]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/sched.h
sched/idle: Move quiet_vmstate() into the NOHZ code
[mirror_ubuntu-jammy-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
5eca1c10
IM
4/*
5 * Define 'struct task_struct' and provide the main scheduler
6 * APIs (schedule(), wakeup variants, etc.)
7 */
b7b3c76a 8
5eca1c10 9#include <uapi/linux/sched.h>
5c228079 10
5eca1c10 11#include <asm/current.h>
1da177e4 12
5eca1c10 13#include <linux/pid.h>
1da177e4 14#include <linux/sem.h>
ab602f79 15#include <linux/shm.h>
5eca1c10
IM
16#include <linux/kcov.h>
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
1da177e4 20#include <linux/seccomp.h>
5eca1c10 21#include <linux/nodemask.h>
b68070e1 22#include <linux/rcupdate.h>
a3b6714e 23#include <linux/resource.h>
9745512c 24#include <linux/latencytop.h>
5eca1c10
IM
25#include <linux/sched/prio.h>
26#include <linux/signal_types.h>
27#include <linux/mm_types_task.h>
28#include <linux/task_io_accounting.h>
a3b6714e 29
5eca1c10 30/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 31struct audit_context;
c7af7877 32struct backing_dev_info;
bddd87c7 33struct bio_list;
73c10101 34struct blk_plug;
c7af7877 35struct cfs_rq;
c7af7877
IM
36struct fs_struct;
37struct futex_pi_state;
38struct io_context;
39struct mempolicy;
89076bc3 40struct nameidata;
c7af7877
IM
41struct nsproxy;
42struct perf_event_context;
43struct pid_namespace;
44struct pipe_inode_info;
45struct rcu_node;
46struct reclaim_state;
47struct robust_list_head;
48struct sched_attr;
49struct sched_param;
43ae34cb 50struct seq_file;
c7af7877
IM
51struct sighand_struct;
52struct signal_struct;
53struct task_delay_info;
4cf86d77 54struct task_group;
1da177e4 55
4a8342d2
LT
56/*
57 * Task state bitmask. NOTE! These bits are also
58 * encoded in fs/proc/array.c: get_task_state().
59 *
60 * We have two separate sets of flags: task->state
61 * is about runnability, while task->exit_state are
62 * about the task exiting. Confusing, but this way
63 * modifying one set can't modify the other one by
64 * mistake.
65 */
5eca1c10
IM
66
67/* Used in tsk->state: */
92c4bc9f
PZ
68#define TASK_RUNNING 0x0000
69#define TASK_INTERRUPTIBLE 0x0001
70#define TASK_UNINTERRUPTIBLE 0x0002
71#define __TASK_STOPPED 0x0004
72#define __TASK_TRACED 0x0008
5eca1c10 73/* Used in tsk->exit_state: */
92c4bc9f
PZ
74#define EXIT_DEAD 0x0010
75#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
76#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
77/* Used in tsk->state again: */
8ef9925b
PZ
78#define TASK_PARKED 0x0040
79#define TASK_DEAD 0x0080
80#define TASK_WAKEKILL 0x0100
81#define TASK_WAKING 0x0200
92c4bc9f
PZ
82#define TASK_NOLOAD 0x0400
83#define TASK_NEW 0x0800
84#define TASK_STATE_MAX 0x1000
5eca1c10 85
5eca1c10
IM
86/* Convenience macros for the sake of set_current_state: */
87#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
88#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
89#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
90
91#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
92
93/* Convenience macros for the sake of wake_up(): */
94#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
95#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
96
97/* get_task_state(): */
98#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
99 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
100 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
101 TASK_PARKED)
5eca1c10
IM
102
103#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
104
105#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
106
107#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
108
109#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
110 (task->flags & PF_FROZEN) == 0 && \
111 (task->state & TASK_NOLOAD) == 0)
1da177e4 112
8eb23b9f
PZ
113#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
114
8eb23b9f
PZ
115#define __set_current_state(state_value) \
116 do { \
117 current->task_state_change = _THIS_IP_; \
118 current->state = (state_value); \
119 } while (0)
120#define set_current_state(state_value) \
121 do { \
122 current->task_state_change = _THIS_IP_; \
a2250238 123 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
124 } while (0)
125
126#else
498d0c57
AM
127/*
128 * set_current_state() includes a barrier so that the write of current->state
129 * is correctly serialised wrt the caller's subsequent test of whether to
130 * actually sleep:
131 *
a2250238 132 * for (;;) {
498d0c57 133 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
134 * if (!need_sleep)
135 * break;
136 *
137 * schedule();
138 * }
139 * __set_current_state(TASK_RUNNING);
140 *
141 * If the caller does not need such serialisation (because, for instance, the
142 * condition test and condition change and wakeup are under the same lock) then
143 * use __set_current_state().
144 *
145 * The above is typically ordered against the wakeup, which does:
146 *
147 * need_sleep = false;
148 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
149 *
150 * Where wake_up_state() (and all other wakeup primitives) imply enough
151 * barriers to order the store of the variable against wakeup.
152 *
153 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
154 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
155 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 156 *
a2250238 157 * This is obviously fine, since they both store the exact same value.
498d0c57 158 *
a2250238 159 * Also see the comments of try_to_wake_up().
498d0c57 160 */
5eca1c10
IM
161#define __set_current_state(state_value) do { current->state = (state_value); } while (0)
162#define set_current_state(state_value) smp_store_mb(current->state, (state_value))
8eb23b9f
PZ
163#endif
164
5eca1c10
IM
165/* Task command name length: */
166#define TASK_COMM_LEN 16
1da177e4 167
5eca1c10 168extern cpumask_var_t cpu_isolated_map;
3fa0818b 169
1da177e4
LT
170extern void scheduler_tick(void);
171
5eca1c10
IM
172#define MAX_SCHEDULE_TIMEOUT LONG_MAX
173
174extern long schedule_timeout(long timeout);
175extern long schedule_timeout_interruptible(long timeout);
176extern long schedule_timeout_killable(long timeout);
177extern long schedule_timeout_uninterruptible(long timeout);
178extern long schedule_timeout_idle(long timeout);
1da177e4 179asmlinkage void schedule(void);
c5491ea7 180extern void schedule_preempt_disabled(void);
1da177e4 181
10ab5643
TH
182extern int __must_check io_schedule_prepare(void);
183extern void io_schedule_finish(int token);
9cff8ade 184extern long io_schedule_timeout(long timeout);
10ab5643 185extern void io_schedule(void);
9cff8ade 186
d37f761d 187/**
0ba42a59 188 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
189 * @utime: time spent in user mode
190 * @stime: time spent in system mode
9d7fb042 191 * @lock: protects the above two fields
d37f761d 192 *
9d7fb042
PZ
193 * Stores previous user/system time values such that we can guarantee
194 * monotonicity.
d37f761d 195 */
9d7fb042
PZ
196struct prev_cputime {
197#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
198 u64 utime;
199 u64 stime;
200 raw_spinlock_t lock;
9d7fb042 201#endif
d37f761d
FW
202};
203
f06febc9
FM
204/**
205 * struct task_cputime - collected CPU time counts
5613fda9
FW
206 * @utime: time spent in user mode, in nanoseconds
207 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 208 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 209 *
9d7fb042
PZ
210 * This structure groups together three kinds of CPU time that are tracked for
211 * threads and thread groups. Most things considering CPU time want to group
212 * these counts together and treat all three of them in parallel.
f06febc9
FM
213 */
214struct task_cputime {
5eca1c10
IM
215 u64 utime;
216 u64 stime;
217 unsigned long long sum_exec_runtime;
f06febc9 218};
9d7fb042 219
5eca1c10
IM
220/* Alternate field names when used on cache expirations: */
221#define virt_exp utime
222#define prof_exp stime
223#define sched_exp sum_exec_runtime
f06febc9 224
bac5b6b6
FW
225enum vtime_state {
226 /* Task is sleeping or running in a CPU with VTIME inactive: */
227 VTIME_INACTIVE = 0,
228 /* Task runs in userspace in a CPU with VTIME active: */
229 VTIME_USER,
230 /* Task runs in kernelspace in a CPU with VTIME active: */
231 VTIME_SYS,
232};
233
234struct vtime {
235 seqcount_t seqcount;
236 unsigned long long starttime;
237 enum vtime_state state;
2a42eb95
WL
238 u64 utime;
239 u64 stime;
240 u64 gtime;
bac5b6b6
FW
241};
242
1da177e4 243struct sched_info {
7f5f8e8d 244#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
245 /* Cumulative counters: */
246
247 /* # of times we have run on this CPU: */
248 unsigned long pcount;
249
250 /* Time spent waiting on a runqueue: */
251 unsigned long long run_delay;
252
253 /* Timestamps: */
254
255 /* When did we last run on a CPU? */
256 unsigned long long last_arrival;
257
258 /* When were we last queued to run? */
259 unsigned long long last_queued;
1da177e4 260
f6db8347 261#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 262};
1da177e4 263
6ecdd749
YD
264/*
265 * Integer metrics need fixed point arithmetic, e.g., sched/fair
266 * has a few: load, load_avg, util_avg, freq, and capacity.
267 *
268 * We define a basic fixed point arithmetic range, and then formalize
269 * all these metrics based on that basic range.
270 */
5eca1c10
IM
271# define SCHED_FIXEDPOINT_SHIFT 10
272# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 273
20b8a59f 274struct load_weight {
5eca1c10
IM
275 unsigned long weight;
276 u32 inv_weight;
20b8a59f
IM
277};
278
9d89c257 279/*
7b595334
YD
280 * The load_avg/util_avg accumulates an infinite geometric series
281 * (see __update_load_avg() in kernel/sched/fair.c).
282 *
283 * [load_avg definition]
284 *
285 * load_avg = runnable% * scale_load_down(load)
286 *
287 * where runnable% is the time ratio that a sched_entity is runnable.
288 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 289 * blocked sched_entities.
7b595334
YD
290 *
291 * load_avg may also take frequency scaling into account:
292 *
293 * load_avg = runnable% * scale_load_down(load) * freq%
294 *
295 * where freq% is the CPU frequency normalized to the highest frequency.
296 *
297 * [util_avg definition]
298 *
299 * util_avg = running% * SCHED_CAPACITY_SCALE
300 *
301 * where running% is the time ratio that a sched_entity is running on
302 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
303 * and blocked sched_entities.
304 *
305 * util_avg may also factor frequency scaling and CPU capacity scaling:
306 *
307 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
308 *
309 * where freq% is the same as above, and capacity% is the CPU capacity
310 * normalized to the greatest capacity (due to uarch differences, etc).
311 *
312 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
313 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
314 * we therefore scale them to as large a range as necessary. This is for
315 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
316 *
317 * [Overflow issue]
318 *
319 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
320 * with the highest load (=88761), always runnable on a single cfs_rq,
321 * and should not overflow as the number already hits PID_MAX_LIMIT.
322 *
323 * For all other cases (including 32-bit kernels), struct load_weight's
324 * weight will overflow first before we do, because:
325 *
326 * Max(load_avg) <= Max(load.weight)
327 *
328 * Then it is the load_weight's responsibility to consider overflow
329 * issues.
9d89c257 330 */
9d85f21c 331struct sched_avg {
5eca1c10
IM
332 u64 last_update_time;
333 u64 load_sum;
1ea6c46a 334 u64 runnable_load_sum;
5eca1c10
IM
335 u32 util_sum;
336 u32 period_contrib;
337 unsigned long load_avg;
1ea6c46a 338 unsigned long runnable_load_avg;
5eca1c10 339 unsigned long util_avg;
9d85f21c
PT
340};
341
41acab88 342struct sched_statistics {
7f5f8e8d 343#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
344 u64 wait_start;
345 u64 wait_max;
346 u64 wait_count;
347 u64 wait_sum;
348 u64 iowait_count;
349 u64 iowait_sum;
350
351 u64 sleep_start;
352 u64 sleep_max;
353 s64 sum_sleep_runtime;
354
355 u64 block_start;
356 u64 block_max;
357 u64 exec_max;
358 u64 slice_max;
359
360 u64 nr_migrations_cold;
361 u64 nr_failed_migrations_affine;
362 u64 nr_failed_migrations_running;
363 u64 nr_failed_migrations_hot;
364 u64 nr_forced_migrations;
365
366 u64 nr_wakeups;
367 u64 nr_wakeups_sync;
368 u64 nr_wakeups_migrate;
369 u64 nr_wakeups_local;
370 u64 nr_wakeups_remote;
371 u64 nr_wakeups_affine;
372 u64 nr_wakeups_affine_attempts;
373 u64 nr_wakeups_passive;
374 u64 nr_wakeups_idle;
41acab88 375#endif
7f5f8e8d 376};
41acab88
LDM
377
378struct sched_entity {
5eca1c10
IM
379 /* For load-balancing: */
380 struct load_weight load;
1ea6c46a 381 unsigned long runnable_weight;
5eca1c10
IM
382 struct rb_node run_node;
383 struct list_head group_node;
384 unsigned int on_rq;
41acab88 385
5eca1c10
IM
386 u64 exec_start;
387 u64 sum_exec_runtime;
388 u64 vruntime;
389 u64 prev_sum_exec_runtime;
41acab88 390
5eca1c10 391 u64 nr_migrations;
41acab88 392
5eca1c10 393 struct sched_statistics statistics;
94c18227 394
20b8a59f 395#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
396 int depth;
397 struct sched_entity *parent;
20b8a59f 398 /* rq on which this entity is (to be) queued: */
5eca1c10 399 struct cfs_rq *cfs_rq;
20b8a59f 400 /* rq "owned" by this entity/group: */
5eca1c10 401 struct cfs_rq *my_q;
20b8a59f 402#endif
8bd75c77 403
141965c7 404#ifdef CONFIG_SMP
5a107804
JO
405 /*
406 * Per entity load average tracking.
407 *
408 * Put into separate cache line so it does not
409 * collide with read-mostly values above.
410 */
5eca1c10 411 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 412#endif
20b8a59f 413};
70b97a7f 414
fa717060 415struct sched_rt_entity {
5eca1c10
IM
416 struct list_head run_list;
417 unsigned long timeout;
418 unsigned long watchdog_stamp;
419 unsigned int time_slice;
420 unsigned short on_rq;
421 unsigned short on_list;
422
423 struct sched_rt_entity *back;
052f1dc7 424#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 425 struct sched_rt_entity *parent;
6f505b16 426 /* rq on which this entity is (to be) queued: */
5eca1c10 427 struct rt_rq *rt_rq;
6f505b16 428 /* rq "owned" by this entity/group: */
5eca1c10 429 struct rt_rq *my_q;
6f505b16 430#endif
3859a271 431} __randomize_layout;
fa717060 432
aab03e05 433struct sched_dl_entity {
5eca1c10 434 struct rb_node rb_node;
aab03e05
DF
435
436 /*
437 * Original scheduling parameters. Copied here from sched_attr
4027d080 438 * during sched_setattr(), they will remain the same until
439 * the next sched_setattr().
aab03e05 440 */
5eca1c10
IM
441 u64 dl_runtime; /* Maximum runtime for each instance */
442 u64 dl_deadline; /* Relative deadline of each instance */
443 u64 dl_period; /* Separation of two instances (period) */
54d6d303 444 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 445 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
446
447 /*
448 * Actual scheduling parameters. Initialized with the values above,
449 * they are continously updated during task execution. Note that
450 * the remaining runtime could be < 0 in case we are in overrun.
451 */
5eca1c10
IM
452 s64 runtime; /* Remaining runtime for this instance */
453 u64 deadline; /* Absolute deadline for this instance */
454 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
455
456 /*
457 * Some bool flags:
458 *
459 * @dl_throttled tells if we exhausted the runtime. If so, the
460 * task has to wait for a replenishment to be performed at the
461 * next firing of dl_timer.
462 *
2d3d891d
DF
463 * @dl_boosted tells if we are boosted due to DI. If so we are
464 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
465 * exit the critical section);
466 *
5eca1c10 467 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 468 * all its available runtime during the last job.
209a0cbd
LA
469 *
470 * @dl_non_contending tells if the task is inactive while still
471 * contributing to the active utilization. In other words, it
472 * indicates if the inactive timer has been armed and its handler
473 * has not been executed yet. This flag is useful to avoid race
474 * conditions between the inactive timer handler and the wakeup
475 * code.
aab03e05 476 */
5eca1c10
IM
477 int dl_throttled;
478 int dl_boosted;
479 int dl_yielded;
209a0cbd 480 int dl_non_contending;
aab03e05
DF
481
482 /*
483 * Bandwidth enforcement timer. Each -deadline task has its
484 * own bandwidth to be enforced, thus we need one timer per task.
485 */
5eca1c10 486 struct hrtimer dl_timer;
209a0cbd
LA
487
488 /*
489 * Inactive timer, responsible for decreasing the active utilization
490 * at the "0-lag time". When a -deadline task blocks, it contributes
491 * to GRUB's active utilization until the "0-lag time", hence a
492 * timer is needed to decrease the active utilization at the correct
493 * time.
494 */
495 struct hrtimer inactive_timer;
aab03e05 496};
8bd75c77 497
1d082fd0
PM
498union rcu_special {
499 struct {
5eca1c10
IM
500 u8 blocked;
501 u8 need_qs;
502 u8 exp_need_qs;
503
504 /* Otherwise the compiler can store garbage here: */
505 u8 pad;
8203d6d0
PM
506 } b; /* Bits. */
507 u32 s; /* Set of bits. */
1d082fd0 508};
86848966 509
8dc85d54
PZ
510enum perf_event_task_context {
511 perf_invalid_context = -1,
512 perf_hw_context = 0,
89a1e187 513 perf_sw_context,
8dc85d54
PZ
514 perf_nr_task_contexts,
515};
516
eb61baf6
IM
517struct wake_q_node {
518 struct wake_q_node *next;
519};
520
1da177e4 521struct task_struct {
c65eacbe
AL
522#ifdef CONFIG_THREAD_INFO_IN_TASK
523 /*
524 * For reasons of header soup (see current_thread_info()), this
525 * must be the first element of task_struct.
526 */
5eca1c10 527 struct thread_info thread_info;
c65eacbe 528#endif
5eca1c10
IM
529 /* -1 unrunnable, 0 runnable, >0 stopped: */
530 volatile long state;
29e48ce8
KC
531
532 /*
533 * This begins the randomizable portion of task_struct. Only
534 * scheduling-critical items should be added above here.
535 */
536 randomized_struct_fields_start
537
5eca1c10
IM
538 void *stack;
539 atomic_t usage;
540 /* Per task flags (PF_*), defined further below: */
541 unsigned int flags;
542 unsigned int ptrace;
1da177e4 543
2dd73a4f 544#ifdef CONFIG_SMP
5eca1c10
IM
545 struct llist_node wake_entry;
546 int on_cpu;
c65eacbe 547#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
548 /* Current CPU: */
549 unsigned int cpu;
c65eacbe 550#endif
5eca1c10
IM
551 unsigned int wakee_flips;
552 unsigned long wakee_flip_decay_ts;
553 struct task_struct *last_wakee;
ac66f547 554
5eca1c10 555 int wake_cpu;
2dd73a4f 556#endif
5eca1c10
IM
557 int on_rq;
558
559 int prio;
560 int static_prio;
561 int normal_prio;
562 unsigned int rt_priority;
50e645a8 563
5eca1c10
IM
564 const struct sched_class *sched_class;
565 struct sched_entity se;
566 struct sched_rt_entity rt;
8323f26c 567#ifdef CONFIG_CGROUP_SCHED
5eca1c10 568 struct task_group *sched_task_group;
8323f26c 569#endif
5eca1c10 570 struct sched_dl_entity dl;
1da177e4 571
e107be36 572#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
573 /* List of struct preempt_notifier: */
574 struct hlist_head preempt_notifiers;
e107be36
AK
575#endif
576
6c5c9341 577#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 578 unsigned int btrace_seq;
6c5c9341 579#endif
1da177e4 580
5eca1c10
IM
581 unsigned int policy;
582 int nr_cpus_allowed;
583 cpumask_t cpus_allowed;
1da177e4 584
a57eb940 585#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
586 int rcu_read_lock_nesting;
587 union rcu_special rcu_read_unlock_special;
588 struct list_head rcu_node_entry;
589 struct rcu_node *rcu_blocked_node;
28f6569a 590#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 591
8315f422 592#ifdef CONFIG_TASKS_RCU
5eca1c10 593 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
594 u8 rcu_tasks_holdout;
595 u8 rcu_tasks_idx;
5eca1c10 596 int rcu_tasks_idle_cpu;
ccdd29ff 597 struct list_head rcu_tasks_holdout_list;
8315f422 598#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 599
5eca1c10 600 struct sched_info sched_info;
1da177e4 601
5eca1c10 602 struct list_head tasks;
806c09a7 603#ifdef CONFIG_SMP
5eca1c10
IM
604 struct plist_node pushable_tasks;
605 struct rb_node pushable_dl_tasks;
806c09a7 606#endif
1da177e4 607
5eca1c10
IM
608 struct mm_struct *mm;
609 struct mm_struct *active_mm;
314ff785
IM
610
611 /* Per-thread vma caching: */
5eca1c10 612 struct vmacache vmacache;
314ff785 613
5eca1c10
IM
614#ifdef SPLIT_RSS_COUNTING
615 struct task_rss_stat rss_stat;
34e55232 616#endif
5eca1c10
IM
617 int exit_state;
618 int exit_code;
619 int exit_signal;
620 /* The signal sent when the parent dies: */
621 int pdeath_signal;
622 /* JOBCTL_*, siglock protected: */
623 unsigned long jobctl;
624
625 /* Used for emulating ABI behavior of previous Linux versions: */
626 unsigned int personality;
627
628 /* Scheduler bits, serialized by scheduler locks: */
629 unsigned sched_reset_on_fork:1;
630 unsigned sched_contributes_to_load:1;
631 unsigned sched_migrated:1;
632 unsigned sched_remote_wakeup:1;
633 /* Force alignment to the next boundary: */
634 unsigned :0;
635
636 /* Unserialized, strictly 'current' */
637
638 /* Bit to tell LSMs we're in execve(): */
639 unsigned in_execve:1;
640 unsigned in_iowait:1;
641#ifndef TIF_RESTORE_SIGMASK
642 unsigned restore_sigmask:1;
7e781418 643#endif
626ebc41 644#ifdef CONFIG_MEMCG
5eca1c10 645 unsigned memcg_may_oom:1;
127424c8 646#ifndef CONFIG_SLOB
5eca1c10 647 unsigned memcg_kmem_skip_account:1;
6f185c29 648#endif
127424c8 649#endif
ff303e66 650#ifdef CONFIG_COMPAT_BRK
5eca1c10 651 unsigned brk_randomized:1;
ff303e66 652#endif
77f88796
TH
653#ifdef CONFIG_CGROUPS
654 /* disallow userland-initiated cgroup migration */
655 unsigned no_cgroup_migration:1;
656#endif
6f185c29 657
5eca1c10 658 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 659
5eca1c10 660 struct restart_block restart_block;
f56141e3 661
5eca1c10
IM
662 pid_t pid;
663 pid_t tgid;
0a425405 664
1314562a 665#ifdef CONFIG_CC_STACKPROTECTOR
5eca1c10
IM
666 /* Canary value for the -fstack-protector GCC feature: */
667 unsigned long stack_canary;
1314562a 668#endif
4d1d61a6 669 /*
5eca1c10 670 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 671 * older sibling, respectively. (p->father can be replaced with
f470021a 672 * p->real_parent->pid)
1da177e4 673 */
5eca1c10
IM
674
675 /* Real parent process: */
676 struct task_struct __rcu *real_parent;
677
678 /* Recipient of SIGCHLD, wait4() reports: */
679 struct task_struct __rcu *parent;
680
1da177e4 681 /*
5eca1c10 682 * Children/sibling form the list of natural children:
1da177e4 683 */
5eca1c10
IM
684 struct list_head children;
685 struct list_head sibling;
686 struct task_struct *group_leader;
1da177e4 687
f470021a 688 /*
5eca1c10
IM
689 * 'ptraced' is the list of tasks this task is using ptrace() on.
690 *
f470021a 691 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 692 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 693 */
5eca1c10
IM
694 struct list_head ptraced;
695 struct list_head ptrace_entry;
f470021a 696
1da177e4 697 /* PID/PID hash table linkage. */
5eca1c10
IM
698 struct pid_link pids[PIDTYPE_MAX];
699 struct list_head thread_group;
700 struct list_head thread_node;
701
702 struct completion *vfork_done;
1da177e4 703
5eca1c10
IM
704 /* CLONE_CHILD_SETTID: */
705 int __user *set_child_tid;
1da177e4 706
5eca1c10
IM
707 /* CLONE_CHILD_CLEARTID: */
708 int __user *clear_child_tid;
709
710 u64 utime;
711 u64 stime;
40565b5a 712#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
713 u64 utimescaled;
714 u64 stimescaled;
40565b5a 715#endif
5eca1c10
IM
716 u64 gtime;
717 struct prev_cputime prev_cputime;
6a61671b 718#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 719 struct vtime vtime;
d99ca3b9 720#endif
d027d45d
FW
721
722#ifdef CONFIG_NO_HZ_FULL
5eca1c10 723 atomic_t tick_dep_mask;
d027d45d 724#endif
5eca1c10
IM
725 /* Context switch counts: */
726 unsigned long nvcsw;
727 unsigned long nivcsw;
728
729 /* Monotonic time in nsecs: */
730 u64 start_time;
731
732 /* Boot based time in nsecs: */
733 u64 real_start_time;
734
735 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
736 unsigned long min_flt;
737 unsigned long maj_flt;
1da177e4 738
b18b6a9c 739#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
740 struct task_cputime cputime_expires;
741 struct list_head cpu_timers[3];
b18b6a9c 742#endif
1da177e4 743
5eca1c10
IM
744 /* Process credentials: */
745
746 /* Tracer's credentials at attach: */
747 const struct cred __rcu *ptracer_cred;
748
749 /* Objective and real subjective task credentials (COW): */
750 const struct cred __rcu *real_cred;
751
752 /* Effective (overridable) subjective task credentials (COW): */
753 const struct cred __rcu *cred;
754
755 /*
756 * executable name, excluding path.
757 *
758 * - normally initialized setup_new_exec()
759 * - access it with [gs]et_task_comm()
760 * - lock it with task_lock()
761 */
762 char comm[TASK_COMM_LEN];
763
764 struct nameidata *nameidata;
765
3d5b6fcc 766#ifdef CONFIG_SYSVIPC
5eca1c10
IM
767 struct sysv_sem sysvsem;
768 struct sysv_shm sysvshm;
3d5b6fcc 769#endif
e162b39a 770#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 771 unsigned long last_switch_count;
82a1fcb9 772#endif
5eca1c10
IM
773 /* Filesystem information: */
774 struct fs_struct *fs;
775
776 /* Open file information: */
777 struct files_struct *files;
778
779 /* Namespaces: */
780 struct nsproxy *nsproxy;
781
782 /* Signal handlers: */
783 struct signal_struct *signal;
784 struct sighand_struct *sighand;
785 sigset_t blocked;
786 sigset_t real_blocked;
787 /* Restored if set_restore_sigmask() was used: */
788 sigset_t saved_sigmask;
789 struct sigpending pending;
790 unsigned long sas_ss_sp;
791 size_t sas_ss_size;
792 unsigned int sas_ss_flags;
793
794 struct callback_head *task_works;
795
796 struct audit_context *audit_context;
bfef93a5 797#ifdef CONFIG_AUDITSYSCALL
5eca1c10
IM
798 kuid_t loginuid;
799 unsigned int sessionid;
bfef93a5 800#endif
5eca1c10
IM
801 struct seccomp seccomp;
802
803 /* Thread group tracking: */
804 u32 parent_exec_id;
805 u32 self_exec_id;
1da177e4 806
5eca1c10
IM
807 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
808 spinlock_t alloc_lock;
1da177e4 809
b29739f9 810 /* Protection of the PI data structures: */
5eca1c10 811 raw_spinlock_t pi_lock;
b29739f9 812
5eca1c10 813 struct wake_q_node wake_q;
76751049 814
23f78d4a 815#ifdef CONFIG_RT_MUTEXES
5eca1c10 816 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 817 struct rb_root_cached pi_waiters;
e96a7705
XP
818 /* Updated under owner's pi_lock and rq lock */
819 struct task_struct *pi_top_task;
5eca1c10
IM
820 /* Deadlock detection and priority inheritance handling: */
821 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
822#endif
823
408894ee 824#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
825 /* Mutex deadlock detection: */
826 struct mutex_waiter *blocked_on;
408894ee 827#endif
5eca1c10 828
de30a2b3 829#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
830 unsigned int irq_events;
831 unsigned long hardirq_enable_ip;
832 unsigned long hardirq_disable_ip;
833 unsigned int hardirq_enable_event;
834 unsigned int hardirq_disable_event;
835 int hardirqs_enabled;
836 int hardirq_context;
837 unsigned long softirq_disable_ip;
838 unsigned long softirq_enable_ip;
839 unsigned int softirq_disable_event;
840 unsigned int softirq_enable_event;
841 int softirqs_enabled;
842 int softirq_context;
de30a2b3 843#endif
5eca1c10 844
fbb9ce95 845#ifdef CONFIG_LOCKDEP
5eca1c10
IM
846# define MAX_LOCK_DEPTH 48UL
847 u64 curr_chain_key;
848 int lockdep_depth;
849 unsigned int lockdep_recursion;
850 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 851#endif
5eca1c10 852
b09be676
BP
853#ifdef CONFIG_LOCKDEP_CROSSRELEASE
854#define MAX_XHLOCKS_NR 64UL
855 struct hist_lock *xhlocks; /* Crossrelease history locks */
856 unsigned int xhlock_idx;
857 /* For restoring at history boundaries */
858 unsigned int xhlock_idx_hist[XHLOCK_CTX_NR];
23f873d8
BP
859 unsigned int hist_id;
860 /* For overwrite check at each context exit */
861 unsigned int hist_id_save[XHLOCK_CTX_NR];
fbb9ce95 862#endif
5eca1c10 863
c6d30853 864#ifdef CONFIG_UBSAN
5eca1c10 865 unsigned int in_ubsan;
c6d30853 866#endif
408894ee 867
5eca1c10
IM
868 /* Journalling filesystem info: */
869 void *journal_info;
1da177e4 870
5eca1c10
IM
871 /* Stacked block device info: */
872 struct bio_list *bio_list;
d89d8796 873
73c10101 874#ifdef CONFIG_BLOCK
5eca1c10
IM
875 /* Stack plugging: */
876 struct blk_plug *plug;
73c10101
JA
877#endif
878
5eca1c10
IM
879 /* VM state: */
880 struct reclaim_state *reclaim_state;
881
882 struct backing_dev_info *backing_dev_info;
1da177e4 883
5eca1c10 884 struct io_context *io_context;
1da177e4 885
5eca1c10
IM
886 /* Ptrace state: */
887 unsigned long ptrace_message;
888 siginfo_t *last_siginfo;
1da177e4 889
5eca1c10
IM
890 struct task_io_accounting ioac;
891#ifdef CONFIG_TASK_XACCT
892 /* Accumulated RSS usage: */
893 u64 acct_rss_mem1;
894 /* Accumulated virtual memory usage: */
895 u64 acct_vm_mem1;
896 /* stime + utime since last update: */
897 u64 acct_timexpd;
1da177e4
LT
898#endif
899#ifdef CONFIG_CPUSETS
5eca1c10
IM
900 /* Protected by ->alloc_lock: */
901 nodemask_t mems_allowed;
902 /* Seqence number to catch updates: */
903 seqcount_t mems_allowed_seq;
904 int cpuset_mem_spread_rotor;
905 int cpuset_slab_spread_rotor;
1da177e4 906#endif
ddbcc7e8 907#ifdef CONFIG_CGROUPS
5eca1c10
IM
908 /* Control Group info protected by css_set_lock: */
909 struct css_set __rcu *cgroups;
910 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
911 struct list_head cg_list;
ddbcc7e8 912#endif
f01d7d51 913#ifdef CONFIG_INTEL_RDT
0734ded1 914 u32 closid;
d6aaba61 915 u32 rmid;
e02737d5 916#endif
42b2dd0a 917#ifdef CONFIG_FUTEX
5eca1c10 918 struct robust_list_head __user *robust_list;
34f192c6
IM
919#ifdef CONFIG_COMPAT
920 struct compat_robust_list_head __user *compat_robust_list;
921#endif
5eca1c10
IM
922 struct list_head pi_state_list;
923 struct futex_pi_state *pi_state_cache;
c7aceaba 924#endif
cdd6c482 925#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
926 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
927 struct mutex perf_event_mutex;
928 struct list_head perf_event_list;
a63eaf34 929#endif
8f47b187 930#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 931 unsigned long preempt_disable_ip;
8f47b187 932#endif
c7aceaba 933#ifdef CONFIG_NUMA
5eca1c10
IM
934 /* Protected by alloc_lock: */
935 struct mempolicy *mempolicy;
45816682 936 short il_prev;
5eca1c10 937 short pref_node_fork;
42b2dd0a 938#endif
cbee9f88 939#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
940 int numa_scan_seq;
941 unsigned int numa_scan_period;
942 unsigned int numa_scan_period_max;
943 int numa_preferred_nid;
944 unsigned long numa_migrate_retry;
945 /* Migration stamp: */
946 u64 node_stamp;
947 u64 last_task_numa_placement;
948 u64 last_sum_exec_runtime;
949 struct callback_head numa_work;
950
951 struct list_head numa_entry;
952 struct numa_group *numa_group;
8c8a743c 953
745d6147 954 /*
44dba3d5
IM
955 * numa_faults is an array split into four regions:
956 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
957 * in this precise order.
958 *
959 * faults_memory: Exponential decaying average of faults on a per-node
960 * basis. Scheduling placement decisions are made based on these
961 * counts. The values remain static for the duration of a PTE scan.
962 * faults_cpu: Track the nodes the process was running on when a NUMA
963 * hinting fault was incurred.
964 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
965 * during the current scan window. When the scan completes, the counts
966 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 967 */
5eca1c10
IM
968 unsigned long *numa_faults;
969 unsigned long total_numa_faults;
745d6147 970
04bb2f94
RR
971 /*
972 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
973 * scan window were remote/local or failed to migrate. The task scan
974 * period is adapted based on the locality of the faults with different
975 * weights depending on whether they were shared or private faults
04bb2f94 976 */
5eca1c10 977 unsigned long numa_faults_locality[3];
04bb2f94 978
5eca1c10 979 unsigned long numa_pages_migrated;
cbee9f88
PZ
980#endif /* CONFIG_NUMA_BALANCING */
981
5eca1c10 982 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 983
5eca1c10 984 struct rcu_head rcu;
b92ce558 985
5eca1c10
IM
986 /* Cache last used pipe for splice(): */
987 struct pipe_inode_info *splice_pipe;
5640f768 988
5eca1c10 989 struct page_frag task_frag;
5640f768 990
47913d4e
IM
991#ifdef CONFIG_TASK_DELAY_ACCT
992 struct task_delay_info *delays;
f4f154fd 993#endif
47913d4e 994
f4f154fd 995#ifdef CONFIG_FAULT_INJECTION
5eca1c10 996 int make_it_fail;
9049f2f6 997 unsigned int fail_nth;
ca74e92b 998#endif
9d823e8f 999 /*
5eca1c10
IM
1000 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1001 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1002 */
5eca1c10
IM
1003 int nr_dirtied;
1004 int nr_dirtied_pause;
1005 /* Start of a write-and-pause period: */
1006 unsigned long dirty_paused_when;
9d823e8f 1007
9745512c 1008#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1009 int latency_record_count;
1010 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1011#endif
6976675d 1012 /*
5eca1c10 1013 * Time slack values; these are used to round up poll() and
6976675d
AV
1014 * select() etc timeout values. These are in nanoseconds.
1015 */
5eca1c10
IM
1016 u64 timer_slack_ns;
1017 u64 default_timer_slack_ns;
f8d570a4 1018
0b24becc 1019#ifdef CONFIG_KASAN
5eca1c10 1020 unsigned int kasan_depth;
0b24becc 1021#endif
5eca1c10 1022
fb52607a 1023#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1024 /* Index of current stored address in ret_stack: */
1025 int curr_ret_stack;
1026
1027 /* Stack of return addresses for return function tracing: */
1028 struct ftrace_ret_stack *ret_stack;
1029
1030 /* Timestamp for last schedule: */
1031 unsigned long long ftrace_timestamp;
1032
f201ae23
FW
1033 /*
1034 * Number of functions that haven't been traced
5eca1c10 1035 * because of depth overrun:
f201ae23 1036 */
5eca1c10
IM
1037 atomic_t trace_overrun;
1038
1039 /* Pause tracing: */
1040 atomic_t tracing_graph_pause;
f201ae23 1041#endif
5eca1c10 1042
ea4e2bc4 1043#ifdef CONFIG_TRACING
5eca1c10
IM
1044 /* State flags for use by tracers: */
1045 unsigned long trace;
1046
1047 /* Bitmask and counter of trace recursion: */
1048 unsigned long trace_recursion;
261842b7 1049#endif /* CONFIG_TRACING */
5eca1c10 1050
5c9a8750 1051#ifdef CONFIG_KCOV
5eca1c10
IM
1052 /* Coverage collection mode enabled for this task (0 if disabled): */
1053 enum kcov_mode kcov_mode;
1054
1055 /* Size of the kcov_area: */
1056 unsigned int kcov_size;
1057
1058 /* Buffer for coverage collection: */
1059 void *kcov_area;
1060
1061 /* KCOV descriptor wired with this task or NULL: */
1062 struct kcov *kcov;
5c9a8750 1063#endif
5eca1c10 1064
6f185c29 1065#ifdef CONFIG_MEMCG
5eca1c10
IM
1066 struct mem_cgroup *memcg_in_oom;
1067 gfp_t memcg_oom_gfp_mask;
1068 int memcg_oom_order;
b23afb93 1069
5eca1c10
IM
1070 /* Number of pages to reclaim on returning to userland: */
1071 unsigned int memcg_nr_pages_over_high;
569b846d 1072#endif
5eca1c10 1073
0326f5a9 1074#ifdef CONFIG_UPROBES
5eca1c10 1075 struct uprobe_task *utask;
0326f5a9 1076#endif
cafe5635 1077#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1078 unsigned int sequential_io;
1079 unsigned int sequential_io_avg;
cafe5635 1080#endif
8eb23b9f 1081#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1082 unsigned long task_state_change;
8eb23b9f 1083#endif
5eca1c10 1084 int pagefault_disabled;
03049269 1085#ifdef CONFIG_MMU
5eca1c10 1086 struct task_struct *oom_reaper_list;
03049269 1087#endif
ba14a194 1088#ifdef CONFIG_VMAP_STACK
5eca1c10 1089 struct vm_struct *stack_vm_area;
ba14a194 1090#endif
68f24b08 1091#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
1092 /* A live task holds one reference: */
1093 atomic_t stack_refcount;
d83a7cb3
JP
1094#endif
1095#ifdef CONFIG_LIVEPATCH
1096 int patch_state;
0302e28d 1097#endif
e4e55b47
TH
1098#ifdef CONFIG_SECURITY
1099 /* Used by LSM modules for access restriction: */
1100 void *security;
68f24b08 1101#endif
29e48ce8
KC
1102
1103 /*
1104 * New fields for task_struct should be added above here, so that
1105 * they are included in the randomized portion of task_struct.
1106 */
1107 randomized_struct_fields_end
1108
5eca1c10
IM
1109 /* CPU-specific state of this task: */
1110 struct thread_struct thread;
1111
1112 /*
1113 * WARNING: on x86, 'thread_struct' contains a variable-sized
1114 * structure. It *MUST* be at the end of 'task_struct'.
1115 *
1116 * Do not put anything below here!
1117 */
1da177e4
LT
1118};
1119
e868171a 1120static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1121{
1122 return task->pids[PIDTYPE_PID].pid;
1123}
1124
e868171a 1125static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1126{
1127 return task->group_leader->pids[PIDTYPE_PID].pid;
1128}
1129
6dda81f4 1130/*
5eca1c10 1131 * Without tasklist or RCU lock it is not safe to dereference
6dda81f4
ON
1132 * the result of task_pgrp/task_session even if task == current,
1133 * we can race with another thread doing sys_setsid/sys_setpgid.
1134 */
e868171a 1135static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1136{
1137 return task->group_leader->pids[PIDTYPE_PGID].pid;
1138}
1139
e868171a 1140static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1141{
1142 return task->group_leader->pids[PIDTYPE_SID].pid;
1143}
1144
7af57294
PE
1145/*
1146 * the helpers to get the task's different pids as they are seen
1147 * from various namespaces
1148 *
1149 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1150 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1151 * current.
7af57294
PE
1152 * task_xid_nr_ns() : id seen from the ns specified;
1153 *
7af57294
PE
1154 * see also pid_nr() etc in include/linux/pid.h
1155 */
5eca1c10 1156pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1157
e868171a 1158static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1159{
1160 return tsk->pid;
1161}
1162
5eca1c10 1163static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1164{
1165 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1166}
7af57294
PE
1167
1168static inline pid_t task_pid_vnr(struct task_struct *tsk)
1169{
52ee2dfd 1170 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1171}
1172
1173
e868171a 1174static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1175{
1176 return tsk->tgid;
1177}
1178
5eca1c10
IM
1179/**
1180 * pid_alive - check that a task structure is not stale
1181 * @p: Task structure to be checked.
1182 *
1183 * Test if a process is not yet dead (at most zombie state)
1184 * If pid_alive fails, then pointers within the task structure
1185 * can be stale and must not be dereferenced.
1186 *
1187 * Return: 1 if the process is alive. 0 otherwise.
1188 */
1189static inline int pid_alive(const struct task_struct *p)
1190{
1191 return p->pids[PIDTYPE_PID].pid != NULL;
1192}
7af57294 1193
5eca1c10 1194static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1195{
52ee2dfd 1196 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1197}
1198
7af57294
PE
1199static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1200{
52ee2dfd 1201 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1202}
1203
1204
5eca1c10 1205static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1206{
52ee2dfd 1207 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1208}
1209
7af57294
PE
1210static inline pid_t task_session_vnr(struct task_struct *tsk)
1211{
52ee2dfd 1212 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1213}
1214
dd1c1f2f
ON
1215static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1216{
1217 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1218}
1219
1220static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1221{
1222 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1223}
1224
1225static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1226{
1227 pid_t pid = 0;
1228
1229 rcu_read_lock();
1230 if (pid_alive(tsk))
1231 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1232 rcu_read_unlock();
1233
1234 return pid;
1235}
1236
1237static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1238{
1239 return task_ppid_nr_ns(tsk, &init_pid_ns);
1240}
1241
5eca1c10 1242/* Obsolete, do not use: */
1b0f7ffd
ON
1243static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1244{
1245 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1246}
7af57294 1247
06eb6184
PZ
1248#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1249#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1250
1593baab 1251static inline unsigned int __get_task_state(struct task_struct *tsk)
20435d84 1252{
1593baab
PZ
1253 unsigned int tsk_state = READ_ONCE(tsk->state);
1254 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1255
06eb6184
PZ
1256 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1257
06eb6184
PZ
1258 if (tsk_state == TASK_IDLE)
1259 state = TASK_REPORT_IDLE;
1260
1593baab
PZ
1261 return fls(state);
1262}
1263
1264static inline char __task_state_to_char(unsigned int state)
1265{
8ef9925b 1266 static const char state_char[] = "RSDTtXZPI";
1593baab 1267
06eb6184 1268 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1269
1593baab
PZ
1270 return state_char[state];
1271}
1272
1273static inline char task_state_to_char(struct task_struct *tsk)
1274{
1275 return __task_state_to_char(__get_task_state(tsk));
20435d84
XX
1276}
1277
f400e198 1278/**
570f5241
SS
1279 * is_global_init - check if a task structure is init. Since init
1280 * is free to have sub-threads we need to check tgid.
3260259f
HK
1281 * @tsk: Task structure to be checked.
1282 *
1283 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1284 *
1285 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1286 */
e868171a 1287static inline int is_global_init(struct task_struct *tsk)
b461cc03 1288{
570f5241 1289 return task_tgid_nr(tsk) == 1;
b461cc03 1290}
b460cbc5 1291
9ec52099
CLG
1292extern struct pid *cad_pid;
1293
1da177e4
LT
1294/*
1295 * Per process flags
1296 */
5eca1c10
IM
1297#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1298#define PF_EXITING 0x00000004 /* Getting shut down */
1299#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1300#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1301#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1302#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1303#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1304#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1305#define PF_DUMPCORE 0x00000200 /* Dumped core */
1306#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1307#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1308#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1309#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1310#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1311#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1312#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1313#define PF_KSWAPD 0x00020000 /* I am kswapd */
1314#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1315#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1316#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1317#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1318#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1319#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1320#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1321#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1322#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1323#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1324#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1325
1326/*
1327 * Only the _current_ task can read/write to tsk->flags, but other
1328 * tasks can access tsk->flags in readonly mode for example
1329 * with tsk_used_math (like during threaded core dumping).
1330 * There is however an exception to this rule during ptrace
1331 * or during fork: the ptracer task is allowed to write to the
1332 * child->flags of its traced child (same goes for fork, the parent
1333 * can write to the child->flags), because we're guaranteed the
1334 * child is not running and in turn not changing child->flags
1335 * at the same time the parent does it.
1336 */
5eca1c10
IM
1337#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1338#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1339#define clear_used_math() clear_stopped_child_used_math(current)
1340#define set_used_math() set_stopped_child_used_math(current)
1341
1da177e4
LT
1342#define conditional_stopped_child_used_math(condition, child) \
1343 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1344
1345#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1346
1da177e4
LT
1347#define copy_to_stopped_child_used_math(child) \
1348 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1349
1da177e4 1350/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1351#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1352#define used_math() tsk_used_math(current)
1da177e4 1353
62ec05dd
TG
1354static inline bool is_percpu_thread(void)
1355{
1356#ifdef CONFIG_SMP
1357 return (current->flags & PF_NO_SETAFFINITY) &&
1358 (current->nr_cpus_allowed == 1);
1359#else
1360 return true;
1361#endif
1362}
1363
1d4457f9 1364/* Per-process atomic flags. */
5eca1c10
IM
1365#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1366#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1367#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2ad654bc 1368
1d4457f9 1369
e0e5070b
ZL
1370#define TASK_PFA_TEST(name, func) \
1371 static inline bool task_##func(struct task_struct *p) \
1372 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1373
e0e5070b
ZL
1374#define TASK_PFA_SET(name, func) \
1375 static inline void task_set_##func(struct task_struct *p) \
1376 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1377
e0e5070b
ZL
1378#define TASK_PFA_CLEAR(name, func) \
1379 static inline void task_clear_##func(struct task_struct *p) \
1380 { clear_bit(PFA_##name, &p->atomic_flags); }
1381
1382TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1383TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1384
2ad654bc
ZL
1385TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1386TASK_PFA_SET(SPREAD_PAGE, spread_page)
1387TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1388
1389TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1390TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1391TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1392
5eca1c10 1393static inline void
717a94b5 1394current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1395{
717a94b5
N
1396 current->flags &= ~flags;
1397 current->flags |= orig_flags & flags;
907aed48
MG
1398}
1399
5eca1c10
IM
1400extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1401extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1402#ifdef CONFIG_SMP
5eca1c10
IM
1403extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1404extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1405#else
5eca1c10 1406static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1407{
1408}
5eca1c10 1409static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1410{
96f874e2 1411 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1412 return -EINVAL;
1413 return 0;
1414}
1415#endif
e0ad9556 1416
6d0d2878
CB
1417#ifndef cpu_relax_yield
1418#define cpu_relax_yield() cpu_relax()
1419#endif
1420
fa93384f 1421extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1422extern void set_user_nice(struct task_struct *p, long nice);
1423extern int task_prio(const struct task_struct *p);
5eca1c10 1424
d0ea0268
DY
1425/**
1426 * task_nice - return the nice value of a given task.
1427 * @p: the task in question.
1428 *
1429 * Return: The nice value [ -20 ... 0 ... 19 ].
1430 */
1431static inline int task_nice(const struct task_struct *p)
1432{
1433 return PRIO_TO_NICE((p)->static_prio);
1434}
5eca1c10 1435
36c8b586
IM
1436extern int can_nice(const struct task_struct *p, const int nice);
1437extern int task_curr(const struct task_struct *p);
1da177e4 1438extern int idle_cpu(int cpu);
5eca1c10
IM
1439extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1440extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1441extern int sched_setattr(struct task_struct *, const struct sched_attr *);
36c8b586 1442extern struct task_struct *idle_task(int cpu);
5eca1c10 1443
c4f30608
PM
1444/**
1445 * is_idle_task - is the specified task an idle task?
fa757281 1446 * @p: the task in question.
e69f6186
YB
1447 *
1448 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1449 */
7061ca3b 1450static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1451{
c1de45ca 1452 return !!(p->flags & PF_IDLE);
c4f30608 1453}
5eca1c10 1454
36c8b586 1455extern struct task_struct *curr_task(int cpu);
a458ae2e 1456extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1457
1458void yield(void);
1459
1da177e4 1460union thread_union {
c65eacbe 1461#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1462 struct thread_info thread_info;
c65eacbe 1463#endif
1da177e4
LT
1464 unsigned long stack[THREAD_SIZE/sizeof(long)];
1465};
1466
f3ac6067
IM
1467#ifdef CONFIG_THREAD_INFO_IN_TASK
1468static inline struct thread_info *task_thread_info(struct task_struct *task)
1469{
1470 return &task->thread_info;
1471}
1472#elif !defined(__HAVE_THREAD_FUNCTIONS)
1473# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1474#endif
1475
198fe21b
PE
1476/*
1477 * find a task by one of its numerical ids
1478 *
198fe21b
PE
1479 * find_task_by_pid_ns():
1480 * finds a task by its pid in the specified namespace
228ebcbe
PE
1481 * find_task_by_vpid():
1482 * finds a task by its virtual pid
198fe21b 1483 *
e49859e7 1484 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1485 */
1486
228ebcbe 1487extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1488extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1489
b3c97528
HH
1490extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1491extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1492extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1493
1da177e4 1494#ifdef CONFIG_SMP
5eca1c10 1495extern void kick_process(struct task_struct *tsk);
1da177e4 1496#else
5eca1c10 1497static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1498#endif
1da177e4 1499
82b89778 1500extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1501
82b89778
AH
1502static inline void set_task_comm(struct task_struct *tsk, const char *from)
1503{
1504 __set_task_comm(tsk, from, false);
1505}
5eca1c10 1506
59714d65 1507extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
1508
1509#ifdef CONFIG_SMP
317f3941 1510void scheduler_ipi(void);
85ba2d86 1511extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1512#else
184748cc 1513static inline void scheduler_ipi(void) { }
5eca1c10 1514static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1515{
1516 return 1;
1517}
1da177e4
LT
1518#endif
1519
5eca1c10
IM
1520/*
1521 * Set thread flags in other task's structures.
1522 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1523 */
1524static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1525{
a1261f54 1526 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1527}
1528
1529static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1530{
a1261f54 1531 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1532}
1533
1534static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1535{
a1261f54 1536 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1537}
1538
1539static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1540{
a1261f54 1541 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1542}
1543
1544static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1545{
a1261f54 1546 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1547}
1548
1549static inline void set_tsk_need_resched(struct task_struct *tsk)
1550{
1551 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1552}
1553
1554static inline void clear_tsk_need_resched(struct task_struct *tsk)
1555{
1556 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1557}
1558
8ae121ac
GH
1559static inline int test_tsk_need_resched(struct task_struct *tsk)
1560{
1561 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1562}
1563
1da177e4
LT
1564/*
1565 * cond_resched() and cond_resched_lock(): latency reduction via
1566 * explicit rescheduling in places that are safe. The return
1567 * value indicates whether a reschedule was done in fact.
1568 * cond_resched_lock() will drop the spinlock before scheduling,
1569 * cond_resched_softirq() will enable bhs before scheduling.
1570 */
35a773a0 1571#ifndef CONFIG_PREEMPT
c3921ab7 1572extern int _cond_resched(void);
35a773a0
PZ
1573#else
1574static inline int _cond_resched(void) { return 0; }
1575#endif
6f80bd98 1576
613afbf8 1577#define cond_resched() ({ \
3427445a 1578 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1579 _cond_resched(); \
1580})
6f80bd98 1581
613afbf8
FW
1582extern int __cond_resched_lock(spinlock_t *lock);
1583
1584#define cond_resched_lock(lock) ({ \
3427445a 1585 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1586 __cond_resched_lock(lock); \
1587})
1588
1589extern int __cond_resched_softirq(void);
1590
75e1056f 1591#define cond_resched_softirq() ({ \
3427445a 1592 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 1593 __cond_resched_softirq(); \
613afbf8 1594})
1da177e4 1595
f6f3c437
SH
1596static inline void cond_resched_rcu(void)
1597{
1598#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1599 rcu_read_unlock();
1600 cond_resched();
1601 rcu_read_lock();
1602#endif
1603}
1604
1da177e4
LT
1605/*
1606 * Does a critical section need to be broken due to another
95c354fe
NP
1607 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1608 * but a general need for low latency)
1da177e4 1609 */
95c354fe 1610static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1611{
95c354fe
NP
1612#ifdef CONFIG_PREEMPT
1613 return spin_is_contended(lock);
1614#else
1da177e4 1615 return 0;
95c354fe 1616#endif
1da177e4
LT
1617}
1618
75f93fed
PZ
1619static __always_inline bool need_resched(void)
1620{
1621 return unlikely(tif_need_resched());
1622}
1623
1da177e4
LT
1624/*
1625 * Wrappers for p->thread_info->cpu access. No-op on UP.
1626 */
1627#ifdef CONFIG_SMP
1628
1629static inline unsigned int task_cpu(const struct task_struct *p)
1630{
c65eacbe
AL
1631#ifdef CONFIG_THREAD_INFO_IN_TASK
1632 return p->cpu;
1633#else
a1261f54 1634 return task_thread_info(p)->cpu;
c65eacbe 1635#endif
1da177e4
LT
1636}
1637
c65cc870 1638extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1639
1640#else
1641
1642static inline unsigned int task_cpu(const struct task_struct *p)
1643{
1644 return 0;
1645}
1646
1647static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1648{
1649}
1650
1651#endif /* CONFIG_SMP */
1652
d9345c65
PX
1653/*
1654 * In order to reduce various lock holder preemption latencies provide an
1655 * interface to see if a vCPU is currently running or not.
1656 *
1657 * This allows us to terminate optimistic spin loops and block, analogous to
1658 * the native optimistic spin heuristic of testing if the lock owner task is
1659 * running or not.
1660 */
1661#ifndef vcpu_is_preempted
1662# define vcpu_is_preempted(cpu) false
1663#endif
1664
96f874e2
RR
1665extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1666extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1667
82455257
DH
1668#ifndef TASK_SIZE_OF
1669#define TASK_SIZE_OF(tsk) TASK_SIZE
1670#endif
1671
1da177e4 1672#endif