFIG_THREAD_INFO_IN_TASK
1661extern struct thread_info init_thread_info;
1662#endif
1663
1664extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1665
f3ac6067
IM
1666#ifdef CONFIG_THREAD_INFO_IN_TASK
1667static inline struct thread_info *task_thread_info(struct task_struct *task)
1668{
1669 return &task->thread_info;
1670}
1671#elif !defined(__HAVE_THREAD_FUNCTIONS)
1672# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1673#endif
1674
198fe21b
PE
1675/*
1676 * find a task by one of its numerical ids
1677 *
198fe21b
PE
1678 * find_task_by_pid_ns():
1679 * finds a task by its pid in the specified namespace
228ebcbe
PE
1680 * find_task_by_vpid():
1681 * finds a task by its virtual pid
198fe21b 1682 *
e49859e7 1683 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1684 */
1685
228ebcbe 1686extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1687extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1688
2ee08260
MR
1689/*
1690 * find a task by its virtual pid and get the task struct
1691 */
1692extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1693
b3c97528
HH
1694extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1695extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1696extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1697
1da177e4 1698#ifdef CONFIG_SMP
5eca1c10 1699extern void kick_process(struct task_struct *tsk);
1da177e4 1700#else
5eca1c10 1701static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1702#endif
1da177e4 1703
82b89778 1704extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1705
82b89778
AH
1706static inline void set_task_comm(struct task_struct *tsk, const char *from)
1707{
1708 __set_task_comm(tsk, from, false);
1709}
5eca1c10 1710
3756f640
AB
1711extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1712#define get_task_comm(buf, tsk) ({ \
1713 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1714 __get_task_comm(buf, sizeof(buf), tsk); \
1715})
1da177e4
LT
1716
1717#ifdef CONFIG_SMP
317f3941 1718void scheduler_ipi(void);
85ba2d86 1719extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1720#else
184748cc 1721static inline void scheduler_ipi(void) { }
5eca1c10 1722static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1723{
1724 return 1;
1725}
1da177e4
LT
1726#endif
1727
5eca1c10
IM
1728/*
1729 * Set thread flags in other task's structures.
1730 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1731 */
1732static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1733{
a1261f54 1734 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1735}
1736
1737static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1738{
a1261f54 1739 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1740}
1741
93ee37c2
DM
1742static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1743 bool value)
1744{
1745 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1746}
1747
1da177e4
LT
1748static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1749{
a1261f54 1750 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1751}
1752
1753static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1754{
a1261f54 1755 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1756}
1757
1758static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1759{
a1261f54 1760 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1761}
1762
1763static inline void set_tsk_need_resched(struct task_struct *tsk)
1764{
1765 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1766}
1767
1768static inline void clear_tsk_need_resched(struct task_struct *tsk)
1769{
1770 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1771}
1772
8ae121ac
GH
1773static inline int test_tsk_need_resched(struct task_struct *tsk)
1774{
1775 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1776}
1777
1da177e4
LT
1778/*
1779 * cond_resched() and cond_resched_lock(): latency reduction via
1780 * explicit rescheduling in places that are safe. The return
1781 * value indicates whether a reschedule was done in fact.
1782 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1783 */
c1a280b6 1784#ifndef CONFIG_PREEMPTION
c3921ab7 1785extern int _cond_resched(void);
35a773a0
PZ
1786#else
1787static inline int _cond_resched(void) { return 0; }
1788#endif
6f80bd98 1789
613afbf8 1790#define cond_resched() ({ \
3427445a 1791 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1792 _cond_resched(); \
1793})
6f80bd98 1794
613afbf8
FW
1795extern int __cond_resched_lock(spinlock_t *lock);
1796
1797#define cond_resched_lock(lock) ({ \
3427445a 1798 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1799 __cond_resched_lock(lock); \
1800})
1801
f6f3c437
SH
1802static inline void cond_resched_rcu(void)
1803{
1804#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1805 rcu_read_unlock();
1806 cond_resched();
1807 rcu_read_lock();
1808#endif
1809}
1810
1da177e4
LT
1811/*
1812 * Does a critical section need to be broken due to another
c1a280b6 1813 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 1814 * but a general need for low latency)
1da177e4 1815 */
95c354fe 1816static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1817{
c1a280b6 1818#ifdef CONFIG_PREEMPTION
95c354fe
NP
1819 return spin_is_contended(lock);
1820#else
1da177e4 1821 return 0;
95c354fe 1822#endif
1da177e4
LT
1823}
1824
75f93fed
PZ
1825static __always_inline bool need_resched(void)
1826{
1827 return unlikely(tif_need_resched());
1828}
1829
1da177e4
LT
1830/*
1831 * Wrappers for p->thread_info->cpu access. No-op on UP.
1832 */
1833#ifdef CONFIG_SMP
1834
1835static inline unsigned int task_cpu(const struct task_struct *p)
1836{
c65eacbe 1837#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1838 return READ_ONCE(p->cpu);
c65eacbe 1839#else
c546951d 1840 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1841#endif
1da177e4
LT
1842}
1843
c65cc870 1844extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1845
1846#else
1847
1848static inline unsigned int task_cpu(const struct task_struct *p)
1849{
1850 return 0;
1851}
1852
1853static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1854{
1855}
1856
1857#endif /* CONFIG_SMP */
1858
d9345c65
PX
1859/*
1860 * In order to reduce various lock holder preemption latencies provide an
1861 * interface to see if a vCPU is currently running or not.
1862 *
1863 * This allows us to terminate optimistic spin loops and block, analogous to
1864 * the native optimistic spin heuristic of testing if the lock owner task is
1865 * running or not.
1866 */
1867#ifndef vcpu_is_preempted
42fd8baa
QC
1868static inline bool vcpu_is_preempted(int cpu)
1869{
1870 return false;
1871}
d9345c65
PX
1872#endif
1873
96f874e2
RR
1874extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1875extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1876
82455257
DH
1877#ifndef TASK_SIZE_OF
1878#define TASK_SIZE_OF(tsk) TASK_SIZE
1879#endif
1880
d7822b1e
MD
1881#ifdef CONFIG_RSEQ
1882
1883/*
1884 * Map the event mask on the user-space ABI enum rseq_cs_flags
1885 * for direct mask checks.
1886 */
1887enum rseq_event_mask_bits {
1888 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1889 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1890 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1891};
1892
1893enum rseq_event_mask {
1894 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1895 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1896 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1897};
1898
1899static inline void rseq_set_notify_resume(struct task_struct *t)
1900{
1901 if (t->rseq)
1902 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1903}
1904
784e0300 1905void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1906
784e0300
WD
1907static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1908 struct pt_regs *regs)
d7822b1e
MD
1909{
1910 if (current->rseq)
784e0300 1911 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1912}
1913
784e0300
WD
1914static inline void rseq_signal_deliver(struct ksignal *ksig,
1915 struct pt_regs *regs)
d7822b1e
MD
1916{
1917 preempt_disable();
1918 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1919 preempt_enable();
784e0300 1920 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1921}
1922
1923/* rseq_preempt() requires preemption to be disabled. */
1924static inline void rseq_preempt(struct task_struct *t)
1925{
1926 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1927 rseq_set_notify_resume(t);
1928}
1929
1930/* rseq_migrate() requires preemption to be disabled. */
1931static inline void rseq_migrate(struct task_struct *t)
1932{
1933 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1934 rseq_set_notify_resume(t);
1935}
1936
1937/*
1938 * If parent process has a registered restartable sequences area, the
463f550f 1939 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
1940 */
1941static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1942{
463f550f 1943 if (clone_flags & CLONE_VM) {
d7822b1e 1944 t->rseq = NULL;
d7822b1e
MD
1945 t->rseq_sig = 0;
1946 t->rseq_event_mask = 0;
1947 } else {
1948 t->rseq = current->rseq;
d7822b1e
MD
1949 t->rseq_sig = current->rseq_sig;
1950 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1951 }
1952}
1953
1954static inline void rseq_execve(struct task_struct *t)
1955{
1956 t->rseq = NULL;
d7822b1e
MD
1957 t->rseq_sig = 0;
1958 t->rseq_event_mask = 0;
1959}
1960
1961#else
1962
1963static inline void rseq_set_notify_resume(struct task_struct *t)
1964{
1965}
784e0300
WD
1966static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1967 struct pt_regs *regs)
d7822b1e
MD
1968{
1969}
784e0300
WD
1970static inline void rseq_signal_deliver(struct ksignal *ksig,
1971 struct pt_regs *regs)
d7822b1e
MD
1972{
1973}
1974static inline void rseq_preempt(struct task_struct *t)
1975{
1976}
1977static inline void rseq_migrate(struct task_struct *t)
1978{
1979}
1980static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1981{
1982}
1983static inline void rseq_execve(struct task_struct *t)
1984{
1985}
1986
1987#endif
1988
73ab1cb2
TY
1989void __exit_umh(struct task_struct *tsk);
1990
1991static inline void exit_umh(struct task_struct *tsk)
1992{
1993 if (unlikely(tsk->flags & PF_UMH))
1994 __exit_umh(tsk);
1995}
1996
d7822b1e
MD
1997#ifdef CONFIG_DEBUG_RSEQ
1998
1999void rseq_syscall(struct pt_regs *regs);
2000
2001#else
2002
2003static inline void rseq_syscall(struct pt_regs *regs)
2004{
2005}
2006
2007#endif
2008
3c93a0c0
QY
2009const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2010char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2011int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2012
2013const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2014const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2015const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2016
2017int sched_trace_rq_cpu(struct rq *rq);
2018
2019const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2020
1da177e4 2021#endif