]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/sched.h
[PATCH] Keys: Use RCU to manage session keyring pointer
[mirror_ubuntu-eoan-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <asm/param.h> /* for HZ */
5
6#include <linux/config.h>
7#include <linux/capability.h>
8#include <linux/threads.h>
9#include <linux/kernel.h>
10#include <linux/types.h>
11#include <linux/timex.h>
12#include <linux/jiffies.h>
13#include <linux/rbtree.h>
14#include <linux/thread_info.h>
15#include <linux/cpumask.h>
16#include <linux/errno.h>
17#include <linux/nodemask.h>
18
19#include <asm/system.h>
20#include <asm/semaphore.h>
21#include <asm/page.h>
22#include <asm/ptrace.h>
23#include <asm/mmu.h>
24#include <asm/cputime.h>
25
26#include <linux/smp.h>
27#include <linux/sem.h>
28#include <linux/signal.h>
29#include <linux/securebits.h>
30#include <linux/fs_struct.h>
31#include <linux/compiler.h>
32#include <linux/completion.h>
33#include <linux/pid.h>
34#include <linux/percpu.h>
35#include <linux/topology.h>
36#include <linux/seccomp.h>
37
38struct exec_domain;
39
40/*
41 * cloning flags:
42 */
43#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
44#define CLONE_VM 0x00000100 /* set if VM shared between processes */
45#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
46#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
47#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
48#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
49#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
50#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
51#define CLONE_THREAD 0x00010000 /* Same thread group? */
52#define CLONE_NEWNS 0x00020000 /* New namespace group? */
53#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
54#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
55#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
56#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
57#define CLONE_DETACHED 0x00400000 /* Unused, ignored */
58#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
59#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
60#define CLONE_STOPPED 0x02000000 /* Start in stopped state */
61
62/*
63 * List of flags we want to share for kernel threads,
64 * if only because they are not used by them anyway.
65 */
66#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
67
68/*
69 * These are the constant used to fake the fixed-point load-average
70 * counting. Some notes:
71 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
72 * a load-average precision of 10 bits integer + 11 bits fractional
73 * - if you want to count load-averages more often, you need more
74 * precision, or rounding will get you. With 2-second counting freq,
75 * the EXP_n values would be 1981, 2034 and 2043 if still using only
76 * 11 bit fractions.
77 */
78extern unsigned long avenrun[]; /* Load averages */
79
80#define FSHIFT 11 /* nr of bits of precision */
81#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
82#define LOAD_FREQ (5*HZ) /* 5 sec intervals */
83#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
84#define EXP_5 2014 /* 1/exp(5sec/5min) */
85#define EXP_15 2037 /* 1/exp(5sec/15min) */
86
87#define CALC_LOAD(load,exp,n) \
88 load *= exp; \
89 load += n*(FIXED_1-exp); \
90 load >>= FSHIFT;
91
92extern unsigned long total_forks;
93extern int nr_threads;
94extern int last_pid;
95DECLARE_PER_CPU(unsigned long, process_counts);
96extern int nr_processes(void);
97extern unsigned long nr_running(void);
98extern unsigned long nr_uninterruptible(void);
99extern unsigned long nr_iowait(void);
100
101#include <linux/time.h>
102#include <linux/param.h>
103#include <linux/resource.h>
104#include <linux/timer.h>
105
106#include <asm/processor.h>
107
108#define TASK_RUNNING 0
109#define TASK_INTERRUPTIBLE 1
110#define TASK_UNINTERRUPTIBLE 2
111#define TASK_STOPPED 4
112#define TASK_TRACED 8
113#define EXIT_ZOMBIE 16
114#define EXIT_DEAD 32
115
116#define __set_task_state(tsk, state_value) \
117 do { (tsk)->state = (state_value); } while (0)
118#define set_task_state(tsk, state_value) \
119 set_mb((tsk)->state, (state_value))
120
121#define __set_current_state(state_value) \
122 do { current->state = (state_value); } while (0)
123#define set_current_state(state_value) \
124 set_mb(current->state, (state_value))
125
126/* Task command name length */
127#define TASK_COMM_LEN 16
128
129/*
130 * Scheduling policies
131 */
132#define SCHED_NORMAL 0
133#define SCHED_FIFO 1
134#define SCHED_RR 2
135
136struct sched_param {
137 int sched_priority;
138};
139
140#ifdef __KERNEL__
141
142#include <linux/spinlock.h>
143
144/*
145 * This serializes "schedule()" and also protects
146 * the run-queue from deletions/modifications (but
147 * _adding_ to the beginning of the run-queue has
148 * a separate lock).
149 */
150extern rwlock_t tasklist_lock;
151extern spinlock_t mmlist_lock;
152
153typedef struct task_struct task_t;
154
155extern void sched_init(void);
156extern void sched_init_smp(void);
157extern void init_idle(task_t *idle, int cpu);
158
159extern cpumask_t nohz_cpu_mask;
160
161extern void show_state(void);
162extern void show_regs(struct pt_regs *);
163
164/*
165 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
166 * task), SP is the stack pointer of the first frame that should be shown in the back
167 * trace (or NULL if the entire call-chain of the task should be shown).
168 */
169extern void show_stack(struct task_struct *task, unsigned long *sp);
170
171void io_schedule(void);
172long io_schedule_timeout(long timeout);
173
174extern void cpu_init (void);
175extern void trap_init(void);
176extern void update_process_times(int user);
177extern void scheduler_tick(void);
178
179/* Attach to any functions which should be ignored in wchan output. */
180#define __sched __attribute__((__section__(".sched.text")))
181/* Is this address in the __sched functions? */
182extern int in_sched_functions(unsigned long addr);
183
184#define MAX_SCHEDULE_TIMEOUT LONG_MAX
185extern signed long FASTCALL(schedule_timeout(signed long timeout));
186asmlinkage void schedule(void);
187
188struct namespace;
189
190/* Maximum number of active map areas.. This is a random (large) number */
191#define DEFAULT_MAX_MAP_COUNT 65536
192
193extern int sysctl_max_map_count;
194
195#include <linux/aio.h>
196
197extern unsigned long
198arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
199 unsigned long, unsigned long);
200extern unsigned long
201arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
202 unsigned long len, unsigned long pgoff,
203 unsigned long flags);
1363c3cd
WW
204extern void arch_unmap_area(struct mm_struct *, unsigned long);
205extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
1da177e4
LT
206
207#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
208#define get_mm_counter(mm, member) ((mm)->_##member)
209#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
210#define inc_mm_counter(mm, member) (mm)->_##member++
211#define dec_mm_counter(mm, member) (mm)->_##member--
212typedef unsigned long mm_counter_t;
213
214struct mm_struct {
215 struct vm_area_struct * mmap; /* list of VMAs */
216 struct rb_root mm_rb;
217 struct vm_area_struct * mmap_cache; /* last find_vma result */
218 unsigned long (*get_unmapped_area) (struct file *filp,
219 unsigned long addr, unsigned long len,
220 unsigned long pgoff, unsigned long flags);
1363c3cd
WW
221 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
222 unsigned long mmap_base; /* base of mmap area */
223 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
224 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
1da177e4
LT
225 pgd_t * pgd;
226 atomic_t mm_users; /* How many users with user space? */
227 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
228 int map_count; /* number of VMAs */
229 struct rw_semaphore mmap_sem;
230 spinlock_t page_table_lock; /* Protects page tables and some counters */
231
232 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
233 * together off init_mm.mmlist, and are protected
234 * by mmlist_lock
235 */
236
237 unsigned long start_code, end_code, start_data, end_data;
238 unsigned long start_brk, brk, start_stack;
239 unsigned long arg_start, arg_end, env_start, env_end;
240 unsigned long total_vm, locked_vm, shared_vm;
241 unsigned long exec_vm, stack_vm, reserved_vm, def_flags, nr_ptes;
242
243 /* Special counters protected by the page_table_lock */
244 mm_counter_t _rss;
245 mm_counter_t _anon_rss;
246
247 unsigned long saved_auxv[42]; /* for /proc/PID/auxv */
248
d6e71144 249 unsigned dumpable:2;
1da177e4
LT
250 cpumask_t cpu_vm_mask;
251
252 /* Architecture-specific MM context */
253 mm_context_t context;
254
255 /* Token based thrashing protection. */
256 unsigned long swap_token_time;
257 char recent_pagein;
258
259 /* coredumping support */
260 int core_waiters;
261 struct completion *core_startup_done, core_done;
262
263 /* aio bits */
264 rwlock_t ioctx_list_lock;
265 struct kioctx *ioctx_list;
266
267 struct kioctx default_kioctx;
268
269 unsigned long hiwater_rss; /* High-water RSS usage */
270 unsigned long hiwater_vm; /* High-water virtual memory usage */
271};
272
273struct sighand_struct {
274 atomic_t count;
275 struct k_sigaction action[_NSIG];
276 spinlock_t siglock;
277};
278
279/*
280 * NOTE! "signal_struct" does not have it's own
281 * locking, because a shared signal_struct always
282 * implies a shared sighand_struct, so locking
283 * sighand_struct is always a proper superset of
284 * the locking of signal_struct.
285 */
286struct signal_struct {
287 atomic_t count;
288 atomic_t live;
289
290 wait_queue_head_t wait_chldexit; /* for wait4() */
291
292 /* current thread group signal load-balancing target: */
293 task_t *curr_target;
294
295 /* shared signal handling: */
296 struct sigpending shared_pending;
297
298 /* thread group exit support */
299 int group_exit_code;
300 /* overloaded:
301 * - notify group_exit_task when ->count is equal to notify_count
302 * - everyone except group_exit_task is stopped during signal delivery
303 * of fatal signals, group_exit_task processes the signal.
304 */
305 struct task_struct *group_exit_task;
306 int notify_count;
307
308 /* thread group stop support, overloads group_exit_code too */
309 int group_stop_count;
310 unsigned int flags; /* see SIGNAL_* flags below */
311
312 /* POSIX.1b Interval Timers */
313 struct list_head posix_timers;
314
315 /* ITIMER_REAL timer for the process */
316 struct timer_list real_timer;
317 unsigned long it_real_value, it_real_incr;
318
319 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
320 cputime_t it_prof_expires, it_virt_expires;
321 cputime_t it_prof_incr, it_virt_incr;
322
323 /* job control IDs */
324 pid_t pgrp;
325 pid_t tty_old_pgrp;
326 pid_t session;
327 /* boolean value for session group leader */
328 int leader;
329
330 struct tty_struct *tty; /* NULL if no tty */
331
332 /*
333 * Cumulative resource counters for dead threads in the group,
334 * and for reaped dead child processes forked by this group.
335 * Live threads maintain their own counters and add to these
336 * in __exit_signal, except for the group leader.
337 */
338 cputime_t utime, stime, cutime, cstime;
339 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
340 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
341
342 /*
343 * Cumulative ns of scheduled CPU time for dead threads in the
344 * group, not including a zombie group leader. (This only differs
345 * from jiffies_to_ns(utime + stime) if sched_clock uses something
346 * other than jiffies.)
347 */
348 unsigned long long sched_time;
349
350 /*
351 * We don't bother to synchronize most readers of this at all,
352 * because there is no reader checking a limit that actually needs
353 * to get both rlim_cur and rlim_max atomically, and either one
354 * alone is a single word that can safely be read normally.
355 * getrlimit/setrlimit use task_lock(current->group_leader) to
356 * protect this instead of the siglock, because they really
357 * have no need to disable irqs.
358 */
359 struct rlimit rlim[RLIM_NLIMITS];
360
361 struct list_head cpu_timers[3];
362
363 /* keep the process-shared keyrings here so that they do the right
364 * thing in threads created with CLONE_THREAD */
365#ifdef CONFIG_KEYS
366 struct key *session_keyring; /* keyring inherited over fork */
367 struct key *process_keyring; /* keyring private to this process */
368#endif
369};
370
371/*
372 * Bits in flags field of signal_struct.
373 */
374#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
375#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
376#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
377#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
378
379
380/*
381 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
382 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are
383 * in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values
384 * are inverted: lower p->prio value means higher priority.
385 *
386 * The MAX_USER_RT_PRIO value allows the actual maximum
387 * RT priority to be separate from the value exported to
388 * user-space. This allows kernel threads to set their
389 * priority to a value higher than any user task. Note:
390 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
391 */
392
393#define MAX_USER_RT_PRIO 100
394#define MAX_RT_PRIO MAX_USER_RT_PRIO
395
396#define MAX_PRIO (MAX_RT_PRIO + 40)
397
398#define rt_task(p) (unlikely((p)->prio < MAX_RT_PRIO))
399
400/*
401 * Some day this will be a full-fledged user tracking system..
402 */
403struct user_struct {
404 atomic_t __count; /* reference count */
405 atomic_t processes; /* How many processes does this user have? */
406 atomic_t files; /* How many open files does this user have? */
407 atomic_t sigpending; /* How many pending signals does this user have? */
408 /* protected by mq_lock */
409 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
410 unsigned long locked_shm; /* How many pages of mlocked shm ? */
411
412#ifdef CONFIG_KEYS
413 struct key *uid_keyring; /* UID specific keyring */
414 struct key *session_keyring; /* UID's default session keyring */
415#endif
416
417 /* Hash table maintenance information */
418 struct list_head uidhash_list;
419 uid_t uid;
420};
421
422extern struct user_struct *find_user(uid_t);
423
424extern struct user_struct root_user;
425#define INIT_USER (&root_user)
426
427typedef struct prio_array prio_array_t;
428struct backing_dev_info;
429struct reclaim_state;
430
431#ifdef CONFIG_SCHEDSTATS
432struct sched_info {
433 /* cumulative counters */
434 unsigned long cpu_time, /* time spent on the cpu */
435 run_delay, /* time spent waiting on a runqueue */
436 pcnt; /* # of timeslices run on this cpu */
437
438 /* timestamps */
439 unsigned long last_arrival, /* when we last ran on a cpu */
440 last_queued; /* when we were last queued to run */
441};
442
443extern struct file_operations proc_schedstat_operations;
444#endif
445
446enum idle_type
447{
448 SCHED_IDLE,
449 NOT_IDLE,
450 NEWLY_IDLE,
451 MAX_IDLE_TYPES
452};
453
454/*
455 * sched-domains (multiprocessor balancing) declarations:
456 */
457#ifdef CONFIG_SMP
458#define SCHED_LOAD_SCALE 128UL /* increase resolution of load */
459
460#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
461#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
462#define SD_BALANCE_EXEC 4 /* Balance on exec */
463#define SD_WAKE_IDLE 8 /* Wake to idle CPU on task wakeup */
464#define SD_WAKE_AFFINE 16 /* Wake task to waking CPU */
465#define SD_WAKE_BALANCE 32 /* Perform balancing at task wakeup */
466#define SD_SHARE_CPUPOWER 64 /* Domain members share cpu power */
467
468struct sched_group {
469 struct sched_group *next; /* Must be a circular list */
470 cpumask_t cpumask;
471
472 /*
473 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
474 * single CPU. This is read only (except for setup, hotplug CPU).
475 */
476 unsigned long cpu_power;
477};
478
479struct sched_domain {
480 /* These fields must be setup */
481 struct sched_domain *parent; /* top domain must be null terminated */
482 struct sched_group *groups; /* the balancing groups of the domain */
483 cpumask_t span; /* span of all CPUs in this domain */
484 unsigned long min_interval; /* Minimum balance interval ms */
485 unsigned long max_interval; /* Maximum balance interval ms */
486 unsigned int busy_factor; /* less balancing by factor if busy */
487 unsigned int imbalance_pct; /* No balance until over watermark */
488 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
489 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
490 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */
491 int flags; /* See SD_* */
492
493 /* Runtime fields. */
494 unsigned long last_balance; /* init to jiffies. units in jiffies */
495 unsigned int balance_interval; /* initialise to 1. units in ms. */
496 unsigned int nr_balance_failed; /* initialise to 0 */
497
498#ifdef CONFIG_SCHEDSTATS
499 /* load_balance() stats */
500 unsigned long lb_cnt[MAX_IDLE_TYPES];
501 unsigned long lb_failed[MAX_IDLE_TYPES];
502 unsigned long lb_balanced[MAX_IDLE_TYPES];
503 unsigned long lb_imbalance[MAX_IDLE_TYPES];
504 unsigned long lb_gained[MAX_IDLE_TYPES];
505 unsigned long lb_hot_gained[MAX_IDLE_TYPES];
506 unsigned long lb_nobusyg[MAX_IDLE_TYPES];
507 unsigned long lb_nobusyq[MAX_IDLE_TYPES];
508
509 /* Active load balancing */
510 unsigned long alb_cnt;
511 unsigned long alb_failed;
512 unsigned long alb_pushed;
513
514 /* sched_balance_exec() stats */
515 unsigned long sbe_attempts;
516 unsigned long sbe_pushed;
517
518 /* try_to_wake_up() stats */
519 unsigned long ttwu_wake_remote;
520 unsigned long ttwu_move_affine;
521 unsigned long ttwu_move_balance;
522#endif
523};
524
525#ifdef ARCH_HAS_SCHED_DOMAIN
526/* Useful helpers that arch setup code may use. Defined in kernel/sched.c */
527extern cpumask_t cpu_isolated_map;
528extern void init_sched_build_groups(struct sched_group groups[],
529 cpumask_t span, int (*group_fn)(int cpu));
530extern void cpu_attach_domain(struct sched_domain *sd, int cpu);
531#endif /* ARCH_HAS_SCHED_DOMAIN */
532#endif /* CONFIG_SMP */
533
534
535struct io_context; /* See blkdev.h */
536void exit_io_context(void);
537struct cpuset;
538
539#define NGROUPS_SMALL 32
540#define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
541struct group_info {
542 int ngroups;
543 atomic_t usage;
544 gid_t small_block[NGROUPS_SMALL];
545 int nblocks;
546 gid_t *blocks[0];
547};
548
549/*
550 * get_group_info() must be called with the owning task locked (via task_lock())
551 * when task != current. The reason being that the vast majority of callers are
552 * looking at current->group_info, which can not be changed except by the
553 * current task. Changing current->group_info requires the task lock, too.
554 */
555#define get_group_info(group_info) do { \
556 atomic_inc(&(group_info)->usage); \
557} while (0)
558
559#define put_group_info(group_info) do { \
560 if (atomic_dec_and_test(&(group_info)->usage)) \
561 groups_free(group_info); \
562} while (0)
563
564struct group_info *groups_alloc(int gidsetsize);
565void groups_free(struct group_info *group_info);
566int set_current_groups(struct group_info *group_info);
567/* access the groups "array" with this macro */
568#define GROUP_AT(gi, i) \
569 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
570
571
572struct audit_context; /* See audit.c */
573struct mempolicy;
574
575struct task_struct {
576 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
577 struct thread_info *thread_info;
578 atomic_t usage;
579 unsigned long flags; /* per process flags, defined below */
580 unsigned long ptrace;
581
36772092 582 int lock_depth; /* BKL lock depth */
1da177e4
LT
583
584 int prio, static_prio;
585 struct list_head run_list;
586 prio_array_t *array;
587
588 unsigned long sleep_avg;
589 unsigned long long timestamp, last_ran;
590 unsigned long long sched_time; /* sched_clock time spent running */
591 int activated;
592
593 unsigned long policy;
594 cpumask_t cpus_allowed;
595 unsigned int time_slice, first_time_slice;
596
597#ifdef CONFIG_SCHEDSTATS
598 struct sched_info sched_info;
599#endif
600
601 struct list_head tasks;
602 /*
603 * ptrace_list/ptrace_children forms the list of my children
604 * that were stolen by a ptracer.
605 */
606 struct list_head ptrace_children;
607 struct list_head ptrace_list;
608
609 struct mm_struct *mm, *active_mm;
610
611/* task state */
612 struct linux_binfmt *binfmt;
613 long exit_state;
614 int exit_code, exit_signal;
615 int pdeath_signal; /* The signal sent when the parent dies */
616 /* ??? */
617 unsigned long personality;
618 unsigned did_exec:1;
619 pid_t pid;
620 pid_t tgid;
621 /*
622 * pointers to (original) parent process, youngest child, younger sibling,
623 * older sibling, respectively. (p->father can be replaced with
624 * p->parent->pid)
625 */
626 struct task_struct *real_parent; /* real parent process (when being debugged) */
627 struct task_struct *parent; /* parent process */
628 /*
629 * children/sibling forms the list of my children plus the
630 * tasks I'm ptracing.
631 */
632 struct list_head children; /* list of my children */
633 struct list_head sibling; /* linkage in my parent's children list */
634 struct task_struct *group_leader; /* threadgroup leader */
635
636 /* PID/PID hash table linkage. */
637 struct pid pids[PIDTYPE_MAX];
638
639 struct completion *vfork_done; /* for vfork() */
640 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
641 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
642
643 unsigned long rt_priority;
644 cputime_t utime, stime;
645 unsigned long nvcsw, nivcsw; /* context switch counts */
646 struct timespec start_time;
647/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
648 unsigned long min_flt, maj_flt;
649
650 cputime_t it_prof_expires, it_virt_expires;
651 unsigned long long it_sched_expires;
652 struct list_head cpu_timers[3];
653
654/* process credentials */
655 uid_t uid,euid,suid,fsuid;
656 gid_t gid,egid,sgid,fsgid;
657 struct group_info *group_info;
658 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
659 unsigned keep_capabilities:1;
660 struct user_struct *user;
661#ifdef CONFIG_KEYS
662 struct key *thread_keyring; /* keyring private to this thread */
663#endif
664 int oomkilladj; /* OOM kill score adjustment (bit shift). */
36772092
PBG
665 char comm[TASK_COMM_LEN]; /* executable name excluding path
666 - access with [gs]et_task_comm (which lock
667 it with task_lock())
668 - initialized normally by flush_old_exec */
1da177e4
LT
669/* file system info */
670 int link_count, total_link_count;
671/* ipc stuff */
672 struct sysv_sem sysvsem;
673/* CPU-specific state of this task */
674 struct thread_struct thread;
675/* filesystem information */
676 struct fs_struct *fs;
677/* open file information */
678 struct files_struct *files;
679/* namespace */
680 struct namespace *namespace;
681/* signal handlers */
682 struct signal_struct *signal;
683 struct sighand_struct *sighand;
684
685 sigset_t blocked, real_blocked;
686 struct sigpending pending;
687
688 unsigned long sas_ss_sp;
689 size_t sas_ss_size;
690 int (*notifier)(void *priv);
691 void *notifier_data;
692 sigset_t *notifier_mask;
693
694 void *security;
695 struct audit_context *audit_context;
696 seccomp_t seccomp;
697
698/* Thread group tracking */
699 u32 parent_exec_id;
700 u32 self_exec_id;
701/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
702 spinlock_t alloc_lock;
703/* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */
704 spinlock_t proc_lock;
705/* context-switch lock */
706 spinlock_t switch_lock;
707
708/* journalling filesystem info */
709 void *journal_info;
710
711/* VM state */
712 struct reclaim_state *reclaim_state;
713
714 struct dentry *proc_dentry;
715 struct backing_dev_info *backing_dev_info;
716
717 struct io_context *io_context;
718
719 unsigned long ptrace_message;
720 siginfo_t *last_siginfo; /* For ptrace use. */
721/*
722 * current io wait handle: wait queue entry to use for io waits
723 * If this thread is processing aio, this points at the waitqueue
724 * inside the currently handled kiocb. It may be NULL (i.e. default
725 * to a stack based synchronous wait) if its doing sync IO.
726 */
727 wait_queue_t *io_wait;
728/* i/o counters(bytes read/written, #syscalls */
729 u64 rchar, wchar, syscr, syscw;
730#if defined(CONFIG_BSD_PROCESS_ACCT)
731 u64 acct_rss_mem1; /* accumulated rss usage */
732 u64 acct_vm_mem1; /* accumulated virtual memory usage */
733 clock_t acct_stimexpd; /* clock_t-converted stime since last update */
734#endif
735#ifdef CONFIG_NUMA
736 struct mempolicy *mempolicy;
737 short il_next;
738#endif
739#ifdef CONFIG_CPUSETS
740 struct cpuset *cpuset;
741 nodemask_t mems_allowed;
742 int cpuset_mems_generation;
743#endif
744};
745
746static inline pid_t process_group(struct task_struct *tsk)
747{
748 return tsk->signal->pgrp;
749}
750
751/**
752 * pid_alive - check that a task structure is not stale
753 * @p: Task structure to be checked.
754 *
755 * Test if a process is not yet dead (at most zombie state)
756 * If pid_alive fails, then pointers within the task structure
757 * can be stale and must not be dereferenced.
758 */
759static inline int pid_alive(struct task_struct *p)
760{
761 return p->pids[PIDTYPE_PID].nr != 0;
762}
763
764extern void free_task(struct task_struct *tsk);
765extern void __put_task_struct(struct task_struct *tsk);
766#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
767#define put_task_struct(tsk) \
768do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0)
769
770/*
771 * Per process flags
772 */
773#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
774 /* Not implemented yet, only for 486*/
775#define PF_STARTING 0x00000002 /* being created */
776#define PF_EXITING 0x00000004 /* getting shut down */
777#define PF_DEAD 0x00000008 /* Dead */
778#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
779#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
780#define PF_DUMPCORE 0x00000200 /* dumped core */
781#define PF_SIGNALED 0x00000400 /* killed by a signal */
782#define PF_MEMALLOC 0x00000800 /* Allocating memory */
783#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
784#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
785#define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */
786#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
787#define PF_FROZEN 0x00010000 /* frozen for system suspend */
788#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
789#define PF_KSWAPD 0x00040000 /* I am kswapd */
790#define PF_SWAPOFF 0x00080000 /* I am in swapoff */
791#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
792#define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */
793#define PF_BORROWED_MM 0x00400000 /* I am a kthread doing use_mm */
794#define PF_RANDOMIZE 0x00800000 /* randomize virtual address space */
795
796/*
797 * Only the _current_ task can read/write to tsk->flags, but other
798 * tasks can access tsk->flags in readonly mode for example
799 * with tsk_used_math (like during threaded core dumping).
800 * There is however an exception to this rule during ptrace
801 * or during fork: the ptracer task is allowed to write to the
802 * child->flags of its traced child (same goes for fork, the parent
803 * can write to the child->flags), because we're guaranteed the
804 * child is not running and in turn not changing child->flags
805 * at the same time the parent does it.
806 */
807#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
808#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
809#define clear_used_math() clear_stopped_child_used_math(current)
810#define set_used_math() set_stopped_child_used_math(current)
811#define conditional_stopped_child_used_math(condition, child) \
812 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
813#define conditional_used_math(condition) \
814 conditional_stopped_child_used_math(condition, current)
815#define copy_to_stopped_child_used_math(child) \
816 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
817/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
818#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
819#define used_math() tsk_used_math(current)
820
821#ifdef CONFIG_SMP
822extern int set_cpus_allowed(task_t *p, cpumask_t new_mask);
823#else
824static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask)
825{
826 if (!cpus_intersects(new_mask, cpu_online_map))
827 return -EINVAL;
828 return 0;
829}
830#endif
831
832extern unsigned long long sched_clock(void);
833extern unsigned long long current_sched_time(const task_t *current_task);
834
835/* sched_exec is called by processes performing an exec */
836#ifdef CONFIG_SMP
837extern void sched_exec(void);
838#else
839#define sched_exec() {}
840#endif
841
842#ifdef CONFIG_HOTPLUG_CPU
843extern void idle_task_exit(void);
844#else
845static inline void idle_task_exit(void) {}
846#endif
847
848extern void sched_idle_next(void);
849extern void set_user_nice(task_t *p, long nice);
850extern int task_prio(const task_t *p);
851extern int task_nice(const task_t *p);
e43379f1 852extern int can_nice(const task_t *p, const int nice);
1da177e4
LT
853extern int task_curr(const task_t *p);
854extern int idle_cpu(int cpu);
855extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
856extern task_t *idle_task(int cpu);
857
858void yield(void);
859
860/*
861 * The default (Linux) execution domain.
862 */
863extern struct exec_domain default_exec_domain;
864
865union thread_union {
866 struct thread_info thread_info;
867 unsigned long stack[THREAD_SIZE/sizeof(long)];
868};
869
870#ifndef __HAVE_ARCH_KSTACK_END
871static inline int kstack_end(void *addr)
872{
873 /* Reliable end of stack detection:
874 * Some APM bios versions misalign the stack
875 */
876 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
877}
878#endif
879
880extern union thread_union init_thread_union;
881extern struct task_struct init_task;
882
883extern struct mm_struct init_mm;
884
885#define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
886extern struct task_struct *find_task_by_pid_type(int type, int pid);
887extern void set_special_pids(pid_t session, pid_t pgrp);
888extern void __set_special_pids(pid_t session, pid_t pgrp);
889
890/* per-UID process charging. */
891extern struct user_struct * alloc_uid(uid_t);
892static inline struct user_struct *get_uid(struct user_struct *u)
893{
894 atomic_inc(&u->__count);
895 return u;
896}
897extern void free_uid(struct user_struct *);
898extern void switch_uid(struct user_struct *);
899
900#include <asm/current.h>
901
902extern void do_timer(struct pt_regs *);
903
904extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
905extern int FASTCALL(wake_up_process(struct task_struct * tsk));
906extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
907 unsigned long clone_flags));
908#ifdef CONFIG_SMP
909 extern void kick_process(struct task_struct *tsk);
910#else
911 static inline void kick_process(struct task_struct *tsk) { }
912#endif
913extern void FASTCALL(sched_fork(task_t * p));
914extern void FASTCALL(sched_exit(task_t * p));
915
916extern int in_group_p(gid_t);
917extern int in_egroup_p(gid_t);
918
919extern void proc_caches_init(void);
920extern void flush_signals(struct task_struct *);
921extern void flush_signal_handlers(struct task_struct *, int force_default);
922extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
923
924static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
925{
926 unsigned long flags;
927 int ret;
928
929 spin_lock_irqsave(&tsk->sighand->siglock, flags);
930 ret = dequeue_signal(tsk, mask, info);
931 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
932
933 return ret;
934}
935
936extern void block_all_signals(int (*notifier)(void *priv), void *priv,
937 sigset_t *mask);
938extern void unblock_all_signals(void);
939extern void release_task(struct task_struct * p);
940extern int send_sig_info(int, struct siginfo *, struct task_struct *);
941extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
942extern int force_sigsegv(int, struct task_struct *);
943extern int force_sig_info(int, struct siginfo *, struct task_struct *);
944extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
945extern int kill_pg_info(int, struct siginfo *, pid_t);
946extern int kill_proc_info(int, struct siginfo *, pid_t);
947extern void do_notify_parent(struct task_struct *, int);
948extern void force_sig(int, struct task_struct *);
949extern void force_sig_specific(int, struct task_struct *);
950extern int send_sig(int, struct task_struct *, int);
951extern void zap_other_threads(struct task_struct *p);
952extern int kill_pg(pid_t, int, int);
953extern int kill_sl(pid_t, int, int);
954extern int kill_proc(pid_t, int, int);
955extern struct sigqueue *sigqueue_alloc(void);
956extern void sigqueue_free(struct sigqueue *);
957extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
958extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
959extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
960extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
961
962/* These can be the second arg to send_sig_info/send_group_sig_info. */
963#define SEND_SIG_NOINFO ((struct siginfo *) 0)
964#define SEND_SIG_PRIV ((struct siginfo *) 1)
965#define SEND_SIG_FORCED ((struct siginfo *) 2)
966
967/* True if we are on the alternate signal stack. */
968
969static inline int on_sig_stack(unsigned long sp)
970{
971 return (sp - current->sas_ss_sp < current->sas_ss_size);
972}
973
974static inline int sas_ss_flags(unsigned long sp)
975{
976 return (current->sas_ss_size == 0 ? SS_DISABLE
977 : on_sig_stack(sp) ? SS_ONSTACK : 0);
978}
979
980
981#ifdef CONFIG_SECURITY
982/* code is in security.c */
983extern int capable(int cap);
984#else
985static inline int capable(int cap)
986{
987 if (cap_raised(current->cap_effective, cap)) {
988 current->flags |= PF_SUPERPRIV;
989 return 1;
990 }
991 return 0;
992}
993#endif
994
995/*
996 * Routines for handling mm_structs
997 */
998extern struct mm_struct * mm_alloc(void);
999
1000/* mmdrop drops the mm and the page tables */
1001extern void FASTCALL(__mmdrop(struct mm_struct *));
1002static inline void mmdrop(struct mm_struct * mm)
1003{
1004 if (atomic_dec_and_test(&mm->mm_count))
1005 __mmdrop(mm);
1006}
1007
1008/* mmput gets rid of the mappings and all user-space */
1009extern void mmput(struct mm_struct *);
1010/* Grab a reference to a task's mm, if it is not already going away */
1011extern struct mm_struct *get_task_mm(struct task_struct *task);
1012/* Remove the current tasks stale references to the old mm_struct */
1013extern void mm_release(struct task_struct *, struct mm_struct *);
1014
1015extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1016extern void flush_thread(void);
1017extern void exit_thread(void);
1018
1da177e4
LT
1019extern void exit_files(struct task_struct *);
1020extern void exit_signal(struct task_struct *);
1021extern void __exit_signal(struct task_struct *);
1022extern void exit_sighand(struct task_struct *);
1023extern void __exit_sighand(struct task_struct *);
1024extern void exit_itimers(struct signal_struct *);
1025
1026extern NORET_TYPE void do_group_exit(int);
1027
1da177e4
LT
1028extern void daemonize(const char *, ...);
1029extern int allow_signal(int);
1030extern int disallow_signal(int);
1031extern task_t *child_reaper;
1032
1033extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1034extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1035task_t *fork_idle(int);
1036
1037extern void set_task_comm(struct task_struct *tsk, char *from);
1038extern void get_task_comm(char *to, struct task_struct *tsk);
1039
1040#ifdef CONFIG_SMP
1041extern void wait_task_inactive(task_t * p);
1042#else
1043#define wait_task_inactive(p) do { } while (0)
1044#endif
1045
1046#define remove_parent(p) list_del_init(&(p)->sibling)
1047#define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children)
1048
1049#define REMOVE_LINKS(p) do { \
1050 if (thread_group_leader(p)) \
1051 list_del_init(&(p)->tasks); \
1052 remove_parent(p); \
1053 } while (0)
1054
1055#define SET_LINKS(p) do { \
1056 if (thread_group_leader(p)) \
1057 list_add_tail(&(p)->tasks,&init_task.tasks); \
1058 add_parent(p, (p)->parent); \
1059 } while (0)
1060
1061#define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks)
1062#define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks)
1063
1064#define for_each_process(p) \
1065 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1066
1067/*
1068 * Careful: do_each_thread/while_each_thread is a double loop so
1069 * 'break' will not work as expected - use goto instead.
1070 */
1071#define do_each_thread(g, t) \
1072 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1073
1074#define while_each_thread(g, t) \
1075 while ((t = next_thread(t)) != g)
1076
1077extern task_t * FASTCALL(next_thread(const task_t *p));
1078
1079#define thread_group_leader(p) (p->pid == p->tgid)
1080
1081static inline int thread_group_empty(task_t *p)
1082{
1083 return list_empty(&p->pids[PIDTYPE_TGID].pid_list);
1084}
1085
1086#define delay_group_leader(p) \
1087 (thread_group_leader(p) && !thread_group_empty(p))
1088
1089extern void unhash_process(struct task_struct *p);
1090
1091/*
1092 * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring
1093 * subscriptions and synchronises with wait4(). Also used in procfs.
1094 *
1095 * Nests both inside and outside of read_lock(&tasklist_lock).
1096 * It must not be nested with write_lock_irq(&tasklist_lock),
1097 * neither inside nor outside.
1098 */
1099static inline void task_lock(struct task_struct *p)
1100{
1101 spin_lock(&p->alloc_lock);
1102}
1103
1104static inline void task_unlock(struct task_struct *p)
1105{
1106 spin_unlock(&p->alloc_lock);
1107}
1108
1109/* set thread flags in other task's structures
1110 * - see asm/thread_info.h for TIF_xxxx flags available
1111 */
1112static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1113{
1114 set_ti_thread_flag(tsk->thread_info,flag);
1115}
1116
1117static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1118{
1119 clear_ti_thread_flag(tsk->thread_info,flag);
1120}
1121
1122static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1123{
1124 return test_and_set_ti_thread_flag(tsk->thread_info,flag);
1125}
1126
1127static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1128{
1129 return test_and_clear_ti_thread_flag(tsk->thread_info,flag);
1130}
1131
1132static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1133{
1134 return test_ti_thread_flag(tsk->thread_info,flag);
1135}
1136
1137static inline void set_tsk_need_resched(struct task_struct *tsk)
1138{
1139 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1140}
1141
1142static inline void clear_tsk_need_resched(struct task_struct *tsk)
1143{
1144 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1145}
1146
1147static inline int signal_pending(struct task_struct *p)
1148{
1149 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1150}
1151
1152static inline int need_resched(void)
1153{
1154 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1155}
1156
1157/*
1158 * cond_resched() and cond_resched_lock(): latency reduction via
1159 * explicit rescheduling in places that are safe. The return
1160 * value indicates whether a reschedule was done in fact.
1161 * cond_resched_lock() will drop the spinlock before scheduling,
1162 * cond_resched_softirq() will enable bhs before scheduling.
1163 */
1164extern int cond_resched(void);
1165extern int cond_resched_lock(spinlock_t * lock);
1166extern int cond_resched_softirq(void);
1167
1168/*
1169 * Does a critical section need to be broken due to another
1170 * task waiting?:
1171 */
1172#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1173# define need_lockbreak(lock) ((lock)->break_lock)
1174#else
1175# define need_lockbreak(lock) 0
1176#endif
1177
1178/*
1179 * Does a critical section need to be broken due to another
1180 * task waiting or preemption being signalled:
1181 */
1182static inline int lock_need_resched(spinlock_t *lock)
1183{
1184 if (need_lockbreak(lock) || need_resched())
1185 return 1;
1186 return 0;
1187}
1188
1189/* Reevaluate whether the task has signals pending delivery.
1190 This is required every time the blocked sigset_t changes.
1191 callers must hold sighand->siglock. */
1192
1193extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
1194extern void recalc_sigpending(void);
1195
1196extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1197
1198/*
1199 * Wrappers for p->thread_info->cpu access. No-op on UP.
1200 */
1201#ifdef CONFIG_SMP
1202
1203static inline unsigned int task_cpu(const struct task_struct *p)
1204{
1205 return p->thread_info->cpu;
1206}
1207
1208static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1209{
1210 p->thread_info->cpu = cpu;
1211}
1212
1213#else
1214
1215static inline unsigned int task_cpu(const struct task_struct *p)
1216{
1217 return 0;
1218}
1219
1220static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1221{
1222}
1223
1224#endif /* CONFIG_SMP */
1225
1226#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1227extern void arch_pick_mmap_layout(struct mm_struct *mm);
1228#else
1229static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1230{
1231 mm->mmap_base = TASK_UNMAPPED_BASE;
1232 mm->get_unmapped_area = arch_get_unmapped_area;
1233 mm->unmap_area = arch_unmap_area;
1234}
1235#endif
1236
1237extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1238extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1239
1240#ifdef CONFIG_MAGIC_SYSRQ
1241
1242extern void normalize_rt_tasks(void);
1243
1244#endif
1245
1246/* try_to_freeze
1247 *
1248 * Checks whether we need to enter the refrigerator
1249 * and returns 1 if we did so.
1250 */
1251#ifdef CONFIG_PM
1252extern void refrigerator(unsigned long);
1253extern int freeze_processes(void);
1254extern void thaw_processes(void);
1255
1256static inline int try_to_freeze(unsigned long refrigerator_flags)
1257{
1258 if (unlikely(current->flags & PF_FREEZE)) {
1259 refrigerator(refrigerator_flags);
1260 return 1;
1261 } else
1262 return 0;
1263}
1264#else
1265static inline void refrigerator(unsigned long flag) {}
1266static inline int freeze_processes(void) { BUG(); return 0; }
1267static inline void thaw_processes(void) {}
1268
1269static inline int try_to_freeze(unsigned long refrigerator_flags)
1270{
1271 return 0;
1272}
1273#endif /* CONFIG_PM */
1274#endif /* __KERNEL__ */
1275
1276#endif