]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/linux/sched.h
Merge tag 'thermal-v5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thermal...
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10
IM
29#include <linux/signal_types.h>
30#include <linux/mm_types_task.h>
31#include <linux/task_io_accounting.h>
2b69942f 32#include <linux/posix-timers.h>
d7822b1e 33#include <linux/rseq.h>
dfd402a4 34#include <linux/kcsan.h>
a3b6714e 35
5eca1c10 36/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 37struct audit_context;
c7af7877 38struct backing_dev_info;
bddd87c7 39struct bio_list;
73c10101 40struct blk_plug;
3c93a0c0 41struct capture_control;
c7af7877 42struct cfs_rq;
c7af7877
IM
43struct fs_struct;
44struct futex_pi_state;
45struct io_context;
46struct mempolicy;
89076bc3 47struct nameidata;
c7af7877
IM
48struct nsproxy;
49struct perf_event_context;
50struct pid_namespace;
51struct pipe_inode_info;
52struct rcu_node;
53struct reclaim_state;
54struct robust_list_head;
3c93a0c0
QY
55struct root_domain;
56struct rq;
c7af7877
IM
57struct sched_attr;
58struct sched_param;
43ae34cb 59struct seq_file;
c7af7877
IM
60struct sighand_struct;
61struct signal_struct;
62struct task_delay_info;
4cf86d77 63struct task_group;
1da177e4 64
4a8342d2
LT
65/*
66 * Task state bitmask. NOTE! These bits are also
67 * encoded in fs/proc/array.c: get_task_state().
68 *
69 * We have two separate sets of flags: task->state
70 * is about runnability, while task->exit_state are
71 * about the task exiting. Confusing, but this way
72 * modifying one set can't modify the other one by
73 * mistake.
74 */
5eca1c10
IM
75
76/* Used in tsk->state: */
92c4bc9f
PZ
77#define TASK_RUNNING 0x0000
78#define TASK_INTERRUPTIBLE 0x0001
79#define TASK_UNINTERRUPTIBLE 0x0002
80#define __TASK_STOPPED 0x0004
81#define __TASK_TRACED 0x0008
5eca1c10 82/* Used in tsk->exit_state: */
92c4bc9f
PZ
83#define EXIT_DEAD 0x0010
84#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
85#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
86/* Used in tsk->state again: */
8ef9925b
PZ
87#define TASK_PARKED 0x0040
88#define TASK_DEAD 0x0080
89#define TASK_WAKEKILL 0x0100
90#define TASK_WAKING 0x0200
92c4bc9f
PZ
91#define TASK_NOLOAD 0x0400
92#define TASK_NEW 0x0800
93#define TASK_STATE_MAX 0x1000
5eca1c10 94
5eca1c10
IM
95/* Convenience macros for the sake of set_current_state: */
96#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
97#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
98#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
99
100#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
101
102/* Convenience macros for the sake of wake_up(): */
103#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
104
105/* get_task_state(): */
106#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
107 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
108 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
109 TASK_PARKED)
5eca1c10
IM
110
111#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
112
113#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
114
115#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
116
117#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
118 (task->flags & PF_FROZEN) == 0 && \
119 (task->state & TASK_NOLOAD) == 0)
1da177e4 120
8eb23b9f
PZ
121#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
122
b5bf9a90
PZ
123/*
124 * Special states are those that do not use the normal wait-loop pattern. See
125 * the comment with set_special_state().
126 */
127#define is_special_task_state(state) \
1cef1150 128 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 129
8eb23b9f
PZ
130#define __set_current_state(state_value) \
131 do { \
b5bf9a90 132 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
133 current->task_state_change = _THIS_IP_; \
134 current->state = (state_value); \
135 } while (0)
b5bf9a90 136
8eb23b9f
PZ
137#define set_current_state(state_value) \
138 do { \
b5bf9a90 139 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 140 current->task_state_change = _THIS_IP_; \
a2250238 141 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
142 } while (0)
143
b5bf9a90
PZ
144#define set_special_state(state_value) \
145 do { \
146 unsigned long flags; /* may shadow */ \
147 WARN_ON_ONCE(!is_special_task_state(state_value)); \
148 raw_spin_lock_irqsave(&current->pi_lock, flags); \
149 current->task_state_change = _THIS_IP_; \
150 current->state = (state_value); \
151 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
152 } while (0)
8eb23b9f 153#else
498d0c57
AM
154/*
155 * set_current_state() includes a barrier so that the write of current->state
156 * is correctly serialised wrt the caller's subsequent test of whether to
157 * actually sleep:
158 *
a2250238 159 * for (;;) {
498d0c57 160 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
161 * if (!need_sleep)
162 * break;
163 *
164 * schedule();
165 * }
166 * __set_current_state(TASK_RUNNING);
167 *
168 * If the caller does not need such serialisation (because, for instance, the
169 * condition test and condition change and wakeup are under the same lock) then
170 * use __set_current_state().
171 *
172 * The above is typically ordered against the wakeup, which does:
173 *
b5bf9a90
PZ
174 * need_sleep = false;
175 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 176 *
7696f991
AP
177 * where wake_up_state() executes a full memory barrier before accessing the
178 * task state.
a2250238
PZ
179 *
180 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
181 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
182 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 183 *
b5bf9a90 184 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 185 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
186 * a problem either because that will result in one extra go around the loop
187 * and our @cond test will save the day.
498d0c57 188 *
a2250238 189 * Also see the comments of try_to_wake_up().
498d0c57 190 */
b5bf9a90
PZ
191#define __set_current_state(state_value) \
192 current->state = (state_value)
193
194#define set_current_state(state_value) \
195 smp_store_mb(current->state, (state_value))
196
197/*
198 * set_special_state() should be used for those states when the blocking task
199 * can not use the regular condition based wait-loop. In that case we must
200 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
201 * will not collide with our state change.
202 */
203#define set_special_state(state_value) \
204 do { \
205 unsigned long flags; /* may shadow */ \
206 raw_spin_lock_irqsave(&current->pi_lock, flags); \
207 current->state = (state_value); \
208 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
209 } while (0)
210
8eb23b9f
PZ
211#endif
212
5eca1c10
IM
213/* Task command name length: */
214#define TASK_COMM_LEN 16
1da177e4 215
1da177e4
LT
216extern void scheduler_tick(void);
217
5eca1c10
IM
218#define MAX_SCHEDULE_TIMEOUT LONG_MAX
219
220extern long schedule_timeout(long timeout);
221extern long schedule_timeout_interruptible(long timeout);
222extern long schedule_timeout_killable(long timeout);
223extern long schedule_timeout_uninterruptible(long timeout);
224extern long schedule_timeout_idle(long timeout);
1da177e4 225asmlinkage void schedule(void);
c5491ea7 226extern void schedule_preempt_disabled(void);
19c95f26 227asmlinkage void preempt_schedule_irq(void);
1da177e4 228
10ab5643
TH
229extern int __must_check io_schedule_prepare(void);
230extern void io_schedule_finish(int token);
9cff8ade 231extern long io_schedule_timeout(long timeout);
10ab5643 232extern void io_schedule(void);
9cff8ade 233
d37f761d 234/**
0ba42a59 235 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
236 * @utime: time spent in user mode
237 * @stime: time spent in system mode
9d7fb042 238 * @lock: protects the above two fields
d37f761d 239 *
9d7fb042
PZ
240 * Stores previous user/system time values such that we can guarantee
241 * monotonicity.
d37f761d 242 */
9d7fb042
PZ
243struct prev_cputime {
244#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
245 u64 utime;
246 u64 stime;
247 raw_spinlock_t lock;
9d7fb042 248#endif
d37f761d
FW
249};
250
bac5b6b6
FW
251enum vtime_state {
252 /* Task is sleeping or running in a CPU with VTIME inactive: */
253 VTIME_INACTIVE = 0,
14faf6fc
FW
254 /* Task is idle */
255 VTIME_IDLE,
bac5b6b6
FW
256 /* Task runs in kernelspace in a CPU with VTIME active: */
257 VTIME_SYS,
14faf6fc
FW
258 /* Task runs in userspace in a CPU with VTIME active: */
259 VTIME_USER,
e6d5bf3e
FW
260 /* Task runs as guests in a CPU with VTIME active: */
261 VTIME_GUEST,
bac5b6b6
FW
262};
263
264struct vtime {
265 seqcount_t seqcount;
266 unsigned long long starttime;
267 enum vtime_state state;
802f4a82 268 unsigned int cpu;
2a42eb95
WL
269 u64 utime;
270 u64 stime;
271 u64 gtime;
bac5b6b6
FW
272};
273
69842cba
PB
274/*
275 * Utilization clamp constraints.
276 * @UCLAMP_MIN: Minimum utilization
277 * @UCLAMP_MAX: Maximum utilization
278 * @UCLAMP_CNT: Utilization clamp constraints count
279 */
280enum uclamp_id {
281 UCLAMP_MIN = 0,
282 UCLAMP_MAX,
283 UCLAMP_CNT
284};
285
f9a25f77
MP
286#ifdef CONFIG_SMP
287extern struct root_domain def_root_domain;
288extern struct mutex sched_domains_mutex;
289#endif
290
1da177e4 291struct sched_info {
7f5f8e8d 292#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
293 /* Cumulative counters: */
294
295 /* # of times we have run on this CPU: */
296 unsigned long pcount;
297
298 /* Time spent waiting on a runqueue: */
299 unsigned long long run_delay;
300
301 /* Timestamps: */
302
303 /* When did we last run on a CPU? */
304 unsigned long long last_arrival;
305
306 /* When were we last queued to run? */
307 unsigned long long last_queued;
1da177e4 308
f6db8347 309#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 310};
1da177e4 311
6ecdd749
YD
312/*
313 * Integer metrics need fixed point arithmetic, e.g., sched/fair
314 * has a few: load, load_avg, util_avg, freq, and capacity.
315 *
316 * We define a basic fixed point arithmetic range, and then formalize
317 * all these metrics based on that basic range.
318 */
5eca1c10
IM
319# define SCHED_FIXEDPOINT_SHIFT 10
320# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 321
69842cba
PB
322/* Increase resolution of cpu_capacity calculations */
323# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
324# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
325
20b8a59f 326struct load_weight {
5eca1c10
IM
327 unsigned long weight;
328 u32 inv_weight;
20b8a59f
IM
329};
330
7f65ea42
PB
331/**
332 * struct util_est - Estimation utilization of FAIR tasks
333 * @enqueued: instantaneous estimated utilization of a task/cpu
334 * @ewma: the Exponential Weighted Moving Average (EWMA)
335 * utilization of a task
336 *
337 * Support data structure to track an Exponential Weighted Moving Average
338 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
339 * average each time a task completes an activation. Sample's weight is chosen
340 * so that the EWMA will be relatively insensitive to transient changes to the
341 * task's workload.
342 *
343 * The enqueued attribute has a slightly different meaning for tasks and cpus:
344 * - task: the task's util_avg at last task dequeue time
345 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
346 * Thus, the util_est.enqueued of a task represents the contribution on the
347 * estimated utilization of the CPU where that task is currently enqueued.
348 *
349 * Only for tasks we track a moving average of the past instantaneous
350 * estimated utilization. This allows to absorb sporadic drops in utilization
351 * of an otherwise almost periodic task.
352 */
353struct util_est {
354 unsigned int enqueued;
355 unsigned int ewma;
356#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 357} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 358
9d89c257 359/*
9f683953 360 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 361 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
362 *
363 * [load_avg definition]
364 *
365 * load_avg = runnable% * scale_load_down(load)
366 *
9f683953
VG
367 * [runnable_avg definition]
368 *
369 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 370 *
7b595334
YD
371 * [util_avg definition]
372 *
373 * util_avg = running% * SCHED_CAPACITY_SCALE
374 *
9f683953
VG
375 * where runnable% is the time ratio that a sched_entity is runnable and
376 * running% the time ratio that a sched_entity is running.
377 *
378 * For cfs_rq, they are the aggregated values of all runnable and blocked
379 * sched_entities.
7b595334 380 *
9f683953
VG
381 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU
382 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
383 * for computing those signals (see update_rq_clock_pelt())
7b595334 384 *
23127296
VG
385 * N.B., the above ratios (runnable% and running%) themselves are in the
386 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
387 * to as large a range as necessary. This is for example reflected by
388 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
389 *
390 * [Overflow issue]
391 *
392 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
393 * with the highest load (=88761), always runnable on a single cfs_rq,
394 * and should not overflow as the number already hits PID_MAX_LIMIT.
395 *
396 * For all other cases (including 32-bit kernels), struct load_weight's
397 * weight will overflow first before we do, because:
398 *
399 * Max(load_avg) <= Max(load.weight)
400 *
401 * Then it is the load_weight's responsibility to consider overflow
402 * issues.
9d89c257 403 */
9d85f21c 404struct sched_avg {
5eca1c10
IM
405 u64 last_update_time;
406 u64 load_sum;
9f683953 407 u64 runnable_sum;
5eca1c10
IM
408 u32 util_sum;
409 u32 period_contrib;
410 unsigned long load_avg;
9f683953 411 unsigned long runnable_avg;
5eca1c10 412 unsigned long util_avg;
7f65ea42 413 struct util_est util_est;
317d359d 414} ____cacheline_aligned;
9d85f21c 415
41acab88 416struct sched_statistics {
7f5f8e8d 417#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
418 u64 wait_start;
419 u64 wait_max;
420 u64 wait_count;
421 u64 wait_sum;
422 u64 iowait_count;
423 u64 iowait_sum;
424
425 u64 sleep_start;
426 u64 sleep_max;
427 s64 sum_sleep_runtime;
428
429 u64 block_start;
430 u64 block_max;
431 u64 exec_max;
432 u64 slice_max;
433
434 u64 nr_migrations_cold;
435 u64 nr_failed_migrations_affine;
436 u64 nr_failed_migrations_running;
437 u64 nr_failed_migrations_hot;
438 u64 nr_forced_migrations;
439
440 u64 nr_wakeups;
441 u64 nr_wakeups_sync;
442 u64 nr_wakeups_migrate;
443 u64 nr_wakeups_local;
444 u64 nr_wakeups_remote;
445 u64 nr_wakeups_affine;
446 u64 nr_wakeups_affine_attempts;
447 u64 nr_wakeups_passive;
448 u64 nr_wakeups_idle;
41acab88 449#endif
7f5f8e8d 450};
41acab88
LDM
451
452struct sched_entity {
5eca1c10
IM
453 /* For load-balancing: */
454 struct load_weight load;
455 struct rb_node run_node;
456 struct list_head group_node;
457 unsigned int on_rq;
41acab88 458
5eca1c10
IM
459 u64 exec_start;
460 u64 sum_exec_runtime;
461 u64 vruntime;
462 u64 prev_sum_exec_runtime;
41acab88 463
5eca1c10 464 u64 nr_migrations;
41acab88 465
5eca1c10 466 struct sched_statistics statistics;
94c18227 467
20b8a59f 468#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
469 int depth;
470 struct sched_entity *parent;
20b8a59f 471 /* rq on which this entity is (to be) queued: */
5eca1c10 472 struct cfs_rq *cfs_rq;
20b8a59f 473 /* rq "owned" by this entity/group: */
5eca1c10 474 struct cfs_rq *my_q;
9f683953
VG
475 /* cached value of my_q->h_nr_running */
476 unsigned long runnable_weight;
20b8a59f 477#endif
8bd75c77 478
141965c7 479#ifdef CONFIG_SMP
5a107804
JO
480 /*
481 * Per entity load average tracking.
482 *
483 * Put into separate cache line so it does not
484 * collide with read-mostly values above.
485 */
317d359d 486 struct sched_avg avg;
9d85f21c 487#endif
20b8a59f 488};
70b97a7f 489
fa717060 490struct sched_rt_entity {
5eca1c10
IM
491 struct list_head run_list;
492 unsigned long timeout;
493 unsigned long watchdog_stamp;
494 unsigned int time_slice;
495 unsigned short on_rq;
496 unsigned short on_list;
497
498 struct sched_rt_entity *back;
052f1dc7 499#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 500 struct sched_rt_entity *parent;
6f505b16 501 /* rq on which this entity is (to be) queued: */
5eca1c10 502 struct rt_rq *rt_rq;
6f505b16 503 /* rq "owned" by this entity/group: */
5eca1c10 504 struct rt_rq *my_q;
6f505b16 505#endif
3859a271 506} __randomize_layout;
fa717060 507
aab03e05 508struct sched_dl_entity {
5eca1c10 509 struct rb_node rb_node;
aab03e05
DF
510
511 /*
512 * Original scheduling parameters. Copied here from sched_attr
4027d080 513 * during sched_setattr(), they will remain the same until
514 * the next sched_setattr().
aab03e05 515 */
5eca1c10
IM
516 u64 dl_runtime; /* Maximum runtime for each instance */
517 u64 dl_deadline; /* Relative deadline of each instance */
518 u64 dl_period; /* Separation of two instances (period) */
54d6d303 519 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 520 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
521
522 /*
523 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 524 * they are continuously updated during task execution. Note that
aab03e05
DF
525 * the remaining runtime could be < 0 in case we are in overrun.
526 */
5eca1c10
IM
527 s64 runtime; /* Remaining runtime for this instance */
528 u64 deadline; /* Absolute deadline for this instance */
529 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
530
531 /*
532 * Some bool flags:
533 *
534 * @dl_throttled tells if we exhausted the runtime. If so, the
535 * task has to wait for a replenishment to be performed at the
536 * next firing of dl_timer.
537 *
2d3d891d
DF
538 * @dl_boosted tells if we are boosted due to DI. If so we are
539 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
540 * exit the critical section);
541 *
5eca1c10 542 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 543 * all its available runtime during the last job.
209a0cbd
LA
544 *
545 * @dl_non_contending tells if the task is inactive while still
546 * contributing to the active utilization. In other words, it
547 * indicates if the inactive timer has been armed and its handler
548 * has not been executed yet. This flag is useful to avoid race
549 * conditions between the inactive timer handler and the wakeup
550 * code.
34be3930
JL
551 *
552 * @dl_overrun tells if the task asked to be informed about runtime
553 * overruns.
aab03e05 554 */
aa5222e9
DC
555 unsigned int dl_throttled : 1;
556 unsigned int dl_boosted : 1;
557 unsigned int dl_yielded : 1;
558 unsigned int dl_non_contending : 1;
34be3930 559 unsigned int dl_overrun : 1;
aab03e05
DF
560
561 /*
562 * Bandwidth enforcement timer. Each -deadline task has its
563 * own bandwidth to be enforced, thus we need one timer per task.
564 */
5eca1c10 565 struct hrtimer dl_timer;
209a0cbd
LA
566
567 /*
568 * Inactive timer, responsible for decreasing the active utilization
569 * at the "0-lag time". When a -deadline task blocks, it contributes
570 * to GRUB's active utilization until the "0-lag time", hence a
571 * timer is needed to decrease the active utilization at the correct
572 * time.
573 */
574 struct hrtimer inactive_timer;
aab03e05 575};
8bd75c77 576
69842cba
PB
577#ifdef CONFIG_UCLAMP_TASK
578/* Number of utilization clamp buckets (shorter alias) */
579#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
580
581/*
582 * Utilization clamp for a scheduling entity
583 * @value: clamp value "assigned" to a se
584 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 585 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 586 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
587 *
588 * The bucket_id is the index of the clamp bucket matching the clamp value
589 * which is pre-computed and stored to avoid expensive integer divisions from
590 * the fast path.
e8f14172
PB
591 *
592 * The active bit is set whenever a task has got an "effective" value assigned,
593 * which can be different from the clamp value "requested" from user-space.
594 * This allows to know a task is refcounted in the rq's bucket corresponding
595 * to the "effective" bucket_id.
a509a7cd
PB
596 *
597 * The user_defined bit is set whenever a task has got a task-specific clamp
598 * value requested from userspace, i.e. the system defaults apply to this task
599 * just as a restriction. This allows to relax default clamps when a less
600 * restrictive task-specific value has been requested, thus allowing to
601 * implement a "nice" semantic. For example, a task running with a 20%
602 * default boost can still drop its own boosting to 0%.
69842cba
PB
603 */
604struct uclamp_se {
605 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
606 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 607 unsigned int active : 1;
a509a7cd 608 unsigned int user_defined : 1;
69842cba
PB
609};
610#endif /* CONFIG_UCLAMP_TASK */
611
1d082fd0
PM
612union rcu_special {
613 struct {
5eca1c10
IM
614 u8 blocked;
615 u8 need_qs;
05f41571 616 u8 exp_hint; /* Hint for performance. */
276c4104 617 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 618 } b; /* Bits. */
05f41571 619 u32 s; /* Set of bits. */
1d082fd0 620};
86848966 621
8dc85d54
PZ
622enum perf_event_task_context {
623 perf_invalid_context = -1,
624 perf_hw_context = 0,
89a1e187 625 perf_sw_context,
8dc85d54
PZ
626 perf_nr_task_contexts,
627};
628
eb61baf6
IM
629struct wake_q_node {
630 struct wake_q_node *next;
631};
632
1da177e4 633struct task_struct {
c65eacbe
AL
634#ifdef CONFIG_THREAD_INFO_IN_TASK
635 /*
636 * For reasons of header soup (see current_thread_info()), this
637 * must be the first element of task_struct.
638 */
5eca1c10 639 struct thread_info thread_info;
c65eacbe 640#endif
5eca1c10
IM
641 /* -1 unrunnable, 0 runnable, >0 stopped: */
642 volatile long state;
29e48ce8
KC
643
644 /*
645 * This begins the randomizable portion of task_struct. Only
646 * scheduling-critical items should be added above here.
647 */
648 randomized_struct_fields_start
649
5eca1c10 650 void *stack;
ec1d2819 651 refcount_t usage;
5eca1c10
IM
652 /* Per task flags (PF_*), defined further below: */
653 unsigned int flags;
654 unsigned int ptrace;
1da177e4 655
2dd73a4f 656#ifdef CONFIG_SMP
5eca1c10 657 struct llist_node wake_entry;
a1488664 658 unsigned int wake_entry_type;
5eca1c10 659 int on_cpu;
c65eacbe 660#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
661 /* Current CPU: */
662 unsigned int cpu;
c65eacbe 663#endif
5eca1c10
IM
664 unsigned int wakee_flips;
665 unsigned long wakee_flip_decay_ts;
666 struct task_struct *last_wakee;
ac66f547 667
32e839dd
MG
668 /*
669 * recent_used_cpu is initially set as the last CPU used by a task
670 * that wakes affine another task. Waker/wakee relationships can
671 * push tasks around a CPU where each wakeup moves to the next one.
672 * Tracking a recently used CPU allows a quick search for a recently
673 * used CPU that may be idle.
674 */
675 int recent_used_cpu;
5eca1c10 676 int wake_cpu;
2dd73a4f 677#endif
5eca1c10
IM
678 int on_rq;
679
680 int prio;
681 int static_prio;
682 int normal_prio;
683 unsigned int rt_priority;
50e645a8 684
5eca1c10
IM
685 const struct sched_class *sched_class;
686 struct sched_entity se;
687 struct sched_rt_entity rt;
8323f26c 688#ifdef CONFIG_CGROUP_SCHED
5eca1c10 689 struct task_group *sched_task_group;
8323f26c 690#endif
5eca1c10 691 struct sched_dl_entity dl;
1da177e4 692
69842cba 693#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
694 /* Clamp values requested for a scheduling entity */
695 struct uclamp_se uclamp_req[UCLAMP_CNT];
696 /* Effective clamp values used for a scheduling entity */
69842cba
PB
697 struct uclamp_se uclamp[UCLAMP_CNT];
698#endif
699
e107be36 700#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
701 /* List of struct preempt_notifier: */
702 struct hlist_head preempt_notifiers;
e107be36
AK
703#endif
704
6c5c9341 705#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 706 unsigned int btrace_seq;
6c5c9341 707#endif
1da177e4 708
5eca1c10
IM
709 unsigned int policy;
710 int nr_cpus_allowed;
3bd37062
SAS
711 const cpumask_t *cpus_ptr;
712 cpumask_t cpus_mask;
1da177e4 713
a57eb940 714#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
715 int rcu_read_lock_nesting;
716 union rcu_special rcu_read_unlock_special;
717 struct list_head rcu_node_entry;
718 struct rcu_node *rcu_blocked_node;
28f6569a 719#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 720
8315f422 721#ifdef CONFIG_TASKS_RCU
5eca1c10 722 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
723 u8 rcu_tasks_holdout;
724 u8 rcu_tasks_idx;
5eca1c10 725 int rcu_tasks_idle_cpu;
ccdd29ff 726 struct list_head rcu_tasks_holdout_list;
8315f422 727#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 728
d5f177d3
PM
729#ifdef CONFIG_TASKS_TRACE_RCU
730 int trc_reader_nesting;
731 int trc_ipi_to_cpu;
276c4104 732 union rcu_special trc_reader_special;
d5f177d3
PM
733 bool trc_reader_checked;
734 struct list_head trc_holdout_list;
735#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
736
5eca1c10 737 struct sched_info sched_info;
1da177e4 738
5eca1c10 739 struct list_head tasks;
806c09a7 740#ifdef CONFIG_SMP
5eca1c10
IM
741 struct plist_node pushable_tasks;
742 struct rb_node pushable_dl_tasks;
806c09a7 743#endif
1da177e4 744
5eca1c10
IM
745 struct mm_struct *mm;
746 struct mm_struct *active_mm;
314ff785
IM
747
748 /* Per-thread vma caching: */
5eca1c10 749 struct vmacache vmacache;
314ff785 750
5eca1c10
IM
751#ifdef SPLIT_RSS_COUNTING
752 struct task_rss_stat rss_stat;
34e55232 753#endif
5eca1c10
IM
754 int exit_state;
755 int exit_code;
756 int exit_signal;
757 /* The signal sent when the parent dies: */
758 int pdeath_signal;
759 /* JOBCTL_*, siglock protected: */
760 unsigned long jobctl;
761
762 /* Used for emulating ABI behavior of previous Linux versions: */
763 unsigned int personality;
764
765 /* Scheduler bits, serialized by scheduler locks: */
766 unsigned sched_reset_on_fork:1;
767 unsigned sched_contributes_to_load:1;
768 unsigned sched_migrated:1;
769 unsigned sched_remote_wakeup:1;
eb414681
JW
770#ifdef CONFIG_PSI
771 unsigned sched_psi_wake_requeue:1;
772#endif
773
5eca1c10
IM
774 /* Force alignment to the next boundary: */
775 unsigned :0;
776
777 /* Unserialized, strictly 'current' */
778
779 /* Bit to tell LSMs we're in execve(): */
780 unsigned in_execve:1;
781 unsigned in_iowait:1;
782#ifndef TIF_RESTORE_SIGMASK
783 unsigned restore_sigmask:1;
7e781418 784#endif
626ebc41 785#ifdef CONFIG_MEMCG
29ef680a 786 unsigned in_user_fault:1;
127424c8 787#endif
ff303e66 788#ifdef CONFIG_COMPAT_BRK
5eca1c10 789 unsigned brk_randomized:1;
ff303e66 790#endif
77f88796
TH
791#ifdef CONFIG_CGROUPS
792 /* disallow userland-initiated cgroup migration */
793 unsigned no_cgroup_migration:1;
76f969e8
RG
794 /* task is frozen/stopped (used by the cgroup freezer) */
795 unsigned frozen:1;
77f88796 796#endif
d09d8df3 797#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
798 unsigned use_memdelay:1;
799#endif
1066d1b6
YS
800#ifdef CONFIG_PSI
801 /* Stalled due to lack of memory */
802 unsigned in_memstall:1;
803#endif
6f185c29 804
5eca1c10 805 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 806
5eca1c10 807 struct restart_block restart_block;
f56141e3 808
5eca1c10
IM
809 pid_t pid;
810 pid_t tgid;
0a425405 811
050e9baa 812#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
813 /* Canary value for the -fstack-protector GCC feature: */
814 unsigned long stack_canary;
1314562a 815#endif
4d1d61a6 816 /*
5eca1c10 817 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 818 * older sibling, respectively. (p->father can be replaced with
f470021a 819 * p->real_parent->pid)
1da177e4 820 */
5eca1c10
IM
821
822 /* Real parent process: */
823 struct task_struct __rcu *real_parent;
824
825 /* Recipient of SIGCHLD, wait4() reports: */
826 struct task_struct __rcu *parent;
827
1da177e4 828 /*
5eca1c10 829 * Children/sibling form the list of natural children:
1da177e4 830 */
5eca1c10
IM
831 struct list_head children;
832 struct list_head sibling;
833 struct task_struct *group_leader;
1da177e4 834
f470021a 835 /*
5eca1c10
IM
836 * 'ptraced' is the list of tasks this task is using ptrace() on.
837 *
f470021a 838 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 839 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 840 */
5eca1c10
IM
841 struct list_head ptraced;
842 struct list_head ptrace_entry;
f470021a 843
1da177e4 844 /* PID/PID hash table linkage. */
2c470475
EB
845 struct pid *thread_pid;
846 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
847 struct list_head thread_group;
848 struct list_head thread_node;
849
850 struct completion *vfork_done;
1da177e4 851
5eca1c10
IM
852 /* CLONE_CHILD_SETTID: */
853 int __user *set_child_tid;
1da177e4 854
5eca1c10
IM
855 /* CLONE_CHILD_CLEARTID: */
856 int __user *clear_child_tid;
857
858 u64 utime;
859 u64 stime;
40565b5a 860#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
861 u64 utimescaled;
862 u64 stimescaled;
40565b5a 863#endif
5eca1c10
IM
864 u64 gtime;
865 struct prev_cputime prev_cputime;
6a61671b 866#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 867 struct vtime vtime;
d99ca3b9 868#endif
d027d45d
FW
869
870#ifdef CONFIG_NO_HZ_FULL
5eca1c10 871 atomic_t tick_dep_mask;
d027d45d 872#endif
5eca1c10
IM
873 /* Context switch counts: */
874 unsigned long nvcsw;
875 unsigned long nivcsw;
876
877 /* Monotonic time in nsecs: */
878 u64 start_time;
879
880 /* Boot based time in nsecs: */
cf25e24d 881 u64 start_boottime;
5eca1c10
IM
882
883 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
884 unsigned long min_flt;
885 unsigned long maj_flt;
1da177e4 886
2b69942f
TG
887 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
888 struct posix_cputimers posix_cputimers;
1da177e4 889
5eca1c10
IM
890 /* Process credentials: */
891
892 /* Tracer's credentials at attach: */
893 const struct cred __rcu *ptracer_cred;
894
895 /* Objective and real subjective task credentials (COW): */
896 const struct cred __rcu *real_cred;
897
898 /* Effective (overridable) subjective task credentials (COW): */
899 const struct cred __rcu *cred;
900
7743c48e
DH
901#ifdef CONFIG_KEYS
902 /* Cached requested key. */
903 struct key *cached_requested_key;
904#endif
905
5eca1c10
IM
906 /*
907 * executable name, excluding path.
908 *
909 * - normally initialized setup_new_exec()
910 * - access it with [gs]et_task_comm()
911 * - lock it with task_lock()
912 */
913 char comm[TASK_COMM_LEN];
914
915 struct nameidata *nameidata;
916
3d5b6fcc 917#ifdef CONFIG_SYSVIPC
5eca1c10
IM
918 struct sysv_sem sysvsem;
919 struct sysv_shm sysvshm;
3d5b6fcc 920#endif
e162b39a 921#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 922 unsigned long last_switch_count;
a2e51445 923 unsigned long last_switch_time;
82a1fcb9 924#endif
5eca1c10
IM
925 /* Filesystem information: */
926 struct fs_struct *fs;
927
928 /* Open file information: */
929 struct files_struct *files;
930
931 /* Namespaces: */
932 struct nsproxy *nsproxy;
933
934 /* Signal handlers: */
935 struct signal_struct *signal;
913292c9 936 struct sighand_struct __rcu *sighand;
5eca1c10
IM
937 sigset_t blocked;
938 sigset_t real_blocked;
939 /* Restored if set_restore_sigmask() was used: */
940 sigset_t saved_sigmask;
941 struct sigpending pending;
942 unsigned long sas_ss_sp;
943 size_t sas_ss_size;
944 unsigned int sas_ss_flags;
945
946 struct callback_head *task_works;
947
4b7d248b 948#ifdef CONFIG_AUDIT
bfef93a5 949#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
950 struct audit_context *audit_context;
951#endif
5eca1c10
IM
952 kuid_t loginuid;
953 unsigned int sessionid;
bfef93a5 954#endif
5eca1c10
IM
955 struct seccomp seccomp;
956
957 /* Thread group tracking: */
d1e7fd64
EB
958 u64 parent_exec_id;
959 u64 self_exec_id;
1da177e4 960
5eca1c10
IM
961 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
962 spinlock_t alloc_lock;
1da177e4 963
b29739f9 964 /* Protection of the PI data structures: */
5eca1c10 965 raw_spinlock_t pi_lock;
b29739f9 966
5eca1c10 967 struct wake_q_node wake_q;
76751049 968
23f78d4a 969#ifdef CONFIG_RT_MUTEXES
5eca1c10 970 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 971 struct rb_root_cached pi_waiters;
e96a7705
XP
972 /* Updated under owner's pi_lock and rq lock */
973 struct task_struct *pi_top_task;
5eca1c10
IM
974 /* Deadlock detection and priority inheritance handling: */
975 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
976#endif
977
408894ee 978#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
979 /* Mutex deadlock detection: */
980 struct mutex_waiter *blocked_on;
408894ee 981#endif
5eca1c10 982
312364f3
DV
983#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
984 int non_block_count;
985#endif
986
de30a2b3 987#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10 988 unsigned int irq_events;
de8f5e4f 989 unsigned int hardirq_threaded;
5eca1c10
IM
990 unsigned long hardirq_enable_ip;
991 unsigned long hardirq_disable_ip;
992 unsigned int hardirq_enable_event;
993 unsigned int hardirq_disable_event;
994 int hardirqs_enabled;
995 int hardirq_context;
c86e9b98 996 u64 hardirq_chain_key;
5eca1c10
IM
997 unsigned long softirq_disable_ip;
998 unsigned long softirq_enable_ip;
999 unsigned int softirq_disable_event;
1000 unsigned int softirq_enable_event;
1001 int softirqs_enabled;
1002 int softirq_context;
40db1739 1003 int irq_config;
de30a2b3 1004#endif
5eca1c10 1005
fbb9ce95 1006#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1007# define MAX_LOCK_DEPTH 48UL
1008 u64 curr_chain_key;
1009 int lockdep_depth;
1010 unsigned int lockdep_recursion;
1011 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1012#endif
5eca1c10 1013
c6d30853 1014#ifdef CONFIG_UBSAN
5eca1c10 1015 unsigned int in_ubsan;
c6d30853 1016#endif
408894ee 1017
5eca1c10
IM
1018 /* Journalling filesystem info: */
1019 void *journal_info;
1da177e4 1020
5eca1c10
IM
1021 /* Stacked block device info: */
1022 struct bio_list *bio_list;
d89d8796 1023
73c10101 1024#ifdef CONFIG_BLOCK
5eca1c10
IM
1025 /* Stack plugging: */
1026 struct blk_plug *plug;
73c10101
JA
1027#endif
1028
5eca1c10
IM
1029 /* VM state: */
1030 struct reclaim_state *reclaim_state;
1031
1032 struct backing_dev_info *backing_dev_info;
1da177e4 1033
5eca1c10 1034 struct io_context *io_context;
1da177e4 1035
5e1f0f09
MG
1036#ifdef CONFIG_COMPACTION
1037 struct capture_control *capture_control;
1038#endif
5eca1c10
IM
1039 /* Ptrace state: */
1040 unsigned long ptrace_message;
ae7795bc 1041 kernel_siginfo_t *last_siginfo;
1da177e4 1042
5eca1c10 1043 struct task_io_accounting ioac;
eb414681
JW
1044#ifdef CONFIG_PSI
1045 /* Pressure stall state */
1046 unsigned int psi_flags;
1047#endif
5eca1c10
IM
1048#ifdef CONFIG_TASK_XACCT
1049 /* Accumulated RSS usage: */
1050 u64 acct_rss_mem1;
1051 /* Accumulated virtual memory usage: */
1052 u64 acct_vm_mem1;
1053 /* stime + utime since last update: */
1054 u64 acct_timexpd;
1da177e4
LT
1055#endif
1056#ifdef CONFIG_CPUSETS
5eca1c10
IM
1057 /* Protected by ->alloc_lock: */
1058 nodemask_t mems_allowed;
1059 /* Seqence number to catch updates: */
1060 seqcount_t mems_allowed_seq;
1061 int cpuset_mem_spread_rotor;
1062 int cpuset_slab_spread_rotor;
1da177e4 1063#endif
ddbcc7e8 1064#ifdef CONFIG_CGROUPS
5eca1c10
IM
1065 /* Control Group info protected by css_set_lock: */
1066 struct css_set __rcu *cgroups;
1067 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1068 struct list_head cg_list;
ddbcc7e8 1069#endif
e6d42931 1070#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1071 u32 closid;
d6aaba61 1072 u32 rmid;
e02737d5 1073#endif
42b2dd0a 1074#ifdef CONFIG_FUTEX
5eca1c10 1075 struct robust_list_head __user *robust_list;
34f192c6
IM
1076#ifdef CONFIG_COMPAT
1077 struct compat_robust_list_head __user *compat_robust_list;
1078#endif
5eca1c10
IM
1079 struct list_head pi_state_list;
1080 struct futex_pi_state *pi_state_cache;
3f186d97 1081 struct mutex futex_exit_mutex;
3d4775df 1082 unsigned int futex_state;
c7aceaba 1083#endif
cdd6c482 1084#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1085 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1086 struct mutex perf_event_mutex;
1087 struct list_head perf_event_list;
a63eaf34 1088#endif
8f47b187 1089#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1090 unsigned long preempt_disable_ip;
8f47b187 1091#endif
c7aceaba 1092#ifdef CONFIG_NUMA
5eca1c10
IM
1093 /* Protected by alloc_lock: */
1094 struct mempolicy *mempolicy;
45816682 1095 short il_prev;
5eca1c10 1096 short pref_node_fork;
42b2dd0a 1097#endif
cbee9f88 1098#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1099 int numa_scan_seq;
1100 unsigned int numa_scan_period;
1101 unsigned int numa_scan_period_max;
1102 int numa_preferred_nid;
1103 unsigned long numa_migrate_retry;
1104 /* Migration stamp: */
1105 u64 node_stamp;
1106 u64 last_task_numa_placement;
1107 u64 last_sum_exec_runtime;
1108 struct callback_head numa_work;
1109
cb361d8c
JH
1110 /*
1111 * This pointer is only modified for current in syscall and
1112 * pagefault context (and for tasks being destroyed), so it can be read
1113 * from any of the following contexts:
1114 * - RCU read-side critical section
1115 * - current->numa_group from everywhere
1116 * - task's runqueue locked, task not running
1117 */
1118 struct numa_group __rcu *numa_group;
8c8a743c 1119
745d6147 1120 /*
44dba3d5
IM
1121 * numa_faults is an array split into four regions:
1122 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1123 * in this precise order.
1124 *
1125 * faults_memory: Exponential decaying average of faults on a per-node
1126 * basis. Scheduling placement decisions are made based on these
1127 * counts. The values remain static for the duration of a PTE scan.
1128 * faults_cpu: Track the nodes the process was running on when a NUMA
1129 * hinting fault was incurred.
1130 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1131 * during the current scan window. When the scan completes, the counts
1132 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1133 */
5eca1c10
IM
1134 unsigned long *numa_faults;
1135 unsigned long total_numa_faults;
745d6147 1136
04bb2f94
RR
1137 /*
1138 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1139 * scan window were remote/local or failed to migrate. The task scan
1140 * period is adapted based on the locality of the faults with different
1141 * weights depending on whether they were shared or private faults
04bb2f94 1142 */
5eca1c10 1143 unsigned long numa_faults_locality[3];
04bb2f94 1144
5eca1c10 1145 unsigned long numa_pages_migrated;
cbee9f88
PZ
1146#endif /* CONFIG_NUMA_BALANCING */
1147
d7822b1e
MD
1148#ifdef CONFIG_RSEQ
1149 struct rseq __user *rseq;
d7822b1e
MD
1150 u32 rseq_sig;
1151 /*
1152 * RmW on rseq_event_mask must be performed atomically
1153 * with respect to preemption.
1154 */
1155 unsigned long rseq_event_mask;
1156#endif
1157
5eca1c10 1158 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1159
3fbd7ee2
EB
1160 union {
1161 refcount_t rcu_users;
1162 struct rcu_head rcu;
1163 };
b92ce558 1164
5eca1c10
IM
1165 /* Cache last used pipe for splice(): */
1166 struct pipe_inode_info *splice_pipe;
5640f768 1167
5eca1c10 1168 struct page_frag task_frag;
5640f768 1169
47913d4e
IM
1170#ifdef CONFIG_TASK_DELAY_ACCT
1171 struct task_delay_info *delays;
f4f154fd 1172#endif
47913d4e 1173
f4f154fd 1174#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1175 int make_it_fail;
9049f2f6 1176 unsigned int fail_nth;
ca74e92b 1177#endif
9d823e8f 1178 /*
5eca1c10
IM
1179 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1180 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1181 */
5eca1c10
IM
1182 int nr_dirtied;
1183 int nr_dirtied_pause;
1184 /* Start of a write-and-pause period: */
1185 unsigned long dirty_paused_when;
9d823e8f 1186
9745512c 1187#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1188 int latency_record_count;
1189 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1190#endif
6976675d 1191 /*
5eca1c10 1192 * Time slack values; these are used to round up poll() and
6976675d
AV
1193 * select() etc timeout values. These are in nanoseconds.
1194 */
5eca1c10
IM
1195 u64 timer_slack_ns;
1196 u64 default_timer_slack_ns;
f8d570a4 1197
0b24becc 1198#ifdef CONFIG_KASAN
5eca1c10 1199 unsigned int kasan_depth;
0b24becc 1200#endif
dfd402a4
ME
1201#ifdef CONFIG_KCSAN
1202 struct kcsan_ctx kcsan_ctx;
1203#endif
5eca1c10 1204
fb52607a 1205#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1206 /* Index of current stored address in ret_stack: */
1207 int curr_ret_stack;
39eb456d 1208 int curr_ret_depth;
5eca1c10
IM
1209
1210 /* Stack of return addresses for return function tracing: */
1211 struct ftrace_ret_stack *ret_stack;
1212
1213 /* Timestamp for last schedule: */
1214 unsigned long long ftrace_timestamp;
1215
f201ae23
FW
1216 /*
1217 * Number of functions that haven't been traced
5eca1c10 1218 * because of depth overrun:
f201ae23 1219 */
5eca1c10
IM
1220 atomic_t trace_overrun;
1221
1222 /* Pause tracing: */
1223 atomic_t tracing_graph_pause;
f201ae23 1224#endif
5eca1c10 1225
ea4e2bc4 1226#ifdef CONFIG_TRACING
5eca1c10
IM
1227 /* State flags for use by tracers: */
1228 unsigned long trace;
1229
1230 /* Bitmask and counter of trace recursion: */
1231 unsigned long trace_recursion;
261842b7 1232#endif /* CONFIG_TRACING */
5eca1c10 1233
5c9a8750 1234#ifdef CONFIG_KCOV
eec028c9
AK
1235 /* See kernel/kcov.c for more details. */
1236
5eca1c10 1237 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1238 unsigned int kcov_mode;
5eca1c10
IM
1239
1240 /* Size of the kcov_area: */
1241 unsigned int kcov_size;
1242
1243 /* Buffer for coverage collection: */
1244 void *kcov_area;
1245
1246 /* KCOV descriptor wired with this task or NULL: */
1247 struct kcov *kcov;
eec028c9
AK
1248
1249 /* KCOV common handle for remote coverage collection: */
1250 u64 kcov_handle;
1251
1252 /* KCOV sequence number: */
1253 int kcov_sequence;
5ff3b30a
AK
1254
1255 /* Collect coverage from softirq context: */
1256 unsigned int kcov_softirq;
5c9a8750 1257#endif
5eca1c10 1258
6f185c29 1259#ifdef CONFIG_MEMCG
5eca1c10
IM
1260 struct mem_cgroup *memcg_in_oom;
1261 gfp_t memcg_oom_gfp_mask;
1262 int memcg_oom_order;
b23afb93 1263
5eca1c10
IM
1264 /* Number of pages to reclaim on returning to userland: */
1265 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1266
1267 /* Used by memcontrol for targeted memcg charge: */
1268 struct mem_cgroup *active_memcg;
569b846d 1269#endif
5eca1c10 1270
d09d8df3
JB
1271#ifdef CONFIG_BLK_CGROUP
1272 struct request_queue *throttle_queue;
1273#endif
1274
0326f5a9 1275#ifdef CONFIG_UPROBES
5eca1c10 1276 struct uprobe_task *utask;
0326f5a9 1277#endif
cafe5635 1278#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1279 unsigned int sequential_io;
1280 unsigned int sequential_io_avg;
cafe5635 1281#endif
8eb23b9f 1282#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1283 unsigned long task_state_change;
8eb23b9f 1284#endif
5eca1c10 1285 int pagefault_disabled;
03049269 1286#ifdef CONFIG_MMU
5eca1c10 1287 struct task_struct *oom_reaper_list;
03049269 1288#endif
ba14a194 1289#ifdef CONFIG_VMAP_STACK
5eca1c10 1290 struct vm_struct *stack_vm_area;
ba14a194 1291#endif
68f24b08 1292#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1293 /* A live task holds one reference: */
f0b89d39 1294 refcount_t stack_refcount;
d83a7cb3
JP
1295#endif
1296#ifdef CONFIG_LIVEPATCH
1297 int patch_state;
0302e28d 1298#endif
e4e55b47
TH
1299#ifdef CONFIG_SECURITY
1300 /* Used by LSM modules for access restriction: */
1301 void *security;
68f24b08 1302#endif
29e48ce8 1303
afaef01c
AP
1304#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1305 unsigned long lowest_stack;
c8d12627 1306 unsigned long prev_lowest_stack;
afaef01c
AP
1307#endif
1308
5567d11c
PZ
1309#ifdef CONFIG_X86_MCE
1310 u64 mce_addr;
1311 u64 mce_status;
1312 struct callback_head mce_kill_me;
1313#endif
1314
29e48ce8
KC
1315 /*
1316 * New fields for task_struct should be added above here, so that
1317 * they are included in the randomized portion of task_struct.
1318 */
1319 randomized_struct_fields_end
1320
5eca1c10
IM
1321 /* CPU-specific state of this task: */
1322 struct thread_struct thread;
1323
1324 /*
1325 * WARNING: on x86, 'thread_struct' contains a variable-sized
1326 * structure. It *MUST* be at the end of 'task_struct'.
1327 *
1328 * Do not put anything below here!
1329 */
1da177e4
LT
1330};
1331
e868171a 1332static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1333{
2c470475 1334 return task->thread_pid;
22c935f4
EB
1335}
1336
7af57294
PE
1337/*
1338 * the helpers to get the task's different pids as they are seen
1339 * from various namespaces
1340 *
1341 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1342 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1343 * current.
7af57294
PE
1344 * task_xid_nr_ns() : id seen from the ns specified;
1345 *
7af57294
PE
1346 * see also pid_nr() etc in include/linux/pid.h
1347 */
5eca1c10 1348pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1349
e868171a 1350static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1351{
1352 return tsk->pid;
1353}
1354
5eca1c10 1355static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1356{
1357 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1358}
7af57294
PE
1359
1360static inline pid_t task_pid_vnr(struct task_struct *tsk)
1361{
52ee2dfd 1362 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1363}
1364
1365
e868171a 1366static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1367{
1368 return tsk->tgid;
1369}
1370
5eca1c10
IM
1371/**
1372 * pid_alive - check that a task structure is not stale
1373 * @p: Task structure to be checked.
1374 *
1375 * Test if a process is not yet dead (at most zombie state)
1376 * If pid_alive fails, then pointers within the task structure
1377 * can be stale and must not be dereferenced.
1378 *
1379 * Return: 1 if the process is alive. 0 otherwise.
1380 */
1381static inline int pid_alive(const struct task_struct *p)
1382{
2c470475 1383 return p->thread_pid != NULL;
5eca1c10 1384}
7af57294 1385
5eca1c10 1386static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1387{
52ee2dfd 1388 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1389}
1390
7af57294
PE
1391static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1392{
52ee2dfd 1393 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1394}
1395
1396
5eca1c10 1397static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1398{
52ee2dfd 1399 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1400}
1401
7af57294
PE
1402static inline pid_t task_session_vnr(struct task_struct *tsk)
1403{
52ee2dfd 1404 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1405}
1406
dd1c1f2f
ON
1407static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1408{
6883f81a 1409 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1410}
1411
1412static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1413{
6883f81a 1414 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1415}
1416
1417static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1418{
1419 pid_t pid = 0;
1420
1421 rcu_read_lock();
1422 if (pid_alive(tsk))
1423 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1424 rcu_read_unlock();
1425
1426 return pid;
1427}
1428
1429static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1430{
1431 return task_ppid_nr_ns(tsk, &init_pid_ns);
1432}
1433
5eca1c10 1434/* Obsolete, do not use: */
1b0f7ffd
ON
1435static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1436{
1437 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1438}
7af57294 1439
06eb6184
PZ
1440#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1441#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1442
1d48b080 1443static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1444{
1593baab
PZ
1445 unsigned int tsk_state = READ_ONCE(tsk->state);
1446 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1447
06eb6184
PZ
1448 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1449
06eb6184
PZ
1450 if (tsk_state == TASK_IDLE)
1451 state = TASK_REPORT_IDLE;
1452
1593baab
PZ
1453 return fls(state);
1454}
1455
1d48b080 1456static inline char task_index_to_char(unsigned int state)
1593baab 1457{
8ef9925b 1458 static const char state_char[] = "RSDTtXZPI";
1593baab 1459
06eb6184 1460 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1461
1593baab
PZ
1462 return state_char[state];
1463}
1464
1465static inline char task_state_to_char(struct task_struct *tsk)
1466{
1d48b080 1467 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1468}
1469
f400e198 1470/**
570f5241
SS
1471 * is_global_init - check if a task structure is init. Since init
1472 * is free to have sub-threads we need to check tgid.
3260259f
HK
1473 * @tsk: Task structure to be checked.
1474 *
1475 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1476 *
1477 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1478 */
e868171a 1479static inline int is_global_init(struct task_struct *tsk)
b461cc03 1480{
570f5241 1481 return task_tgid_nr(tsk) == 1;
b461cc03 1482}
b460cbc5 1483
9ec52099
CLG
1484extern struct pid *cad_pid;
1485
1da177e4
LT
1486/*
1487 * Per process flags
1488 */
5eca1c10
IM
1489#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1490#define PF_EXITING 0x00000004 /* Getting shut down */
5eca1c10
IM
1491#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1492#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1493#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1494#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1495#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1496#define PF_DUMPCORE 0x00000200 /* Dumped core */
1497#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1498#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1499#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1500#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1501#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1502#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1503#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1504#define PF_KSWAPD 0x00020000 /* I am kswapd */
1505#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1506#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
a37b0715
N
1507#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1508 * I am cleaning dirty pages from some other bdi. */
5eca1c10
IM
1509#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1510#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1511#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
73ab1cb2 1512#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
3bd37062 1513#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1514#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1515#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
771b53d0 1516#define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
5eca1c10
IM
1517#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1518#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1519
1520/*
1521 * Only the _current_ task can read/write to tsk->flags, but other
1522 * tasks can access tsk->flags in readonly mode for example
1523 * with tsk_used_math (like during threaded core dumping).
1524 * There is however an exception to this rule during ptrace
1525 * or during fork: the ptracer task is allowed to write to the
1526 * child->flags of its traced child (same goes for fork, the parent
1527 * can write to the child->flags), because we're guaranteed the
1528 * child is not running and in turn not changing child->flags
1529 * at the same time the parent does it.
1530 */
5eca1c10
IM
1531#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1532#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1533#define clear_used_math() clear_stopped_child_used_math(current)
1534#define set_used_math() set_stopped_child_used_math(current)
1535
1da177e4
LT
1536#define conditional_stopped_child_used_math(condition, child) \
1537 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1538
1539#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1540
1da177e4
LT
1541#define copy_to_stopped_child_used_math(child) \
1542 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1543
1da177e4 1544/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1545#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1546#define used_math() tsk_used_math(current)
1da177e4 1547
62ec05dd
TG
1548static inline bool is_percpu_thread(void)
1549{
1550#ifdef CONFIG_SMP
1551 return (current->flags & PF_NO_SETAFFINITY) &&
1552 (current->nr_cpus_allowed == 1);
1553#else
1554 return true;
1555#endif
1556}
1557
1d4457f9 1558/* Per-process atomic flags. */
5eca1c10
IM
1559#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1560#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1561#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1562#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1563#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1564#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1565#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1566#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1567
e0e5070b
ZL
1568#define TASK_PFA_TEST(name, func) \
1569 static inline bool task_##func(struct task_struct *p) \
1570 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1571
e0e5070b
ZL
1572#define TASK_PFA_SET(name, func) \
1573 static inline void task_set_##func(struct task_struct *p) \
1574 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1575
e0e5070b
ZL
1576#define TASK_PFA_CLEAR(name, func) \
1577 static inline void task_clear_##func(struct task_struct *p) \
1578 { clear_bit(PFA_##name, &p->atomic_flags); }
1579
1580TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1581TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1582
2ad654bc
ZL
1583TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1584TASK_PFA_SET(SPREAD_PAGE, spread_page)
1585TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1586
1587TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1588TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1589TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1590
356e4bff
TG
1591TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1592TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1593TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1594
71368af9
WL
1595TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1596TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1597TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1598
356e4bff
TG
1599TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1600TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1601
9137bb27
TG
1602TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1603TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1604TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1605
1606TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1607TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1608
5eca1c10 1609static inline void
717a94b5 1610current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1611{
717a94b5
N
1612 current->flags &= ~flags;
1613 current->flags |= orig_flags & flags;
907aed48
MG
1614}
1615
5eca1c10
IM
1616extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1617extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1618#ifdef CONFIG_SMP
5eca1c10
IM
1619extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1620extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1621#else
5eca1c10 1622static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1623{
1624}
5eca1c10 1625static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1626{
96f874e2 1627 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1628 return -EINVAL;
1629 return 0;
1630}
1631#endif
e0ad9556 1632
fa93384f 1633extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1634extern void set_user_nice(struct task_struct *p, long nice);
1635extern int task_prio(const struct task_struct *p);
5eca1c10 1636
d0ea0268
DY
1637/**
1638 * task_nice - return the nice value of a given task.
1639 * @p: the task in question.
1640 *
1641 * Return: The nice value [ -20 ... 0 ... 19 ].
1642 */
1643static inline int task_nice(const struct task_struct *p)
1644{
1645 return PRIO_TO_NICE((p)->static_prio);
1646}
5eca1c10 1647
36c8b586
IM
1648extern int can_nice(const struct task_struct *p, const int nice);
1649extern int task_curr(const struct task_struct *p);
1da177e4 1650extern int idle_cpu(int cpu);
943d355d 1651extern int available_idle_cpu(int cpu);
5eca1c10
IM
1652extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1653extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1654extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1655extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1656extern struct task_struct *idle_task(int cpu);
5eca1c10 1657
c4f30608
PM
1658/**
1659 * is_idle_task - is the specified task an idle task?
fa757281 1660 * @p: the task in question.
e69f6186
YB
1661 *
1662 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1663 */
7061ca3b 1664static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1665{
c1de45ca 1666 return !!(p->flags & PF_IDLE);
c4f30608 1667}
5eca1c10 1668
36c8b586 1669extern struct task_struct *curr_task(int cpu);
a458ae2e 1670extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1671
1672void yield(void);
1673
1da177e4 1674union thread_union {
0500871f
DH
1675#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1676 struct task_struct task;
1677#endif
c65eacbe 1678#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1679 struct thread_info thread_info;
c65eacbe 1680#endif
1da177e4
LT
1681 unsigned long stack[THREAD_SIZE/sizeof(long)];
1682};
1683
0500871f
DH
1684#ifndef CONFIG_THREAD_INFO_IN_TASK
1685extern struct thread_info init_thread_info;
1686#endif
1687
1688extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1689
f3ac6067
IM
1690#ifdef CONFIG_THREAD_INFO_IN_TASK
1691static inline struct thread_info *task_thread_info(struct task_struct *task)
1692{
1693 return &task->thread_info;
1694}
1695#elif !defined(__HAVE_THREAD_FUNCTIONS)
1696# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1697#endif
1698
198fe21b
PE
1699/*
1700 * find a task by one of its numerical ids
1701 *
198fe21b
PE
1702 * find_task_by_pid_ns():
1703 * finds a task by its pid in the specified namespace
228ebcbe
PE
1704 * find_task_by_vpid():
1705 * finds a task by its virtual pid
198fe21b 1706 *
e49859e7 1707 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1708 */
1709
228ebcbe 1710extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1711extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1712
2ee08260
MR
1713/*
1714 * find a task by its virtual pid and get the task struct
1715 */
1716extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1717
b3c97528
HH
1718extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1719extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1720extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1721
1da177e4 1722#ifdef CONFIG_SMP
5eca1c10 1723extern void kick_process(struct task_struct *tsk);
1da177e4 1724#else
5eca1c10 1725static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1726#endif
1da177e4 1727
82b89778 1728extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1729
82b89778
AH
1730static inline void set_task_comm(struct task_struct *tsk, const char *from)
1731{
1732 __set_task_comm(tsk, from, false);
1733}
5eca1c10 1734
3756f640
AB
1735extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1736#define get_task_comm(buf, tsk) ({ \
1737 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1738 __get_task_comm(buf, sizeof(buf), tsk); \
1739})
1da177e4
LT
1740
1741#ifdef CONFIG_SMP
2a0a24eb
TG
1742static __always_inline void scheduler_ipi(void)
1743{
1744 /*
1745 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1746 * TIF_NEED_RESCHED remotely (for the first time) will also send
1747 * this IPI.
1748 */
1749 preempt_fold_need_resched();
1750}
85ba2d86 1751extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1752#else
184748cc 1753static inline void scheduler_ipi(void) { }
5eca1c10 1754static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1755{
1756 return 1;
1757}
1da177e4
LT
1758#endif
1759
5eca1c10
IM
1760/*
1761 * Set thread flags in other task's structures.
1762 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1763 */
1764static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1765{
a1261f54 1766 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1767}
1768
1769static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1770{
a1261f54 1771 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1772}
1773
93ee37c2
DM
1774static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1775 bool value)
1776{
1777 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1778}
1779
1da177e4
LT
1780static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1781{
a1261f54 1782 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1783}
1784
1785static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1786{
a1261f54 1787 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1788}
1789
1790static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1791{
a1261f54 1792 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1793}
1794
1795static inline void set_tsk_need_resched(struct task_struct *tsk)
1796{
1797 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1798}
1799
1800static inline void clear_tsk_need_resched(struct task_struct *tsk)
1801{
1802 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1803}
1804
8ae121ac
GH
1805static inline int test_tsk_need_resched(struct task_struct *tsk)
1806{
1807 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1808}
1809
1da177e4
LT
1810/*
1811 * cond_resched() and cond_resched_lock(): latency reduction via
1812 * explicit rescheduling in places that are safe. The return
1813 * value indicates whether a reschedule was done in fact.
1814 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1815 */
c1a280b6 1816#ifndef CONFIG_PREEMPTION
c3921ab7 1817extern int _cond_resched(void);
35a773a0
PZ
1818#else
1819static inline int _cond_resched(void) { return 0; }
1820#endif
6f80bd98 1821
613afbf8 1822#define cond_resched() ({ \
3427445a 1823 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1824 _cond_resched(); \
1825})
6f80bd98 1826
613afbf8
FW
1827extern int __cond_resched_lock(spinlock_t *lock);
1828
1829#define cond_resched_lock(lock) ({ \
3427445a 1830 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1831 __cond_resched_lock(lock); \
1832})
1833
f6f3c437
SH
1834static inline void cond_resched_rcu(void)
1835{
1836#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1837 rcu_read_unlock();
1838 cond_resched();
1839 rcu_read_lock();
1840#endif
1841}
1842
1da177e4
LT
1843/*
1844 * Does a critical section need to be broken due to another
c1a280b6 1845 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 1846 * but a general need for low latency)
1da177e4 1847 */
95c354fe 1848static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1849{
c1a280b6 1850#ifdef CONFIG_PREEMPTION
95c354fe
NP
1851 return spin_is_contended(lock);
1852#else
1da177e4 1853 return 0;
95c354fe 1854#endif
1da177e4
LT
1855}
1856
75f93fed
PZ
1857static __always_inline bool need_resched(void)
1858{
1859 return unlikely(tif_need_resched());
1860}
1861
1da177e4
LT
1862/*
1863 * Wrappers for p->thread_info->cpu access. No-op on UP.
1864 */
1865#ifdef CONFIG_SMP
1866
1867static inline unsigned int task_cpu(const struct task_struct *p)
1868{
c65eacbe 1869#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1870 return READ_ONCE(p->cpu);
c65eacbe 1871#else
c546951d 1872 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1873#endif
1da177e4
LT
1874}
1875
c65cc870 1876extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1877
1878#else
1879
1880static inline unsigned int task_cpu(const struct task_struct *p)
1881{
1882 return 0;
1883}
1884
1885static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1886{
1887}
1888
1889#endif /* CONFIG_SMP */
1890
d9345c65
PX
1891/*
1892 * In order to reduce various lock holder preemption latencies provide an
1893 * interface to see if a vCPU is currently running or not.
1894 *
1895 * This allows us to terminate optimistic spin loops and block, analogous to
1896 * the native optimistic spin heuristic of testing if the lock owner task is
1897 * running or not.
1898 */
1899#ifndef vcpu_is_preempted
42fd8baa
QC
1900static inline bool vcpu_is_preempted(int cpu)
1901{
1902 return false;
1903}
d9345c65
PX
1904#endif
1905
96f874e2
RR
1906extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1907extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1908
82455257
DH
1909#ifndef TASK_SIZE_OF
1910#define TASK_SIZE_OF(tsk) TASK_SIZE
1911#endif
1912
d7822b1e
MD
1913#ifdef CONFIG_RSEQ
1914
1915/*
1916 * Map the event mask on the user-space ABI enum rseq_cs_flags
1917 * for direct mask checks.
1918 */
1919enum rseq_event_mask_bits {
1920 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1921 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1922 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1923};
1924
1925enum rseq_event_mask {
1926 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1927 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1928 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1929};
1930
1931static inline void rseq_set_notify_resume(struct task_struct *t)
1932{
1933 if (t->rseq)
1934 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1935}
1936
784e0300 1937void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1938
784e0300
WD
1939static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1940 struct pt_regs *regs)
d7822b1e
MD
1941{
1942 if (current->rseq)
784e0300 1943 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1944}
1945
784e0300
WD
1946static inline void rseq_signal_deliver(struct ksignal *ksig,
1947 struct pt_regs *regs)
d7822b1e
MD
1948{
1949 preempt_disable();
1950 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1951 preempt_enable();
784e0300 1952 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1953}
1954
1955/* rseq_preempt() requires preemption to be disabled. */
1956static inline void rseq_preempt(struct task_struct *t)
1957{
1958 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1959 rseq_set_notify_resume(t);
1960}
1961
1962/* rseq_migrate() requires preemption to be disabled. */
1963static inline void rseq_migrate(struct task_struct *t)
1964{
1965 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1966 rseq_set_notify_resume(t);
1967}
1968
1969/*
1970 * If parent process has a registered restartable sequences area, the
463f550f 1971 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
1972 */
1973static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1974{
463f550f 1975 if (clone_flags & CLONE_VM) {
d7822b1e 1976 t->rseq = NULL;
d7822b1e
MD
1977 t->rseq_sig = 0;
1978 t->rseq_event_mask = 0;
1979 } else {
1980 t->rseq = current->rseq;
d7822b1e
MD
1981 t->rseq_sig = current->rseq_sig;
1982 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1983 }
1984}
1985
1986static inline void rseq_execve(struct task_struct *t)
1987{
1988 t->rseq = NULL;
d7822b1e
MD
1989 t->rseq_sig = 0;
1990 t->rseq_event_mask = 0;
1991}
1992
1993#else
1994
1995static inline void rseq_set_notify_resume(struct task_struct *t)
1996{
1997}
784e0300
WD
1998static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1999 struct pt_regs *regs)
d7822b1e
MD
2000{
2001}
784e0300
WD
2002static inline void rseq_signal_deliver(struct ksignal *ksig,
2003 struct pt_regs *regs)
d7822b1e
MD
2004{
2005}
2006static inline void rseq_preempt(struct task_struct *t)
2007{
2008}
2009static inline void rseq_migrate(struct task_struct *t)
2010{
2011}
2012static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2013{
2014}
2015static inline void rseq_execve(struct task_struct *t)
2016{
2017}
2018
2019#endif
2020
73ab1cb2
TY
2021void __exit_umh(struct task_struct *tsk);
2022
2023static inline void exit_umh(struct task_struct *tsk)
2024{
2025 if (unlikely(tsk->flags & PF_UMH))
2026 __exit_umh(tsk);
2027}
2028
d7822b1e
MD
2029#ifdef CONFIG_DEBUG_RSEQ
2030
2031void rseq_syscall(struct pt_regs *regs);
2032
2033#else
2034
2035static inline void rseq_syscall(struct pt_regs *regs)
2036{
2037}
2038
2039#endif
2040
3c93a0c0
QY
2041const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2042char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2043int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2044
2045const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2046const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2047const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2048
2049int sched_trace_rq_cpu(struct rq *rq);
2050
2051const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2052
1da177e4 2053#endif