]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/linux/sched.h
kthread, sched/wait: Fix kthread_parkme() completion issue
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
a3b6714e 24#include <linux/resource.h>
9745512c 25#include <linux/latencytop.h>
5eca1c10
IM
26#include <linux/sched/prio.h>
27#include <linux/signal_types.h>
28#include <linux/mm_types_task.h>
29#include <linux/task_io_accounting.h>
a3b6714e 30
5eca1c10 31/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 32struct audit_context;
c7af7877 33struct backing_dev_info;
bddd87c7 34struct bio_list;
73c10101 35struct blk_plug;
c7af7877 36struct cfs_rq;
c7af7877
IM
37struct fs_struct;
38struct futex_pi_state;
39struct io_context;
40struct mempolicy;
89076bc3 41struct nameidata;
c7af7877
IM
42struct nsproxy;
43struct perf_event_context;
44struct pid_namespace;
45struct pipe_inode_info;
46struct rcu_node;
47struct reclaim_state;
48struct robust_list_head;
49struct sched_attr;
50struct sched_param;
43ae34cb 51struct seq_file;
c7af7877
IM
52struct sighand_struct;
53struct signal_struct;
54struct task_delay_info;
4cf86d77 55struct task_group;
1da177e4 56
4a8342d2
LT
57/*
58 * Task state bitmask. NOTE! These bits are also
59 * encoded in fs/proc/array.c: get_task_state().
60 *
61 * We have two separate sets of flags: task->state
62 * is about runnability, while task->exit_state are
63 * about the task exiting. Confusing, but this way
64 * modifying one set can't modify the other one by
65 * mistake.
66 */
5eca1c10
IM
67
68/* Used in tsk->state: */
92c4bc9f
PZ
69#define TASK_RUNNING 0x0000
70#define TASK_INTERRUPTIBLE 0x0001
71#define TASK_UNINTERRUPTIBLE 0x0002
72#define __TASK_STOPPED 0x0004
73#define __TASK_TRACED 0x0008
5eca1c10 74/* Used in tsk->exit_state: */
92c4bc9f
PZ
75#define EXIT_DEAD 0x0010
76#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
77#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
78/* Used in tsk->state again: */
8ef9925b
PZ
79#define TASK_PARKED 0x0040
80#define TASK_DEAD 0x0080
81#define TASK_WAKEKILL 0x0100
82#define TASK_WAKING 0x0200
92c4bc9f
PZ
83#define TASK_NOLOAD 0x0400
84#define TASK_NEW 0x0800
85#define TASK_STATE_MAX 0x1000
5eca1c10 86
5eca1c10
IM
87/* Convenience macros for the sake of set_current_state: */
88#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
90#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
91
92#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93
94/* Convenience macros for the sake of wake_up(): */
95#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
96
97/* get_task_state(): */
98#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
99 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
100 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
101 TASK_PARKED)
5eca1c10
IM
102
103#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
104
105#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
106
107#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
108
109#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
110 (task->flags & PF_FROZEN) == 0 && \
111 (task->state & TASK_NOLOAD) == 0)
1da177e4 112
8eb23b9f
PZ
113#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
114
8eb23b9f
PZ
115#define __set_current_state(state_value) \
116 do { \
117 current->task_state_change = _THIS_IP_; \
118 current->state = (state_value); \
119 } while (0)
120#define set_current_state(state_value) \
121 do { \
122 current->task_state_change = _THIS_IP_; \
a2250238 123 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
124 } while (0)
125
126#else
498d0c57
AM
127/*
128 * set_current_state() includes a barrier so that the write of current->state
129 * is correctly serialised wrt the caller's subsequent test of whether to
130 * actually sleep:
131 *
a2250238 132 * for (;;) {
498d0c57 133 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
134 * if (!need_sleep)
135 * break;
136 *
137 * schedule();
138 * }
139 * __set_current_state(TASK_RUNNING);
140 *
141 * If the caller does not need such serialisation (because, for instance, the
142 * condition test and condition change and wakeup are under the same lock) then
143 * use __set_current_state().
144 *
145 * The above is typically ordered against the wakeup, which does:
146 *
147 * need_sleep = false;
148 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
149 *
150 * Where wake_up_state() (and all other wakeup primitives) imply enough
151 * barriers to order the store of the variable against wakeup.
152 *
153 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
154 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
155 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 156 *
a2250238 157 * This is obviously fine, since they both store the exact same value.
498d0c57 158 *
a2250238 159 * Also see the comments of try_to_wake_up().
498d0c57 160 */
5eca1c10
IM
161#define __set_current_state(state_value) do { current->state = (state_value); } while (0)
162#define set_current_state(state_value) smp_store_mb(current->state, (state_value))
8eb23b9f
PZ
163#endif
164
5eca1c10
IM
165/* Task command name length: */
166#define TASK_COMM_LEN 16
1da177e4 167
1da177e4
LT
168extern void scheduler_tick(void);
169
5eca1c10
IM
170#define MAX_SCHEDULE_TIMEOUT LONG_MAX
171
172extern long schedule_timeout(long timeout);
173extern long schedule_timeout_interruptible(long timeout);
174extern long schedule_timeout_killable(long timeout);
175extern long schedule_timeout_uninterruptible(long timeout);
176extern long schedule_timeout_idle(long timeout);
1da177e4 177asmlinkage void schedule(void);
c5491ea7 178extern void schedule_preempt_disabled(void);
1da177e4 179
10ab5643
TH
180extern int __must_check io_schedule_prepare(void);
181extern void io_schedule_finish(int token);
9cff8ade 182extern long io_schedule_timeout(long timeout);
10ab5643 183extern void io_schedule(void);
9cff8ade 184
d37f761d 185/**
0ba42a59 186 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
187 * @utime: time spent in user mode
188 * @stime: time spent in system mode
9d7fb042 189 * @lock: protects the above two fields
d37f761d 190 *
9d7fb042
PZ
191 * Stores previous user/system time values such that we can guarantee
192 * monotonicity.
d37f761d 193 */
9d7fb042
PZ
194struct prev_cputime {
195#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
196 u64 utime;
197 u64 stime;
198 raw_spinlock_t lock;
9d7fb042 199#endif
d37f761d
FW
200};
201
f06febc9
FM
202/**
203 * struct task_cputime - collected CPU time counts
5613fda9
FW
204 * @utime: time spent in user mode, in nanoseconds
205 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 206 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 207 *
9d7fb042
PZ
208 * This structure groups together three kinds of CPU time that are tracked for
209 * threads and thread groups. Most things considering CPU time want to group
210 * these counts together and treat all three of them in parallel.
f06febc9
FM
211 */
212struct task_cputime {
5eca1c10
IM
213 u64 utime;
214 u64 stime;
215 unsigned long long sum_exec_runtime;
f06febc9 216};
9d7fb042 217
5eca1c10
IM
218/* Alternate field names when used on cache expirations: */
219#define virt_exp utime
220#define prof_exp stime
221#define sched_exp sum_exec_runtime
f06febc9 222
bac5b6b6
FW
223enum vtime_state {
224 /* Task is sleeping or running in a CPU with VTIME inactive: */
225 VTIME_INACTIVE = 0,
226 /* Task runs in userspace in a CPU with VTIME active: */
227 VTIME_USER,
228 /* Task runs in kernelspace in a CPU with VTIME active: */
229 VTIME_SYS,
230};
231
232struct vtime {
233 seqcount_t seqcount;
234 unsigned long long starttime;
235 enum vtime_state state;
2a42eb95
WL
236 u64 utime;
237 u64 stime;
238 u64 gtime;
bac5b6b6
FW
239};
240
1da177e4 241struct sched_info {
7f5f8e8d 242#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
243 /* Cumulative counters: */
244
245 /* # of times we have run on this CPU: */
246 unsigned long pcount;
247
248 /* Time spent waiting on a runqueue: */
249 unsigned long long run_delay;
250
251 /* Timestamps: */
252
253 /* When did we last run on a CPU? */
254 unsigned long long last_arrival;
255
256 /* When were we last queued to run? */
257 unsigned long long last_queued;
1da177e4 258
f6db8347 259#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 260};
1da177e4 261
6ecdd749
YD
262/*
263 * Integer metrics need fixed point arithmetic, e.g., sched/fair
264 * has a few: load, load_avg, util_avg, freq, and capacity.
265 *
266 * We define a basic fixed point arithmetic range, and then formalize
267 * all these metrics based on that basic range.
268 */
5eca1c10
IM
269# define SCHED_FIXEDPOINT_SHIFT 10
270# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 271
20b8a59f 272struct load_weight {
5eca1c10
IM
273 unsigned long weight;
274 u32 inv_weight;
20b8a59f
IM
275};
276
7f65ea42
PB
277/**
278 * struct util_est - Estimation utilization of FAIR tasks
279 * @enqueued: instantaneous estimated utilization of a task/cpu
280 * @ewma: the Exponential Weighted Moving Average (EWMA)
281 * utilization of a task
282 *
283 * Support data structure to track an Exponential Weighted Moving Average
284 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
285 * average each time a task completes an activation. Sample's weight is chosen
286 * so that the EWMA will be relatively insensitive to transient changes to the
287 * task's workload.
288 *
289 * The enqueued attribute has a slightly different meaning for tasks and cpus:
290 * - task: the task's util_avg at last task dequeue time
291 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
292 * Thus, the util_est.enqueued of a task represents the contribution on the
293 * estimated utilization of the CPU where that task is currently enqueued.
294 *
295 * Only for tasks we track a moving average of the past instantaneous
296 * estimated utilization. This allows to absorb sporadic drops in utilization
297 * of an otherwise almost periodic task.
298 */
299struct util_est {
300 unsigned int enqueued;
301 unsigned int ewma;
302#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 303} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 304
9d89c257 305/*
7b595334
YD
306 * The load_avg/util_avg accumulates an infinite geometric series
307 * (see __update_load_avg() in kernel/sched/fair.c).
308 *
309 * [load_avg definition]
310 *
311 * load_avg = runnable% * scale_load_down(load)
312 *
313 * where runnable% is the time ratio that a sched_entity is runnable.
314 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 315 * blocked sched_entities.
7b595334
YD
316 *
317 * load_avg may also take frequency scaling into account:
318 *
319 * load_avg = runnable% * scale_load_down(load) * freq%
320 *
321 * where freq% is the CPU frequency normalized to the highest frequency.
322 *
323 * [util_avg definition]
324 *
325 * util_avg = running% * SCHED_CAPACITY_SCALE
326 *
327 * where running% is the time ratio that a sched_entity is running on
328 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
329 * and blocked sched_entities.
330 *
331 * util_avg may also factor frequency scaling and CPU capacity scaling:
332 *
333 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
334 *
335 * where freq% is the same as above, and capacity% is the CPU capacity
336 * normalized to the greatest capacity (due to uarch differences, etc).
337 *
338 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
339 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
340 * we therefore scale them to as large a range as necessary. This is for
341 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
342 *
343 * [Overflow issue]
344 *
345 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
346 * with the highest load (=88761), always runnable on a single cfs_rq,
347 * and should not overflow as the number already hits PID_MAX_LIMIT.
348 *
349 * For all other cases (including 32-bit kernels), struct load_weight's
350 * weight will overflow first before we do, because:
351 *
352 * Max(load_avg) <= Max(load.weight)
353 *
354 * Then it is the load_weight's responsibility to consider overflow
355 * issues.
9d89c257 356 */
9d85f21c 357struct sched_avg {
5eca1c10
IM
358 u64 last_update_time;
359 u64 load_sum;
1ea6c46a 360 u64 runnable_load_sum;
5eca1c10
IM
361 u32 util_sum;
362 u32 period_contrib;
363 unsigned long load_avg;
1ea6c46a 364 unsigned long runnable_load_avg;
5eca1c10 365 unsigned long util_avg;
7f65ea42 366 struct util_est util_est;
317d359d 367} ____cacheline_aligned;
9d85f21c 368
41acab88 369struct sched_statistics {
7f5f8e8d 370#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
371 u64 wait_start;
372 u64 wait_max;
373 u64 wait_count;
374 u64 wait_sum;
375 u64 iowait_count;
376 u64 iowait_sum;
377
378 u64 sleep_start;
379 u64 sleep_max;
380 s64 sum_sleep_runtime;
381
382 u64 block_start;
383 u64 block_max;
384 u64 exec_max;
385 u64 slice_max;
386
387 u64 nr_migrations_cold;
388 u64 nr_failed_migrations_affine;
389 u64 nr_failed_migrations_running;
390 u64 nr_failed_migrations_hot;
391 u64 nr_forced_migrations;
392
393 u64 nr_wakeups;
394 u64 nr_wakeups_sync;
395 u64 nr_wakeups_migrate;
396 u64 nr_wakeups_local;
397 u64 nr_wakeups_remote;
398 u64 nr_wakeups_affine;
399 u64 nr_wakeups_affine_attempts;
400 u64 nr_wakeups_passive;
401 u64 nr_wakeups_idle;
41acab88 402#endif
7f5f8e8d 403};
41acab88
LDM
404
405struct sched_entity {
5eca1c10
IM
406 /* For load-balancing: */
407 struct load_weight load;
1ea6c46a 408 unsigned long runnable_weight;
5eca1c10
IM
409 struct rb_node run_node;
410 struct list_head group_node;
411 unsigned int on_rq;
41acab88 412
5eca1c10
IM
413 u64 exec_start;
414 u64 sum_exec_runtime;
415 u64 vruntime;
416 u64 prev_sum_exec_runtime;
41acab88 417
5eca1c10 418 u64 nr_migrations;
41acab88 419
5eca1c10 420 struct sched_statistics statistics;
94c18227 421
20b8a59f 422#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
423 int depth;
424 struct sched_entity *parent;
20b8a59f 425 /* rq on which this entity is (to be) queued: */
5eca1c10 426 struct cfs_rq *cfs_rq;
20b8a59f 427 /* rq "owned" by this entity/group: */
5eca1c10 428 struct cfs_rq *my_q;
20b8a59f 429#endif
8bd75c77 430
141965c7 431#ifdef CONFIG_SMP
5a107804
JO
432 /*
433 * Per entity load average tracking.
434 *
435 * Put into separate cache line so it does not
436 * collide with read-mostly values above.
437 */
317d359d 438 struct sched_avg avg;
9d85f21c 439#endif
20b8a59f 440};
70b97a7f 441
fa717060 442struct sched_rt_entity {
5eca1c10
IM
443 struct list_head run_list;
444 unsigned long timeout;
445 unsigned long watchdog_stamp;
446 unsigned int time_slice;
447 unsigned short on_rq;
448 unsigned short on_list;
449
450 struct sched_rt_entity *back;
052f1dc7 451#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 452 struct sched_rt_entity *parent;
6f505b16 453 /* rq on which this entity is (to be) queued: */
5eca1c10 454 struct rt_rq *rt_rq;
6f505b16 455 /* rq "owned" by this entity/group: */
5eca1c10 456 struct rt_rq *my_q;
6f505b16 457#endif
3859a271 458} __randomize_layout;
fa717060 459
aab03e05 460struct sched_dl_entity {
5eca1c10 461 struct rb_node rb_node;
aab03e05
DF
462
463 /*
464 * Original scheduling parameters. Copied here from sched_attr
4027d080 465 * during sched_setattr(), they will remain the same until
466 * the next sched_setattr().
aab03e05 467 */
5eca1c10
IM
468 u64 dl_runtime; /* Maximum runtime for each instance */
469 u64 dl_deadline; /* Relative deadline of each instance */
470 u64 dl_period; /* Separation of two instances (period) */
54d6d303 471 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 472 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
473
474 /*
475 * Actual scheduling parameters. Initialized with the values above,
476 * they are continously updated during task execution. Note that
477 * the remaining runtime could be < 0 in case we are in overrun.
478 */
5eca1c10
IM
479 s64 runtime; /* Remaining runtime for this instance */
480 u64 deadline; /* Absolute deadline for this instance */
481 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
482
483 /*
484 * Some bool flags:
485 *
486 * @dl_throttled tells if we exhausted the runtime. If so, the
487 * task has to wait for a replenishment to be performed at the
488 * next firing of dl_timer.
489 *
2d3d891d
DF
490 * @dl_boosted tells if we are boosted due to DI. If so we are
491 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
492 * exit the critical section);
493 *
5eca1c10 494 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 495 * all its available runtime during the last job.
209a0cbd
LA
496 *
497 * @dl_non_contending tells if the task is inactive while still
498 * contributing to the active utilization. In other words, it
499 * indicates if the inactive timer has been armed and its handler
500 * has not been executed yet. This flag is useful to avoid race
501 * conditions between the inactive timer handler and the wakeup
502 * code.
34be3930
JL
503 *
504 * @dl_overrun tells if the task asked to be informed about runtime
505 * overruns.
aab03e05 506 */
aa5222e9
DC
507 unsigned int dl_throttled : 1;
508 unsigned int dl_boosted : 1;
509 unsigned int dl_yielded : 1;
510 unsigned int dl_non_contending : 1;
34be3930 511 unsigned int dl_overrun : 1;
aab03e05
DF
512
513 /*
514 * Bandwidth enforcement timer. Each -deadline task has its
515 * own bandwidth to be enforced, thus we need one timer per task.
516 */
5eca1c10 517 struct hrtimer dl_timer;
209a0cbd
LA
518
519 /*
520 * Inactive timer, responsible for decreasing the active utilization
521 * at the "0-lag time". When a -deadline task blocks, it contributes
522 * to GRUB's active utilization until the "0-lag time", hence a
523 * timer is needed to decrease the active utilization at the correct
524 * time.
525 */
526 struct hrtimer inactive_timer;
aab03e05 527};
8bd75c77 528
1d082fd0
PM
529union rcu_special {
530 struct {
5eca1c10
IM
531 u8 blocked;
532 u8 need_qs;
533 u8 exp_need_qs;
534
535 /* Otherwise the compiler can store garbage here: */
536 u8 pad;
8203d6d0
PM
537 } b; /* Bits. */
538 u32 s; /* Set of bits. */
1d082fd0 539};
86848966 540
8dc85d54
PZ
541enum perf_event_task_context {
542 perf_invalid_context = -1,
543 perf_hw_context = 0,
89a1e187 544 perf_sw_context,
8dc85d54
PZ
545 perf_nr_task_contexts,
546};
547
eb61baf6
IM
548struct wake_q_node {
549 struct wake_q_node *next;
550};
551
1da177e4 552struct task_struct {
c65eacbe
AL
553#ifdef CONFIG_THREAD_INFO_IN_TASK
554 /*
555 * For reasons of header soup (see current_thread_info()), this
556 * must be the first element of task_struct.
557 */
5eca1c10 558 struct thread_info thread_info;
c65eacbe 559#endif
5eca1c10
IM
560 /* -1 unrunnable, 0 runnable, >0 stopped: */
561 volatile long state;
29e48ce8
KC
562
563 /*
564 * This begins the randomizable portion of task_struct. Only
565 * scheduling-critical items should be added above here.
566 */
567 randomized_struct_fields_start
568
5eca1c10
IM
569 void *stack;
570 atomic_t usage;
571 /* Per task flags (PF_*), defined further below: */
572 unsigned int flags;
573 unsigned int ptrace;
1da177e4 574
2dd73a4f 575#ifdef CONFIG_SMP
5eca1c10
IM
576 struct llist_node wake_entry;
577 int on_cpu;
c65eacbe 578#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
579 /* Current CPU: */
580 unsigned int cpu;
c65eacbe 581#endif
5eca1c10
IM
582 unsigned int wakee_flips;
583 unsigned long wakee_flip_decay_ts;
584 struct task_struct *last_wakee;
ac66f547 585
32e839dd
MG
586 /*
587 * recent_used_cpu is initially set as the last CPU used by a task
588 * that wakes affine another task. Waker/wakee relationships can
589 * push tasks around a CPU where each wakeup moves to the next one.
590 * Tracking a recently used CPU allows a quick search for a recently
591 * used CPU that may be idle.
592 */
593 int recent_used_cpu;
5eca1c10 594 int wake_cpu;
2dd73a4f 595#endif
5eca1c10
IM
596 int on_rq;
597
598 int prio;
599 int static_prio;
600 int normal_prio;
601 unsigned int rt_priority;
50e645a8 602
5eca1c10
IM
603 const struct sched_class *sched_class;
604 struct sched_entity se;
605 struct sched_rt_entity rt;
8323f26c 606#ifdef CONFIG_CGROUP_SCHED
5eca1c10 607 struct task_group *sched_task_group;
8323f26c 608#endif
5eca1c10 609 struct sched_dl_entity dl;
1da177e4 610
e107be36 611#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
612 /* List of struct preempt_notifier: */
613 struct hlist_head preempt_notifiers;
e107be36
AK
614#endif
615
6c5c9341 616#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 617 unsigned int btrace_seq;
6c5c9341 618#endif
1da177e4 619
5eca1c10
IM
620 unsigned int policy;
621 int nr_cpus_allowed;
622 cpumask_t cpus_allowed;
1da177e4 623
a57eb940 624#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
625 int rcu_read_lock_nesting;
626 union rcu_special rcu_read_unlock_special;
627 struct list_head rcu_node_entry;
628 struct rcu_node *rcu_blocked_node;
28f6569a 629#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 630
8315f422 631#ifdef CONFIG_TASKS_RCU
5eca1c10 632 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
633 u8 rcu_tasks_holdout;
634 u8 rcu_tasks_idx;
5eca1c10 635 int rcu_tasks_idle_cpu;
ccdd29ff 636 struct list_head rcu_tasks_holdout_list;
8315f422 637#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 638
5eca1c10 639 struct sched_info sched_info;
1da177e4 640
5eca1c10 641 struct list_head tasks;
806c09a7 642#ifdef CONFIG_SMP
5eca1c10
IM
643 struct plist_node pushable_tasks;
644 struct rb_node pushable_dl_tasks;
806c09a7 645#endif
1da177e4 646
5eca1c10
IM
647 struct mm_struct *mm;
648 struct mm_struct *active_mm;
314ff785
IM
649
650 /* Per-thread vma caching: */
5eca1c10 651 struct vmacache vmacache;
314ff785 652
5eca1c10
IM
653#ifdef SPLIT_RSS_COUNTING
654 struct task_rss_stat rss_stat;
34e55232 655#endif
5eca1c10
IM
656 int exit_state;
657 int exit_code;
658 int exit_signal;
659 /* The signal sent when the parent dies: */
660 int pdeath_signal;
661 /* JOBCTL_*, siglock protected: */
662 unsigned long jobctl;
663
664 /* Used for emulating ABI behavior of previous Linux versions: */
665 unsigned int personality;
666
667 /* Scheduler bits, serialized by scheduler locks: */
668 unsigned sched_reset_on_fork:1;
669 unsigned sched_contributes_to_load:1;
670 unsigned sched_migrated:1;
671 unsigned sched_remote_wakeup:1;
672 /* Force alignment to the next boundary: */
673 unsigned :0;
674
675 /* Unserialized, strictly 'current' */
676
677 /* Bit to tell LSMs we're in execve(): */
678 unsigned in_execve:1;
679 unsigned in_iowait:1;
680#ifndef TIF_RESTORE_SIGMASK
681 unsigned restore_sigmask:1;
7e781418 682#endif
626ebc41 683#ifdef CONFIG_MEMCG
5eca1c10 684 unsigned memcg_may_oom:1;
127424c8 685#ifndef CONFIG_SLOB
5eca1c10 686 unsigned memcg_kmem_skip_account:1;
6f185c29 687#endif
127424c8 688#endif
ff303e66 689#ifdef CONFIG_COMPAT_BRK
5eca1c10 690 unsigned brk_randomized:1;
ff303e66 691#endif
77f88796
TH
692#ifdef CONFIG_CGROUPS
693 /* disallow userland-initiated cgroup migration */
694 unsigned no_cgroup_migration:1;
695#endif
6f185c29 696
5eca1c10 697 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 698
5eca1c10 699 struct restart_block restart_block;
f56141e3 700
5eca1c10
IM
701 pid_t pid;
702 pid_t tgid;
0a425405 703
1314562a 704#ifdef CONFIG_CC_STACKPROTECTOR
5eca1c10
IM
705 /* Canary value for the -fstack-protector GCC feature: */
706 unsigned long stack_canary;
1314562a 707#endif
4d1d61a6 708 /*
5eca1c10 709 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 710 * older sibling, respectively. (p->father can be replaced with
f470021a 711 * p->real_parent->pid)
1da177e4 712 */
5eca1c10
IM
713
714 /* Real parent process: */
715 struct task_struct __rcu *real_parent;
716
717 /* Recipient of SIGCHLD, wait4() reports: */
718 struct task_struct __rcu *parent;
719
1da177e4 720 /*
5eca1c10 721 * Children/sibling form the list of natural children:
1da177e4 722 */
5eca1c10
IM
723 struct list_head children;
724 struct list_head sibling;
725 struct task_struct *group_leader;
1da177e4 726
f470021a 727 /*
5eca1c10
IM
728 * 'ptraced' is the list of tasks this task is using ptrace() on.
729 *
f470021a 730 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 731 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 732 */
5eca1c10
IM
733 struct list_head ptraced;
734 struct list_head ptrace_entry;
f470021a 735
1da177e4 736 /* PID/PID hash table linkage. */
5eca1c10
IM
737 struct pid_link pids[PIDTYPE_MAX];
738 struct list_head thread_group;
739 struct list_head thread_node;
740
741 struct completion *vfork_done;
1da177e4 742
5eca1c10
IM
743 /* CLONE_CHILD_SETTID: */
744 int __user *set_child_tid;
1da177e4 745
5eca1c10
IM
746 /* CLONE_CHILD_CLEARTID: */
747 int __user *clear_child_tid;
748
749 u64 utime;
750 u64 stime;
40565b5a 751#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
752 u64 utimescaled;
753 u64 stimescaled;
40565b5a 754#endif
5eca1c10
IM
755 u64 gtime;
756 struct prev_cputime prev_cputime;
6a61671b 757#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 758 struct vtime vtime;
d99ca3b9 759#endif
d027d45d
FW
760
761#ifdef CONFIG_NO_HZ_FULL
5eca1c10 762 atomic_t tick_dep_mask;
d027d45d 763#endif
5eca1c10
IM
764 /* Context switch counts: */
765 unsigned long nvcsw;
766 unsigned long nivcsw;
767
768 /* Monotonic time in nsecs: */
769 u64 start_time;
770
771 /* Boot based time in nsecs: */
772 u64 real_start_time;
773
774 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
775 unsigned long min_flt;
776 unsigned long maj_flt;
1da177e4 777
b18b6a9c 778#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
779 struct task_cputime cputime_expires;
780 struct list_head cpu_timers[3];
b18b6a9c 781#endif
1da177e4 782
5eca1c10
IM
783 /* Process credentials: */
784
785 /* Tracer's credentials at attach: */
786 const struct cred __rcu *ptracer_cred;
787
788 /* Objective and real subjective task credentials (COW): */
789 const struct cred __rcu *real_cred;
790
791 /* Effective (overridable) subjective task credentials (COW): */
792 const struct cred __rcu *cred;
793
794 /*
795 * executable name, excluding path.
796 *
797 * - normally initialized setup_new_exec()
798 * - access it with [gs]et_task_comm()
799 * - lock it with task_lock()
800 */
801 char comm[TASK_COMM_LEN];
802
803 struct nameidata *nameidata;
804
3d5b6fcc 805#ifdef CONFIG_SYSVIPC
5eca1c10
IM
806 struct sysv_sem sysvsem;
807 struct sysv_shm sysvshm;
3d5b6fcc 808#endif
e162b39a 809#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 810 unsigned long last_switch_count;
82a1fcb9 811#endif
5eca1c10
IM
812 /* Filesystem information: */
813 struct fs_struct *fs;
814
815 /* Open file information: */
816 struct files_struct *files;
817
818 /* Namespaces: */
819 struct nsproxy *nsproxy;
820
821 /* Signal handlers: */
822 struct signal_struct *signal;
823 struct sighand_struct *sighand;
824 sigset_t blocked;
825 sigset_t real_blocked;
826 /* Restored if set_restore_sigmask() was used: */
827 sigset_t saved_sigmask;
828 struct sigpending pending;
829 unsigned long sas_ss_sp;
830 size_t sas_ss_size;
831 unsigned int sas_ss_flags;
832
833 struct callback_head *task_works;
834
835 struct audit_context *audit_context;
bfef93a5 836#ifdef CONFIG_AUDITSYSCALL
5eca1c10
IM
837 kuid_t loginuid;
838 unsigned int sessionid;
bfef93a5 839#endif
5eca1c10
IM
840 struct seccomp seccomp;
841
842 /* Thread group tracking: */
843 u32 parent_exec_id;
844 u32 self_exec_id;
1da177e4 845
5eca1c10
IM
846 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
847 spinlock_t alloc_lock;
1da177e4 848
b29739f9 849 /* Protection of the PI data structures: */
5eca1c10 850 raw_spinlock_t pi_lock;
b29739f9 851
5eca1c10 852 struct wake_q_node wake_q;
76751049 853
23f78d4a 854#ifdef CONFIG_RT_MUTEXES
5eca1c10 855 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 856 struct rb_root_cached pi_waiters;
e96a7705
XP
857 /* Updated under owner's pi_lock and rq lock */
858 struct task_struct *pi_top_task;
5eca1c10
IM
859 /* Deadlock detection and priority inheritance handling: */
860 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
861#endif
862
408894ee 863#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
864 /* Mutex deadlock detection: */
865 struct mutex_waiter *blocked_on;
408894ee 866#endif
5eca1c10 867
de30a2b3 868#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
869 unsigned int irq_events;
870 unsigned long hardirq_enable_ip;
871 unsigned long hardirq_disable_ip;
872 unsigned int hardirq_enable_event;
873 unsigned int hardirq_disable_event;
874 int hardirqs_enabled;
875 int hardirq_context;
876 unsigned long softirq_disable_ip;
877 unsigned long softirq_enable_ip;
878 unsigned int softirq_disable_event;
879 unsigned int softirq_enable_event;
880 int softirqs_enabled;
881 int softirq_context;
de30a2b3 882#endif
5eca1c10 883
fbb9ce95 884#ifdef CONFIG_LOCKDEP
5eca1c10
IM
885# define MAX_LOCK_DEPTH 48UL
886 u64 curr_chain_key;
887 int lockdep_depth;
888 unsigned int lockdep_recursion;
889 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 890#endif
5eca1c10 891
c6d30853 892#ifdef CONFIG_UBSAN
5eca1c10 893 unsigned int in_ubsan;
c6d30853 894#endif
408894ee 895
5eca1c10
IM
896 /* Journalling filesystem info: */
897 void *journal_info;
1da177e4 898
5eca1c10
IM
899 /* Stacked block device info: */
900 struct bio_list *bio_list;
d89d8796 901
73c10101 902#ifdef CONFIG_BLOCK
5eca1c10
IM
903 /* Stack plugging: */
904 struct blk_plug *plug;
73c10101
JA
905#endif
906
5eca1c10
IM
907 /* VM state: */
908 struct reclaim_state *reclaim_state;
909
910 struct backing_dev_info *backing_dev_info;
1da177e4 911
5eca1c10 912 struct io_context *io_context;
1da177e4 913
5eca1c10
IM
914 /* Ptrace state: */
915 unsigned long ptrace_message;
916 siginfo_t *last_siginfo;
1da177e4 917
5eca1c10
IM
918 struct task_io_accounting ioac;
919#ifdef CONFIG_TASK_XACCT
920 /* Accumulated RSS usage: */
921 u64 acct_rss_mem1;
922 /* Accumulated virtual memory usage: */
923 u64 acct_vm_mem1;
924 /* stime + utime since last update: */
925 u64 acct_timexpd;
1da177e4
LT
926#endif
927#ifdef CONFIG_CPUSETS
5eca1c10
IM
928 /* Protected by ->alloc_lock: */
929 nodemask_t mems_allowed;
930 /* Seqence number to catch updates: */
931 seqcount_t mems_allowed_seq;
932 int cpuset_mem_spread_rotor;
933 int cpuset_slab_spread_rotor;
1da177e4 934#endif
ddbcc7e8 935#ifdef CONFIG_CGROUPS
5eca1c10
IM
936 /* Control Group info protected by css_set_lock: */
937 struct css_set __rcu *cgroups;
938 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
939 struct list_head cg_list;
ddbcc7e8 940#endif
f01d7d51 941#ifdef CONFIG_INTEL_RDT
0734ded1 942 u32 closid;
d6aaba61 943 u32 rmid;
e02737d5 944#endif
42b2dd0a 945#ifdef CONFIG_FUTEX
5eca1c10 946 struct robust_list_head __user *robust_list;
34f192c6
IM
947#ifdef CONFIG_COMPAT
948 struct compat_robust_list_head __user *compat_robust_list;
949#endif
5eca1c10
IM
950 struct list_head pi_state_list;
951 struct futex_pi_state *pi_state_cache;
c7aceaba 952#endif
cdd6c482 953#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
954 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
955 struct mutex perf_event_mutex;
956 struct list_head perf_event_list;
a63eaf34 957#endif
8f47b187 958#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 959 unsigned long preempt_disable_ip;
8f47b187 960#endif
c7aceaba 961#ifdef CONFIG_NUMA
5eca1c10
IM
962 /* Protected by alloc_lock: */
963 struct mempolicy *mempolicy;
45816682 964 short il_prev;
5eca1c10 965 short pref_node_fork;
42b2dd0a 966#endif
cbee9f88 967#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
968 int numa_scan_seq;
969 unsigned int numa_scan_period;
970 unsigned int numa_scan_period_max;
971 int numa_preferred_nid;
972 unsigned long numa_migrate_retry;
973 /* Migration stamp: */
974 u64 node_stamp;
975 u64 last_task_numa_placement;
976 u64 last_sum_exec_runtime;
977 struct callback_head numa_work;
978
979 struct list_head numa_entry;
980 struct numa_group *numa_group;
8c8a743c 981
745d6147 982 /*
44dba3d5
IM
983 * numa_faults is an array split into four regions:
984 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
985 * in this precise order.
986 *
987 * faults_memory: Exponential decaying average of faults on a per-node
988 * basis. Scheduling placement decisions are made based on these
989 * counts. The values remain static for the duration of a PTE scan.
990 * faults_cpu: Track the nodes the process was running on when a NUMA
991 * hinting fault was incurred.
992 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
993 * during the current scan window. When the scan completes, the counts
994 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 995 */
5eca1c10
IM
996 unsigned long *numa_faults;
997 unsigned long total_numa_faults;
745d6147 998
04bb2f94
RR
999 /*
1000 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1001 * scan window were remote/local or failed to migrate. The task scan
1002 * period is adapted based on the locality of the faults with different
1003 * weights depending on whether they were shared or private faults
04bb2f94 1004 */
5eca1c10 1005 unsigned long numa_faults_locality[3];
04bb2f94 1006
5eca1c10 1007 unsigned long numa_pages_migrated;
cbee9f88
PZ
1008#endif /* CONFIG_NUMA_BALANCING */
1009
5eca1c10 1010 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1011
5eca1c10 1012 struct rcu_head rcu;
b92ce558 1013
5eca1c10
IM
1014 /* Cache last used pipe for splice(): */
1015 struct pipe_inode_info *splice_pipe;
5640f768 1016
5eca1c10 1017 struct page_frag task_frag;
5640f768 1018
47913d4e
IM
1019#ifdef CONFIG_TASK_DELAY_ACCT
1020 struct task_delay_info *delays;
f4f154fd 1021#endif
47913d4e 1022
f4f154fd 1023#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1024 int make_it_fail;
9049f2f6 1025 unsigned int fail_nth;
ca74e92b 1026#endif
9d823e8f 1027 /*
5eca1c10
IM
1028 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1029 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1030 */
5eca1c10
IM
1031 int nr_dirtied;
1032 int nr_dirtied_pause;
1033 /* Start of a write-and-pause period: */
1034 unsigned long dirty_paused_when;
9d823e8f 1035
9745512c 1036#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1037 int latency_record_count;
1038 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1039#endif
6976675d 1040 /*
5eca1c10 1041 * Time slack values; these are used to round up poll() and
6976675d
AV
1042 * select() etc timeout values. These are in nanoseconds.
1043 */
5eca1c10
IM
1044 u64 timer_slack_ns;
1045 u64 default_timer_slack_ns;
f8d570a4 1046
0b24becc 1047#ifdef CONFIG_KASAN
5eca1c10 1048 unsigned int kasan_depth;
0b24becc 1049#endif
5eca1c10 1050
fb52607a 1051#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1052 /* Index of current stored address in ret_stack: */
1053 int curr_ret_stack;
1054
1055 /* Stack of return addresses for return function tracing: */
1056 struct ftrace_ret_stack *ret_stack;
1057
1058 /* Timestamp for last schedule: */
1059 unsigned long long ftrace_timestamp;
1060
f201ae23
FW
1061 /*
1062 * Number of functions that haven't been traced
5eca1c10 1063 * because of depth overrun:
f201ae23 1064 */
5eca1c10
IM
1065 atomic_t trace_overrun;
1066
1067 /* Pause tracing: */
1068 atomic_t tracing_graph_pause;
f201ae23 1069#endif
5eca1c10 1070
ea4e2bc4 1071#ifdef CONFIG_TRACING
5eca1c10
IM
1072 /* State flags for use by tracers: */
1073 unsigned long trace;
1074
1075 /* Bitmask and counter of trace recursion: */
1076 unsigned long trace_recursion;
261842b7 1077#endif /* CONFIG_TRACING */
5eca1c10 1078
5c9a8750 1079#ifdef CONFIG_KCOV
5eca1c10
IM
1080 /* Coverage collection mode enabled for this task (0 if disabled): */
1081 enum kcov_mode kcov_mode;
1082
1083 /* Size of the kcov_area: */
1084 unsigned int kcov_size;
1085
1086 /* Buffer for coverage collection: */
1087 void *kcov_area;
1088
1089 /* KCOV descriptor wired with this task or NULL: */
1090 struct kcov *kcov;
5c9a8750 1091#endif
5eca1c10 1092
6f185c29 1093#ifdef CONFIG_MEMCG
5eca1c10
IM
1094 struct mem_cgroup *memcg_in_oom;
1095 gfp_t memcg_oom_gfp_mask;
1096 int memcg_oom_order;
b23afb93 1097
5eca1c10
IM
1098 /* Number of pages to reclaim on returning to userland: */
1099 unsigned int memcg_nr_pages_over_high;
569b846d 1100#endif
5eca1c10 1101
0326f5a9 1102#ifdef CONFIG_UPROBES
5eca1c10 1103 struct uprobe_task *utask;
0326f5a9 1104#endif
cafe5635 1105#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1106 unsigned int sequential_io;
1107 unsigned int sequential_io_avg;
cafe5635 1108#endif
8eb23b9f 1109#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1110 unsigned long task_state_change;
8eb23b9f 1111#endif
5eca1c10 1112 int pagefault_disabled;
03049269 1113#ifdef CONFIG_MMU
5eca1c10 1114 struct task_struct *oom_reaper_list;
03049269 1115#endif
ba14a194 1116#ifdef CONFIG_VMAP_STACK
5eca1c10 1117 struct vm_struct *stack_vm_area;
ba14a194 1118#endif
68f24b08 1119#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
1120 /* A live task holds one reference: */
1121 atomic_t stack_refcount;
d83a7cb3
JP
1122#endif
1123#ifdef CONFIG_LIVEPATCH
1124 int patch_state;
0302e28d 1125#endif
e4e55b47
TH
1126#ifdef CONFIG_SECURITY
1127 /* Used by LSM modules for access restriction: */
1128 void *security;
68f24b08 1129#endif
29e48ce8
KC
1130
1131 /*
1132 * New fields for task_struct should be added above here, so that
1133 * they are included in the randomized portion of task_struct.
1134 */
1135 randomized_struct_fields_end
1136
5eca1c10
IM
1137 /* CPU-specific state of this task: */
1138 struct thread_struct thread;
1139
1140 /*
1141 * WARNING: on x86, 'thread_struct' contains a variable-sized
1142 * structure. It *MUST* be at the end of 'task_struct'.
1143 *
1144 * Do not put anything below here!
1145 */
1da177e4
LT
1146};
1147
e868171a 1148static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1149{
1150 return task->pids[PIDTYPE_PID].pid;
1151}
1152
e868171a 1153static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1154{
1155 return task->group_leader->pids[PIDTYPE_PID].pid;
1156}
1157
6dda81f4 1158/*
5eca1c10 1159 * Without tasklist or RCU lock it is not safe to dereference
6dda81f4
ON
1160 * the result of task_pgrp/task_session even if task == current,
1161 * we can race with another thread doing sys_setsid/sys_setpgid.
1162 */
e868171a 1163static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1164{
1165 return task->group_leader->pids[PIDTYPE_PGID].pid;
1166}
1167
e868171a 1168static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1169{
1170 return task->group_leader->pids[PIDTYPE_SID].pid;
1171}
1172
7af57294
PE
1173/*
1174 * the helpers to get the task's different pids as they are seen
1175 * from various namespaces
1176 *
1177 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1178 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1179 * current.
7af57294
PE
1180 * task_xid_nr_ns() : id seen from the ns specified;
1181 *
7af57294
PE
1182 * see also pid_nr() etc in include/linux/pid.h
1183 */
5eca1c10 1184pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1185
e868171a 1186static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1187{
1188 return tsk->pid;
1189}
1190
5eca1c10 1191static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1192{
1193 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1194}
7af57294
PE
1195
1196static inline pid_t task_pid_vnr(struct task_struct *tsk)
1197{
52ee2dfd 1198 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1199}
1200
1201
e868171a 1202static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1203{
1204 return tsk->tgid;
1205}
1206
5eca1c10
IM
1207/**
1208 * pid_alive - check that a task structure is not stale
1209 * @p: Task structure to be checked.
1210 *
1211 * Test if a process is not yet dead (at most zombie state)
1212 * If pid_alive fails, then pointers within the task structure
1213 * can be stale and must not be dereferenced.
1214 *
1215 * Return: 1 if the process is alive. 0 otherwise.
1216 */
1217static inline int pid_alive(const struct task_struct *p)
1218{
1219 return p->pids[PIDTYPE_PID].pid != NULL;
1220}
7af57294 1221
5eca1c10 1222static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1223{
52ee2dfd 1224 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1225}
1226
7af57294
PE
1227static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1228{
52ee2dfd 1229 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1230}
1231
1232
5eca1c10 1233static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1234{
52ee2dfd 1235 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1236}
1237
7af57294
PE
1238static inline pid_t task_session_vnr(struct task_struct *tsk)
1239{
52ee2dfd 1240 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1241}
1242
dd1c1f2f
ON
1243static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1244{
1245 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1246}
1247
1248static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1249{
1250 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1251}
1252
1253static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1254{
1255 pid_t pid = 0;
1256
1257 rcu_read_lock();
1258 if (pid_alive(tsk))
1259 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1260 rcu_read_unlock();
1261
1262 return pid;
1263}
1264
1265static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1266{
1267 return task_ppid_nr_ns(tsk, &init_pid_ns);
1268}
1269
5eca1c10 1270/* Obsolete, do not use: */
1b0f7ffd
ON
1271static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1272{
1273 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1274}
7af57294 1275
06eb6184
PZ
1276#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1277#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1278
1d48b080 1279static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1280{
1593baab
PZ
1281 unsigned int tsk_state = READ_ONCE(tsk->state);
1282 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1283
06eb6184
PZ
1284 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1285
06eb6184
PZ
1286 if (tsk_state == TASK_IDLE)
1287 state = TASK_REPORT_IDLE;
1288
1593baab
PZ
1289 return fls(state);
1290}
1291
1d48b080 1292static inline char task_index_to_char(unsigned int state)
1593baab 1293{
8ef9925b 1294 static const char state_char[] = "RSDTtXZPI";
1593baab 1295
06eb6184 1296 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1297
1593baab
PZ
1298 return state_char[state];
1299}
1300
1301static inline char task_state_to_char(struct task_struct *tsk)
1302{
1d48b080 1303 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1304}
1305
f400e198 1306/**
570f5241
SS
1307 * is_global_init - check if a task structure is init. Since init
1308 * is free to have sub-threads we need to check tgid.
3260259f
HK
1309 * @tsk: Task structure to be checked.
1310 *
1311 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1312 *
1313 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1314 */
e868171a 1315static inline int is_global_init(struct task_struct *tsk)
b461cc03 1316{
570f5241 1317 return task_tgid_nr(tsk) == 1;
b461cc03 1318}
b460cbc5 1319
9ec52099
CLG
1320extern struct pid *cad_pid;
1321
1da177e4
LT
1322/*
1323 * Per process flags
1324 */
5eca1c10
IM
1325#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1326#define PF_EXITING 0x00000004 /* Getting shut down */
1327#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1328#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1329#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1330#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1331#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1332#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1333#define PF_DUMPCORE 0x00000200 /* Dumped core */
1334#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1335#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1336#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1337#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1338#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1339#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1340#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1341#define PF_KSWAPD 0x00020000 /* I am kswapd */
1342#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1343#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1344#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1345#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1346#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1347#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1348#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1349#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1350#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1351#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1352#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1353
1354/*
1355 * Only the _current_ task can read/write to tsk->flags, but other
1356 * tasks can access tsk->flags in readonly mode for example
1357 * with tsk_used_math (like during threaded core dumping).
1358 * There is however an exception to this rule during ptrace
1359 * or during fork: the ptracer task is allowed to write to the
1360 * child->flags of its traced child (same goes for fork, the parent
1361 * can write to the child->flags), because we're guaranteed the
1362 * child is not running and in turn not changing child->flags
1363 * at the same time the parent does it.
1364 */
5eca1c10
IM
1365#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1366#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1367#define clear_used_math() clear_stopped_child_used_math(current)
1368#define set_used_math() set_stopped_child_used_math(current)
1369
1da177e4
LT
1370#define conditional_stopped_child_used_math(condition, child) \
1371 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1372
1373#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1374
1da177e4
LT
1375#define copy_to_stopped_child_used_math(child) \
1376 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1377
1da177e4 1378/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1379#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1380#define used_math() tsk_used_math(current)
1da177e4 1381
62ec05dd
TG
1382static inline bool is_percpu_thread(void)
1383{
1384#ifdef CONFIG_SMP
1385 return (current->flags & PF_NO_SETAFFINITY) &&
1386 (current->nr_cpus_allowed == 1);
1387#else
1388 return true;
1389#endif
1390}
1391
1d4457f9 1392/* Per-process atomic flags. */
5eca1c10
IM
1393#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1394#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1395#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2ad654bc 1396
1d4457f9 1397
e0e5070b
ZL
1398#define TASK_PFA_TEST(name, func) \
1399 static inline bool task_##func(struct task_struct *p) \
1400 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1401
e0e5070b
ZL
1402#define TASK_PFA_SET(name, func) \
1403 static inline void task_set_##func(struct task_struct *p) \
1404 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1405
e0e5070b
ZL
1406#define TASK_PFA_CLEAR(name, func) \
1407 static inline void task_clear_##func(struct task_struct *p) \
1408 { clear_bit(PFA_##name, &p->atomic_flags); }
1409
1410TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1411TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1412
2ad654bc
ZL
1413TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1414TASK_PFA_SET(SPREAD_PAGE, spread_page)
1415TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1416
1417TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1418TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1419TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1420
5eca1c10 1421static inline void
717a94b5 1422current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1423{
717a94b5
N
1424 current->flags &= ~flags;
1425 current->flags |= orig_flags & flags;
907aed48
MG
1426}
1427
5eca1c10
IM
1428extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1429extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1430#ifdef CONFIG_SMP
5eca1c10
IM
1431extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1432extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1433#else
5eca1c10 1434static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1435{
1436}
5eca1c10 1437static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1438{
96f874e2 1439 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1440 return -EINVAL;
1441 return 0;
1442}
1443#endif
e0ad9556 1444
6d0d2878
CB
1445#ifndef cpu_relax_yield
1446#define cpu_relax_yield() cpu_relax()
1447#endif
1448
fa93384f 1449extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1450extern void set_user_nice(struct task_struct *p, long nice);
1451extern int task_prio(const struct task_struct *p);
5eca1c10 1452
d0ea0268
DY
1453/**
1454 * task_nice - return the nice value of a given task.
1455 * @p: the task in question.
1456 *
1457 * Return: The nice value [ -20 ... 0 ... 19 ].
1458 */
1459static inline int task_nice(const struct task_struct *p)
1460{
1461 return PRIO_TO_NICE((p)->static_prio);
1462}
5eca1c10 1463
36c8b586
IM
1464extern int can_nice(const struct task_struct *p, const int nice);
1465extern int task_curr(const struct task_struct *p);
1da177e4 1466extern int idle_cpu(int cpu);
5eca1c10
IM
1467extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1468extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1469extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1470extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1471extern struct task_struct *idle_task(int cpu);
5eca1c10 1472
c4f30608
PM
1473/**
1474 * is_idle_task - is the specified task an idle task?
fa757281 1475 * @p: the task in question.
e69f6186
YB
1476 *
1477 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1478 */
7061ca3b 1479static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1480{
c1de45ca 1481 return !!(p->flags & PF_IDLE);
c4f30608 1482}
5eca1c10 1483
36c8b586 1484extern struct task_struct *curr_task(int cpu);
a458ae2e 1485extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1486
1487void yield(void);
1488
1da177e4 1489union thread_union {
0500871f
DH
1490#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1491 struct task_struct task;
1492#endif
c65eacbe 1493#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1494 struct thread_info thread_info;
c65eacbe 1495#endif
1da177e4
LT
1496 unsigned long stack[THREAD_SIZE/sizeof(long)];
1497};
1498
0500871f
DH
1499#ifndef CONFIG_THREAD_INFO_IN_TASK
1500extern struct thread_info init_thread_info;
1501#endif
1502
1503extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1504
f3ac6067
IM
1505#ifdef CONFIG_THREAD_INFO_IN_TASK
1506static inline struct thread_info *task_thread_info(struct task_struct *task)
1507{
1508 return &task->thread_info;
1509}
1510#elif !defined(__HAVE_THREAD_FUNCTIONS)
1511# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1512#endif
1513
198fe21b
PE
1514/*
1515 * find a task by one of its numerical ids
1516 *
198fe21b
PE
1517 * find_task_by_pid_ns():
1518 * finds a task by its pid in the specified namespace
228ebcbe
PE
1519 * find_task_by_vpid():
1520 * finds a task by its virtual pid
198fe21b 1521 *
e49859e7 1522 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1523 */
1524
228ebcbe 1525extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1526extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1527
2ee08260
MR
1528/*
1529 * find a task by its virtual pid and get the task struct
1530 */
1531extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1532
b3c97528
HH
1533extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1534extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1535extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1536
1da177e4 1537#ifdef CONFIG_SMP
5eca1c10 1538extern void kick_process(struct task_struct *tsk);
1da177e4 1539#else
5eca1c10 1540static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1541#endif
1da177e4 1542
82b89778 1543extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1544
82b89778
AH
1545static inline void set_task_comm(struct task_struct *tsk, const char *from)
1546{
1547 __set_task_comm(tsk, from, false);
1548}
5eca1c10 1549
3756f640
AB
1550extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1551#define get_task_comm(buf, tsk) ({ \
1552 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1553 __get_task_comm(buf, sizeof(buf), tsk); \
1554})
1da177e4
LT
1555
1556#ifdef CONFIG_SMP
317f3941 1557void scheduler_ipi(void);
85ba2d86 1558extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1559#else
184748cc 1560static inline void scheduler_ipi(void) { }
5eca1c10 1561static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1562{
1563 return 1;
1564}
1da177e4
LT
1565#endif
1566
5eca1c10
IM
1567/*
1568 * Set thread flags in other task's structures.
1569 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1570 */
1571static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1572{
a1261f54 1573 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1574}
1575
1576static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1577{
a1261f54 1578 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1579}
1580
1581static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1582{
a1261f54 1583 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1584}
1585
1586static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1587{
a1261f54 1588 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1589}
1590
1591static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1592{
a1261f54 1593 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1594}
1595
1596static inline void set_tsk_need_resched(struct task_struct *tsk)
1597{
1598 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1599}
1600
1601static inline void clear_tsk_need_resched(struct task_struct *tsk)
1602{
1603 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1604}
1605
8ae121ac
GH
1606static inline int test_tsk_need_resched(struct task_struct *tsk)
1607{
1608 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1609}
1610
1da177e4
LT
1611/*
1612 * cond_resched() and cond_resched_lock(): latency reduction via
1613 * explicit rescheduling in places that are safe. The return
1614 * value indicates whether a reschedule was done in fact.
1615 * cond_resched_lock() will drop the spinlock before scheduling,
1616 * cond_resched_softirq() will enable bhs before scheduling.
1617 */
35a773a0 1618#ifndef CONFIG_PREEMPT
c3921ab7 1619extern int _cond_resched(void);
35a773a0
PZ
1620#else
1621static inline int _cond_resched(void) { return 0; }
1622#endif
6f80bd98 1623
613afbf8 1624#define cond_resched() ({ \
3427445a 1625 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1626 _cond_resched(); \
1627})
6f80bd98 1628
613afbf8
FW
1629extern int __cond_resched_lock(spinlock_t *lock);
1630
1631#define cond_resched_lock(lock) ({ \
3427445a 1632 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1633 __cond_resched_lock(lock); \
1634})
1635
1636extern int __cond_resched_softirq(void);
1637
75e1056f 1638#define cond_resched_softirq() ({ \
3427445a 1639 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 1640 __cond_resched_softirq(); \
613afbf8 1641})
1da177e4 1642
f6f3c437
SH
1643static inline void cond_resched_rcu(void)
1644{
1645#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1646 rcu_read_unlock();
1647 cond_resched();
1648 rcu_read_lock();
1649#endif
1650}
1651
1da177e4
LT
1652/*
1653 * Does a critical section need to be broken due to another
95c354fe
NP
1654 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1655 * but a general need for low latency)
1da177e4 1656 */
95c354fe 1657static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1658{
95c354fe
NP
1659#ifdef CONFIG_PREEMPT
1660 return spin_is_contended(lock);
1661#else
1da177e4 1662 return 0;
95c354fe 1663#endif
1da177e4
LT
1664}
1665
75f93fed
PZ
1666static __always_inline bool need_resched(void)
1667{
1668 return unlikely(tif_need_resched());
1669}
1670
1da177e4
LT
1671/*
1672 * Wrappers for p->thread_info->cpu access. No-op on UP.
1673 */
1674#ifdef CONFIG_SMP
1675
1676static inline unsigned int task_cpu(const struct task_struct *p)
1677{
c65eacbe
AL
1678#ifdef CONFIG_THREAD_INFO_IN_TASK
1679 return p->cpu;
1680#else
a1261f54 1681 return task_thread_info(p)->cpu;
c65eacbe 1682#endif
1da177e4
LT
1683}
1684
c65cc870 1685extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1686
1687#else
1688
1689static inline unsigned int task_cpu(const struct task_struct *p)
1690{
1691 return 0;
1692}
1693
1694static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1695{
1696}
1697
1698#endif /* CONFIG_SMP */
1699
d9345c65
PX
1700/*
1701 * In order to reduce various lock holder preemption latencies provide an
1702 * interface to see if a vCPU is currently running or not.
1703 *
1704 * This allows us to terminate optimistic spin loops and block, analogous to
1705 * the native optimistic spin heuristic of testing if the lock owner task is
1706 * running or not.
1707 */
1708#ifndef vcpu_is_preempted
1709# define vcpu_is_preempted(cpu) false
1710#endif
1711
96f874e2
RR
1712extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1713extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1714
82455257
DH
1715#ifndef TASK_SIZE_OF
1716#define TASK_SIZE_OF(tsk) TASK_SIZE
1717#endif
1718
1da177e4 1719#endif