]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/linux/sched.h
posix-cpu-timers: Create a container struct
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10
IM
27#include <linux/sched/prio.h>
28#include <linux/signal_types.h>
29#include <linux/mm_types_task.h>
30#include <linux/task_io_accounting.h>
2b69942f 31#include <linux/posix-timers.h>
d7822b1e 32#include <linux/rseq.h>
a3b6714e 33
5eca1c10 34/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 35struct audit_context;
c7af7877 36struct backing_dev_info;
bddd87c7 37struct bio_list;
73c10101 38struct blk_plug;
3c93a0c0 39struct capture_control;
c7af7877 40struct cfs_rq;
c7af7877
IM
41struct fs_struct;
42struct futex_pi_state;
43struct io_context;
44struct mempolicy;
89076bc3 45struct nameidata;
c7af7877
IM
46struct nsproxy;
47struct perf_event_context;
48struct pid_namespace;
49struct pipe_inode_info;
50struct rcu_node;
51struct reclaim_state;
52struct robust_list_head;
3c93a0c0
QY
53struct root_domain;
54struct rq;
c7af7877
IM
55struct sched_attr;
56struct sched_param;
43ae34cb 57struct seq_file;
c7af7877
IM
58struct sighand_struct;
59struct signal_struct;
60struct task_delay_info;
4cf86d77 61struct task_group;
1da177e4 62
4a8342d2
LT
63/*
64 * Task state bitmask. NOTE! These bits are also
65 * encoded in fs/proc/array.c: get_task_state().
66 *
67 * We have two separate sets of flags: task->state
68 * is about runnability, while task->exit_state are
69 * about the task exiting. Confusing, but this way
70 * modifying one set can't modify the other one by
71 * mistake.
72 */
5eca1c10
IM
73
74/* Used in tsk->state: */
92c4bc9f
PZ
75#define TASK_RUNNING 0x0000
76#define TASK_INTERRUPTIBLE 0x0001
77#define TASK_UNINTERRUPTIBLE 0x0002
78#define __TASK_STOPPED 0x0004
79#define __TASK_TRACED 0x0008
5eca1c10 80/* Used in tsk->exit_state: */
92c4bc9f
PZ
81#define EXIT_DEAD 0x0010
82#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
83#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
84/* Used in tsk->state again: */
8ef9925b
PZ
85#define TASK_PARKED 0x0040
86#define TASK_DEAD 0x0080
87#define TASK_WAKEKILL 0x0100
88#define TASK_WAKING 0x0200
92c4bc9f
PZ
89#define TASK_NOLOAD 0x0400
90#define TASK_NEW 0x0800
91#define TASK_STATE_MAX 0x1000
5eca1c10 92
5eca1c10
IM
93/* Convenience macros for the sake of set_current_state: */
94#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
95#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
96#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
97
98#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
99
100/* Convenience macros for the sake of wake_up(): */
101#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
102
103/* get_task_state(): */
104#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
105 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
106 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
107 TASK_PARKED)
5eca1c10
IM
108
109#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
110
111#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
112
113#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
114
115#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
116 (task->flags & PF_FROZEN) == 0 && \
117 (task->state & TASK_NOLOAD) == 0)
1da177e4 118
8eb23b9f
PZ
119#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
120
b5bf9a90
PZ
121/*
122 * Special states are those that do not use the normal wait-loop pattern. See
123 * the comment with set_special_state().
124 */
125#define is_special_task_state(state) \
1cef1150 126 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 127
8eb23b9f
PZ
128#define __set_current_state(state_value) \
129 do { \
b5bf9a90 130 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
131 current->task_state_change = _THIS_IP_; \
132 current->state = (state_value); \
133 } while (0)
b5bf9a90 134
8eb23b9f
PZ
135#define set_current_state(state_value) \
136 do { \
b5bf9a90 137 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 138 current->task_state_change = _THIS_IP_; \
a2250238 139 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
140 } while (0)
141
b5bf9a90
PZ
142#define set_special_state(state_value) \
143 do { \
144 unsigned long flags; /* may shadow */ \
145 WARN_ON_ONCE(!is_special_task_state(state_value)); \
146 raw_spin_lock_irqsave(&current->pi_lock, flags); \
147 current->task_state_change = _THIS_IP_; \
148 current->state = (state_value); \
149 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
150 } while (0)
8eb23b9f 151#else
498d0c57
AM
152/*
153 * set_current_state() includes a barrier so that the write of current->state
154 * is correctly serialised wrt the caller's subsequent test of whether to
155 * actually sleep:
156 *
a2250238 157 * for (;;) {
498d0c57 158 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
159 * if (!need_sleep)
160 * break;
161 *
162 * schedule();
163 * }
164 * __set_current_state(TASK_RUNNING);
165 *
166 * If the caller does not need such serialisation (because, for instance, the
167 * condition test and condition change and wakeup are under the same lock) then
168 * use __set_current_state().
169 *
170 * The above is typically ordered against the wakeup, which does:
171 *
b5bf9a90
PZ
172 * need_sleep = false;
173 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 174 *
7696f991
AP
175 * where wake_up_state() executes a full memory barrier before accessing the
176 * task state.
a2250238
PZ
177 *
178 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
179 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
180 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 181 *
b5bf9a90 182 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 183 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
184 * a problem either because that will result in one extra go around the loop
185 * and our @cond test will save the day.
498d0c57 186 *
a2250238 187 * Also see the comments of try_to_wake_up().
498d0c57 188 */
b5bf9a90
PZ
189#define __set_current_state(state_value) \
190 current->state = (state_value)
191
192#define set_current_state(state_value) \
193 smp_store_mb(current->state, (state_value))
194
195/*
196 * set_special_state() should be used for those states when the blocking task
197 * can not use the regular condition based wait-loop. In that case we must
198 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
199 * will not collide with our state change.
200 */
201#define set_special_state(state_value) \
202 do { \
203 unsigned long flags; /* may shadow */ \
204 raw_spin_lock_irqsave(&current->pi_lock, flags); \
205 current->state = (state_value); \
206 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
207 } while (0)
208
8eb23b9f
PZ
209#endif
210
5eca1c10
IM
211/* Task command name length: */
212#define TASK_COMM_LEN 16
1da177e4 213
1da177e4
LT
214extern void scheduler_tick(void);
215
5eca1c10
IM
216#define MAX_SCHEDULE_TIMEOUT LONG_MAX
217
218extern long schedule_timeout(long timeout);
219extern long schedule_timeout_interruptible(long timeout);
220extern long schedule_timeout_killable(long timeout);
221extern long schedule_timeout_uninterruptible(long timeout);
222extern long schedule_timeout_idle(long timeout);
1da177e4 223asmlinkage void schedule(void);
c5491ea7 224extern void schedule_preempt_disabled(void);
1da177e4 225
10ab5643
TH
226extern int __must_check io_schedule_prepare(void);
227extern void io_schedule_finish(int token);
9cff8ade 228extern long io_schedule_timeout(long timeout);
10ab5643 229extern void io_schedule(void);
9cff8ade 230
d37f761d 231/**
0ba42a59 232 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
233 * @utime: time spent in user mode
234 * @stime: time spent in system mode
9d7fb042 235 * @lock: protects the above two fields
d37f761d 236 *
9d7fb042
PZ
237 * Stores previous user/system time values such that we can guarantee
238 * monotonicity.
d37f761d 239 */
9d7fb042
PZ
240struct prev_cputime {
241#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
242 u64 utime;
243 u64 stime;
244 raw_spinlock_t lock;
9d7fb042 245#endif
d37f761d
FW
246};
247
f06febc9
FM
248/**
249 * struct task_cputime - collected CPU time counts
5613fda9
FW
250 * @utime: time spent in user mode, in nanoseconds
251 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 252 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 253 *
9d7fb042
PZ
254 * This structure groups together three kinds of CPU time that are tracked for
255 * threads and thread groups. Most things considering CPU time want to group
256 * these counts together and treat all three of them in parallel.
f06febc9
FM
257 */
258struct task_cputime {
5eca1c10
IM
259 u64 utime;
260 u64 stime;
261 unsigned long long sum_exec_runtime;
f06febc9 262};
9d7fb042 263
5eca1c10
IM
264/* Alternate field names when used on cache expirations: */
265#define virt_exp utime
266#define prof_exp stime
267#define sched_exp sum_exec_runtime
f06febc9 268
bac5b6b6
FW
269enum vtime_state {
270 /* Task is sleeping or running in a CPU with VTIME inactive: */
271 VTIME_INACTIVE = 0,
272 /* Task runs in userspace in a CPU with VTIME active: */
273 VTIME_USER,
274 /* Task runs in kernelspace in a CPU with VTIME active: */
275 VTIME_SYS,
276};
277
278struct vtime {
279 seqcount_t seqcount;
280 unsigned long long starttime;
281 enum vtime_state state;
2a42eb95
WL
282 u64 utime;
283 u64 stime;
284 u64 gtime;
bac5b6b6
FW
285};
286
69842cba
PB
287/*
288 * Utilization clamp constraints.
289 * @UCLAMP_MIN: Minimum utilization
290 * @UCLAMP_MAX: Maximum utilization
291 * @UCLAMP_CNT: Utilization clamp constraints count
292 */
293enum uclamp_id {
294 UCLAMP_MIN = 0,
295 UCLAMP_MAX,
296 UCLAMP_CNT
297};
298
1da177e4 299struct sched_info {
7f5f8e8d 300#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
301 /* Cumulative counters: */
302
303 /* # of times we have run on this CPU: */
304 unsigned long pcount;
305
306 /* Time spent waiting on a runqueue: */
307 unsigned long long run_delay;
308
309 /* Timestamps: */
310
311 /* When did we last run on a CPU? */
312 unsigned long long last_arrival;
313
314 /* When were we last queued to run? */
315 unsigned long long last_queued;
1da177e4 316
f6db8347 317#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 318};
1da177e4 319
6ecdd749
YD
320/*
321 * Integer metrics need fixed point arithmetic, e.g., sched/fair
322 * has a few: load, load_avg, util_avg, freq, and capacity.
323 *
324 * We define a basic fixed point arithmetic range, and then formalize
325 * all these metrics based on that basic range.
326 */
5eca1c10
IM
327# define SCHED_FIXEDPOINT_SHIFT 10
328# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 329
69842cba
PB
330/* Increase resolution of cpu_capacity calculations */
331# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
332# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
333
20b8a59f 334struct load_weight {
5eca1c10
IM
335 unsigned long weight;
336 u32 inv_weight;
20b8a59f
IM
337};
338
7f65ea42
PB
339/**
340 * struct util_est - Estimation utilization of FAIR tasks
341 * @enqueued: instantaneous estimated utilization of a task/cpu
342 * @ewma: the Exponential Weighted Moving Average (EWMA)
343 * utilization of a task
344 *
345 * Support data structure to track an Exponential Weighted Moving Average
346 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
347 * average each time a task completes an activation. Sample's weight is chosen
348 * so that the EWMA will be relatively insensitive to transient changes to the
349 * task's workload.
350 *
351 * The enqueued attribute has a slightly different meaning for tasks and cpus:
352 * - task: the task's util_avg at last task dequeue time
353 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
354 * Thus, the util_est.enqueued of a task represents the contribution on the
355 * estimated utilization of the CPU where that task is currently enqueued.
356 *
357 * Only for tasks we track a moving average of the past instantaneous
358 * estimated utilization. This allows to absorb sporadic drops in utilization
359 * of an otherwise almost periodic task.
360 */
361struct util_est {
362 unsigned int enqueued;
363 unsigned int ewma;
364#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 365} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 366
9d89c257 367/*
7b595334
YD
368 * The load_avg/util_avg accumulates an infinite geometric series
369 * (see __update_load_avg() in kernel/sched/fair.c).
370 *
371 * [load_avg definition]
372 *
373 * load_avg = runnable% * scale_load_down(load)
374 *
375 * where runnable% is the time ratio that a sched_entity is runnable.
376 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 377 * blocked sched_entities.
7b595334 378 *
7b595334
YD
379 * [util_avg definition]
380 *
381 * util_avg = running% * SCHED_CAPACITY_SCALE
382 *
383 * where running% is the time ratio that a sched_entity is running on
384 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
385 * and blocked sched_entities.
386 *
23127296
VG
387 * load_avg and util_avg don't direcly factor frequency scaling and CPU
388 * capacity scaling. The scaling is done through the rq_clock_pelt that
389 * is used for computing those signals (see update_rq_clock_pelt())
7b595334 390 *
23127296
VG
391 * N.B., the above ratios (runnable% and running%) themselves are in the
392 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
393 * to as large a range as necessary. This is for example reflected by
394 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
395 *
396 * [Overflow issue]
397 *
398 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
399 * with the highest load (=88761), always runnable on a single cfs_rq,
400 * and should not overflow as the number already hits PID_MAX_LIMIT.
401 *
402 * For all other cases (including 32-bit kernels), struct load_weight's
403 * weight will overflow first before we do, because:
404 *
405 * Max(load_avg) <= Max(load.weight)
406 *
407 * Then it is the load_weight's responsibility to consider overflow
408 * issues.
9d89c257 409 */
9d85f21c 410struct sched_avg {
5eca1c10
IM
411 u64 last_update_time;
412 u64 load_sum;
1ea6c46a 413 u64 runnable_load_sum;
5eca1c10
IM
414 u32 util_sum;
415 u32 period_contrib;
416 unsigned long load_avg;
1ea6c46a 417 unsigned long runnable_load_avg;
5eca1c10 418 unsigned long util_avg;
7f65ea42 419 struct util_est util_est;
317d359d 420} ____cacheline_aligned;
9d85f21c 421
41acab88 422struct sched_statistics {
7f5f8e8d 423#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
424 u64 wait_start;
425 u64 wait_max;
426 u64 wait_count;
427 u64 wait_sum;
428 u64 iowait_count;
429 u64 iowait_sum;
430
431 u64 sleep_start;
432 u64 sleep_max;
433 s64 sum_sleep_runtime;
434
435 u64 block_start;
436 u64 block_max;
437 u64 exec_max;
438 u64 slice_max;
439
440 u64 nr_migrations_cold;
441 u64 nr_failed_migrations_affine;
442 u64 nr_failed_migrations_running;
443 u64 nr_failed_migrations_hot;
444 u64 nr_forced_migrations;
445
446 u64 nr_wakeups;
447 u64 nr_wakeups_sync;
448 u64 nr_wakeups_migrate;
449 u64 nr_wakeups_local;
450 u64 nr_wakeups_remote;
451 u64 nr_wakeups_affine;
452 u64 nr_wakeups_affine_attempts;
453 u64 nr_wakeups_passive;
454 u64 nr_wakeups_idle;
41acab88 455#endif
7f5f8e8d 456};
41acab88
LDM
457
458struct sched_entity {
5eca1c10
IM
459 /* For load-balancing: */
460 struct load_weight load;
1ea6c46a 461 unsigned long runnable_weight;
5eca1c10
IM
462 struct rb_node run_node;
463 struct list_head group_node;
464 unsigned int on_rq;
41acab88 465
5eca1c10
IM
466 u64 exec_start;
467 u64 sum_exec_runtime;
468 u64 vruntime;
469 u64 prev_sum_exec_runtime;
41acab88 470
5eca1c10 471 u64 nr_migrations;
41acab88 472
5eca1c10 473 struct sched_statistics statistics;
94c18227 474
20b8a59f 475#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
476 int depth;
477 struct sched_entity *parent;
20b8a59f 478 /* rq on which this entity is (to be) queued: */
5eca1c10 479 struct cfs_rq *cfs_rq;
20b8a59f 480 /* rq "owned" by this entity/group: */
5eca1c10 481 struct cfs_rq *my_q;
20b8a59f 482#endif
8bd75c77 483
141965c7 484#ifdef CONFIG_SMP
5a107804
JO
485 /*
486 * Per entity load average tracking.
487 *
488 * Put into separate cache line so it does not
489 * collide with read-mostly values above.
490 */
317d359d 491 struct sched_avg avg;
9d85f21c 492#endif
20b8a59f 493};
70b97a7f 494
fa717060 495struct sched_rt_entity {
5eca1c10
IM
496 struct list_head run_list;
497 unsigned long timeout;
498 unsigned long watchdog_stamp;
499 unsigned int time_slice;
500 unsigned short on_rq;
501 unsigned short on_list;
502
503 struct sched_rt_entity *back;
052f1dc7 504#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 505 struct sched_rt_entity *parent;
6f505b16 506 /* rq on which this entity is (to be) queued: */
5eca1c10 507 struct rt_rq *rt_rq;
6f505b16 508 /* rq "owned" by this entity/group: */
5eca1c10 509 struct rt_rq *my_q;
6f505b16 510#endif
3859a271 511} __randomize_layout;
fa717060 512
aab03e05 513struct sched_dl_entity {
5eca1c10 514 struct rb_node rb_node;
aab03e05
DF
515
516 /*
517 * Original scheduling parameters. Copied here from sched_attr
4027d080 518 * during sched_setattr(), they will remain the same until
519 * the next sched_setattr().
aab03e05 520 */
5eca1c10
IM
521 u64 dl_runtime; /* Maximum runtime for each instance */
522 u64 dl_deadline; /* Relative deadline of each instance */
523 u64 dl_period; /* Separation of two instances (period) */
54d6d303 524 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 525 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
526
527 /*
528 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 529 * they are continuously updated during task execution. Note that
aab03e05
DF
530 * the remaining runtime could be < 0 in case we are in overrun.
531 */
5eca1c10
IM
532 s64 runtime; /* Remaining runtime for this instance */
533 u64 deadline; /* Absolute deadline for this instance */
534 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
535
536 /*
537 * Some bool flags:
538 *
539 * @dl_throttled tells if we exhausted the runtime. If so, the
540 * task has to wait for a replenishment to be performed at the
541 * next firing of dl_timer.
542 *
2d3d891d
DF
543 * @dl_boosted tells if we are boosted due to DI. If so we are
544 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
545 * exit the critical section);
546 *
5eca1c10 547 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 548 * all its available runtime during the last job.
209a0cbd
LA
549 *
550 * @dl_non_contending tells if the task is inactive while still
551 * contributing to the active utilization. In other words, it
552 * indicates if the inactive timer has been armed and its handler
553 * has not been executed yet. This flag is useful to avoid race
554 * conditions between the inactive timer handler and the wakeup
555 * code.
34be3930
JL
556 *
557 * @dl_overrun tells if the task asked to be informed about runtime
558 * overruns.
aab03e05 559 */
aa5222e9
DC
560 unsigned int dl_throttled : 1;
561 unsigned int dl_boosted : 1;
562 unsigned int dl_yielded : 1;
563 unsigned int dl_non_contending : 1;
34be3930 564 unsigned int dl_overrun : 1;
aab03e05
DF
565
566 /*
567 * Bandwidth enforcement timer. Each -deadline task has its
568 * own bandwidth to be enforced, thus we need one timer per task.
569 */
5eca1c10 570 struct hrtimer dl_timer;
209a0cbd
LA
571
572 /*
573 * Inactive timer, responsible for decreasing the active utilization
574 * at the "0-lag time". When a -deadline task blocks, it contributes
575 * to GRUB's active utilization until the "0-lag time", hence a
576 * timer is needed to decrease the active utilization at the correct
577 * time.
578 */
579 struct hrtimer inactive_timer;
aab03e05 580};
8bd75c77 581
69842cba
PB
582#ifdef CONFIG_UCLAMP_TASK
583/* Number of utilization clamp buckets (shorter alias) */
584#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
585
586/*
587 * Utilization clamp for a scheduling entity
588 * @value: clamp value "assigned" to a se
589 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 590 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 591 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
592 *
593 * The bucket_id is the index of the clamp bucket matching the clamp value
594 * which is pre-computed and stored to avoid expensive integer divisions from
595 * the fast path.
e8f14172
PB
596 *
597 * The active bit is set whenever a task has got an "effective" value assigned,
598 * which can be different from the clamp value "requested" from user-space.
599 * This allows to know a task is refcounted in the rq's bucket corresponding
600 * to the "effective" bucket_id.
a509a7cd
PB
601 *
602 * The user_defined bit is set whenever a task has got a task-specific clamp
603 * value requested from userspace, i.e. the system defaults apply to this task
604 * just as a restriction. This allows to relax default clamps when a less
605 * restrictive task-specific value has been requested, thus allowing to
606 * implement a "nice" semantic. For example, a task running with a 20%
607 * default boost can still drop its own boosting to 0%.
69842cba
PB
608 */
609struct uclamp_se {
610 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
611 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 612 unsigned int active : 1;
a509a7cd 613 unsigned int user_defined : 1;
69842cba
PB
614};
615#endif /* CONFIG_UCLAMP_TASK */
616
1d082fd0
PM
617union rcu_special {
618 struct {
5eca1c10
IM
619 u8 blocked;
620 u8 need_qs;
05f41571 621 u8 exp_hint; /* Hint for performance. */
23634ebc 622 u8 deferred_qs;
8203d6d0 623 } b; /* Bits. */
05f41571 624 u32 s; /* Set of bits. */
1d082fd0 625};
86848966 626
8dc85d54
PZ
627enum perf_event_task_context {
628 perf_invalid_context = -1,
629 perf_hw_context = 0,
89a1e187 630 perf_sw_context,
8dc85d54
PZ
631 perf_nr_task_contexts,
632};
633
eb61baf6
IM
634struct wake_q_node {
635 struct wake_q_node *next;
636};
637
1da177e4 638struct task_struct {
c65eacbe
AL
639#ifdef CONFIG_THREAD_INFO_IN_TASK
640 /*
641 * For reasons of header soup (see current_thread_info()), this
642 * must be the first element of task_struct.
643 */
5eca1c10 644 struct thread_info thread_info;
c65eacbe 645#endif
5eca1c10
IM
646 /* -1 unrunnable, 0 runnable, >0 stopped: */
647 volatile long state;
29e48ce8
KC
648
649 /*
650 * This begins the randomizable portion of task_struct. Only
651 * scheduling-critical items should be added above here.
652 */
653 randomized_struct_fields_start
654
5eca1c10 655 void *stack;
ec1d2819 656 refcount_t usage;
5eca1c10
IM
657 /* Per task flags (PF_*), defined further below: */
658 unsigned int flags;
659 unsigned int ptrace;
1da177e4 660
2dd73a4f 661#ifdef CONFIG_SMP
5eca1c10
IM
662 struct llist_node wake_entry;
663 int on_cpu;
c65eacbe 664#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
665 /* Current CPU: */
666 unsigned int cpu;
c65eacbe 667#endif
5eca1c10
IM
668 unsigned int wakee_flips;
669 unsigned long wakee_flip_decay_ts;
670 struct task_struct *last_wakee;
ac66f547 671
32e839dd
MG
672 /*
673 * recent_used_cpu is initially set as the last CPU used by a task
674 * that wakes affine another task. Waker/wakee relationships can
675 * push tasks around a CPU where each wakeup moves to the next one.
676 * Tracking a recently used CPU allows a quick search for a recently
677 * used CPU that may be idle.
678 */
679 int recent_used_cpu;
5eca1c10 680 int wake_cpu;
2dd73a4f 681#endif
5eca1c10
IM
682 int on_rq;
683
684 int prio;
685 int static_prio;
686 int normal_prio;
687 unsigned int rt_priority;
50e645a8 688
5eca1c10
IM
689 const struct sched_class *sched_class;
690 struct sched_entity se;
691 struct sched_rt_entity rt;
8323f26c 692#ifdef CONFIG_CGROUP_SCHED
5eca1c10 693 struct task_group *sched_task_group;
8323f26c 694#endif
5eca1c10 695 struct sched_dl_entity dl;
1da177e4 696
69842cba 697#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
698 /* Clamp values requested for a scheduling entity */
699 struct uclamp_se uclamp_req[UCLAMP_CNT];
700 /* Effective clamp values used for a scheduling entity */
69842cba
PB
701 struct uclamp_se uclamp[UCLAMP_CNT];
702#endif
703
e107be36 704#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
705 /* List of struct preempt_notifier: */
706 struct hlist_head preempt_notifiers;
e107be36
AK
707#endif
708
6c5c9341 709#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 710 unsigned int btrace_seq;
6c5c9341 711#endif
1da177e4 712
5eca1c10
IM
713 unsigned int policy;
714 int nr_cpus_allowed;
3bd37062
SAS
715 const cpumask_t *cpus_ptr;
716 cpumask_t cpus_mask;
1da177e4 717
a57eb940 718#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
719 int rcu_read_lock_nesting;
720 union rcu_special rcu_read_unlock_special;
721 struct list_head rcu_node_entry;
722 struct rcu_node *rcu_blocked_node;
28f6569a 723#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 724
8315f422 725#ifdef CONFIG_TASKS_RCU
5eca1c10 726 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
727 u8 rcu_tasks_holdout;
728 u8 rcu_tasks_idx;
5eca1c10 729 int rcu_tasks_idle_cpu;
ccdd29ff 730 struct list_head rcu_tasks_holdout_list;
8315f422 731#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 732
5eca1c10 733 struct sched_info sched_info;
1da177e4 734
5eca1c10 735 struct list_head tasks;
806c09a7 736#ifdef CONFIG_SMP
5eca1c10
IM
737 struct plist_node pushable_tasks;
738 struct rb_node pushable_dl_tasks;
806c09a7 739#endif
1da177e4 740
5eca1c10
IM
741 struct mm_struct *mm;
742 struct mm_struct *active_mm;
314ff785
IM
743
744 /* Per-thread vma caching: */
5eca1c10 745 struct vmacache vmacache;
314ff785 746
5eca1c10
IM
747#ifdef SPLIT_RSS_COUNTING
748 struct task_rss_stat rss_stat;
34e55232 749#endif
5eca1c10
IM
750 int exit_state;
751 int exit_code;
752 int exit_signal;
753 /* The signal sent when the parent dies: */
754 int pdeath_signal;
755 /* JOBCTL_*, siglock protected: */
756 unsigned long jobctl;
757
758 /* Used for emulating ABI behavior of previous Linux versions: */
759 unsigned int personality;
760
761 /* Scheduler bits, serialized by scheduler locks: */
762 unsigned sched_reset_on_fork:1;
763 unsigned sched_contributes_to_load:1;
764 unsigned sched_migrated:1;
765 unsigned sched_remote_wakeup:1;
eb414681
JW
766#ifdef CONFIG_PSI
767 unsigned sched_psi_wake_requeue:1;
768#endif
769
5eca1c10
IM
770 /* Force alignment to the next boundary: */
771 unsigned :0;
772
773 /* Unserialized, strictly 'current' */
774
775 /* Bit to tell LSMs we're in execve(): */
776 unsigned in_execve:1;
777 unsigned in_iowait:1;
778#ifndef TIF_RESTORE_SIGMASK
779 unsigned restore_sigmask:1;
7e781418 780#endif
626ebc41 781#ifdef CONFIG_MEMCG
29ef680a 782 unsigned in_user_fault:1;
127424c8 783#endif
ff303e66 784#ifdef CONFIG_COMPAT_BRK
5eca1c10 785 unsigned brk_randomized:1;
ff303e66 786#endif
77f88796
TH
787#ifdef CONFIG_CGROUPS
788 /* disallow userland-initiated cgroup migration */
789 unsigned no_cgroup_migration:1;
76f969e8
RG
790 /* task is frozen/stopped (used by the cgroup freezer) */
791 unsigned frozen:1;
77f88796 792#endif
d09d8df3
JB
793#ifdef CONFIG_BLK_CGROUP
794 /* to be used once the psi infrastructure lands upstream. */
795 unsigned use_memdelay:1;
796#endif
6f185c29 797
5eca1c10 798 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 799
5eca1c10 800 struct restart_block restart_block;
f56141e3 801
5eca1c10
IM
802 pid_t pid;
803 pid_t tgid;
0a425405 804
050e9baa 805#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
806 /* Canary value for the -fstack-protector GCC feature: */
807 unsigned long stack_canary;
1314562a 808#endif
4d1d61a6 809 /*
5eca1c10 810 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 811 * older sibling, respectively. (p->father can be replaced with
f470021a 812 * p->real_parent->pid)
1da177e4 813 */
5eca1c10
IM
814
815 /* Real parent process: */
816 struct task_struct __rcu *real_parent;
817
818 /* Recipient of SIGCHLD, wait4() reports: */
819 struct task_struct __rcu *parent;
820
1da177e4 821 /*
5eca1c10 822 * Children/sibling form the list of natural children:
1da177e4 823 */
5eca1c10
IM
824 struct list_head children;
825 struct list_head sibling;
826 struct task_struct *group_leader;
1da177e4 827
f470021a 828 /*
5eca1c10
IM
829 * 'ptraced' is the list of tasks this task is using ptrace() on.
830 *
f470021a 831 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 832 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 833 */
5eca1c10
IM
834 struct list_head ptraced;
835 struct list_head ptrace_entry;
f470021a 836
1da177e4 837 /* PID/PID hash table linkage. */
2c470475
EB
838 struct pid *thread_pid;
839 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
840 struct list_head thread_group;
841 struct list_head thread_node;
842
843 struct completion *vfork_done;
1da177e4 844
5eca1c10
IM
845 /* CLONE_CHILD_SETTID: */
846 int __user *set_child_tid;
1da177e4 847
5eca1c10
IM
848 /* CLONE_CHILD_CLEARTID: */
849 int __user *clear_child_tid;
850
851 u64 utime;
852 u64 stime;
40565b5a 853#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
854 u64 utimescaled;
855 u64 stimescaled;
40565b5a 856#endif
5eca1c10
IM
857 u64 gtime;
858 struct prev_cputime prev_cputime;
6a61671b 859#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 860 struct vtime vtime;
d99ca3b9 861#endif
d027d45d
FW
862
863#ifdef CONFIG_NO_HZ_FULL
5eca1c10 864 atomic_t tick_dep_mask;
d027d45d 865#endif
5eca1c10
IM
866 /* Context switch counts: */
867 unsigned long nvcsw;
868 unsigned long nivcsw;
869
870 /* Monotonic time in nsecs: */
871 u64 start_time;
872
873 /* Boot based time in nsecs: */
874 u64 real_start_time;
875
876 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
877 unsigned long min_flt;
878 unsigned long maj_flt;
1da177e4 879
b18b6a9c 880#ifdef CONFIG_POSIX_TIMERS
5eca1c10 881 struct task_cputime cputime_expires;
b18b6a9c 882#endif
2b69942f
TG
883 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
884 struct posix_cputimers posix_cputimers;
1da177e4 885
5eca1c10
IM
886 /* Process credentials: */
887
888 /* Tracer's credentials at attach: */
889 const struct cred __rcu *ptracer_cred;
890
891 /* Objective and real subjective task credentials (COW): */
892 const struct cred __rcu *real_cred;
893
894 /* Effective (overridable) subjective task credentials (COW): */
895 const struct cred __rcu *cred;
896
7743c48e
DH
897#ifdef CONFIG_KEYS
898 /* Cached requested key. */
899 struct key *cached_requested_key;
900#endif
901
5eca1c10
IM
902 /*
903 * executable name, excluding path.
904 *
905 * - normally initialized setup_new_exec()
906 * - access it with [gs]et_task_comm()
907 * - lock it with task_lock()
908 */
909 char comm[TASK_COMM_LEN];
910
911 struct nameidata *nameidata;
912
3d5b6fcc 913#ifdef CONFIG_SYSVIPC
5eca1c10
IM
914 struct sysv_sem sysvsem;
915 struct sysv_shm sysvshm;
3d5b6fcc 916#endif
e162b39a 917#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 918 unsigned long last_switch_count;
a2e51445 919 unsigned long last_switch_time;
82a1fcb9 920#endif
5eca1c10
IM
921 /* Filesystem information: */
922 struct fs_struct *fs;
923
924 /* Open file information: */
925 struct files_struct *files;
926
927 /* Namespaces: */
928 struct nsproxy *nsproxy;
929
930 /* Signal handlers: */
931 struct signal_struct *signal;
932 struct sighand_struct *sighand;
933 sigset_t blocked;
934 sigset_t real_blocked;
935 /* Restored if set_restore_sigmask() was used: */
936 sigset_t saved_sigmask;
937 struct sigpending pending;
938 unsigned long sas_ss_sp;
939 size_t sas_ss_size;
940 unsigned int sas_ss_flags;
941
942 struct callback_head *task_works;
943
4b7d248b 944#ifdef CONFIG_AUDIT
bfef93a5 945#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
946 struct audit_context *audit_context;
947#endif
5eca1c10
IM
948 kuid_t loginuid;
949 unsigned int sessionid;
bfef93a5 950#endif
5eca1c10
IM
951 struct seccomp seccomp;
952
953 /* Thread group tracking: */
954 u32 parent_exec_id;
955 u32 self_exec_id;
1da177e4 956
5eca1c10
IM
957 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
958 spinlock_t alloc_lock;
1da177e4 959
b29739f9 960 /* Protection of the PI data structures: */
5eca1c10 961 raw_spinlock_t pi_lock;
b29739f9 962
5eca1c10 963 struct wake_q_node wake_q;
76751049 964
23f78d4a 965#ifdef CONFIG_RT_MUTEXES
5eca1c10 966 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 967 struct rb_root_cached pi_waiters;
e96a7705
XP
968 /* Updated under owner's pi_lock and rq lock */
969 struct task_struct *pi_top_task;
5eca1c10
IM
970 /* Deadlock detection and priority inheritance handling: */
971 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
972#endif
973
408894ee 974#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
975 /* Mutex deadlock detection: */
976 struct mutex_waiter *blocked_on;
408894ee 977#endif
5eca1c10 978
de30a2b3 979#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
980 unsigned int irq_events;
981 unsigned long hardirq_enable_ip;
982 unsigned long hardirq_disable_ip;
983 unsigned int hardirq_enable_event;
984 unsigned int hardirq_disable_event;
985 int hardirqs_enabled;
986 int hardirq_context;
987 unsigned long softirq_disable_ip;
988 unsigned long softirq_enable_ip;
989 unsigned int softirq_disable_event;
990 unsigned int softirq_enable_event;
991 int softirqs_enabled;
992 int softirq_context;
de30a2b3 993#endif
5eca1c10 994
fbb9ce95 995#ifdef CONFIG_LOCKDEP
5eca1c10
IM
996# define MAX_LOCK_DEPTH 48UL
997 u64 curr_chain_key;
998 int lockdep_depth;
999 unsigned int lockdep_recursion;
1000 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1001#endif
5eca1c10 1002
c6d30853 1003#ifdef CONFIG_UBSAN
5eca1c10 1004 unsigned int in_ubsan;
c6d30853 1005#endif
408894ee 1006
5eca1c10
IM
1007 /* Journalling filesystem info: */
1008 void *journal_info;
1da177e4 1009
5eca1c10
IM
1010 /* Stacked block device info: */
1011 struct bio_list *bio_list;
d89d8796 1012
73c10101 1013#ifdef CONFIG_BLOCK
5eca1c10
IM
1014 /* Stack plugging: */
1015 struct blk_plug *plug;
73c10101
JA
1016#endif
1017
5eca1c10
IM
1018 /* VM state: */
1019 struct reclaim_state *reclaim_state;
1020
1021 struct backing_dev_info *backing_dev_info;
1da177e4 1022
5eca1c10 1023 struct io_context *io_context;
1da177e4 1024
5e1f0f09
MG
1025#ifdef CONFIG_COMPACTION
1026 struct capture_control *capture_control;
1027#endif
5eca1c10
IM
1028 /* Ptrace state: */
1029 unsigned long ptrace_message;
ae7795bc 1030 kernel_siginfo_t *last_siginfo;
1da177e4 1031
5eca1c10 1032 struct task_io_accounting ioac;
eb414681
JW
1033#ifdef CONFIG_PSI
1034 /* Pressure stall state */
1035 unsigned int psi_flags;
1036#endif
5eca1c10
IM
1037#ifdef CONFIG_TASK_XACCT
1038 /* Accumulated RSS usage: */
1039 u64 acct_rss_mem1;
1040 /* Accumulated virtual memory usage: */
1041 u64 acct_vm_mem1;
1042 /* stime + utime since last update: */
1043 u64 acct_timexpd;
1da177e4
LT
1044#endif
1045#ifdef CONFIG_CPUSETS
5eca1c10
IM
1046 /* Protected by ->alloc_lock: */
1047 nodemask_t mems_allowed;
1048 /* Seqence number to catch updates: */
1049 seqcount_t mems_allowed_seq;
1050 int cpuset_mem_spread_rotor;
1051 int cpuset_slab_spread_rotor;
1da177e4 1052#endif
ddbcc7e8 1053#ifdef CONFIG_CGROUPS
5eca1c10
IM
1054 /* Control Group info protected by css_set_lock: */
1055 struct css_set __rcu *cgroups;
1056 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1057 struct list_head cg_list;
ddbcc7e8 1058#endif
e6d42931 1059#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1060 u32 closid;
d6aaba61 1061 u32 rmid;
e02737d5 1062#endif
42b2dd0a 1063#ifdef CONFIG_FUTEX
5eca1c10 1064 struct robust_list_head __user *robust_list;
34f192c6
IM
1065#ifdef CONFIG_COMPAT
1066 struct compat_robust_list_head __user *compat_robust_list;
1067#endif
5eca1c10
IM
1068 struct list_head pi_state_list;
1069 struct futex_pi_state *pi_state_cache;
c7aceaba 1070#endif
cdd6c482 1071#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1072 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1073 struct mutex perf_event_mutex;
1074 struct list_head perf_event_list;
a63eaf34 1075#endif
8f47b187 1076#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1077 unsigned long preempt_disable_ip;
8f47b187 1078#endif
c7aceaba 1079#ifdef CONFIG_NUMA
5eca1c10
IM
1080 /* Protected by alloc_lock: */
1081 struct mempolicy *mempolicy;
45816682 1082 short il_prev;
5eca1c10 1083 short pref_node_fork;
42b2dd0a 1084#endif
cbee9f88 1085#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1086 int numa_scan_seq;
1087 unsigned int numa_scan_period;
1088 unsigned int numa_scan_period_max;
1089 int numa_preferred_nid;
1090 unsigned long numa_migrate_retry;
1091 /* Migration stamp: */
1092 u64 node_stamp;
1093 u64 last_task_numa_placement;
1094 u64 last_sum_exec_runtime;
1095 struct callback_head numa_work;
1096
5eca1c10 1097 struct numa_group *numa_group;
8c8a743c 1098
745d6147 1099 /*
44dba3d5
IM
1100 * numa_faults is an array split into four regions:
1101 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1102 * in this precise order.
1103 *
1104 * faults_memory: Exponential decaying average of faults on a per-node
1105 * basis. Scheduling placement decisions are made based on these
1106 * counts. The values remain static for the duration of a PTE scan.
1107 * faults_cpu: Track the nodes the process was running on when a NUMA
1108 * hinting fault was incurred.
1109 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1110 * during the current scan window. When the scan completes, the counts
1111 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1112 */
5eca1c10
IM
1113 unsigned long *numa_faults;
1114 unsigned long total_numa_faults;
745d6147 1115
04bb2f94
RR
1116 /*
1117 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1118 * scan window were remote/local or failed to migrate. The task scan
1119 * period is adapted based on the locality of the faults with different
1120 * weights depending on whether they were shared or private faults
04bb2f94 1121 */
5eca1c10 1122 unsigned long numa_faults_locality[3];
04bb2f94 1123
5eca1c10 1124 unsigned long numa_pages_migrated;
cbee9f88
PZ
1125#endif /* CONFIG_NUMA_BALANCING */
1126
d7822b1e
MD
1127#ifdef CONFIG_RSEQ
1128 struct rseq __user *rseq;
d7822b1e
MD
1129 u32 rseq_sig;
1130 /*
1131 * RmW on rseq_event_mask must be performed atomically
1132 * with respect to preemption.
1133 */
1134 unsigned long rseq_event_mask;
1135#endif
1136
5eca1c10 1137 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1138
5eca1c10 1139 struct rcu_head rcu;
b92ce558 1140
5eca1c10
IM
1141 /* Cache last used pipe for splice(): */
1142 struct pipe_inode_info *splice_pipe;
5640f768 1143
5eca1c10 1144 struct page_frag task_frag;
5640f768 1145
47913d4e
IM
1146#ifdef CONFIG_TASK_DELAY_ACCT
1147 struct task_delay_info *delays;
f4f154fd 1148#endif
47913d4e 1149
f4f154fd 1150#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1151 int make_it_fail;
9049f2f6 1152 unsigned int fail_nth;
ca74e92b 1153#endif
9d823e8f 1154 /*
5eca1c10
IM
1155 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1156 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1157 */
5eca1c10
IM
1158 int nr_dirtied;
1159 int nr_dirtied_pause;
1160 /* Start of a write-and-pause period: */
1161 unsigned long dirty_paused_when;
9d823e8f 1162
9745512c 1163#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1164 int latency_record_count;
1165 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1166#endif
6976675d 1167 /*
5eca1c10 1168 * Time slack values; these are used to round up poll() and
6976675d
AV
1169 * select() etc timeout values. These are in nanoseconds.
1170 */
5eca1c10
IM
1171 u64 timer_slack_ns;
1172 u64 default_timer_slack_ns;
f8d570a4 1173
0b24becc 1174#ifdef CONFIG_KASAN
5eca1c10 1175 unsigned int kasan_depth;
0b24becc 1176#endif
5eca1c10 1177
fb52607a 1178#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1179 /* Index of current stored address in ret_stack: */
1180 int curr_ret_stack;
39eb456d 1181 int curr_ret_depth;
5eca1c10
IM
1182
1183 /* Stack of return addresses for return function tracing: */
1184 struct ftrace_ret_stack *ret_stack;
1185
1186 /* Timestamp for last schedule: */
1187 unsigned long long ftrace_timestamp;
1188
f201ae23
FW
1189 /*
1190 * Number of functions that haven't been traced
5eca1c10 1191 * because of depth overrun:
f201ae23 1192 */
5eca1c10
IM
1193 atomic_t trace_overrun;
1194
1195 /* Pause tracing: */
1196 atomic_t tracing_graph_pause;
f201ae23 1197#endif
5eca1c10 1198
ea4e2bc4 1199#ifdef CONFIG_TRACING
5eca1c10
IM
1200 /* State flags for use by tracers: */
1201 unsigned long trace;
1202
1203 /* Bitmask and counter of trace recursion: */
1204 unsigned long trace_recursion;
261842b7 1205#endif /* CONFIG_TRACING */
5eca1c10 1206
5c9a8750 1207#ifdef CONFIG_KCOV
5eca1c10 1208 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1209 unsigned int kcov_mode;
5eca1c10
IM
1210
1211 /* Size of the kcov_area: */
1212 unsigned int kcov_size;
1213
1214 /* Buffer for coverage collection: */
1215 void *kcov_area;
1216
1217 /* KCOV descriptor wired with this task or NULL: */
1218 struct kcov *kcov;
5c9a8750 1219#endif
5eca1c10 1220
6f185c29 1221#ifdef CONFIG_MEMCG
5eca1c10
IM
1222 struct mem_cgroup *memcg_in_oom;
1223 gfp_t memcg_oom_gfp_mask;
1224 int memcg_oom_order;
b23afb93 1225
5eca1c10
IM
1226 /* Number of pages to reclaim on returning to userland: */
1227 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1228
1229 /* Used by memcontrol for targeted memcg charge: */
1230 struct mem_cgroup *active_memcg;
569b846d 1231#endif
5eca1c10 1232
d09d8df3
JB
1233#ifdef CONFIG_BLK_CGROUP
1234 struct request_queue *throttle_queue;
1235#endif
1236
0326f5a9 1237#ifdef CONFIG_UPROBES
5eca1c10 1238 struct uprobe_task *utask;
0326f5a9 1239#endif
cafe5635 1240#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1241 unsigned int sequential_io;
1242 unsigned int sequential_io_avg;
cafe5635 1243#endif
8eb23b9f 1244#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1245 unsigned long task_state_change;
8eb23b9f 1246#endif
5eca1c10 1247 int pagefault_disabled;
03049269 1248#ifdef CONFIG_MMU
5eca1c10 1249 struct task_struct *oom_reaper_list;
03049269 1250#endif
ba14a194 1251#ifdef CONFIG_VMAP_STACK
5eca1c10 1252 struct vm_struct *stack_vm_area;
ba14a194 1253#endif
68f24b08 1254#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1255 /* A live task holds one reference: */
f0b89d39 1256 refcount_t stack_refcount;
d83a7cb3
JP
1257#endif
1258#ifdef CONFIG_LIVEPATCH
1259 int patch_state;
0302e28d 1260#endif
e4e55b47
TH
1261#ifdef CONFIG_SECURITY
1262 /* Used by LSM modules for access restriction: */
1263 void *security;
68f24b08 1264#endif
29e48ce8 1265
afaef01c
AP
1266#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1267 unsigned long lowest_stack;
c8d12627 1268 unsigned long prev_lowest_stack;
afaef01c
AP
1269#endif
1270
29e48ce8
KC
1271 /*
1272 * New fields for task_struct should be added above here, so that
1273 * they are included in the randomized portion of task_struct.
1274 */
1275 randomized_struct_fields_end
1276
5eca1c10
IM
1277 /* CPU-specific state of this task: */
1278 struct thread_struct thread;
1279
1280 /*
1281 * WARNING: on x86, 'thread_struct' contains a variable-sized
1282 * structure. It *MUST* be at the end of 'task_struct'.
1283 *
1284 * Do not put anything below here!
1285 */
1da177e4
LT
1286};
1287
e868171a 1288static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1289{
2c470475 1290 return task->thread_pid;
22c935f4
EB
1291}
1292
7af57294
PE
1293/*
1294 * the helpers to get the task's different pids as they are seen
1295 * from various namespaces
1296 *
1297 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1298 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1299 * current.
7af57294
PE
1300 * task_xid_nr_ns() : id seen from the ns specified;
1301 *
7af57294
PE
1302 * see also pid_nr() etc in include/linux/pid.h
1303 */
5eca1c10 1304pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1305
e868171a 1306static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1307{
1308 return tsk->pid;
1309}
1310
5eca1c10 1311static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1312{
1313 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1314}
7af57294
PE
1315
1316static inline pid_t task_pid_vnr(struct task_struct *tsk)
1317{
52ee2dfd 1318 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1319}
1320
1321
e868171a 1322static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1323{
1324 return tsk->tgid;
1325}
1326
5eca1c10
IM
1327/**
1328 * pid_alive - check that a task structure is not stale
1329 * @p: Task structure to be checked.
1330 *
1331 * Test if a process is not yet dead (at most zombie state)
1332 * If pid_alive fails, then pointers within the task structure
1333 * can be stale and must not be dereferenced.
1334 *
1335 * Return: 1 if the process is alive. 0 otherwise.
1336 */
1337static inline int pid_alive(const struct task_struct *p)
1338{
2c470475 1339 return p->thread_pid != NULL;
5eca1c10 1340}
7af57294 1341
5eca1c10 1342static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1343{
52ee2dfd 1344 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1345}
1346
7af57294
PE
1347static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1348{
52ee2dfd 1349 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1350}
1351
1352
5eca1c10 1353static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1354{
52ee2dfd 1355 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1356}
1357
7af57294
PE
1358static inline pid_t task_session_vnr(struct task_struct *tsk)
1359{
52ee2dfd 1360 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1361}
1362
dd1c1f2f
ON
1363static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1364{
6883f81a 1365 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1366}
1367
1368static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1369{
6883f81a 1370 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1371}
1372
1373static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1374{
1375 pid_t pid = 0;
1376
1377 rcu_read_lock();
1378 if (pid_alive(tsk))
1379 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1380 rcu_read_unlock();
1381
1382 return pid;
1383}
1384
1385static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1386{
1387 return task_ppid_nr_ns(tsk, &init_pid_ns);
1388}
1389
5eca1c10 1390/* Obsolete, do not use: */
1b0f7ffd
ON
1391static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1392{
1393 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1394}
7af57294 1395
06eb6184
PZ
1396#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1397#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1398
1d48b080 1399static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1400{
1593baab
PZ
1401 unsigned int tsk_state = READ_ONCE(tsk->state);
1402 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1403
06eb6184
PZ
1404 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1405
06eb6184
PZ
1406 if (tsk_state == TASK_IDLE)
1407 state = TASK_REPORT_IDLE;
1408
1593baab
PZ
1409 return fls(state);
1410}
1411
1d48b080 1412static inline char task_index_to_char(unsigned int state)
1593baab 1413{
8ef9925b 1414 static const char state_char[] = "RSDTtXZPI";
1593baab 1415
06eb6184 1416 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1417
1593baab
PZ
1418 return state_char[state];
1419}
1420
1421static inline char task_state_to_char(struct task_struct *tsk)
1422{
1d48b080 1423 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1424}
1425
f400e198 1426/**
570f5241
SS
1427 * is_global_init - check if a task structure is init. Since init
1428 * is free to have sub-threads we need to check tgid.
3260259f
HK
1429 * @tsk: Task structure to be checked.
1430 *
1431 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1432 *
1433 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1434 */
e868171a 1435static inline int is_global_init(struct task_struct *tsk)
b461cc03 1436{
570f5241 1437 return task_tgid_nr(tsk) == 1;
b461cc03 1438}
b460cbc5 1439
9ec52099
CLG
1440extern struct pid *cad_pid;
1441
1da177e4
LT
1442/*
1443 * Per process flags
1444 */
5eca1c10
IM
1445#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1446#define PF_EXITING 0x00000004 /* Getting shut down */
1447#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1448#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1449#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1450#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1451#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1452#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1453#define PF_DUMPCORE 0x00000200 /* Dumped core */
1454#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1455#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1456#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1457#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1458#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1459#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1460#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1461#define PF_KSWAPD 0x00020000 /* I am kswapd */
1462#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1463#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1464#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1465#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1466#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1467#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
eb414681 1468#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
73ab1cb2 1469#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
3bd37062 1470#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1471#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1472#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
5eca1c10
IM
1473#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1474#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1475
1476/*
1477 * Only the _current_ task can read/write to tsk->flags, but other
1478 * tasks can access tsk->flags in readonly mode for example
1479 * with tsk_used_math (like during threaded core dumping).
1480 * There is however an exception to this rule during ptrace
1481 * or during fork: the ptracer task is allowed to write to the
1482 * child->flags of its traced child (same goes for fork, the parent
1483 * can write to the child->flags), because we're guaranteed the
1484 * child is not running and in turn not changing child->flags
1485 * at the same time the parent does it.
1486 */
5eca1c10
IM
1487#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1488#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1489#define clear_used_math() clear_stopped_child_used_math(current)
1490#define set_used_math() set_stopped_child_used_math(current)
1491
1da177e4
LT
1492#define conditional_stopped_child_used_math(condition, child) \
1493 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1494
1495#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1496
1da177e4
LT
1497#define copy_to_stopped_child_used_math(child) \
1498 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1499
1da177e4 1500/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1501#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1502#define used_math() tsk_used_math(current)
1da177e4 1503
62ec05dd
TG
1504static inline bool is_percpu_thread(void)
1505{
1506#ifdef CONFIG_SMP
1507 return (current->flags & PF_NO_SETAFFINITY) &&
1508 (current->nr_cpus_allowed == 1);
1509#else
1510 return true;
1511#endif
1512}
1513
1d4457f9 1514/* Per-process atomic flags. */
5eca1c10
IM
1515#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1516#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1517#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1518#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1519#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1520#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1521#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1522#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1523
e0e5070b
ZL
1524#define TASK_PFA_TEST(name, func) \
1525 static inline bool task_##func(struct task_struct *p) \
1526 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1527
e0e5070b
ZL
1528#define TASK_PFA_SET(name, func) \
1529 static inline void task_set_##func(struct task_struct *p) \
1530 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1531
e0e5070b
ZL
1532#define TASK_PFA_CLEAR(name, func) \
1533 static inline void task_clear_##func(struct task_struct *p) \
1534 { clear_bit(PFA_##name, &p->atomic_flags); }
1535
1536TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1537TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1538
2ad654bc
ZL
1539TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1540TASK_PFA_SET(SPREAD_PAGE, spread_page)
1541TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1542
1543TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1544TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1545TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1546
356e4bff
TG
1547TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1548TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1549TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1550
71368af9
WL
1551TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1552TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1553TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1554
356e4bff
TG
1555TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1556TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1557
9137bb27
TG
1558TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1559TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1560TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1561
1562TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1563TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1564
5eca1c10 1565static inline void
717a94b5 1566current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1567{
717a94b5
N
1568 current->flags &= ~flags;
1569 current->flags |= orig_flags & flags;
907aed48
MG
1570}
1571
5eca1c10
IM
1572extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1573extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1574#ifdef CONFIG_SMP
5eca1c10
IM
1575extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1576extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1577#else
5eca1c10 1578static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1579{
1580}
5eca1c10 1581static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1582{
96f874e2 1583 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1584 return -EINVAL;
1585 return 0;
1586}
1587#endif
e0ad9556 1588
fa93384f 1589extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1590extern void set_user_nice(struct task_struct *p, long nice);
1591extern int task_prio(const struct task_struct *p);
5eca1c10 1592
d0ea0268
DY
1593/**
1594 * task_nice - return the nice value of a given task.
1595 * @p: the task in question.
1596 *
1597 * Return: The nice value [ -20 ... 0 ... 19 ].
1598 */
1599static inline int task_nice(const struct task_struct *p)
1600{
1601 return PRIO_TO_NICE((p)->static_prio);
1602}
5eca1c10 1603
36c8b586
IM
1604extern int can_nice(const struct task_struct *p, const int nice);
1605extern int task_curr(const struct task_struct *p);
1da177e4 1606extern int idle_cpu(int cpu);
943d355d 1607extern int available_idle_cpu(int cpu);
5eca1c10
IM
1608extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1609extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1610extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1611extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1612extern struct task_struct *idle_task(int cpu);
5eca1c10 1613
c4f30608
PM
1614/**
1615 * is_idle_task - is the specified task an idle task?
fa757281 1616 * @p: the task in question.
e69f6186
YB
1617 *
1618 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1619 */
7061ca3b 1620static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1621{
c1de45ca 1622 return !!(p->flags & PF_IDLE);
c4f30608 1623}
5eca1c10 1624
36c8b586 1625extern struct task_struct *curr_task(int cpu);
a458ae2e 1626extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1627
1628void yield(void);
1629
1da177e4 1630union thread_union {
0500871f
DH
1631#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1632 struct task_struct task;
1633#endif
c65eacbe 1634#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1635 struct thread_info thread_info;
c65eacbe 1636#endif
1da177e4
LT
1637 unsigned long stack[THREAD_SIZE/sizeof(long)];
1638};
1639
0500871f
DH
1640#ifndef CONFIG_THREAD_INFO_IN_TASK
1641extern struct thread_info init_thread_info;
1642#endif
1643
1644extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1645
f3ac6067
IM
1646#ifdef CONFIG_THREAD_INFO_IN_TASK
1647static inline struct thread_info *task_thread_info(struct task_struct *task)
1648{
1649 return &task->thread_info;
1650}
1651#elif !defined(__HAVE_THREAD_FUNCTIONS)
1652# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1653#endif
1654
198fe21b
PE
1655/*
1656 * find a task by one of its numerical ids
1657 *
198fe21b
PE
1658 * find_task_by_pid_ns():
1659 * finds a task by its pid in the specified namespace
228ebcbe
PE
1660 * find_task_by_vpid():
1661 * finds a task by its virtual pid
198fe21b 1662 *
e49859e7 1663 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1664 */
1665
228ebcbe 1666extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1667extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1668
2ee08260
MR
1669/*
1670 * find a task by its virtual pid and get the task struct
1671 */
1672extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1673
b3c97528
HH
1674extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1675extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1676extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1677
1da177e4 1678#ifdef CONFIG_SMP
5eca1c10 1679extern void kick_process(struct task_struct *tsk);
1da177e4 1680#else
5eca1c10 1681static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1682#endif
1da177e4 1683
82b89778 1684extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1685
82b89778
AH
1686static inline void set_task_comm(struct task_struct *tsk, const char *from)
1687{
1688 __set_task_comm(tsk, from, false);
1689}
5eca1c10 1690
3756f640
AB
1691extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1692#define get_task_comm(buf, tsk) ({ \
1693 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1694 __get_task_comm(buf, sizeof(buf), tsk); \
1695})
1da177e4
LT
1696
1697#ifdef CONFIG_SMP
317f3941 1698void scheduler_ipi(void);
85ba2d86 1699extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1700#else
184748cc 1701static inline void scheduler_ipi(void) { }
5eca1c10 1702static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1703{
1704 return 1;
1705}
1da177e4
LT
1706#endif
1707
5eca1c10
IM
1708/*
1709 * Set thread flags in other task's structures.
1710 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1711 */
1712static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1713{
a1261f54 1714 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1715}
1716
1717static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1718{
a1261f54 1719 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1720}
1721
93ee37c2
DM
1722static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1723 bool value)
1724{
1725 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1726}
1727
1da177e4
LT
1728static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1729{
a1261f54 1730 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1731}
1732
1733static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1734{
a1261f54 1735 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1736}
1737
1738static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1739{
a1261f54 1740 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1741}
1742
1743static inline void set_tsk_need_resched(struct task_struct *tsk)
1744{
1745 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1746}
1747
1748static inline void clear_tsk_need_resched(struct task_struct *tsk)
1749{
1750 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1751}
1752
8ae121ac
GH
1753static inline int test_tsk_need_resched(struct task_struct *tsk)
1754{
1755 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1756}
1757
1da177e4
LT
1758/*
1759 * cond_resched() and cond_resched_lock(): latency reduction via
1760 * explicit rescheduling in places that are safe. The return
1761 * value indicates whether a reschedule was done in fact.
1762 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1763 */
35a773a0 1764#ifndef CONFIG_PREEMPT
c3921ab7 1765extern int _cond_resched(void);
35a773a0
PZ
1766#else
1767static inline int _cond_resched(void) { return 0; }
1768#endif
6f80bd98 1769
613afbf8 1770#define cond_resched() ({ \
3427445a 1771 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1772 _cond_resched(); \
1773})
6f80bd98 1774
613afbf8
FW
1775extern int __cond_resched_lock(spinlock_t *lock);
1776
1777#define cond_resched_lock(lock) ({ \
3427445a 1778 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1779 __cond_resched_lock(lock); \
1780})
1781
f6f3c437
SH
1782static inline void cond_resched_rcu(void)
1783{
1784#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1785 rcu_read_unlock();
1786 cond_resched();
1787 rcu_read_lock();
1788#endif
1789}
1790
1da177e4
LT
1791/*
1792 * Does a critical section need to be broken due to another
95c354fe
NP
1793 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1794 * but a general need for low latency)
1da177e4 1795 */
95c354fe 1796static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1797{
95c354fe
NP
1798#ifdef CONFIG_PREEMPT
1799 return spin_is_contended(lock);
1800#else
1da177e4 1801 return 0;
95c354fe 1802#endif
1da177e4
LT
1803}
1804
75f93fed
PZ
1805static __always_inline bool need_resched(void)
1806{
1807 return unlikely(tif_need_resched());
1808}
1809
1da177e4
LT
1810/*
1811 * Wrappers for p->thread_info->cpu access. No-op on UP.
1812 */
1813#ifdef CONFIG_SMP
1814
1815static inline unsigned int task_cpu(const struct task_struct *p)
1816{
c65eacbe 1817#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1818 return READ_ONCE(p->cpu);
c65eacbe 1819#else
c546951d 1820 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1821#endif
1da177e4
LT
1822}
1823
c65cc870 1824extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1825
1826#else
1827
1828static inline unsigned int task_cpu(const struct task_struct *p)
1829{
1830 return 0;
1831}
1832
1833static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1834{
1835}
1836
1837#endif /* CONFIG_SMP */
1838
d9345c65
PX
1839/*
1840 * In order to reduce various lock holder preemption latencies provide an
1841 * interface to see if a vCPU is currently running or not.
1842 *
1843 * This allows us to terminate optimistic spin loops and block, analogous to
1844 * the native optimistic spin heuristic of testing if the lock owner task is
1845 * running or not.
1846 */
1847#ifndef vcpu_is_preempted
1848# define vcpu_is_preempted(cpu) false
1849#endif
1850
96f874e2
RR
1851extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1852extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1853
82455257
DH
1854#ifndef TASK_SIZE_OF
1855#define TASK_SIZE_OF(tsk) TASK_SIZE
1856#endif
1857
d7822b1e
MD
1858#ifdef CONFIG_RSEQ
1859
1860/*
1861 * Map the event mask on the user-space ABI enum rseq_cs_flags
1862 * for direct mask checks.
1863 */
1864enum rseq_event_mask_bits {
1865 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1866 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1867 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1868};
1869
1870enum rseq_event_mask {
1871 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1872 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1873 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1874};
1875
1876static inline void rseq_set_notify_resume(struct task_struct *t)
1877{
1878 if (t->rseq)
1879 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1880}
1881
784e0300 1882void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1883
784e0300
WD
1884static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1885 struct pt_regs *regs)
d7822b1e
MD
1886{
1887 if (current->rseq)
784e0300 1888 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1889}
1890
784e0300
WD
1891static inline void rseq_signal_deliver(struct ksignal *ksig,
1892 struct pt_regs *regs)
d7822b1e
MD
1893{
1894 preempt_disable();
1895 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1896 preempt_enable();
784e0300 1897 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1898}
1899
1900/* rseq_preempt() requires preemption to be disabled. */
1901static inline void rseq_preempt(struct task_struct *t)
1902{
1903 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1904 rseq_set_notify_resume(t);
1905}
1906
1907/* rseq_migrate() requires preemption to be disabled. */
1908static inline void rseq_migrate(struct task_struct *t)
1909{
1910 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1911 rseq_set_notify_resume(t);
1912}
1913
1914/*
1915 * If parent process has a registered restartable sequences area, the
9a789fcf 1916 * child inherits. Only applies when forking a process, not a thread.
d7822b1e
MD
1917 */
1918static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1919{
1920 if (clone_flags & CLONE_THREAD) {
1921 t->rseq = NULL;
d7822b1e
MD
1922 t->rseq_sig = 0;
1923 t->rseq_event_mask = 0;
1924 } else {
1925 t->rseq = current->rseq;
d7822b1e
MD
1926 t->rseq_sig = current->rseq_sig;
1927 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1928 }
1929}
1930
1931static inline void rseq_execve(struct task_struct *t)
1932{
1933 t->rseq = NULL;
d7822b1e
MD
1934 t->rseq_sig = 0;
1935 t->rseq_event_mask = 0;
1936}
1937
1938#else
1939
1940static inline void rseq_set_notify_resume(struct task_struct *t)
1941{
1942}
784e0300
WD
1943static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1944 struct pt_regs *regs)
d7822b1e
MD
1945{
1946}
784e0300
WD
1947static inline void rseq_signal_deliver(struct ksignal *ksig,
1948 struct pt_regs *regs)
d7822b1e
MD
1949{
1950}
1951static inline void rseq_preempt(struct task_struct *t)
1952{
1953}
1954static inline void rseq_migrate(struct task_struct *t)
1955{
1956}
1957static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1958{
1959}
1960static inline void rseq_execve(struct task_struct *t)
1961{
1962}
1963
1964#endif
1965
73ab1cb2
TY
1966void __exit_umh(struct task_struct *tsk);
1967
1968static inline void exit_umh(struct task_struct *tsk)
1969{
1970 if (unlikely(tsk->flags & PF_UMH))
1971 __exit_umh(tsk);
1972}
1973
d7822b1e
MD
1974#ifdef CONFIG_DEBUG_RSEQ
1975
1976void rseq_syscall(struct pt_regs *regs);
1977
1978#else
1979
1980static inline void rseq_syscall(struct pt_regs *regs)
1981{
1982}
1983
1984#endif
1985
3c93a0c0
QY
1986const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
1987char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
1988int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
1989
1990const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
1991const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
1992const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
1993
1994int sched_trace_rq_cpu(struct rq *rq);
1995
1996const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
1997
1da177e4 1998#endif