]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/sched.h
Merge tag 'armsoc-newsoc' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-eoan-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10
IM
27#include <linux/sched/prio.h>
28#include <linux/signal_types.h>
eb414681 29#include <linux/psi_types.h>
5eca1c10
IM
30#include <linux/mm_types_task.h>
31#include <linux/task_io_accounting.h>
d7822b1e 32#include <linux/rseq.h>
a3b6714e 33
5eca1c10 34/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 35struct audit_context;
c7af7877 36struct backing_dev_info;
bddd87c7 37struct bio_list;
73c10101 38struct blk_plug;
c7af7877 39struct cfs_rq;
c7af7877
IM
40struct fs_struct;
41struct futex_pi_state;
42struct io_context;
43struct mempolicy;
89076bc3 44struct nameidata;
c7af7877
IM
45struct nsproxy;
46struct perf_event_context;
47struct pid_namespace;
48struct pipe_inode_info;
49struct rcu_node;
50struct reclaim_state;
51struct robust_list_head;
52struct sched_attr;
53struct sched_param;
43ae34cb 54struct seq_file;
c7af7877
IM
55struct sighand_struct;
56struct signal_struct;
57struct task_delay_info;
4cf86d77 58struct task_group;
1da177e4 59
4a8342d2
LT
60/*
61 * Task state bitmask. NOTE! These bits are also
62 * encoded in fs/proc/array.c: get_task_state().
63 *
64 * We have two separate sets of flags: task->state
65 * is about runnability, while task->exit_state are
66 * about the task exiting. Confusing, but this way
67 * modifying one set can't modify the other one by
68 * mistake.
69 */
5eca1c10
IM
70
71/* Used in tsk->state: */
92c4bc9f
PZ
72#define TASK_RUNNING 0x0000
73#define TASK_INTERRUPTIBLE 0x0001
74#define TASK_UNINTERRUPTIBLE 0x0002
75#define __TASK_STOPPED 0x0004
76#define __TASK_TRACED 0x0008
5eca1c10 77/* Used in tsk->exit_state: */
92c4bc9f
PZ
78#define EXIT_DEAD 0x0010
79#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
80#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
81/* Used in tsk->state again: */
8ef9925b
PZ
82#define TASK_PARKED 0x0040
83#define TASK_DEAD 0x0080
84#define TASK_WAKEKILL 0x0100
85#define TASK_WAKING 0x0200
92c4bc9f
PZ
86#define TASK_NOLOAD 0x0400
87#define TASK_NEW 0x0800
88#define TASK_STATE_MAX 0x1000
5eca1c10 89
5eca1c10
IM
90/* Convenience macros for the sake of set_current_state: */
91#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
92#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
93#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
94
95#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
96
97/* Convenience macros for the sake of wake_up(): */
98#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
99
100/* get_task_state(): */
101#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
102 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
103 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
104 TASK_PARKED)
5eca1c10
IM
105
106#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
107
108#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
109
110#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
111
112#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
113 (task->flags & PF_FROZEN) == 0 && \
114 (task->state & TASK_NOLOAD) == 0)
1da177e4 115
8eb23b9f
PZ
116#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
117
b5bf9a90
PZ
118/*
119 * Special states are those that do not use the normal wait-loop pattern. See
120 * the comment with set_special_state().
121 */
122#define is_special_task_state(state) \
1cef1150 123 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 124
8eb23b9f
PZ
125#define __set_current_state(state_value) \
126 do { \
b5bf9a90 127 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
128 current->task_state_change = _THIS_IP_; \
129 current->state = (state_value); \
130 } while (0)
b5bf9a90 131
8eb23b9f
PZ
132#define set_current_state(state_value) \
133 do { \
b5bf9a90 134 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 135 current->task_state_change = _THIS_IP_; \
a2250238 136 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
137 } while (0)
138
b5bf9a90
PZ
139#define set_special_state(state_value) \
140 do { \
141 unsigned long flags; /* may shadow */ \
142 WARN_ON_ONCE(!is_special_task_state(state_value)); \
143 raw_spin_lock_irqsave(&current->pi_lock, flags); \
144 current->task_state_change = _THIS_IP_; \
145 current->state = (state_value); \
146 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
147 } while (0)
8eb23b9f 148#else
498d0c57
AM
149/*
150 * set_current_state() includes a barrier so that the write of current->state
151 * is correctly serialised wrt the caller's subsequent test of whether to
152 * actually sleep:
153 *
a2250238 154 * for (;;) {
498d0c57 155 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
156 * if (!need_sleep)
157 * break;
158 *
159 * schedule();
160 * }
161 * __set_current_state(TASK_RUNNING);
162 *
163 * If the caller does not need such serialisation (because, for instance, the
164 * condition test and condition change and wakeup are under the same lock) then
165 * use __set_current_state().
166 *
167 * The above is typically ordered against the wakeup, which does:
168 *
b5bf9a90
PZ
169 * need_sleep = false;
170 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 171 *
7696f991
AP
172 * where wake_up_state() executes a full memory barrier before accessing the
173 * task state.
a2250238
PZ
174 *
175 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
176 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
177 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 178 *
b5bf9a90 179 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 180 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
181 * a problem either because that will result in one extra go around the loop
182 * and our @cond test will save the day.
498d0c57 183 *
a2250238 184 * Also see the comments of try_to_wake_up().
498d0c57 185 */
b5bf9a90
PZ
186#define __set_current_state(state_value) \
187 current->state = (state_value)
188
189#define set_current_state(state_value) \
190 smp_store_mb(current->state, (state_value))
191
192/*
193 * set_special_state() should be used for those states when the blocking task
194 * can not use the regular condition based wait-loop. In that case we must
195 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
196 * will not collide with our state change.
197 */
198#define set_special_state(state_value) \
199 do { \
200 unsigned long flags; /* may shadow */ \
201 raw_spin_lock_irqsave(&current->pi_lock, flags); \
202 current->state = (state_value); \
203 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
204 } while (0)
205
8eb23b9f
PZ
206#endif
207
5eca1c10
IM
208/* Task command name length: */
209#define TASK_COMM_LEN 16
1da177e4 210
1da177e4
LT
211extern void scheduler_tick(void);
212
5eca1c10
IM
213#define MAX_SCHEDULE_TIMEOUT LONG_MAX
214
215extern long schedule_timeout(long timeout);
216extern long schedule_timeout_interruptible(long timeout);
217extern long schedule_timeout_killable(long timeout);
218extern long schedule_timeout_uninterruptible(long timeout);
219extern long schedule_timeout_idle(long timeout);
1da177e4 220asmlinkage void schedule(void);
c5491ea7 221extern void schedule_preempt_disabled(void);
1da177e4 222
10ab5643
TH
223extern int __must_check io_schedule_prepare(void);
224extern void io_schedule_finish(int token);
9cff8ade 225extern long io_schedule_timeout(long timeout);
10ab5643 226extern void io_schedule(void);
9cff8ade 227
d37f761d 228/**
0ba42a59 229 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
230 * @utime: time spent in user mode
231 * @stime: time spent in system mode
9d7fb042 232 * @lock: protects the above two fields
d37f761d 233 *
9d7fb042
PZ
234 * Stores previous user/system time values such that we can guarantee
235 * monotonicity.
d37f761d 236 */
9d7fb042
PZ
237struct prev_cputime {
238#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
239 u64 utime;
240 u64 stime;
241 raw_spinlock_t lock;
9d7fb042 242#endif
d37f761d
FW
243};
244
f06febc9
FM
245/**
246 * struct task_cputime - collected CPU time counts
5613fda9
FW
247 * @utime: time spent in user mode, in nanoseconds
248 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 249 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 250 *
9d7fb042
PZ
251 * This structure groups together three kinds of CPU time that are tracked for
252 * threads and thread groups. Most things considering CPU time want to group
253 * these counts together and treat all three of them in parallel.
f06febc9
FM
254 */
255struct task_cputime {
5eca1c10
IM
256 u64 utime;
257 u64 stime;
258 unsigned long long sum_exec_runtime;
f06febc9 259};
9d7fb042 260
5eca1c10
IM
261/* Alternate field names when used on cache expirations: */
262#define virt_exp utime
263#define prof_exp stime
264#define sched_exp sum_exec_runtime
f06febc9 265
bac5b6b6
FW
266enum vtime_state {
267 /* Task is sleeping or running in a CPU with VTIME inactive: */
268 VTIME_INACTIVE = 0,
269 /* Task runs in userspace in a CPU with VTIME active: */
270 VTIME_USER,
271 /* Task runs in kernelspace in a CPU with VTIME active: */
272 VTIME_SYS,
273};
274
275struct vtime {
276 seqcount_t seqcount;
277 unsigned long long starttime;
278 enum vtime_state state;
2a42eb95
WL
279 u64 utime;
280 u64 stime;
281 u64 gtime;
bac5b6b6
FW
282};
283
1da177e4 284struct sched_info {
7f5f8e8d 285#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
286 /* Cumulative counters: */
287
288 /* # of times we have run on this CPU: */
289 unsigned long pcount;
290
291 /* Time spent waiting on a runqueue: */
292 unsigned long long run_delay;
293
294 /* Timestamps: */
295
296 /* When did we last run on a CPU? */
297 unsigned long long last_arrival;
298
299 /* When were we last queued to run? */
300 unsigned long long last_queued;
1da177e4 301
f6db8347 302#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 303};
1da177e4 304
6ecdd749
YD
305/*
306 * Integer metrics need fixed point arithmetic, e.g., sched/fair
307 * has a few: load, load_avg, util_avg, freq, and capacity.
308 *
309 * We define a basic fixed point arithmetic range, and then formalize
310 * all these metrics based on that basic range.
311 */
5eca1c10
IM
312# define SCHED_FIXEDPOINT_SHIFT 10
313# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 314
20b8a59f 315struct load_weight {
5eca1c10
IM
316 unsigned long weight;
317 u32 inv_weight;
20b8a59f
IM
318};
319
7f65ea42
PB
320/**
321 * struct util_est - Estimation utilization of FAIR tasks
322 * @enqueued: instantaneous estimated utilization of a task/cpu
323 * @ewma: the Exponential Weighted Moving Average (EWMA)
324 * utilization of a task
325 *
326 * Support data structure to track an Exponential Weighted Moving Average
327 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
328 * average each time a task completes an activation. Sample's weight is chosen
329 * so that the EWMA will be relatively insensitive to transient changes to the
330 * task's workload.
331 *
332 * The enqueued attribute has a slightly different meaning for tasks and cpus:
333 * - task: the task's util_avg at last task dequeue time
334 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
335 * Thus, the util_est.enqueued of a task represents the contribution on the
336 * estimated utilization of the CPU where that task is currently enqueued.
337 *
338 * Only for tasks we track a moving average of the past instantaneous
339 * estimated utilization. This allows to absorb sporadic drops in utilization
340 * of an otherwise almost periodic task.
341 */
342struct util_est {
343 unsigned int enqueued;
344 unsigned int ewma;
345#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 346} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 347
9d89c257 348/*
7b595334
YD
349 * The load_avg/util_avg accumulates an infinite geometric series
350 * (see __update_load_avg() in kernel/sched/fair.c).
351 *
352 * [load_avg definition]
353 *
354 * load_avg = runnable% * scale_load_down(load)
355 *
356 * where runnable% is the time ratio that a sched_entity is runnable.
357 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 358 * blocked sched_entities.
7b595334 359 *
7b595334
YD
360 * [util_avg definition]
361 *
362 * util_avg = running% * SCHED_CAPACITY_SCALE
363 *
364 * where running% is the time ratio that a sched_entity is running on
365 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
366 * and blocked sched_entities.
367 *
23127296
VG
368 * load_avg and util_avg don't direcly factor frequency scaling and CPU
369 * capacity scaling. The scaling is done through the rq_clock_pelt that
370 * is used for computing those signals (see update_rq_clock_pelt())
7b595334 371 *
23127296
VG
372 * N.B., the above ratios (runnable% and running%) themselves are in the
373 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
374 * to as large a range as necessary. This is for example reflected by
375 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
376 *
377 * [Overflow issue]
378 *
379 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
380 * with the highest load (=88761), always runnable on a single cfs_rq,
381 * and should not overflow as the number already hits PID_MAX_LIMIT.
382 *
383 * For all other cases (including 32-bit kernels), struct load_weight's
384 * weight will overflow first before we do, because:
385 *
386 * Max(load_avg) <= Max(load.weight)
387 *
388 * Then it is the load_weight's responsibility to consider overflow
389 * issues.
9d89c257 390 */
9d85f21c 391struct sched_avg {
5eca1c10
IM
392 u64 last_update_time;
393 u64 load_sum;
1ea6c46a 394 u64 runnable_load_sum;
5eca1c10
IM
395 u32 util_sum;
396 u32 period_contrib;
397 unsigned long load_avg;
1ea6c46a 398 unsigned long runnable_load_avg;
5eca1c10 399 unsigned long util_avg;
7f65ea42 400 struct util_est util_est;
317d359d 401} ____cacheline_aligned;
9d85f21c 402
41acab88 403struct sched_statistics {
7f5f8e8d 404#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
405 u64 wait_start;
406 u64 wait_max;
407 u64 wait_count;
408 u64 wait_sum;
409 u64 iowait_count;
410 u64 iowait_sum;
411
412 u64 sleep_start;
413 u64 sleep_max;
414 s64 sum_sleep_runtime;
415
416 u64 block_start;
417 u64 block_max;
418 u64 exec_max;
419 u64 slice_max;
420
421 u64 nr_migrations_cold;
422 u64 nr_failed_migrations_affine;
423 u64 nr_failed_migrations_running;
424 u64 nr_failed_migrations_hot;
425 u64 nr_forced_migrations;
426
427 u64 nr_wakeups;
428 u64 nr_wakeups_sync;
429 u64 nr_wakeups_migrate;
430 u64 nr_wakeups_local;
431 u64 nr_wakeups_remote;
432 u64 nr_wakeups_affine;
433 u64 nr_wakeups_affine_attempts;
434 u64 nr_wakeups_passive;
435 u64 nr_wakeups_idle;
41acab88 436#endif
7f5f8e8d 437};
41acab88
LDM
438
439struct sched_entity {
5eca1c10
IM
440 /* For load-balancing: */
441 struct load_weight load;
1ea6c46a 442 unsigned long runnable_weight;
5eca1c10
IM
443 struct rb_node run_node;
444 struct list_head group_node;
445 unsigned int on_rq;
41acab88 446
5eca1c10
IM
447 u64 exec_start;
448 u64 sum_exec_runtime;
449 u64 vruntime;
450 u64 prev_sum_exec_runtime;
41acab88 451
5eca1c10 452 u64 nr_migrations;
41acab88 453
5eca1c10 454 struct sched_statistics statistics;
94c18227 455
20b8a59f 456#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
457 int depth;
458 struct sched_entity *parent;
20b8a59f 459 /* rq on which this entity is (to be) queued: */
5eca1c10 460 struct cfs_rq *cfs_rq;
20b8a59f 461 /* rq "owned" by this entity/group: */
5eca1c10 462 struct cfs_rq *my_q;
20b8a59f 463#endif
8bd75c77 464
141965c7 465#ifdef CONFIG_SMP
5a107804
JO
466 /*
467 * Per entity load average tracking.
468 *
469 * Put into separate cache line so it does not
470 * collide with read-mostly values above.
471 */
317d359d 472 struct sched_avg avg;
9d85f21c 473#endif
20b8a59f 474};
70b97a7f 475
fa717060 476struct sched_rt_entity {
5eca1c10
IM
477 struct list_head run_list;
478 unsigned long timeout;
479 unsigned long watchdog_stamp;
480 unsigned int time_slice;
481 unsigned short on_rq;
482 unsigned short on_list;
483
484 struct sched_rt_entity *back;
052f1dc7 485#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 486 struct sched_rt_entity *parent;
6f505b16 487 /* rq on which this entity is (to be) queued: */
5eca1c10 488 struct rt_rq *rt_rq;
6f505b16 489 /* rq "owned" by this entity/group: */
5eca1c10 490 struct rt_rq *my_q;
6f505b16 491#endif
3859a271 492} __randomize_layout;
fa717060 493
aab03e05 494struct sched_dl_entity {
5eca1c10 495 struct rb_node rb_node;
aab03e05
DF
496
497 /*
498 * Original scheduling parameters. Copied here from sched_attr
4027d080 499 * during sched_setattr(), they will remain the same until
500 * the next sched_setattr().
aab03e05 501 */
5eca1c10
IM
502 u64 dl_runtime; /* Maximum runtime for each instance */
503 u64 dl_deadline; /* Relative deadline of each instance */
504 u64 dl_period; /* Separation of two instances (period) */
54d6d303 505 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 506 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
507
508 /*
509 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 510 * they are continuously updated during task execution. Note that
aab03e05
DF
511 * the remaining runtime could be < 0 in case we are in overrun.
512 */
5eca1c10
IM
513 s64 runtime; /* Remaining runtime for this instance */
514 u64 deadline; /* Absolute deadline for this instance */
515 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
516
517 /*
518 * Some bool flags:
519 *
520 * @dl_throttled tells if we exhausted the runtime. If so, the
521 * task has to wait for a replenishment to be performed at the
522 * next firing of dl_timer.
523 *
2d3d891d
DF
524 * @dl_boosted tells if we are boosted due to DI. If so we are
525 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
526 * exit the critical section);
527 *
5eca1c10 528 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 529 * all its available runtime during the last job.
209a0cbd
LA
530 *
531 * @dl_non_contending tells if the task is inactive while still
532 * contributing to the active utilization. In other words, it
533 * indicates if the inactive timer has been armed and its handler
534 * has not been executed yet. This flag is useful to avoid race
535 * conditions between the inactive timer handler and the wakeup
536 * code.
34be3930
JL
537 *
538 * @dl_overrun tells if the task asked to be informed about runtime
539 * overruns.
aab03e05 540 */
aa5222e9
DC
541 unsigned int dl_throttled : 1;
542 unsigned int dl_boosted : 1;
543 unsigned int dl_yielded : 1;
544 unsigned int dl_non_contending : 1;
34be3930 545 unsigned int dl_overrun : 1;
aab03e05
DF
546
547 /*
548 * Bandwidth enforcement timer. Each -deadline task has its
549 * own bandwidth to be enforced, thus we need one timer per task.
550 */
5eca1c10 551 struct hrtimer dl_timer;
209a0cbd
LA
552
553 /*
554 * Inactive timer, responsible for decreasing the active utilization
555 * at the "0-lag time". When a -deadline task blocks, it contributes
556 * to GRUB's active utilization until the "0-lag time", hence a
557 * timer is needed to decrease the active utilization at the correct
558 * time.
559 */
560 struct hrtimer inactive_timer;
aab03e05 561};
8bd75c77 562
1d082fd0
PM
563union rcu_special {
564 struct {
5eca1c10
IM
565 u8 blocked;
566 u8 need_qs;
05f41571
PM
567 u8 exp_hint; /* Hint for performance. */
568 u8 pad; /* No garbage from compiler! */
8203d6d0 569 } b; /* Bits. */
05f41571 570 u32 s; /* Set of bits. */
1d082fd0 571};
86848966 572
8dc85d54
PZ
573enum perf_event_task_context {
574 perf_invalid_context = -1,
575 perf_hw_context = 0,
89a1e187 576 perf_sw_context,
8dc85d54
PZ
577 perf_nr_task_contexts,
578};
579
eb61baf6
IM
580struct wake_q_node {
581 struct wake_q_node *next;
582};
583
1da177e4 584struct task_struct {
c65eacbe
AL
585#ifdef CONFIG_THREAD_INFO_IN_TASK
586 /*
587 * For reasons of header soup (see current_thread_info()), this
588 * must be the first element of task_struct.
589 */
5eca1c10 590 struct thread_info thread_info;
c65eacbe 591#endif
5eca1c10
IM
592 /* -1 unrunnable, 0 runnable, >0 stopped: */
593 volatile long state;
29e48ce8
KC
594
595 /*
596 * This begins the randomizable portion of task_struct. Only
597 * scheduling-critical items should be added above here.
598 */
599 randomized_struct_fields_start
600
5eca1c10 601 void *stack;
ec1d2819 602 refcount_t usage;
5eca1c10
IM
603 /* Per task flags (PF_*), defined further below: */
604 unsigned int flags;
605 unsigned int ptrace;
1da177e4 606
2dd73a4f 607#ifdef CONFIG_SMP
5eca1c10
IM
608 struct llist_node wake_entry;
609 int on_cpu;
c65eacbe 610#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
611 /* Current CPU: */
612 unsigned int cpu;
c65eacbe 613#endif
5eca1c10
IM
614 unsigned int wakee_flips;
615 unsigned long wakee_flip_decay_ts;
616 struct task_struct *last_wakee;
ac66f547 617
32e839dd
MG
618 /*
619 * recent_used_cpu is initially set as the last CPU used by a task
620 * that wakes affine another task. Waker/wakee relationships can
621 * push tasks around a CPU where each wakeup moves to the next one.
622 * Tracking a recently used CPU allows a quick search for a recently
623 * used CPU that may be idle.
624 */
625 int recent_used_cpu;
5eca1c10 626 int wake_cpu;
2dd73a4f 627#endif
5eca1c10
IM
628 int on_rq;
629
630 int prio;
631 int static_prio;
632 int normal_prio;
633 unsigned int rt_priority;
50e645a8 634
5eca1c10
IM
635 const struct sched_class *sched_class;
636 struct sched_entity se;
637 struct sched_rt_entity rt;
8323f26c 638#ifdef CONFIG_CGROUP_SCHED
5eca1c10 639 struct task_group *sched_task_group;
8323f26c 640#endif
5eca1c10 641 struct sched_dl_entity dl;
1da177e4 642
e107be36 643#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
644 /* List of struct preempt_notifier: */
645 struct hlist_head preempt_notifiers;
e107be36
AK
646#endif
647
6c5c9341 648#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 649 unsigned int btrace_seq;
6c5c9341 650#endif
1da177e4 651
5eca1c10
IM
652 unsigned int policy;
653 int nr_cpus_allowed;
654 cpumask_t cpus_allowed;
1da177e4 655
a57eb940 656#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
657 int rcu_read_lock_nesting;
658 union rcu_special rcu_read_unlock_special;
659 struct list_head rcu_node_entry;
660 struct rcu_node *rcu_blocked_node;
28f6569a 661#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 662
8315f422 663#ifdef CONFIG_TASKS_RCU
5eca1c10 664 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
665 u8 rcu_tasks_holdout;
666 u8 rcu_tasks_idx;
5eca1c10 667 int rcu_tasks_idle_cpu;
ccdd29ff 668 struct list_head rcu_tasks_holdout_list;
8315f422 669#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 670
5eca1c10 671 struct sched_info sched_info;
1da177e4 672
5eca1c10 673 struct list_head tasks;
806c09a7 674#ifdef CONFIG_SMP
5eca1c10
IM
675 struct plist_node pushable_tasks;
676 struct rb_node pushable_dl_tasks;
806c09a7 677#endif
1da177e4 678
5eca1c10
IM
679 struct mm_struct *mm;
680 struct mm_struct *active_mm;
314ff785
IM
681
682 /* Per-thread vma caching: */
5eca1c10 683 struct vmacache vmacache;
314ff785 684
5eca1c10
IM
685#ifdef SPLIT_RSS_COUNTING
686 struct task_rss_stat rss_stat;
34e55232 687#endif
5eca1c10
IM
688 int exit_state;
689 int exit_code;
690 int exit_signal;
691 /* The signal sent when the parent dies: */
692 int pdeath_signal;
693 /* JOBCTL_*, siglock protected: */
694 unsigned long jobctl;
695
696 /* Used for emulating ABI behavior of previous Linux versions: */
697 unsigned int personality;
698
699 /* Scheduler bits, serialized by scheduler locks: */
700 unsigned sched_reset_on_fork:1;
701 unsigned sched_contributes_to_load:1;
702 unsigned sched_migrated:1;
703 unsigned sched_remote_wakeup:1;
eb414681
JW
704#ifdef CONFIG_PSI
705 unsigned sched_psi_wake_requeue:1;
706#endif
707
5eca1c10
IM
708 /* Force alignment to the next boundary: */
709 unsigned :0;
710
711 /* Unserialized, strictly 'current' */
712
713 /* Bit to tell LSMs we're in execve(): */
714 unsigned in_execve:1;
715 unsigned in_iowait:1;
716#ifndef TIF_RESTORE_SIGMASK
717 unsigned restore_sigmask:1;
7e781418 718#endif
626ebc41 719#ifdef CONFIG_MEMCG
29ef680a 720 unsigned in_user_fault:1;
127424c8 721#endif
ff303e66 722#ifdef CONFIG_COMPAT_BRK
5eca1c10 723 unsigned brk_randomized:1;
ff303e66 724#endif
77f88796
TH
725#ifdef CONFIG_CGROUPS
726 /* disallow userland-initiated cgroup migration */
727 unsigned no_cgroup_migration:1;
728#endif
d09d8df3
JB
729#ifdef CONFIG_BLK_CGROUP
730 /* to be used once the psi infrastructure lands upstream. */
731 unsigned use_memdelay:1;
732#endif
6f185c29 733
5eca1c10 734 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 735
5eca1c10 736 struct restart_block restart_block;
f56141e3 737
5eca1c10
IM
738 pid_t pid;
739 pid_t tgid;
0a425405 740
050e9baa 741#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
742 /* Canary value for the -fstack-protector GCC feature: */
743 unsigned long stack_canary;
1314562a 744#endif
4d1d61a6 745 /*
5eca1c10 746 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 747 * older sibling, respectively. (p->father can be replaced with
f470021a 748 * p->real_parent->pid)
1da177e4 749 */
5eca1c10
IM
750
751 /* Real parent process: */
752 struct task_struct __rcu *real_parent;
753
754 /* Recipient of SIGCHLD, wait4() reports: */
755 struct task_struct __rcu *parent;
756
1da177e4 757 /*
5eca1c10 758 * Children/sibling form the list of natural children:
1da177e4 759 */
5eca1c10
IM
760 struct list_head children;
761 struct list_head sibling;
762 struct task_struct *group_leader;
1da177e4 763
f470021a 764 /*
5eca1c10
IM
765 * 'ptraced' is the list of tasks this task is using ptrace() on.
766 *
f470021a 767 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 768 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 769 */
5eca1c10
IM
770 struct list_head ptraced;
771 struct list_head ptrace_entry;
f470021a 772
1da177e4 773 /* PID/PID hash table linkage. */
2c470475
EB
774 struct pid *thread_pid;
775 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
776 struct list_head thread_group;
777 struct list_head thread_node;
778
779 struct completion *vfork_done;
1da177e4 780
5eca1c10
IM
781 /* CLONE_CHILD_SETTID: */
782 int __user *set_child_tid;
1da177e4 783
5eca1c10
IM
784 /* CLONE_CHILD_CLEARTID: */
785 int __user *clear_child_tid;
786
787 u64 utime;
788 u64 stime;
40565b5a 789#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
790 u64 utimescaled;
791 u64 stimescaled;
40565b5a 792#endif
5eca1c10
IM
793 u64 gtime;
794 struct prev_cputime prev_cputime;
6a61671b 795#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 796 struct vtime vtime;
d99ca3b9 797#endif
d027d45d
FW
798
799#ifdef CONFIG_NO_HZ_FULL
5eca1c10 800 atomic_t tick_dep_mask;
d027d45d 801#endif
5eca1c10
IM
802 /* Context switch counts: */
803 unsigned long nvcsw;
804 unsigned long nivcsw;
805
806 /* Monotonic time in nsecs: */
807 u64 start_time;
808
809 /* Boot based time in nsecs: */
810 u64 real_start_time;
811
812 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
813 unsigned long min_flt;
814 unsigned long maj_flt;
1da177e4 815
b18b6a9c 816#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
817 struct task_cputime cputime_expires;
818 struct list_head cpu_timers[3];
b18b6a9c 819#endif
1da177e4 820
5eca1c10
IM
821 /* Process credentials: */
822
823 /* Tracer's credentials at attach: */
824 const struct cred __rcu *ptracer_cred;
825
826 /* Objective and real subjective task credentials (COW): */
827 const struct cred __rcu *real_cred;
828
829 /* Effective (overridable) subjective task credentials (COW): */
830 const struct cred __rcu *cred;
831
832 /*
833 * executable name, excluding path.
834 *
835 * - normally initialized setup_new_exec()
836 * - access it with [gs]et_task_comm()
837 * - lock it with task_lock()
838 */
839 char comm[TASK_COMM_LEN];
840
841 struct nameidata *nameidata;
842
3d5b6fcc 843#ifdef CONFIG_SYSVIPC
5eca1c10
IM
844 struct sysv_sem sysvsem;
845 struct sysv_shm sysvshm;
3d5b6fcc 846#endif
e162b39a 847#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 848 unsigned long last_switch_count;
a2e51445 849 unsigned long last_switch_time;
82a1fcb9 850#endif
5eca1c10
IM
851 /* Filesystem information: */
852 struct fs_struct *fs;
853
854 /* Open file information: */
855 struct files_struct *files;
856
857 /* Namespaces: */
858 struct nsproxy *nsproxy;
859
860 /* Signal handlers: */
861 struct signal_struct *signal;
862 struct sighand_struct *sighand;
863 sigset_t blocked;
864 sigset_t real_blocked;
865 /* Restored if set_restore_sigmask() was used: */
866 sigset_t saved_sigmask;
867 struct sigpending pending;
868 unsigned long sas_ss_sp;
869 size_t sas_ss_size;
870 unsigned int sas_ss_flags;
871
872 struct callback_head *task_works;
873
874 struct audit_context *audit_context;
bfef93a5 875#ifdef CONFIG_AUDITSYSCALL
5eca1c10
IM
876 kuid_t loginuid;
877 unsigned int sessionid;
bfef93a5 878#endif
5eca1c10
IM
879 struct seccomp seccomp;
880
881 /* Thread group tracking: */
882 u32 parent_exec_id;
883 u32 self_exec_id;
1da177e4 884
5eca1c10
IM
885 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
886 spinlock_t alloc_lock;
1da177e4 887
b29739f9 888 /* Protection of the PI data structures: */
5eca1c10 889 raw_spinlock_t pi_lock;
b29739f9 890
5eca1c10 891 struct wake_q_node wake_q;
76751049 892
23f78d4a 893#ifdef CONFIG_RT_MUTEXES
5eca1c10 894 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 895 struct rb_root_cached pi_waiters;
e96a7705
XP
896 /* Updated under owner's pi_lock and rq lock */
897 struct task_struct *pi_top_task;
5eca1c10
IM
898 /* Deadlock detection and priority inheritance handling: */
899 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
900#endif
901
408894ee 902#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
903 /* Mutex deadlock detection: */
904 struct mutex_waiter *blocked_on;
408894ee 905#endif
5eca1c10 906
de30a2b3 907#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
908 unsigned int irq_events;
909 unsigned long hardirq_enable_ip;
910 unsigned long hardirq_disable_ip;
911 unsigned int hardirq_enable_event;
912 unsigned int hardirq_disable_event;
913 int hardirqs_enabled;
914 int hardirq_context;
915 unsigned long softirq_disable_ip;
916 unsigned long softirq_enable_ip;
917 unsigned int softirq_disable_event;
918 unsigned int softirq_enable_event;
919 int softirqs_enabled;
920 int softirq_context;
de30a2b3 921#endif
5eca1c10 922
fbb9ce95 923#ifdef CONFIG_LOCKDEP
5eca1c10
IM
924# define MAX_LOCK_DEPTH 48UL
925 u64 curr_chain_key;
926 int lockdep_depth;
927 unsigned int lockdep_recursion;
928 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 929#endif
5eca1c10 930
c6d30853 931#ifdef CONFIG_UBSAN
5eca1c10 932 unsigned int in_ubsan;
c6d30853 933#endif
408894ee 934
5eca1c10
IM
935 /* Journalling filesystem info: */
936 void *journal_info;
1da177e4 937
5eca1c10
IM
938 /* Stacked block device info: */
939 struct bio_list *bio_list;
d89d8796 940
73c10101 941#ifdef CONFIG_BLOCK
5eca1c10
IM
942 /* Stack plugging: */
943 struct blk_plug *plug;
73c10101
JA
944#endif
945
5eca1c10
IM
946 /* VM state: */
947 struct reclaim_state *reclaim_state;
948
949 struct backing_dev_info *backing_dev_info;
1da177e4 950
5eca1c10 951 struct io_context *io_context;
1da177e4 952
5eca1c10
IM
953 /* Ptrace state: */
954 unsigned long ptrace_message;
ae7795bc 955 kernel_siginfo_t *last_siginfo;
1da177e4 956
5eca1c10 957 struct task_io_accounting ioac;
eb414681
JW
958#ifdef CONFIG_PSI
959 /* Pressure stall state */
960 unsigned int psi_flags;
961#endif
5eca1c10
IM
962#ifdef CONFIG_TASK_XACCT
963 /* Accumulated RSS usage: */
964 u64 acct_rss_mem1;
965 /* Accumulated virtual memory usage: */
966 u64 acct_vm_mem1;
967 /* stime + utime since last update: */
968 u64 acct_timexpd;
1da177e4
LT
969#endif
970#ifdef CONFIG_CPUSETS
5eca1c10
IM
971 /* Protected by ->alloc_lock: */
972 nodemask_t mems_allowed;
973 /* Seqence number to catch updates: */
974 seqcount_t mems_allowed_seq;
975 int cpuset_mem_spread_rotor;
976 int cpuset_slab_spread_rotor;
1da177e4 977#endif
ddbcc7e8 978#ifdef CONFIG_CGROUPS
5eca1c10
IM
979 /* Control Group info protected by css_set_lock: */
980 struct css_set __rcu *cgroups;
981 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
982 struct list_head cg_list;
ddbcc7e8 983#endif
e6d42931 984#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 985 u32 closid;
d6aaba61 986 u32 rmid;
e02737d5 987#endif
42b2dd0a 988#ifdef CONFIG_FUTEX
5eca1c10 989 struct robust_list_head __user *robust_list;
34f192c6
IM
990#ifdef CONFIG_COMPAT
991 struct compat_robust_list_head __user *compat_robust_list;
992#endif
5eca1c10
IM
993 struct list_head pi_state_list;
994 struct futex_pi_state *pi_state_cache;
c7aceaba 995#endif
cdd6c482 996#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
997 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
998 struct mutex perf_event_mutex;
999 struct list_head perf_event_list;
a63eaf34 1000#endif
8f47b187 1001#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1002 unsigned long preempt_disable_ip;
8f47b187 1003#endif
c7aceaba 1004#ifdef CONFIG_NUMA
5eca1c10
IM
1005 /* Protected by alloc_lock: */
1006 struct mempolicy *mempolicy;
45816682 1007 short il_prev;
5eca1c10 1008 short pref_node_fork;
42b2dd0a 1009#endif
cbee9f88 1010#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1011 int numa_scan_seq;
1012 unsigned int numa_scan_period;
1013 unsigned int numa_scan_period_max;
1014 int numa_preferred_nid;
1015 unsigned long numa_migrate_retry;
1016 /* Migration stamp: */
1017 u64 node_stamp;
1018 u64 last_task_numa_placement;
1019 u64 last_sum_exec_runtime;
1020 struct callback_head numa_work;
1021
5eca1c10 1022 struct numa_group *numa_group;
8c8a743c 1023
745d6147 1024 /*
44dba3d5
IM
1025 * numa_faults is an array split into four regions:
1026 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1027 * in this precise order.
1028 *
1029 * faults_memory: Exponential decaying average of faults on a per-node
1030 * basis. Scheduling placement decisions are made based on these
1031 * counts. The values remain static for the duration of a PTE scan.
1032 * faults_cpu: Track the nodes the process was running on when a NUMA
1033 * hinting fault was incurred.
1034 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1035 * during the current scan window. When the scan completes, the counts
1036 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1037 */
5eca1c10
IM
1038 unsigned long *numa_faults;
1039 unsigned long total_numa_faults;
745d6147 1040
04bb2f94
RR
1041 /*
1042 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1043 * scan window were remote/local or failed to migrate. The task scan
1044 * period is adapted based on the locality of the faults with different
1045 * weights depending on whether they were shared or private faults
04bb2f94 1046 */
5eca1c10 1047 unsigned long numa_faults_locality[3];
04bb2f94 1048
5eca1c10 1049 unsigned long numa_pages_migrated;
cbee9f88
PZ
1050#endif /* CONFIG_NUMA_BALANCING */
1051
d7822b1e
MD
1052#ifdef CONFIG_RSEQ
1053 struct rseq __user *rseq;
1054 u32 rseq_len;
1055 u32 rseq_sig;
1056 /*
1057 * RmW on rseq_event_mask must be performed atomically
1058 * with respect to preemption.
1059 */
1060 unsigned long rseq_event_mask;
1061#endif
1062
5eca1c10 1063 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1064
5eca1c10 1065 struct rcu_head rcu;
b92ce558 1066
5eca1c10
IM
1067 /* Cache last used pipe for splice(): */
1068 struct pipe_inode_info *splice_pipe;
5640f768 1069
5eca1c10 1070 struct page_frag task_frag;
5640f768 1071
47913d4e
IM
1072#ifdef CONFIG_TASK_DELAY_ACCT
1073 struct task_delay_info *delays;
f4f154fd 1074#endif
47913d4e 1075
f4f154fd 1076#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1077 int make_it_fail;
9049f2f6 1078 unsigned int fail_nth;
ca74e92b 1079#endif
9d823e8f 1080 /*
5eca1c10
IM
1081 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1082 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1083 */
5eca1c10
IM
1084 int nr_dirtied;
1085 int nr_dirtied_pause;
1086 /* Start of a write-and-pause period: */
1087 unsigned long dirty_paused_when;
9d823e8f 1088
9745512c 1089#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1090 int latency_record_count;
1091 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1092#endif
6976675d 1093 /*
5eca1c10 1094 * Time slack values; these are used to round up poll() and
6976675d
AV
1095 * select() etc timeout values. These are in nanoseconds.
1096 */
5eca1c10
IM
1097 u64 timer_slack_ns;
1098 u64 default_timer_slack_ns;
f8d570a4 1099
0b24becc 1100#ifdef CONFIG_KASAN
5eca1c10 1101 unsigned int kasan_depth;
0b24becc 1102#endif
5eca1c10 1103
fb52607a 1104#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1105 /* Index of current stored address in ret_stack: */
1106 int curr_ret_stack;
39eb456d 1107 int curr_ret_depth;
5eca1c10
IM
1108
1109 /* Stack of return addresses for return function tracing: */
1110 struct ftrace_ret_stack *ret_stack;
1111
1112 /* Timestamp for last schedule: */
1113 unsigned long long ftrace_timestamp;
1114
f201ae23
FW
1115 /*
1116 * Number of functions that haven't been traced
5eca1c10 1117 * because of depth overrun:
f201ae23 1118 */
5eca1c10
IM
1119 atomic_t trace_overrun;
1120
1121 /* Pause tracing: */
1122 atomic_t tracing_graph_pause;
f201ae23 1123#endif
5eca1c10 1124
ea4e2bc4 1125#ifdef CONFIG_TRACING
5eca1c10
IM
1126 /* State flags for use by tracers: */
1127 unsigned long trace;
1128
1129 /* Bitmask and counter of trace recursion: */
1130 unsigned long trace_recursion;
261842b7 1131#endif /* CONFIG_TRACING */
5eca1c10 1132
5c9a8750 1133#ifdef CONFIG_KCOV
5eca1c10 1134 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1135 unsigned int kcov_mode;
5eca1c10
IM
1136
1137 /* Size of the kcov_area: */
1138 unsigned int kcov_size;
1139
1140 /* Buffer for coverage collection: */
1141 void *kcov_area;
1142
1143 /* KCOV descriptor wired with this task or NULL: */
1144 struct kcov *kcov;
5c9a8750 1145#endif
5eca1c10 1146
6f185c29 1147#ifdef CONFIG_MEMCG
5eca1c10
IM
1148 struct mem_cgroup *memcg_in_oom;
1149 gfp_t memcg_oom_gfp_mask;
1150 int memcg_oom_order;
b23afb93 1151
5eca1c10
IM
1152 /* Number of pages to reclaim on returning to userland: */
1153 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1154
1155 /* Used by memcontrol for targeted memcg charge: */
1156 struct mem_cgroup *active_memcg;
569b846d 1157#endif
5eca1c10 1158
d09d8df3
JB
1159#ifdef CONFIG_BLK_CGROUP
1160 struct request_queue *throttle_queue;
1161#endif
1162
0326f5a9 1163#ifdef CONFIG_UPROBES
5eca1c10 1164 struct uprobe_task *utask;
0326f5a9 1165#endif
cafe5635 1166#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1167 unsigned int sequential_io;
1168 unsigned int sequential_io_avg;
cafe5635 1169#endif
8eb23b9f 1170#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1171 unsigned long task_state_change;
8eb23b9f 1172#endif
5eca1c10 1173 int pagefault_disabled;
03049269 1174#ifdef CONFIG_MMU
5eca1c10 1175 struct task_struct *oom_reaper_list;
03049269 1176#endif
ba14a194 1177#ifdef CONFIG_VMAP_STACK
5eca1c10 1178 struct vm_struct *stack_vm_area;
ba14a194 1179#endif
68f24b08 1180#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1181 /* A live task holds one reference: */
f0b89d39 1182 refcount_t stack_refcount;
d83a7cb3
JP
1183#endif
1184#ifdef CONFIG_LIVEPATCH
1185 int patch_state;
0302e28d 1186#endif
e4e55b47
TH
1187#ifdef CONFIG_SECURITY
1188 /* Used by LSM modules for access restriction: */
1189 void *security;
68f24b08 1190#endif
29e48ce8 1191
afaef01c
AP
1192#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1193 unsigned long lowest_stack;
c8d12627 1194 unsigned long prev_lowest_stack;
afaef01c
AP
1195#endif
1196
29e48ce8
KC
1197 /*
1198 * New fields for task_struct should be added above here, so that
1199 * they are included in the randomized portion of task_struct.
1200 */
1201 randomized_struct_fields_end
1202
5eca1c10
IM
1203 /* CPU-specific state of this task: */
1204 struct thread_struct thread;
1205
1206 /*
1207 * WARNING: on x86, 'thread_struct' contains a variable-sized
1208 * structure. It *MUST* be at the end of 'task_struct'.
1209 *
1210 * Do not put anything below here!
1211 */
1da177e4
LT
1212};
1213
e868171a 1214static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1215{
2c470475 1216 return task->thread_pid;
22c935f4
EB
1217}
1218
7af57294
PE
1219/*
1220 * the helpers to get the task's different pids as they are seen
1221 * from various namespaces
1222 *
1223 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1224 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1225 * current.
7af57294
PE
1226 * task_xid_nr_ns() : id seen from the ns specified;
1227 *
7af57294
PE
1228 * see also pid_nr() etc in include/linux/pid.h
1229 */
5eca1c10 1230pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1231
e868171a 1232static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1233{
1234 return tsk->pid;
1235}
1236
5eca1c10 1237static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1238{
1239 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1240}
7af57294
PE
1241
1242static inline pid_t task_pid_vnr(struct task_struct *tsk)
1243{
52ee2dfd 1244 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1245}
1246
1247
e868171a 1248static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1249{
1250 return tsk->tgid;
1251}
1252
5eca1c10
IM
1253/**
1254 * pid_alive - check that a task structure is not stale
1255 * @p: Task structure to be checked.
1256 *
1257 * Test if a process is not yet dead (at most zombie state)
1258 * If pid_alive fails, then pointers within the task structure
1259 * can be stale and must not be dereferenced.
1260 *
1261 * Return: 1 if the process is alive. 0 otherwise.
1262 */
1263static inline int pid_alive(const struct task_struct *p)
1264{
2c470475 1265 return p->thread_pid != NULL;
5eca1c10 1266}
7af57294 1267
5eca1c10 1268static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1269{
52ee2dfd 1270 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1271}
1272
7af57294
PE
1273static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1274{
52ee2dfd 1275 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1276}
1277
1278
5eca1c10 1279static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1280{
52ee2dfd 1281 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1282}
1283
7af57294
PE
1284static inline pid_t task_session_vnr(struct task_struct *tsk)
1285{
52ee2dfd 1286 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1287}
1288
dd1c1f2f
ON
1289static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1290{
6883f81a 1291 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1292}
1293
1294static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1295{
6883f81a 1296 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1297}
1298
1299static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1300{
1301 pid_t pid = 0;
1302
1303 rcu_read_lock();
1304 if (pid_alive(tsk))
1305 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1306 rcu_read_unlock();
1307
1308 return pid;
1309}
1310
1311static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1312{
1313 return task_ppid_nr_ns(tsk, &init_pid_ns);
1314}
1315
5eca1c10 1316/* Obsolete, do not use: */
1b0f7ffd
ON
1317static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1318{
1319 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1320}
7af57294 1321
06eb6184
PZ
1322#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1323#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1324
1d48b080 1325static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1326{
1593baab
PZ
1327 unsigned int tsk_state = READ_ONCE(tsk->state);
1328 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1329
06eb6184
PZ
1330 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1331
06eb6184
PZ
1332 if (tsk_state == TASK_IDLE)
1333 state = TASK_REPORT_IDLE;
1334
1593baab
PZ
1335 return fls(state);
1336}
1337
1d48b080 1338static inline char task_index_to_char(unsigned int state)
1593baab 1339{
8ef9925b 1340 static const char state_char[] = "RSDTtXZPI";
1593baab 1341
06eb6184 1342 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1343
1593baab
PZ
1344 return state_char[state];
1345}
1346
1347static inline char task_state_to_char(struct task_struct *tsk)
1348{
1d48b080 1349 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1350}
1351
f400e198 1352/**
570f5241
SS
1353 * is_global_init - check if a task structure is init. Since init
1354 * is free to have sub-threads we need to check tgid.
3260259f
HK
1355 * @tsk: Task structure to be checked.
1356 *
1357 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1358 *
1359 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1360 */
e868171a 1361static inline int is_global_init(struct task_struct *tsk)
b461cc03 1362{
570f5241 1363 return task_tgid_nr(tsk) == 1;
b461cc03 1364}
b460cbc5 1365
9ec52099
CLG
1366extern struct pid *cad_pid;
1367
1da177e4
LT
1368/*
1369 * Per process flags
1370 */
5eca1c10
IM
1371#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1372#define PF_EXITING 0x00000004 /* Getting shut down */
1373#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1374#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1375#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1376#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1377#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1378#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1379#define PF_DUMPCORE 0x00000200 /* Dumped core */
1380#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1381#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1382#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1383#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1384#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1385#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1386#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1387#define PF_KSWAPD 0x00020000 /* I am kswapd */
1388#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1389#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1390#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1391#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1392#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1393#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
eb414681 1394#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
73ab1cb2 1395#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
5eca1c10
IM
1396#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1397#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
5eca1c10
IM
1398#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1399#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1400
1401/*
1402 * Only the _current_ task can read/write to tsk->flags, but other
1403 * tasks can access tsk->flags in readonly mode for example
1404 * with tsk_used_math (like during threaded core dumping).
1405 * There is however an exception to this rule during ptrace
1406 * or during fork: the ptracer task is allowed to write to the
1407 * child->flags of its traced child (same goes for fork, the parent
1408 * can write to the child->flags), because we're guaranteed the
1409 * child is not running and in turn not changing child->flags
1410 * at the same time the parent does it.
1411 */
5eca1c10
IM
1412#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1413#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1414#define clear_used_math() clear_stopped_child_used_math(current)
1415#define set_used_math() set_stopped_child_used_math(current)
1416
1da177e4
LT
1417#define conditional_stopped_child_used_math(condition, child) \
1418 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1419
1420#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1421
1da177e4
LT
1422#define copy_to_stopped_child_used_math(child) \
1423 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1424
1da177e4 1425/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1426#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1427#define used_math() tsk_used_math(current)
1da177e4 1428
62ec05dd
TG
1429static inline bool is_percpu_thread(void)
1430{
1431#ifdef CONFIG_SMP
1432 return (current->flags & PF_NO_SETAFFINITY) &&
1433 (current->nr_cpus_allowed == 1);
1434#else
1435 return true;
1436#endif
1437}
1438
1d4457f9 1439/* Per-process atomic flags. */
5eca1c10
IM
1440#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1441#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1442#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1443#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1444#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1445#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1446#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1447#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1448
e0e5070b
ZL
1449#define TASK_PFA_TEST(name, func) \
1450 static inline bool task_##func(struct task_struct *p) \
1451 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1452
e0e5070b
ZL
1453#define TASK_PFA_SET(name, func) \
1454 static inline void task_set_##func(struct task_struct *p) \
1455 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1456
e0e5070b
ZL
1457#define TASK_PFA_CLEAR(name, func) \
1458 static inline void task_clear_##func(struct task_struct *p) \
1459 { clear_bit(PFA_##name, &p->atomic_flags); }
1460
1461TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1462TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1463
2ad654bc
ZL
1464TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1465TASK_PFA_SET(SPREAD_PAGE, spread_page)
1466TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1467
1468TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1469TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1470TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1471
356e4bff
TG
1472TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1473TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1474TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1475
71368af9
WL
1476TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1477TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1478TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1479
356e4bff
TG
1480TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1481TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1482
9137bb27
TG
1483TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1484TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1485TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1486
1487TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1488TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1489
5eca1c10 1490static inline void
717a94b5 1491current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1492{
717a94b5
N
1493 current->flags &= ~flags;
1494 current->flags |= orig_flags & flags;
907aed48
MG
1495}
1496
5eca1c10
IM
1497extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1498extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1499#ifdef CONFIG_SMP
5eca1c10
IM
1500extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1501extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1502#else
5eca1c10 1503static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1504{
1505}
5eca1c10 1506static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1507{
96f874e2 1508 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1509 return -EINVAL;
1510 return 0;
1511}
1512#endif
e0ad9556 1513
6d0d2878
CB
1514#ifndef cpu_relax_yield
1515#define cpu_relax_yield() cpu_relax()
1516#endif
1517
fa93384f 1518extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1519extern void set_user_nice(struct task_struct *p, long nice);
1520extern int task_prio(const struct task_struct *p);
5eca1c10 1521
d0ea0268
DY
1522/**
1523 * task_nice - return the nice value of a given task.
1524 * @p: the task in question.
1525 *
1526 * Return: The nice value [ -20 ... 0 ... 19 ].
1527 */
1528static inline int task_nice(const struct task_struct *p)
1529{
1530 return PRIO_TO_NICE((p)->static_prio);
1531}
5eca1c10 1532
36c8b586
IM
1533extern int can_nice(const struct task_struct *p, const int nice);
1534extern int task_curr(const struct task_struct *p);
1da177e4 1535extern int idle_cpu(int cpu);
943d355d 1536extern int available_idle_cpu(int cpu);
5eca1c10
IM
1537extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1538extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1539extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1540extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1541extern struct task_struct *idle_task(int cpu);
5eca1c10 1542
c4f30608
PM
1543/**
1544 * is_idle_task - is the specified task an idle task?
fa757281 1545 * @p: the task in question.
e69f6186
YB
1546 *
1547 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1548 */
7061ca3b 1549static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1550{
c1de45ca 1551 return !!(p->flags & PF_IDLE);
c4f30608 1552}
5eca1c10 1553
36c8b586 1554extern struct task_struct *curr_task(int cpu);
a458ae2e 1555extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1556
1557void yield(void);
1558
1da177e4 1559union thread_union {
0500871f
DH
1560#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1561 struct task_struct task;
1562#endif
c65eacbe 1563#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1564 struct thread_info thread_info;
c65eacbe 1565#endif
1da177e4
LT
1566 unsigned long stack[THREAD_SIZE/sizeof(long)];
1567};
1568
0500871f
DH
1569#ifndef CONFIG_THREAD_INFO_IN_TASK
1570extern struct thread_info init_thread_info;
1571#endif
1572
1573extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1574
f3ac6067
IM
1575#ifdef CONFIG_THREAD_INFO_IN_TASK
1576static inline struct thread_info *task_thread_info(struct task_struct *task)
1577{
1578 return &task->thread_info;
1579}
1580#elif !defined(__HAVE_THREAD_FUNCTIONS)
1581# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1582#endif
1583
198fe21b
PE
1584/*
1585 * find a task by one of its numerical ids
1586 *
198fe21b
PE
1587 * find_task_by_pid_ns():
1588 * finds a task by its pid in the specified namespace
228ebcbe
PE
1589 * find_task_by_vpid():
1590 * finds a task by its virtual pid
198fe21b 1591 *
e49859e7 1592 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1593 */
1594
228ebcbe 1595extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1596extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1597
2ee08260
MR
1598/*
1599 * find a task by its virtual pid and get the task struct
1600 */
1601extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1602
b3c97528
HH
1603extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1604extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1605extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1606
1da177e4 1607#ifdef CONFIG_SMP
5eca1c10 1608extern void kick_process(struct task_struct *tsk);
1da177e4 1609#else
5eca1c10 1610static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1611#endif
1da177e4 1612
82b89778 1613extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1614
82b89778
AH
1615static inline void set_task_comm(struct task_struct *tsk, const char *from)
1616{
1617 __set_task_comm(tsk, from, false);
1618}
5eca1c10 1619
3756f640
AB
1620extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1621#define get_task_comm(buf, tsk) ({ \
1622 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1623 __get_task_comm(buf, sizeof(buf), tsk); \
1624})
1da177e4
LT
1625
1626#ifdef CONFIG_SMP
317f3941 1627void scheduler_ipi(void);
85ba2d86 1628extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1629#else
184748cc 1630static inline void scheduler_ipi(void) { }
5eca1c10 1631static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1632{
1633 return 1;
1634}
1da177e4
LT
1635#endif
1636
5eca1c10
IM
1637/*
1638 * Set thread flags in other task's structures.
1639 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1640 */
1641static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1642{
a1261f54 1643 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1644}
1645
1646static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1647{
a1261f54 1648 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1649}
1650
93ee37c2
DM
1651static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1652 bool value)
1653{
1654 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1655}
1656
1da177e4
LT
1657static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1658{
a1261f54 1659 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1660}
1661
1662static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1663{
a1261f54 1664 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1665}
1666
1667static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1668{
a1261f54 1669 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1670}
1671
1672static inline void set_tsk_need_resched(struct task_struct *tsk)
1673{
1674 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1675}
1676
1677static inline void clear_tsk_need_resched(struct task_struct *tsk)
1678{
1679 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1680}
1681
8ae121ac
GH
1682static inline int test_tsk_need_resched(struct task_struct *tsk)
1683{
1684 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1685}
1686
1da177e4
LT
1687/*
1688 * cond_resched() and cond_resched_lock(): latency reduction via
1689 * explicit rescheduling in places that are safe. The return
1690 * value indicates whether a reschedule was done in fact.
1691 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1692 */
35a773a0 1693#ifndef CONFIG_PREEMPT
c3921ab7 1694extern int _cond_resched(void);
35a773a0
PZ
1695#else
1696static inline int _cond_resched(void) { return 0; }
1697#endif
6f80bd98 1698
613afbf8 1699#define cond_resched() ({ \
3427445a 1700 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1701 _cond_resched(); \
1702})
6f80bd98 1703
613afbf8
FW
1704extern int __cond_resched_lock(spinlock_t *lock);
1705
1706#define cond_resched_lock(lock) ({ \
3427445a 1707 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1708 __cond_resched_lock(lock); \
1709})
1710
f6f3c437
SH
1711static inline void cond_resched_rcu(void)
1712{
1713#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1714 rcu_read_unlock();
1715 cond_resched();
1716 rcu_read_lock();
1717#endif
1718}
1719
1da177e4
LT
1720/*
1721 * Does a critical section need to be broken due to another
95c354fe
NP
1722 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1723 * but a general need for low latency)
1da177e4 1724 */
95c354fe 1725static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1726{
95c354fe
NP
1727#ifdef CONFIG_PREEMPT
1728 return spin_is_contended(lock);
1729#else
1da177e4 1730 return 0;
95c354fe 1731#endif
1da177e4
LT
1732}
1733
75f93fed
PZ
1734static __always_inline bool need_resched(void)
1735{
1736 return unlikely(tif_need_resched());
1737}
1738
1da177e4
LT
1739/*
1740 * Wrappers for p->thread_info->cpu access. No-op on UP.
1741 */
1742#ifdef CONFIG_SMP
1743
1744static inline unsigned int task_cpu(const struct task_struct *p)
1745{
c65eacbe 1746#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1747 return READ_ONCE(p->cpu);
c65eacbe 1748#else
c546951d 1749 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1750#endif
1da177e4
LT
1751}
1752
c65cc870 1753extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1754
1755#else
1756
1757static inline unsigned int task_cpu(const struct task_struct *p)
1758{
1759 return 0;
1760}
1761
1762static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1763{
1764}
1765
1766#endif /* CONFIG_SMP */
1767
d9345c65
PX
1768/*
1769 * In order to reduce various lock holder preemption latencies provide an
1770 * interface to see if a vCPU is currently running or not.
1771 *
1772 * This allows us to terminate optimistic spin loops and block, analogous to
1773 * the native optimistic spin heuristic of testing if the lock owner task is
1774 * running or not.
1775 */
1776#ifndef vcpu_is_preempted
1777# define vcpu_is_preempted(cpu) false
1778#endif
1779
96f874e2
RR
1780extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1781extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1782
82455257
DH
1783#ifndef TASK_SIZE_OF
1784#define TASK_SIZE_OF(tsk) TASK_SIZE
1785#endif
1786
d7822b1e
MD
1787#ifdef CONFIG_RSEQ
1788
1789/*
1790 * Map the event mask on the user-space ABI enum rseq_cs_flags
1791 * for direct mask checks.
1792 */
1793enum rseq_event_mask_bits {
1794 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1795 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1796 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1797};
1798
1799enum rseq_event_mask {
1800 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1801 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1802 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1803};
1804
1805static inline void rseq_set_notify_resume(struct task_struct *t)
1806{
1807 if (t->rseq)
1808 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1809}
1810
784e0300 1811void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1812
784e0300
WD
1813static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1814 struct pt_regs *regs)
d7822b1e
MD
1815{
1816 if (current->rseq)
784e0300 1817 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1818}
1819
784e0300
WD
1820static inline void rseq_signal_deliver(struct ksignal *ksig,
1821 struct pt_regs *regs)
d7822b1e
MD
1822{
1823 preempt_disable();
1824 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1825 preempt_enable();
784e0300 1826 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1827}
1828
1829/* rseq_preempt() requires preemption to be disabled. */
1830static inline void rseq_preempt(struct task_struct *t)
1831{
1832 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1833 rseq_set_notify_resume(t);
1834}
1835
1836/* rseq_migrate() requires preemption to be disabled. */
1837static inline void rseq_migrate(struct task_struct *t)
1838{
1839 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1840 rseq_set_notify_resume(t);
1841}
1842
1843/*
1844 * If parent process has a registered restartable sequences area, the
9a789fcf 1845 * child inherits. Only applies when forking a process, not a thread.
d7822b1e
MD
1846 */
1847static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1848{
1849 if (clone_flags & CLONE_THREAD) {
1850 t->rseq = NULL;
1851 t->rseq_len = 0;
1852 t->rseq_sig = 0;
1853 t->rseq_event_mask = 0;
1854 } else {
1855 t->rseq = current->rseq;
1856 t->rseq_len = current->rseq_len;
1857 t->rseq_sig = current->rseq_sig;
1858 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1859 }
1860}
1861
1862static inline void rseq_execve(struct task_struct *t)
1863{
1864 t->rseq = NULL;
1865 t->rseq_len = 0;
1866 t->rseq_sig = 0;
1867 t->rseq_event_mask = 0;
1868}
1869
1870#else
1871
1872static inline void rseq_set_notify_resume(struct task_struct *t)
1873{
1874}
784e0300
WD
1875static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1876 struct pt_regs *regs)
d7822b1e
MD
1877{
1878}
784e0300
WD
1879static inline void rseq_signal_deliver(struct ksignal *ksig,
1880 struct pt_regs *regs)
d7822b1e
MD
1881{
1882}
1883static inline void rseq_preempt(struct task_struct *t)
1884{
1885}
1886static inline void rseq_migrate(struct task_struct *t)
1887{
1888}
1889static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1890{
1891}
1892static inline void rseq_execve(struct task_struct *t)
1893{
1894}
1895
1896#endif
1897
73ab1cb2
TY
1898void __exit_umh(struct task_struct *tsk);
1899
1900static inline void exit_umh(struct task_struct *tsk)
1901{
1902 if (unlikely(tsk->flags & PF_UMH))
1903 __exit_umh(tsk);
1904}
1905
d7822b1e
MD
1906#ifdef CONFIG_DEBUG_RSEQ
1907
1908void rseq_syscall(struct pt_regs *regs);
1909
1910#else
1911
1912static inline void rseq_syscall(struct pt_regs *regs)
1913{
1914}
1915
1916#endif
1917
1da177e4 1918#endif