]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - include/linux/sched.h
mm, oom: get rid of signal_struct::oom_victims
[mirror_ubuntu-zesty-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
e56d0903 44#include <linux/rcupdate.h>
05725f7e 45#include <linux/rculist.h>
23f78d4a 46#include <linux/rtmutex.h>
1da177e4 47
a3b6714e
DW
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
5c9a8750 53#include <linux/kcov.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
180extern void cpu_load_update_nohz_start(void);
181extern void cpu_load_update_nohz_stop(void);
3289bdb4 182#else
1f41906a
FW
183static inline void cpu_load_update_nohz_start(void) { }
184static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 185#endif
1da177e4 186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8 221#define TASK_NOLOAD 1024
7dc603c9
PZ
222#define TASK_NEW 2048
223#define TASK_STATE_MAX 4096
f021a3c2 224
7dc603c9 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
73342151 226
e1781538
PZ
227extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
229
230/* Convenience macros for the sake of set_task_state */
231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 234
80ed87c8
PZ
235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
92a1f4bc
MW
237/* Convenience macros for the sake of wake_up */
238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
240
241/* get_task_state() */
242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 245
f021a3c2
MW
246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 248#define task_is_stopped_or_traced(task) \
f021a3c2 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 250#define task_contributes_to_load(task) \
e3c8ca83 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
1da177e4 254
8eb23b9f
PZ
255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257#define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262#define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 265 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
266 } while (0)
267
268/*
269 * set_current_state() includes a barrier so that the write of current->state
270 * is correctly serialised wrt the caller's subsequent test of whether to
271 * actually sleep:
272 *
273 * set_current_state(TASK_UNINTERRUPTIBLE);
274 * if (do_i_need_to_sleep())
275 * schedule();
276 *
277 * If the caller does not need such serialisation then use __set_current_state()
278 */
279#define __set_current_state(state_value) \
280 do { \
281 current->task_state_change = _THIS_IP_; \
282 current->state = (state_value); \
283 } while (0)
284#define set_current_state(state_value) \
285 do { \
286 current->task_state_change = _THIS_IP_; \
b92b8b35 287 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
288 } while (0)
289
290#else
291
1da177e4
LT
292#define __set_task_state(tsk, state_value) \
293 do { (tsk)->state = (state_value); } while (0)
294#define set_task_state(tsk, state_value) \
b92b8b35 295 smp_store_mb((tsk)->state, (state_value))
1da177e4 296
498d0c57
AM
297/*
298 * set_current_state() includes a barrier so that the write of current->state
299 * is correctly serialised wrt the caller's subsequent test of whether to
300 * actually sleep:
301 *
302 * set_current_state(TASK_UNINTERRUPTIBLE);
303 * if (do_i_need_to_sleep())
304 * schedule();
305 *
306 * If the caller does not need such serialisation then use __set_current_state()
307 */
8eb23b9f 308#define __set_current_state(state_value) \
1da177e4 309 do { current->state = (state_value); } while (0)
8eb23b9f 310#define set_current_state(state_value) \
b92b8b35 311 smp_store_mb(current->state, (state_value))
1da177e4 312
8eb23b9f
PZ
313#endif
314
1da177e4
LT
315/* Task command name length */
316#define TASK_COMM_LEN 16
317
1da177e4
LT
318#include <linux/spinlock.h>
319
320/*
321 * This serializes "schedule()" and also protects
322 * the run-queue from deletions/modifications (but
323 * _adding_ to the beginning of the run-queue has
324 * a separate lock).
325 */
326extern rwlock_t tasklist_lock;
327extern spinlock_t mmlist_lock;
328
36c8b586 329struct task_struct;
1da177e4 330
db1466b3
PM
331#ifdef CONFIG_PROVE_RCU
332extern int lockdep_tasklist_lock_is_held(void);
333#endif /* #ifdef CONFIG_PROVE_RCU */
334
1da177e4
LT
335extern void sched_init(void);
336extern void sched_init_smp(void);
2d07b255 337extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 338extern void init_idle(struct task_struct *idle, int cpu);
1df21055 339extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 340
3fa0818b
RR
341extern cpumask_var_t cpu_isolated_map;
342
89f19f04 343extern int runqueue_is_locked(int cpu);
017730c1 344
3451d024 345#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 346extern void nohz_balance_enter_idle(int cpu);
69e1e811 347extern void set_cpu_sd_state_idle(void);
bc7a34b8 348extern int get_nohz_timer_target(void);
46cb4b7c 349#else
c1cc017c 350static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 351static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 352#endif
1da177e4 353
e59e2ae2 354/*
39bc89fd 355 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
356 */
357extern void show_state_filter(unsigned long state_filter);
358
359static inline void show_state(void)
360{
39bc89fd 361 show_state_filter(0);
e59e2ae2
IM
362}
363
1da177e4
LT
364extern void show_regs(struct pt_regs *);
365
366/*
367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
368 * task), SP is the stack pointer of the first frame that should be shown in the back
369 * trace (or NULL if the entire call-chain of the task should be shown).
370 */
371extern void show_stack(struct task_struct *task, unsigned long *sp);
372
1da177e4
LT
373extern void cpu_init (void);
374extern void trap_init(void);
375extern void update_process_times(int user);
376extern void scheduler_tick(void);
9cf7243d 377extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
378extern int sched_cpu_activate(unsigned int cpu);
379extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 380
f2785ddb
TG
381#ifdef CONFIG_HOTPLUG_CPU
382extern int sched_cpu_dying(unsigned int cpu);
383#else
384# define sched_cpu_dying NULL
385#endif
1da177e4 386
82a1fcb9
IM
387extern void sched_show_task(struct task_struct *p);
388
19cc36c0 389#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 390extern void touch_softlockup_watchdog_sched(void);
8446f1d3 391extern void touch_softlockup_watchdog(void);
d6ad3e28 392extern void touch_softlockup_watchdog_sync(void);
04c9167f 393extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
394extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
395 void __user *buffer,
396 size_t *lenp, loff_t *ppos);
9c44bc03 397extern unsigned int softlockup_panic;
ac1f5912 398extern unsigned int hardlockup_panic;
004417a6 399void lockup_detector_init(void);
8446f1d3 400#else
03e0d461
TH
401static inline void touch_softlockup_watchdog_sched(void)
402{
403}
8446f1d3
IM
404static inline void touch_softlockup_watchdog(void)
405{
406}
d6ad3e28
JW
407static inline void touch_softlockup_watchdog_sync(void)
408{
409}
04c9167f
JF
410static inline void touch_all_softlockup_watchdogs(void)
411{
412}
004417a6
PZ
413static inline void lockup_detector_init(void)
414{
415}
8446f1d3
IM
416#endif
417
8b414521
MT
418#ifdef CONFIG_DETECT_HUNG_TASK
419void reset_hung_task_detector(void);
420#else
421static inline void reset_hung_task_detector(void)
422{
423}
424#endif
425
1da177e4
LT
426/* Attach to any functions which should be ignored in wchan output. */
427#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
428
429/* Linker adds these: start and end of __sched functions */
430extern char __sched_text_start[], __sched_text_end[];
431
1da177e4
LT
432/* Is this address in the __sched functions? */
433extern int in_sched_functions(unsigned long addr);
434
435#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 436extern signed long schedule_timeout(signed long timeout);
64ed93a2 437extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 438extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 439extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 440extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 441asmlinkage void schedule(void);
c5491ea7 442extern void schedule_preempt_disabled(void);
1da177e4 443
9cff8ade
N
444extern long io_schedule_timeout(long timeout);
445
446static inline void io_schedule(void)
447{
448 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
449}
450
9af6528e
PZ
451void __noreturn do_task_dead(void);
452
ab516013 453struct nsproxy;
acce292c 454struct user_namespace;
1da177e4 455
efc1a3b1
DH
456#ifdef CONFIG_MMU
457extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
458extern unsigned long
459arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
460 unsigned long, unsigned long);
461extern unsigned long
462arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
463 unsigned long len, unsigned long pgoff,
464 unsigned long flags);
efc1a3b1
DH
465#else
466static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
467#endif
1da177e4 468
d049f74f
KC
469#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
470#define SUID_DUMP_USER 1 /* Dump as user of process */
471#define SUID_DUMP_ROOT 2 /* Dump as root */
472
6c5d5238 473/* mm flags */
f8af4da3 474
7288e118 475/* for SUID_DUMP_* above */
3cb4a0bb 476#define MMF_DUMPABLE_BITS 2
f8af4da3 477#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 478
942be387
ON
479extern void set_dumpable(struct mm_struct *mm, int value);
480/*
481 * This returns the actual value of the suid_dumpable flag. For things
482 * that are using this for checking for privilege transitions, it must
483 * test against SUID_DUMP_USER rather than treating it as a boolean
484 * value.
485 */
486static inline int __get_dumpable(unsigned long mm_flags)
487{
488 return mm_flags & MMF_DUMPABLE_MASK;
489}
490
491static inline int get_dumpable(struct mm_struct *mm)
492{
493 return __get_dumpable(mm->flags);
494}
495
3cb4a0bb
KH
496/* coredump filter bits */
497#define MMF_DUMP_ANON_PRIVATE 2
498#define MMF_DUMP_ANON_SHARED 3
499#define MMF_DUMP_MAPPED_PRIVATE 4
500#define MMF_DUMP_MAPPED_SHARED 5
82df3973 501#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
502#define MMF_DUMP_HUGETLB_PRIVATE 7
503#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
504#define MMF_DUMP_DAX_PRIVATE 9
505#define MMF_DUMP_DAX_SHARED 10
f8af4da3 506
3cb4a0bb 507#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 508#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
509#define MMF_DUMP_FILTER_MASK \
510 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
511#define MMF_DUMP_FILTER_DEFAULT \
e575f111 512 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
513 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
514
515#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
516# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
517#else
518# define MMF_DUMP_MASK_DEFAULT_ELF 0
519#endif
f8af4da3
HD
520 /* leave room for more dump flags */
521#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 522#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 523#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 524
9f68f672
ON
525#define MMF_HAS_UPROBES 19 /* has uprobes */
526#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
862e3073 527#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
f8ac4ec9 528
f8af4da3 529#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 530
1da177e4
LT
531struct sighand_struct {
532 atomic_t count;
533 struct k_sigaction action[_NSIG];
534 spinlock_t siglock;
b8fceee1 535 wait_queue_head_t signalfd_wqh;
1da177e4
LT
536};
537
0e464814 538struct pacct_struct {
f6ec29a4
KK
539 int ac_flag;
540 long ac_exitcode;
0e464814 541 unsigned long ac_mem;
77787bfb
KK
542 cputime_t ac_utime, ac_stime;
543 unsigned long ac_minflt, ac_majflt;
0e464814
KK
544};
545
42c4ab41
SG
546struct cpu_itimer {
547 cputime_t expires;
548 cputime_t incr;
8356b5f9
SG
549 u32 error;
550 u32 incr_error;
42c4ab41
SG
551};
552
d37f761d 553/**
9d7fb042 554 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
555 * @utime: time spent in user mode
556 * @stime: time spent in system mode
9d7fb042 557 * @lock: protects the above two fields
d37f761d 558 *
9d7fb042
PZ
559 * Stores previous user/system time values such that we can guarantee
560 * monotonicity.
d37f761d 561 */
9d7fb042
PZ
562struct prev_cputime {
563#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
564 cputime_t utime;
565 cputime_t stime;
9d7fb042
PZ
566 raw_spinlock_t lock;
567#endif
d37f761d
FW
568};
569
9d7fb042
PZ
570static inline void prev_cputime_init(struct prev_cputime *prev)
571{
572#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
573 prev->utime = prev->stime = 0;
574 raw_spin_lock_init(&prev->lock);
575#endif
576}
577
f06febc9
FM
578/**
579 * struct task_cputime - collected CPU time counts
580 * @utime: time spent in user mode, in &cputime_t units
581 * @stime: time spent in kernel mode, in &cputime_t units
582 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 583 *
9d7fb042
PZ
584 * This structure groups together three kinds of CPU time that are tracked for
585 * threads and thread groups. Most things considering CPU time want to group
586 * these counts together and treat all three of them in parallel.
f06febc9
FM
587 */
588struct task_cputime {
589 cputime_t utime;
590 cputime_t stime;
591 unsigned long long sum_exec_runtime;
592};
9d7fb042 593
f06febc9 594/* Alternate field names when used to cache expirations. */
f06febc9 595#define virt_exp utime
9d7fb042 596#define prof_exp stime
f06febc9
FM
597#define sched_exp sum_exec_runtime
598
4cd4c1b4
PZ
599#define INIT_CPUTIME \
600 (struct task_cputime) { \
64861634
MS
601 .utime = 0, \
602 .stime = 0, \
4cd4c1b4
PZ
603 .sum_exec_runtime = 0, \
604 }
605
971e8a98
JL
606/*
607 * This is the atomic variant of task_cputime, which can be used for
608 * storing and updating task_cputime statistics without locking.
609 */
610struct task_cputime_atomic {
611 atomic64_t utime;
612 atomic64_t stime;
613 atomic64_t sum_exec_runtime;
614};
615
616#define INIT_CPUTIME_ATOMIC \
617 (struct task_cputime_atomic) { \
618 .utime = ATOMIC64_INIT(0), \
619 .stime = ATOMIC64_INIT(0), \
620 .sum_exec_runtime = ATOMIC64_INIT(0), \
621 }
622
609ca066 623#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 624
c99e6efe 625/*
87dcbc06
PZ
626 * Disable preemption until the scheduler is running -- use an unconditional
627 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 628 *
87dcbc06 629 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 630 */
87dcbc06 631#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 632
c99e6efe 633/*
609ca066
PZ
634 * Initial preempt_count value; reflects the preempt_count schedule invariant
635 * which states that during context switches:
d86ee480 636 *
609ca066
PZ
637 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
638 *
639 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
640 * Note: See finish_task_switch().
c99e6efe 641 */
609ca066 642#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 643
f06febc9 644/**
4cd4c1b4 645 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 646 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
647 * @running: true when there are timers running and
648 * @cputime_atomic receives updates.
c8d75aa4
JL
649 * @checking_timer: true when a thread in the group is in the
650 * process of checking for thread group timers.
f06febc9
FM
651 *
652 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 653 * used for thread group CPU timer calculations.
f06febc9 654 */
4cd4c1b4 655struct thread_group_cputimer {
71107445 656 struct task_cputime_atomic cputime_atomic;
d5c373eb 657 bool running;
c8d75aa4 658 bool checking_timer;
f06febc9 659};
f06febc9 660
4714d1d3 661#include <linux/rwsem.h>
5091faa4
MG
662struct autogroup;
663
1da177e4 664/*
e815f0a8 665 * NOTE! "signal_struct" does not have its own
1da177e4
LT
666 * locking, because a shared signal_struct always
667 * implies a shared sighand_struct, so locking
668 * sighand_struct is always a proper superset of
669 * the locking of signal_struct.
670 */
671struct signal_struct {
ea6d290c 672 atomic_t sigcnt;
1da177e4 673 atomic_t live;
b3ac022c 674 int nr_threads;
0c740d0a 675 struct list_head thread_head;
1da177e4
LT
676
677 wait_queue_head_t wait_chldexit; /* for wait4() */
678
679 /* current thread group signal load-balancing target: */
36c8b586 680 struct task_struct *curr_target;
1da177e4
LT
681
682 /* shared signal handling: */
683 struct sigpending shared_pending;
684
685 /* thread group exit support */
686 int group_exit_code;
687 /* overloaded:
688 * - notify group_exit_task when ->count is equal to notify_count
689 * - everyone except group_exit_task is stopped during signal delivery
690 * of fatal signals, group_exit_task processes the signal.
691 */
1da177e4 692 int notify_count;
07dd20e0 693 struct task_struct *group_exit_task;
1da177e4
LT
694
695 /* thread group stop support, overloads group_exit_code too */
696 int group_stop_count;
697 unsigned int flags; /* see SIGNAL_* flags below */
698
ebec18a6
LP
699 /*
700 * PR_SET_CHILD_SUBREAPER marks a process, like a service
701 * manager, to re-parent orphan (double-forking) child processes
702 * to this process instead of 'init'. The service manager is
703 * able to receive SIGCHLD signals and is able to investigate
704 * the process until it calls wait(). All children of this
705 * process will inherit a flag if they should look for a
706 * child_subreaper process at exit.
707 */
708 unsigned int is_child_subreaper:1;
709 unsigned int has_child_subreaper:1;
710
1da177e4 711 /* POSIX.1b Interval Timers */
5ed67f05
PE
712 int posix_timer_id;
713 struct list_head posix_timers;
1da177e4
LT
714
715 /* ITIMER_REAL timer for the process */
2ff678b8 716 struct hrtimer real_timer;
fea9d175 717 struct pid *leader_pid;
2ff678b8 718 ktime_t it_real_incr;
1da177e4 719
42c4ab41
SG
720 /*
721 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
722 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
723 * values are defined to 0 and 1 respectively
724 */
725 struct cpu_itimer it[2];
1da177e4 726
f06febc9 727 /*
4cd4c1b4
PZ
728 * Thread group totals for process CPU timers.
729 * See thread_group_cputimer(), et al, for details.
f06febc9 730 */
4cd4c1b4 731 struct thread_group_cputimer cputimer;
f06febc9
FM
732
733 /* Earliest-expiration cache. */
734 struct task_cputime cputime_expires;
735
d027d45d 736#ifdef CONFIG_NO_HZ_FULL
f009a7a7 737 atomic_t tick_dep_mask;
d027d45d
FW
738#endif
739
f06febc9
FM
740 struct list_head cpu_timers[3];
741
ab521dc0 742 struct pid *tty_old_pgrp;
1ec320af 743
1da177e4
LT
744 /* boolean value for session group leader */
745 int leader;
746
747 struct tty_struct *tty; /* NULL if no tty */
748
5091faa4
MG
749#ifdef CONFIG_SCHED_AUTOGROUP
750 struct autogroup *autogroup;
751#endif
1da177e4
LT
752 /*
753 * Cumulative resource counters for dead threads in the group,
754 * and for reaped dead child processes forked by this group.
755 * Live threads maintain their own counters and add to these
756 * in __exit_signal, except for the group leader.
757 */
e78c3496 758 seqlock_t stats_lock;
32bd671d 759 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
760 cputime_t gtime;
761 cputime_t cgtime;
9d7fb042 762 struct prev_cputime prev_cputime;
1da177e4
LT
763 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
764 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 765 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 766 unsigned long maxrss, cmaxrss;
940389b8 767 struct task_io_accounting ioac;
1da177e4 768
32bd671d
PZ
769 /*
770 * Cumulative ns of schedule CPU time fo dead threads in the
771 * group, not including a zombie group leader, (This only differs
772 * from jiffies_to_ns(utime + stime) if sched_clock uses something
773 * other than jiffies.)
774 */
775 unsigned long long sum_sched_runtime;
776
1da177e4
LT
777 /*
778 * We don't bother to synchronize most readers of this at all,
779 * because there is no reader checking a limit that actually needs
780 * to get both rlim_cur and rlim_max atomically, and either one
781 * alone is a single word that can safely be read normally.
782 * getrlimit/setrlimit use task_lock(current->group_leader) to
783 * protect this instead of the siglock, because they really
784 * have no need to disable irqs.
785 */
786 struct rlimit rlim[RLIM_NLIMITS];
787
0e464814
KK
788#ifdef CONFIG_BSD_PROCESS_ACCT
789 struct pacct_struct pacct; /* per-process accounting information */
790#endif
ad4ecbcb 791#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
792 struct taskstats *stats;
793#endif
522ed776
MT
794#ifdef CONFIG_AUDIT
795 unsigned audit_tty;
796 struct tty_audit_buf *tty_audit_buf;
797#endif
28b83c51 798
c96fc2d8
TH
799 /*
800 * Thread is the potential origin of an oom condition; kill first on
801 * oom
802 */
803 bool oom_flag_origin;
a9c58b90
DR
804 short oom_score_adj; /* OOM kill score adjustment */
805 short oom_score_adj_min; /* OOM kill score adjustment min value.
806 * Only settable by CAP_SYS_RESOURCE. */
26db62f1
MH
807 struct mm_struct *oom_mm; /* recorded mm when the thread group got
808 * killed by the oom killer */
9b1bf12d
KM
809
810 struct mutex cred_guard_mutex; /* guard against foreign influences on
811 * credential calculations
812 * (notably. ptrace) */
1da177e4
LT
813};
814
815/*
816 * Bits in flags field of signal_struct.
817 */
818#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
819#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
820#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 821#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
822/*
823 * Pending notifications to parent.
824 */
825#define SIGNAL_CLD_STOPPED 0x00000010
826#define SIGNAL_CLD_CONTINUED 0x00000020
827#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 828
fae5fa44
ON
829#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
830
ed5d2cac
ON
831/* If true, all threads except ->group_exit_task have pending SIGKILL */
832static inline int signal_group_exit(const struct signal_struct *sig)
833{
834 return (sig->flags & SIGNAL_GROUP_EXIT) ||
835 (sig->group_exit_task != NULL);
836}
837
1da177e4
LT
838/*
839 * Some day this will be a full-fledged user tracking system..
840 */
841struct user_struct {
842 atomic_t __count; /* reference count */
843 atomic_t processes; /* How many processes does this user have? */
1da177e4 844 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 845#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
846 atomic_t inotify_watches; /* How many inotify watches does this user have? */
847 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
848#endif
4afeff85
EP
849#ifdef CONFIG_FANOTIFY
850 atomic_t fanotify_listeners;
851#endif
7ef9964e 852#ifdef CONFIG_EPOLL
52bd19f7 853 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 854#endif
970a8645 855#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
856 /* protected by mq_lock */
857 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 858#endif
1da177e4 859 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 860 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 861 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
862
863#ifdef CONFIG_KEYS
864 struct key *uid_keyring; /* UID specific keyring */
865 struct key *session_keyring; /* UID's default session keyring */
866#endif
867
868 /* Hash table maintenance information */
735de223 869 struct hlist_node uidhash_node;
7b44ab97 870 kuid_t uid;
24e377a8 871
aaac3ba9 872#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
873 atomic_long_t locked_vm;
874#endif
1da177e4
LT
875};
876
eb41d946 877extern int uids_sysfs_init(void);
5cb350ba 878
7b44ab97 879extern struct user_struct *find_user(kuid_t);
1da177e4
LT
880
881extern struct user_struct root_user;
882#define INIT_USER (&root_user)
883
b6dff3ec 884
1da177e4
LT
885struct backing_dev_info;
886struct reclaim_state;
887
f6db8347 888#ifdef CONFIG_SCHED_INFO
1da177e4
LT
889struct sched_info {
890 /* cumulative counters */
2d72376b 891 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 892 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
893
894 /* timestamps */
172ba844
BS
895 unsigned long long last_arrival,/* when we last ran on a cpu */
896 last_queued; /* when we were last queued to run */
1da177e4 897};
f6db8347 898#endif /* CONFIG_SCHED_INFO */
1da177e4 899
ca74e92b
SN
900#ifdef CONFIG_TASK_DELAY_ACCT
901struct task_delay_info {
902 spinlock_t lock;
903 unsigned int flags; /* Private per-task flags */
904
905 /* For each stat XXX, add following, aligned appropriately
906 *
907 * struct timespec XXX_start, XXX_end;
908 * u64 XXX_delay;
909 * u32 XXX_count;
910 *
911 * Atomicity of updates to XXX_delay, XXX_count protected by
912 * single lock above (split into XXX_lock if contention is an issue).
913 */
0ff92245
SN
914
915 /*
916 * XXX_count is incremented on every XXX operation, the delay
917 * associated with the operation is added to XXX_delay.
918 * XXX_delay contains the accumulated delay time in nanoseconds.
919 */
9667a23d 920 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
921 u64 blkio_delay; /* wait for sync block io completion */
922 u64 swapin_delay; /* wait for swapin block io completion */
923 u32 blkio_count; /* total count of the number of sync block */
924 /* io operations performed */
925 u32 swapin_count; /* total count of the number of swapin block */
926 /* io operations performed */
873b4771 927
9667a23d 928 u64 freepages_start;
873b4771
KK
929 u64 freepages_delay; /* wait for memory reclaim */
930 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 931};
52f17b6c
CS
932#endif /* CONFIG_TASK_DELAY_ACCT */
933
934static inline int sched_info_on(void)
935{
936#ifdef CONFIG_SCHEDSTATS
937 return 1;
938#elif defined(CONFIG_TASK_DELAY_ACCT)
939 extern int delayacct_on;
940 return delayacct_on;
941#else
942 return 0;
ca74e92b 943#endif
52f17b6c 944}
ca74e92b 945
cb251765
MG
946#ifdef CONFIG_SCHEDSTATS
947void force_schedstat_enabled(void);
948#endif
949
d15bcfdb
IM
950enum cpu_idle_type {
951 CPU_IDLE,
952 CPU_NOT_IDLE,
953 CPU_NEWLY_IDLE,
954 CPU_MAX_IDLE_TYPES
1da177e4
LT
955};
956
6ecdd749
YD
957/*
958 * Integer metrics need fixed point arithmetic, e.g., sched/fair
959 * has a few: load, load_avg, util_avg, freq, and capacity.
960 *
961 * We define a basic fixed point arithmetic range, and then formalize
962 * all these metrics based on that basic range.
963 */
964# define SCHED_FIXEDPOINT_SHIFT 10
965# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
966
1399fa78 967/*
ca8ce3d0 968 * Increase resolution of cpu_capacity calculations
1399fa78 969 */
6ecdd749 970#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 971#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 972
76751049
PZ
973/*
974 * Wake-queues are lists of tasks with a pending wakeup, whose
975 * callers have already marked the task as woken internally,
976 * and can thus carry on. A common use case is being able to
977 * do the wakeups once the corresponding user lock as been
978 * released.
979 *
980 * We hold reference to each task in the list across the wakeup,
981 * thus guaranteeing that the memory is still valid by the time
982 * the actual wakeups are performed in wake_up_q().
983 *
984 * One per task suffices, because there's never a need for a task to be
985 * in two wake queues simultaneously; it is forbidden to abandon a task
986 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
987 * already in a wake queue, the wakeup will happen soon and the second
988 * waker can just skip it.
989 *
990 * The WAKE_Q macro declares and initializes the list head.
991 * wake_up_q() does NOT reinitialize the list; it's expected to be
992 * called near the end of a function, where the fact that the queue is
993 * not used again will be easy to see by inspection.
994 *
995 * Note that this can cause spurious wakeups. schedule() callers
996 * must ensure the call is done inside a loop, confirming that the
997 * wakeup condition has in fact occurred.
998 */
999struct wake_q_node {
1000 struct wake_q_node *next;
1001};
1002
1003struct wake_q_head {
1004 struct wake_q_node *first;
1005 struct wake_q_node **lastp;
1006};
1007
1008#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1009
1010#define WAKE_Q(name) \
1011 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1012
1013extern void wake_q_add(struct wake_q_head *head,
1014 struct task_struct *task);
1015extern void wake_up_q(struct wake_q_head *head);
1016
1399fa78
NR
1017/*
1018 * sched-domains (multiprocessor balancing) declarations:
1019 */
2dd73a4f 1020#ifdef CONFIG_SMP
b5d978e0
PZ
1021#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1022#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1023#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1024#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1025#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1026#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1f6e6c7c 1027#define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
bd425d4b 1028#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
d77b3ed5 1029#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1030#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1031#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1032#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1033#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1034#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1035#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1036
143e1e28 1037#ifdef CONFIG_SCHED_SMT
b6220ad6 1038static inline int cpu_smt_flags(void)
143e1e28 1039{
5d4dfddd 1040 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1041}
1042#endif
1043
1044#ifdef CONFIG_SCHED_MC
b6220ad6 1045static inline int cpu_core_flags(void)
143e1e28
VG
1046{
1047 return SD_SHARE_PKG_RESOURCES;
1048}
1049#endif
1050
1051#ifdef CONFIG_NUMA
b6220ad6 1052static inline int cpu_numa_flags(void)
143e1e28
VG
1053{
1054 return SD_NUMA;
1055}
1056#endif
532cb4c4 1057
1d3504fc
HS
1058struct sched_domain_attr {
1059 int relax_domain_level;
1060};
1061
1062#define SD_ATTR_INIT (struct sched_domain_attr) { \
1063 .relax_domain_level = -1, \
1064}
1065
60495e77
PZ
1066extern int sched_domain_level_max;
1067
5e6521ea
LZ
1068struct sched_group;
1069
24fc7edb
PZ
1070struct sched_domain_shared {
1071 atomic_t ref;
0e369d75 1072 atomic_t nr_busy_cpus;
10e2f1ac 1073 int has_idle_cores;
24fc7edb
PZ
1074};
1075
1da177e4
LT
1076struct sched_domain {
1077 /* These fields must be setup */
1078 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1079 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1080 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1081 unsigned long min_interval; /* Minimum balance interval ms */
1082 unsigned long max_interval; /* Maximum balance interval ms */
1083 unsigned int busy_factor; /* less balancing by factor if busy */
1084 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1085 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1086 unsigned int busy_idx;
1087 unsigned int idle_idx;
1088 unsigned int newidle_idx;
1089 unsigned int wake_idx;
147cbb4b 1090 unsigned int forkexec_idx;
a52bfd73 1091 unsigned int smt_gain;
25f55d9d
VG
1092
1093 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1094 int flags; /* See SD_* */
60495e77 1095 int level;
1da177e4
LT
1096
1097 /* Runtime fields. */
1098 unsigned long last_balance; /* init to jiffies. units in jiffies */
1099 unsigned int balance_interval; /* initialise to 1. units in ms. */
1100 unsigned int nr_balance_failed; /* initialise to 0 */
1101
f48627e6 1102 /* idle_balance() stats */
9bd721c5 1103 u64 max_newidle_lb_cost;
f48627e6 1104 unsigned long next_decay_max_lb_cost;
2398f2c6 1105
10e2f1ac
PZ
1106 u64 avg_scan_cost; /* select_idle_sibling */
1107
1da177e4
LT
1108#ifdef CONFIG_SCHEDSTATS
1109 /* load_balance() stats */
480b9434
KC
1110 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1111 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1112 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1113 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1114 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1115 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1116 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1117 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1118
1119 /* Active load balancing */
480b9434
KC
1120 unsigned int alb_count;
1121 unsigned int alb_failed;
1122 unsigned int alb_pushed;
1da177e4 1123
68767a0a 1124 /* SD_BALANCE_EXEC stats */
480b9434
KC
1125 unsigned int sbe_count;
1126 unsigned int sbe_balanced;
1127 unsigned int sbe_pushed;
1da177e4 1128
68767a0a 1129 /* SD_BALANCE_FORK stats */
480b9434
KC
1130 unsigned int sbf_count;
1131 unsigned int sbf_balanced;
1132 unsigned int sbf_pushed;
68767a0a 1133
1da177e4 1134 /* try_to_wake_up() stats */
480b9434
KC
1135 unsigned int ttwu_wake_remote;
1136 unsigned int ttwu_move_affine;
1137 unsigned int ttwu_move_balance;
1da177e4 1138#endif
a5d8c348
IM
1139#ifdef CONFIG_SCHED_DEBUG
1140 char *name;
1141#endif
dce840a0
PZ
1142 union {
1143 void *private; /* used during construction */
1144 struct rcu_head rcu; /* used during destruction */
1145 };
24fc7edb 1146 struct sched_domain_shared *shared;
6c99e9ad 1147
669c55e9 1148 unsigned int span_weight;
4200efd9
IM
1149 /*
1150 * Span of all CPUs in this domain.
1151 *
1152 * NOTE: this field is variable length. (Allocated dynamically
1153 * by attaching extra space to the end of the structure,
1154 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1155 */
1156 unsigned long span[0];
1da177e4
LT
1157};
1158
758b2cdc
RR
1159static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1160{
6c99e9ad 1161 return to_cpumask(sd->span);
758b2cdc
RR
1162}
1163
acc3f5d7 1164extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1165 struct sched_domain_attr *dattr_new);
029190c5 1166
acc3f5d7
RR
1167/* Allocate an array of sched domains, for partition_sched_domains(). */
1168cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1169void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1170
39be3501
PZ
1171bool cpus_share_cache(int this_cpu, int that_cpu);
1172
143e1e28 1173typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1174typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1175
1176#define SDTL_OVERLAP 0x01
1177
1178struct sd_data {
1179 struct sched_domain **__percpu sd;
24fc7edb 1180 struct sched_domain_shared **__percpu sds;
143e1e28 1181 struct sched_group **__percpu sg;
63b2ca30 1182 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1183};
1184
1185struct sched_domain_topology_level {
1186 sched_domain_mask_f mask;
1187 sched_domain_flags_f sd_flags;
1188 int flags;
1189 int numa_level;
1190 struct sd_data data;
1191#ifdef CONFIG_SCHED_DEBUG
1192 char *name;
1193#endif
1194};
1195
143e1e28 1196extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1197extern void wake_up_if_idle(int cpu);
143e1e28
VG
1198
1199#ifdef CONFIG_SCHED_DEBUG
1200# define SD_INIT_NAME(type) .name = #type
1201#else
1202# define SD_INIT_NAME(type)
1203#endif
1204
1b427c15 1205#else /* CONFIG_SMP */
1da177e4 1206
1b427c15 1207struct sched_domain_attr;
d02c7a8c 1208
1b427c15 1209static inline void
acc3f5d7 1210partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1211 struct sched_domain_attr *dattr_new)
1212{
d02c7a8c 1213}
39be3501
PZ
1214
1215static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1216{
1217 return true;
1218}
1219
1b427c15 1220#endif /* !CONFIG_SMP */
1da177e4 1221
47fe38fc 1222
1da177e4 1223struct io_context; /* See blkdev.h */
1da177e4 1224
1da177e4 1225
383f2835 1226#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1227extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1228#else
1229static inline void prefetch_stack(struct task_struct *t) { }
1230#endif
1da177e4
LT
1231
1232struct audit_context; /* See audit.c */
1233struct mempolicy;
b92ce558 1234struct pipe_inode_info;
4865ecf1 1235struct uts_namespace;
1da177e4 1236
20b8a59f 1237struct load_weight {
9dbdb155
PZ
1238 unsigned long weight;
1239 u32 inv_weight;
20b8a59f
IM
1240};
1241
9d89c257 1242/*
7b595334
YD
1243 * The load_avg/util_avg accumulates an infinite geometric series
1244 * (see __update_load_avg() in kernel/sched/fair.c).
1245 *
1246 * [load_avg definition]
1247 *
1248 * load_avg = runnable% * scale_load_down(load)
1249 *
1250 * where runnable% is the time ratio that a sched_entity is runnable.
1251 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1252 * blocked sched_entities.
7b595334
YD
1253 *
1254 * load_avg may also take frequency scaling into account:
1255 *
1256 * load_avg = runnable% * scale_load_down(load) * freq%
1257 *
1258 * where freq% is the CPU frequency normalized to the highest frequency.
1259 *
1260 * [util_avg definition]
1261 *
1262 * util_avg = running% * SCHED_CAPACITY_SCALE
1263 *
1264 * where running% is the time ratio that a sched_entity is running on
1265 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1266 * and blocked sched_entities.
1267 *
1268 * util_avg may also factor frequency scaling and CPU capacity scaling:
1269 *
1270 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1271 *
1272 * where freq% is the same as above, and capacity% is the CPU capacity
1273 * normalized to the greatest capacity (due to uarch differences, etc).
1274 *
1275 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1276 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1277 * we therefore scale them to as large a range as necessary. This is for
1278 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1279 *
1280 * [Overflow issue]
1281 *
1282 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1283 * with the highest load (=88761), always runnable on a single cfs_rq,
1284 * and should not overflow as the number already hits PID_MAX_LIMIT.
1285 *
1286 * For all other cases (including 32-bit kernels), struct load_weight's
1287 * weight will overflow first before we do, because:
1288 *
1289 * Max(load_avg) <= Max(load.weight)
1290 *
1291 * Then it is the load_weight's responsibility to consider overflow
1292 * issues.
9d89c257 1293 */
9d85f21c 1294struct sched_avg {
9d89c257
YD
1295 u64 last_update_time, load_sum;
1296 u32 util_sum, period_contrib;
1297 unsigned long load_avg, util_avg;
9d85f21c
PT
1298};
1299
94c18227 1300#ifdef CONFIG_SCHEDSTATS
41acab88 1301struct sched_statistics {
20b8a59f 1302 u64 wait_start;
94c18227 1303 u64 wait_max;
6d082592
AV
1304 u64 wait_count;
1305 u64 wait_sum;
8f0dfc34
AV
1306 u64 iowait_count;
1307 u64 iowait_sum;
94c18227 1308
20b8a59f 1309 u64 sleep_start;
20b8a59f 1310 u64 sleep_max;
94c18227
IM
1311 s64 sum_sleep_runtime;
1312
1313 u64 block_start;
20b8a59f
IM
1314 u64 block_max;
1315 u64 exec_max;
eba1ed4b 1316 u64 slice_max;
cc367732 1317
cc367732
IM
1318 u64 nr_migrations_cold;
1319 u64 nr_failed_migrations_affine;
1320 u64 nr_failed_migrations_running;
1321 u64 nr_failed_migrations_hot;
1322 u64 nr_forced_migrations;
cc367732
IM
1323
1324 u64 nr_wakeups;
1325 u64 nr_wakeups_sync;
1326 u64 nr_wakeups_migrate;
1327 u64 nr_wakeups_local;
1328 u64 nr_wakeups_remote;
1329 u64 nr_wakeups_affine;
1330 u64 nr_wakeups_affine_attempts;
1331 u64 nr_wakeups_passive;
1332 u64 nr_wakeups_idle;
41acab88
LDM
1333};
1334#endif
1335
1336struct sched_entity {
1337 struct load_weight load; /* for load-balancing */
1338 struct rb_node run_node;
1339 struct list_head group_node;
1340 unsigned int on_rq;
1341
1342 u64 exec_start;
1343 u64 sum_exec_runtime;
1344 u64 vruntime;
1345 u64 prev_sum_exec_runtime;
1346
41acab88
LDM
1347 u64 nr_migrations;
1348
41acab88
LDM
1349#ifdef CONFIG_SCHEDSTATS
1350 struct sched_statistics statistics;
94c18227
IM
1351#endif
1352
20b8a59f 1353#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1354 int depth;
20b8a59f
IM
1355 struct sched_entity *parent;
1356 /* rq on which this entity is (to be) queued: */
1357 struct cfs_rq *cfs_rq;
1358 /* rq "owned" by this entity/group: */
1359 struct cfs_rq *my_q;
1360#endif
8bd75c77 1361
141965c7 1362#ifdef CONFIG_SMP
5a107804
JO
1363 /*
1364 * Per entity load average tracking.
1365 *
1366 * Put into separate cache line so it does not
1367 * collide with read-mostly values above.
1368 */
1369 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1370#endif
20b8a59f 1371};
70b97a7f 1372
fa717060
PZ
1373struct sched_rt_entity {
1374 struct list_head run_list;
78f2c7db 1375 unsigned long timeout;
57d2aa00 1376 unsigned long watchdog_stamp;
bee367ed 1377 unsigned int time_slice;
ff77e468
PZ
1378 unsigned short on_rq;
1379 unsigned short on_list;
6f505b16 1380
58d6c2d7 1381 struct sched_rt_entity *back;
052f1dc7 1382#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1383 struct sched_rt_entity *parent;
1384 /* rq on which this entity is (to be) queued: */
1385 struct rt_rq *rt_rq;
1386 /* rq "owned" by this entity/group: */
1387 struct rt_rq *my_q;
1388#endif
fa717060
PZ
1389};
1390
aab03e05
DF
1391struct sched_dl_entity {
1392 struct rb_node rb_node;
1393
1394 /*
1395 * Original scheduling parameters. Copied here from sched_attr
4027d080 1396 * during sched_setattr(), they will remain the same until
1397 * the next sched_setattr().
aab03e05
DF
1398 */
1399 u64 dl_runtime; /* maximum runtime for each instance */
1400 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1401 u64 dl_period; /* separation of two instances (period) */
332ac17e 1402 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1403
1404 /*
1405 * Actual scheduling parameters. Initialized with the values above,
1406 * they are continously updated during task execution. Note that
1407 * the remaining runtime could be < 0 in case we are in overrun.
1408 */
1409 s64 runtime; /* remaining runtime for this instance */
1410 u64 deadline; /* absolute deadline for this instance */
1411 unsigned int flags; /* specifying the scheduler behaviour */
1412
1413 /*
1414 * Some bool flags:
1415 *
1416 * @dl_throttled tells if we exhausted the runtime. If so, the
1417 * task has to wait for a replenishment to be performed at the
1418 * next firing of dl_timer.
1419 *
2d3d891d
DF
1420 * @dl_boosted tells if we are boosted due to DI. If so we are
1421 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1422 * exit the critical section);
1423 *
1424 * @dl_yielded tells if task gave up the cpu before consuming
1425 * all its available runtime during the last job.
aab03e05 1426 */
72f9f3fd 1427 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1428
1429 /*
1430 * Bandwidth enforcement timer. Each -deadline task has its
1431 * own bandwidth to be enforced, thus we need one timer per task.
1432 */
1433 struct hrtimer dl_timer;
1434};
8bd75c77 1435
1d082fd0
PM
1436union rcu_special {
1437 struct {
8203d6d0
PM
1438 u8 blocked;
1439 u8 need_qs;
1440 u8 exp_need_qs;
1441 u8 pad; /* Otherwise the compiler can store garbage here. */
1442 } b; /* Bits. */
1443 u32 s; /* Set of bits. */
1d082fd0 1444};
86848966
PM
1445struct rcu_node;
1446
8dc85d54
PZ
1447enum perf_event_task_context {
1448 perf_invalid_context = -1,
1449 perf_hw_context = 0,
89a1e187 1450 perf_sw_context,
8dc85d54
PZ
1451 perf_nr_task_contexts,
1452};
1453
72b252ae
MG
1454/* Track pages that require TLB flushes */
1455struct tlbflush_unmap_batch {
1456 /*
1457 * Each bit set is a CPU that potentially has a TLB entry for one of
1458 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1459 */
1460 struct cpumask cpumask;
1461
1462 /* True if any bit in cpumask is set */
1463 bool flush_required;
d950c947
MG
1464
1465 /*
1466 * If true then the PTE was dirty when unmapped. The entry must be
1467 * flushed before IO is initiated or a stale TLB entry potentially
1468 * allows an update without redirtying the page.
1469 */
1470 bool writable;
72b252ae
MG
1471};
1472
1da177e4 1473struct task_struct {
c65eacbe
AL
1474#ifdef CONFIG_THREAD_INFO_IN_TASK
1475 /*
1476 * For reasons of header soup (see current_thread_info()), this
1477 * must be the first element of task_struct.
1478 */
1479 struct thread_info thread_info;
1480#endif
1da177e4 1481 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1482 void *stack;
1da177e4 1483 atomic_t usage;
97dc32cd
WC
1484 unsigned int flags; /* per process flags, defined below */
1485 unsigned int ptrace;
1da177e4 1486
2dd73a4f 1487#ifdef CONFIG_SMP
fa14ff4a 1488 struct llist_node wake_entry;
3ca7a440 1489 int on_cpu;
c65eacbe
AL
1490#ifdef CONFIG_THREAD_INFO_IN_TASK
1491 unsigned int cpu; /* current CPU */
1492#endif
63b0e9ed 1493 unsigned int wakee_flips;
62470419 1494 unsigned long wakee_flip_decay_ts;
63b0e9ed 1495 struct task_struct *last_wakee;
ac66f547
PZ
1496
1497 int wake_cpu;
2dd73a4f 1498#endif
fd2f4419 1499 int on_rq;
50e645a8 1500
b29739f9 1501 int prio, static_prio, normal_prio;
c7aceaba 1502 unsigned int rt_priority;
5522d5d5 1503 const struct sched_class *sched_class;
20b8a59f 1504 struct sched_entity se;
fa717060 1505 struct sched_rt_entity rt;
8323f26c
PZ
1506#ifdef CONFIG_CGROUP_SCHED
1507 struct task_group *sched_task_group;
1508#endif
aab03e05 1509 struct sched_dl_entity dl;
1da177e4 1510
e107be36
AK
1511#ifdef CONFIG_PREEMPT_NOTIFIERS
1512 /* list of struct preempt_notifier: */
1513 struct hlist_head preempt_notifiers;
1514#endif
1515
6c5c9341 1516#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1517 unsigned int btrace_seq;
6c5c9341 1518#endif
1da177e4 1519
97dc32cd 1520 unsigned int policy;
29baa747 1521 int nr_cpus_allowed;
1da177e4 1522 cpumask_t cpus_allowed;
1da177e4 1523
a57eb940 1524#ifdef CONFIG_PREEMPT_RCU
e260be67 1525 int rcu_read_lock_nesting;
1d082fd0 1526 union rcu_special rcu_read_unlock_special;
f41d911f 1527 struct list_head rcu_node_entry;
a57eb940 1528 struct rcu_node *rcu_blocked_node;
28f6569a 1529#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1530#ifdef CONFIG_TASKS_RCU
1531 unsigned long rcu_tasks_nvcsw;
1532 bool rcu_tasks_holdout;
1533 struct list_head rcu_tasks_holdout_list;
176f8f7a 1534 int rcu_tasks_idle_cpu;
8315f422 1535#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1536
f6db8347 1537#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1538 struct sched_info sched_info;
1539#endif
1540
1541 struct list_head tasks;
806c09a7 1542#ifdef CONFIG_SMP
917b627d 1543 struct plist_node pushable_tasks;
1baca4ce 1544 struct rb_node pushable_dl_tasks;
806c09a7 1545#endif
1da177e4
LT
1546
1547 struct mm_struct *mm, *active_mm;
615d6e87
DB
1548 /* per-thread vma caching */
1549 u32 vmacache_seqnum;
1550 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1551#if defined(SPLIT_RSS_COUNTING)
1552 struct task_rss_stat rss_stat;
1553#endif
1da177e4 1554/* task state */
97dc32cd 1555 int exit_state;
1da177e4
LT
1556 int exit_code, exit_signal;
1557 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1558 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1559
1560 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1561 unsigned int personality;
9b89f6ba 1562
be958bdc 1563 /* scheduler bits, serialized by scheduler locks */
ca94c442 1564 unsigned sched_reset_on_fork:1;
a8e4f2ea 1565 unsigned sched_contributes_to_load:1;
ff303e66 1566 unsigned sched_migrated:1;
b7e7ade3 1567 unsigned sched_remote_wakeup:1;
be958bdc
PZ
1568 unsigned :0; /* force alignment to the next boundary */
1569
1570 /* unserialized, strictly 'current' */
1571 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1572 unsigned in_iowait:1;
7e781418
AL
1573#if !defined(TIF_RESTORE_SIGMASK)
1574 unsigned restore_sigmask:1;
1575#endif
626ebc41
TH
1576#ifdef CONFIG_MEMCG
1577 unsigned memcg_may_oom:1;
127424c8 1578#ifndef CONFIG_SLOB
6f185c29
VD
1579 unsigned memcg_kmem_skip_account:1;
1580#endif
127424c8 1581#endif
ff303e66
PZ
1582#ifdef CONFIG_COMPAT_BRK
1583 unsigned brk_randomized:1;
1584#endif
6f185c29 1585
1d4457f9
KC
1586 unsigned long atomic_flags; /* Flags needing atomic access. */
1587
f56141e3
AL
1588 struct restart_block restart_block;
1589
1da177e4
LT
1590 pid_t pid;
1591 pid_t tgid;
0a425405 1592
1314562a 1593#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1594 /* Canary value for the -fstack-protector gcc feature */
1595 unsigned long stack_canary;
1314562a 1596#endif
4d1d61a6 1597 /*
1da177e4 1598 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1599 * older sibling, respectively. (p->father can be replaced with
f470021a 1600 * p->real_parent->pid)
1da177e4 1601 */
abd63bc3
KC
1602 struct task_struct __rcu *real_parent; /* real parent process */
1603 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1604 /*
f470021a 1605 * children/sibling forms the list of my natural children
1da177e4
LT
1606 */
1607 struct list_head children; /* list of my children */
1608 struct list_head sibling; /* linkage in my parent's children list */
1609 struct task_struct *group_leader; /* threadgroup leader */
1610
f470021a
RM
1611 /*
1612 * ptraced is the list of tasks this task is using ptrace on.
1613 * This includes both natural children and PTRACE_ATTACH targets.
1614 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1615 */
1616 struct list_head ptraced;
1617 struct list_head ptrace_entry;
1618
1da177e4 1619 /* PID/PID hash table linkage. */
92476d7f 1620 struct pid_link pids[PIDTYPE_MAX];
47e65328 1621 struct list_head thread_group;
0c740d0a 1622 struct list_head thread_node;
1da177e4
LT
1623
1624 struct completion *vfork_done; /* for vfork() */
1625 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1626 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1627
c66f08be 1628 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1629 cputime_t gtime;
9d7fb042 1630 struct prev_cputime prev_cputime;
6a61671b 1631#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1632 seqcount_t vtime_seqcount;
6a61671b
FW
1633 unsigned long long vtime_snap;
1634 enum {
7098c1ea
FW
1635 /* Task is sleeping or running in a CPU with VTIME inactive */
1636 VTIME_INACTIVE = 0,
1637 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1638 VTIME_USER,
7098c1ea 1639 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1640 VTIME_SYS,
1641 } vtime_snap_whence;
d99ca3b9 1642#endif
d027d45d
FW
1643
1644#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1645 atomic_t tick_dep_mask;
d027d45d 1646#endif
1da177e4 1647 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1648 u64 start_time; /* monotonic time in nsec */
57e0be04 1649 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1650/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1651 unsigned long min_flt, maj_flt;
1652
f06febc9 1653 struct task_cputime cputime_expires;
1da177e4
LT
1654 struct list_head cpu_timers[3];
1655
1656/* process credentials */
1b0ba1c9 1657 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1658 * credentials (COW) */
1b0ba1c9 1659 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1660 * credentials (COW) */
36772092
PBG
1661 char comm[TASK_COMM_LEN]; /* executable name excluding path
1662 - access with [gs]et_task_comm (which lock
1663 it with task_lock())
221af7f8 1664 - initialized normally by setup_new_exec */
1da177e4 1665/* file system info */
756daf26 1666 struct nameidata *nameidata;
3d5b6fcc 1667#ifdef CONFIG_SYSVIPC
1da177e4
LT
1668/* ipc stuff */
1669 struct sysv_sem sysvsem;
ab602f79 1670 struct sysv_shm sysvshm;
3d5b6fcc 1671#endif
e162b39a 1672#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1673/* hung task detection */
82a1fcb9
IM
1674 unsigned long last_switch_count;
1675#endif
1da177e4
LT
1676/* filesystem information */
1677 struct fs_struct *fs;
1678/* open file information */
1679 struct files_struct *files;
1651e14e 1680/* namespaces */
ab516013 1681 struct nsproxy *nsproxy;
1da177e4
LT
1682/* signal handlers */
1683 struct signal_struct *signal;
1684 struct sighand_struct *sighand;
1685
1686 sigset_t blocked, real_blocked;
f3de272b 1687 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1688 struct sigpending pending;
1689
1690 unsigned long sas_ss_sp;
1691 size_t sas_ss_size;
2a742138 1692 unsigned sas_ss_flags;
2e01fabe 1693
67d12145 1694 struct callback_head *task_works;
e73f8959 1695
1da177e4 1696 struct audit_context *audit_context;
bfef93a5 1697#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1698 kuid_t loginuid;
4746ec5b 1699 unsigned int sessionid;
bfef93a5 1700#endif
932ecebb 1701 struct seccomp seccomp;
1da177e4
LT
1702
1703/* Thread group tracking */
1704 u32 parent_exec_id;
1705 u32 self_exec_id;
58568d2a
MX
1706/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1707 * mempolicy */
1da177e4 1708 spinlock_t alloc_lock;
1da177e4 1709
b29739f9 1710 /* Protection of the PI data structures: */
1d615482 1711 raw_spinlock_t pi_lock;
b29739f9 1712
76751049
PZ
1713 struct wake_q_node wake_q;
1714
23f78d4a
IM
1715#ifdef CONFIG_RT_MUTEXES
1716 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1717 struct rb_root pi_waiters;
1718 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1719 /* Deadlock detection and priority inheritance handling */
1720 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1721#endif
1722
408894ee
IM
1723#ifdef CONFIG_DEBUG_MUTEXES
1724 /* mutex deadlock detection */
1725 struct mutex_waiter *blocked_on;
1726#endif
de30a2b3
IM
1727#ifdef CONFIG_TRACE_IRQFLAGS
1728 unsigned int irq_events;
de30a2b3 1729 unsigned long hardirq_enable_ip;
de30a2b3 1730 unsigned long hardirq_disable_ip;
fa1452e8 1731 unsigned int hardirq_enable_event;
de30a2b3 1732 unsigned int hardirq_disable_event;
fa1452e8
HS
1733 int hardirqs_enabled;
1734 int hardirq_context;
de30a2b3 1735 unsigned long softirq_disable_ip;
de30a2b3 1736 unsigned long softirq_enable_ip;
fa1452e8 1737 unsigned int softirq_disable_event;
de30a2b3 1738 unsigned int softirq_enable_event;
fa1452e8 1739 int softirqs_enabled;
de30a2b3
IM
1740 int softirq_context;
1741#endif
fbb9ce95 1742#ifdef CONFIG_LOCKDEP
bdb9441e 1743# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1744 u64 curr_chain_key;
1745 int lockdep_depth;
fbb9ce95 1746 unsigned int lockdep_recursion;
c7aceaba 1747 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1748 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1749#endif
c6d30853
AR
1750#ifdef CONFIG_UBSAN
1751 unsigned int in_ubsan;
1752#endif
408894ee 1753
1da177e4
LT
1754/* journalling filesystem info */
1755 void *journal_info;
1756
d89d8796 1757/* stacked block device info */
bddd87c7 1758 struct bio_list *bio_list;
d89d8796 1759
73c10101
JA
1760#ifdef CONFIG_BLOCK
1761/* stack plugging */
1762 struct blk_plug *plug;
1763#endif
1764
1da177e4
LT
1765/* VM state */
1766 struct reclaim_state *reclaim_state;
1767
1da177e4
LT
1768 struct backing_dev_info *backing_dev_info;
1769
1770 struct io_context *io_context;
1771
1772 unsigned long ptrace_message;
1773 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1774 struct task_io_accounting ioac;
8f0ab514 1775#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1776 u64 acct_rss_mem1; /* accumulated rss usage */
1777 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1778 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1779#endif
1780#ifdef CONFIG_CPUSETS
58568d2a 1781 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1782 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1783 int cpuset_mem_spread_rotor;
6adef3eb 1784 int cpuset_slab_spread_rotor;
1da177e4 1785#endif
ddbcc7e8 1786#ifdef CONFIG_CGROUPS
817929ec 1787 /* Control Group info protected by css_set_lock */
2c392b8c 1788 struct css_set __rcu *cgroups;
817929ec
PM
1789 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1790 struct list_head cg_list;
ddbcc7e8 1791#endif
42b2dd0a 1792#ifdef CONFIG_FUTEX
0771dfef 1793 struct robust_list_head __user *robust_list;
34f192c6
IM
1794#ifdef CONFIG_COMPAT
1795 struct compat_robust_list_head __user *compat_robust_list;
1796#endif
c87e2837
IM
1797 struct list_head pi_state_list;
1798 struct futex_pi_state *pi_state_cache;
c7aceaba 1799#endif
cdd6c482 1800#ifdef CONFIG_PERF_EVENTS
8dc85d54 1801 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1802 struct mutex perf_event_mutex;
1803 struct list_head perf_event_list;
a63eaf34 1804#endif
8f47b187
TG
1805#ifdef CONFIG_DEBUG_PREEMPT
1806 unsigned long preempt_disable_ip;
1807#endif
c7aceaba 1808#ifdef CONFIG_NUMA
58568d2a 1809 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1810 short il_next;
207205a2 1811 short pref_node_fork;
42b2dd0a 1812#endif
cbee9f88
PZ
1813#ifdef CONFIG_NUMA_BALANCING
1814 int numa_scan_seq;
cbee9f88 1815 unsigned int numa_scan_period;
598f0ec0 1816 unsigned int numa_scan_period_max;
de1c9ce6 1817 int numa_preferred_nid;
6b9a7460 1818 unsigned long numa_migrate_retry;
cbee9f88 1819 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1820 u64 last_task_numa_placement;
1821 u64 last_sum_exec_runtime;
cbee9f88 1822 struct callback_head numa_work;
f809ca9a 1823
8c8a743c
PZ
1824 struct list_head numa_entry;
1825 struct numa_group *numa_group;
1826
745d6147 1827 /*
44dba3d5
IM
1828 * numa_faults is an array split into four regions:
1829 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1830 * in this precise order.
1831 *
1832 * faults_memory: Exponential decaying average of faults on a per-node
1833 * basis. Scheduling placement decisions are made based on these
1834 * counts. The values remain static for the duration of a PTE scan.
1835 * faults_cpu: Track the nodes the process was running on when a NUMA
1836 * hinting fault was incurred.
1837 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1838 * during the current scan window. When the scan completes, the counts
1839 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1840 */
44dba3d5 1841 unsigned long *numa_faults;
83e1d2cd 1842 unsigned long total_numa_faults;
745d6147 1843
04bb2f94
RR
1844 /*
1845 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1846 * scan window were remote/local or failed to migrate. The task scan
1847 * period is adapted based on the locality of the faults with different
1848 * weights depending on whether they were shared or private faults
04bb2f94 1849 */
074c2381 1850 unsigned long numa_faults_locality[3];
04bb2f94 1851
b32e86b4 1852 unsigned long numa_pages_migrated;
cbee9f88
PZ
1853#endif /* CONFIG_NUMA_BALANCING */
1854
72b252ae
MG
1855#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1856 struct tlbflush_unmap_batch tlb_ubc;
1857#endif
1858
e56d0903 1859 struct rcu_head rcu;
b92ce558
JA
1860
1861 /*
1862 * cache last used pipe for splice
1863 */
1864 struct pipe_inode_info *splice_pipe;
5640f768
ED
1865
1866 struct page_frag task_frag;
1867
ca74e92b
SN
1868#ifdef CONFIG_TASK_DELAY_ACCT
1869 struct task_delay_info *delays;
f4f154fd
AM
1870#endif
1871#ifdef CONFIG_FAULT_INJECTION
1872 int make_it_fail;
ca74e92b 1873#endif
9d823e8f
WF
1874 /*
1875 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1876 * balance_dirty_pages() for some dirty throttling pause
1877 */
1878 int nr_dirtied;
1879 int nr_dirtied_pause;
83712358 1880 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1881
9745512c
AV
1882#ifdef CONFIG_LATENCYTOP
1883 int latency_record_count;
1884 struct latency_record latency_record[LT_SAVECOUNT];
1885#endif
6976675d
AV
1886 /*
1887 * time slack values; these are used to round up poll() and
1888 * select() etc timeout values. These are in nanoseconds.
1889 */
da8b44d5
JS
1890 u64 timer_slack_ns;
1891 u64 default_timer_slack_ns;
f8d570a4 1892
0b24becc
AR
1893#ifdef CONFIG_KASAN
1894 unsigned int kasan_depth;
1895#endif
fb52607a 1896#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1897 /* Index of current stored address in ret_stack */
f201ae23
FW
1898 int curr_ret_stack;
1899 /* Stack of return addresses for return function tracing */
1900 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1901 /* time stamp for last schedule */
1902 unsigned long long ftrace_timestamp;
f201ae23
FW
1903 /*
1904 * Number of functions that haven't been traced
1905 * because of depth overrun.
1906 */
1907 atomic_t trace_overrun;
380c4b14
FW
1908 /* Pause for the tracing */
1909 atomic_t tracing_graph_pause;
f201ae23 1910#endif
ea4e2bc4
SR
1911#ifdef CONFIG_TRACING
1912 /* state flags for use by tracers */
1913 unsigned long trace;
b1cff0ad 1914 /* bitmask and counter of trace recursion */
261842b7
SR
1915 unsigned long trace_recursion;
1916#endif /* CONFIG_TRACING */
5c9a8750
DV
1917#ifdef CONFIG_KCOV
1918 /* Coverage collection mode enabled for this task (0 if disabled). */
1919 enum kcov_mode kcov_mode;
1920 /* Size of the kcov_area. */
1921 unsigned kcov_size;
1922 /* Buffer for coverage collection. */
1923 void *kcov_area;
1924 /* kcov desciptor wired with this task or NULL. */
1925 struct kcov *kcov;
1926#endif
6f185c29 1927#ifdef CONFIG_MEMCG
626ebc41
TH
1928 struct mem_cgroup *memcg_in_oom;
1929 gfp_t memcg_oom_gfp_mask;
1930 int memcg_oom_order;
b23afb93
TH
1931
1932 /* number of pages to reclaim on returning to userland */
1933 unsigned int memcg_nr_pages_over_high;
569b846d 1934#endif
0326f5a9
SD
1935#ifdef CONFIG_UPROBES
1936 struct uprobe_task *utask;
0326f5a9 1937#endif
cafe5635
KO
1938#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1939 unsigned int sequential_io;
1940 unsigned int sequential_io_avg;
1941#endif
8eb23b9f
PZ
1942#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1943 unsigned long task_state_change;
1944#endif
8bcbde54 1945 int pagefault_disabled;
03049269 1946#ifdef CONFIG_MMU
29c696e1 1947 struct task_struct *oom_reaper_list;
03049269 1948#endif
ba14a194
AL
1949#ifdef CONFIG_VMAP_STACK
1950 struct vm_struct *stack_vm_area;
1951#endif
68f24b08
AL
1952#ifdef CONFIG_THREAD_INFO_IN_TASK
1953 /* A live task holds one reference. */
1954 atomic_t stack_refcount;
1955#endif
0c8c0f03
DH
1956/* CPU-specific state of this task */
1957 struct thread_struct thread;
1958/*
1959 * WARNING: on x86, 'thread_struct' contains a variable-sized
1960 * structure. It *MUST* be at the end of 'task_struct'.
1961 *
1962 * Do not put anything below here!
1963 */
1da177e4
LT
1964};
1965
5aaeb5c0
IM
1966#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1967extern int arch_task_struct_size __read_mostly;
1968#else
1969# define arch_task_struct_size (sizeof(struct task_struct))
1970#endif
0c8c0f03 1971
ba14a194
AL
1972#ifdef CONFIG_VMAP_STACK
1973static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1974{
1975 return t->stack_vm_area;
1976}
1977#else
1978static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1979{
1980 return NULL;
1981}
1982#endif
1983
76e6eee0 1984/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1985#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1986
50605ffb
TG
1987static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1988{
1989 return p->nr_cpus_allowed;
1990}
1991
6688cc05
PZ
1992#define TNF_MIGRATED 0x01
1993#define TNF_NO_GROUP 0x02
dabe1d99 1994#define TNF_SHARED 0x04
04bb2f94 1995#define TNF_FAULT_LOCAL 0x08
074c2381 1996#define TNF_MIGRATE_FAIL 0x10
6688cc05 1997
b18dc5f2
MH
1998static inline bool in_vfork(struct task_struct *tsk)
1999{
2000 bool ret;
2001
2002 /*
2003 * need RCU to access ->real_parent if CLONE_VM was used along with
2004 * CLONE_PARENT.
2005 *
2006 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2007 * imply CLONE_VM
2008 *
2009 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2010 * ->real_parent is not necessarily the task doing vfork(), so in
2011 * theory we can't rely on task_lock() if we want to dereference it.
2012 *
2013 * And in this case we can't trust the real_parent->mm == tsk->mm
2014 * check, it can be false negative. But we do not care, if init or
2015 * another oom-unkillable task does this it should blame itself.
2016 */
2017 rcu_read_lock();
2018 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2019 rcu_read_unlock();
2020
2021 return ret;
2022}
2023
cbee9f88 2024#ifdef CONFIG_NUMA_BALANCING
6688cc05 2025extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 2026extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 2027extern void set_numabalancing_state(bool enabled);
82727018 2028extern void task_numa_free(struct task_struct *p);
10f39042
RR
2029extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2030 int src_nid, int dst_cpu);
cbee9f88 2031#else
ac8e895b 2032static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 2033 int flags)
cbee9f88
PZ
2034{
2035}
e29cf08b
MG
2036static inline pid_t task_numa_group_id(struct task_struct *p)
2037{
2038 return 0;
2039}
1a687c2e
MG
2040static inline void set_numabalancing_state(bool enabled)
2041{
2042}
82727018
RR
2043static inline void task_numa_free(struct task_struct *p)
2044{
2045}
10f39042
RR
2046static inline bool should_numa_migrate_memory(struct task_struct *p,
2047 struct page *page, int src_nid, int dst_cpu)
2048{
2049 return true;
2050}
cbee9f88
PZ
2051#endif
2052
e868171a 2053static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
2054{
2055 return task->pids[PIDTYPE_PID].pid;
2056}
2057
e868171a 2058static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
2059{
2060 return task->group_leader->pids[PIDTYPE_PID].pid;
2061}
2062
6dda81f4
ON
2063/*
2064 * Without tasklist or rcu lock it is not safe to dereference
2065 * the result of task_pgrp/task_session even if task == current,
2066 * we can race with another thread doing sys_setsid/sys_setpgid.
2067 */
e868171a 2068static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
2069{
2070 return task->group_leader->pids[PIDTYPE_PGID].pid;
2071}
2072
e868171a 2073static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
2074{
2075 return task->group_leader->pids[PIDTYPE_SID].pid;
2076}
2077
7af57294
PE
2078struct pid_namespace;
2079
2080/*
2081 * the helpers to get the task's different pids as they are seen
2082 * from various namespaces
2083 *
2084 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2085 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2086 * current.
7af57294
PE
2087 * task_xid_nr_ns() : id seen from the ns specified;
2088 *
2089 * set_task_vxid() : assigns a virtual id to a task;
2090 *
7af57294
PE
2091 * see also pid_nr() etc in include/linux/pid.h
2092 */
52ee2dfd
ON
2093pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2094 struct pid_namespace *ns);
7af57294 2095
e868171a 2096static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2097{
2098 return tsk->pid;
2099}
2100
52ee2dfd
ON
2101static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2102 struct pid_namespace *ns)
2103{
2104 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2105}
7af57294
PE
2106
2107static inline pid_t task_pid_vnr(struct task_struct *tsk)
2108{
52ee2dfd 2109 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2110}
2111
2112
e868171a 2113static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2114{
2115 return tsk->tgid;
2116}
2117
2f2a3a46 2118pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2119
2120static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2121{
2122 return pid_vnr(task_tgid(tsk));
2123}
2124
2125
80e0b6e8 2126static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2127static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2128{
2129 pid_t pid = 0;
2130
2131 rcu_read_lock();
2132 if (pid_alive(tsk))
2133 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2134 rcu_read_unlock();
2135
2136 return pid;
2137}
2138
2139static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2140{
2141 return task_ppid_nr_ns(tsk, &init_pid_ns);
2142}
2143
52ee2dfd
ON
2144static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2145 struct pid_namespace *ns)
7af57294 2146{
52ee2dfd 2147 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2148}
2149
7af57294
PE
2150static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2151{
52ee2dfd 2152 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2153}
2154
2155
52ee2dfd
ON
2156static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2157 struct pid_namespace *ns)
7af57294 2158{
52ee2dfd 2159 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2160}
2161
7af57294
PE
2162static inline pid_t task_session_vnr(struct task_struct *tsk)
2163{
52ee2dfd 2164 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2165}
2166
1b0f7ffd
ON
2167/* obsolete, do not use */
2168static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2169{
2170 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2171}
7af57294 2172
1da177e4
LT
2173/**
2174 * pid_alive - check that a task structure is not stale
2175 * @p: Task structure to be checked.
2176 *
2177 * Test if a process is not yet dead (at most zombie state)
2178 * If pid_alive fails, then pointers within the task structure
2179 * can be stale and must not be dereferenced.
e69f6186
YB
2180 *
2181 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2182 */
ad36d282 2183static inline int pid_alive(const struct task_struct *p)
1da177e4 2184{
92476d7f 2185 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2186}
2187
f400e198 2188/**
570f5241
SS
2189 * is_global_init - check if a task structure is init. Since init
2190 * is free to have sub-threads we need to check tgid.
3260259f
HK
2191 * @tsk: Task structure to be checked.
2192 *
2193 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2194 *
2195 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2196 */
e868171a 2197static inline int is_global_init(struct task_struct *tsk)
b461cc03 2198{
570f5241 2199 return task_tgid_nr(tsk) == 1;
b461cc03 2200}
b460cbc5 2201
9ec52099
CLG
2202extern struct pid *cad_pid;
2203
1da177e4 2204extern void free_task(struct task_struct *tsk);
1da177e4 2205#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2206
158d9ebd 2207extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2208
2209static inline void put_task_struct(struct task_struct *t)
2210{
2211 if (atomic_dec_and_test(&t->usage))
8c7904a0 2212 __put_task_struct(t);
e56d0903 2213}
1da177e4 2214
150593bf
ON
2215struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2216struct task_struct *try_get_task_struct(struct task_struct **ptask);
2217
6a61671b
FW
2218#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2219extern void task_cputime(struct task_struct *t,
2220 cputime_t *utime, cputime_t *stime);
2221extern void task_cputime_scaled(struct task_struct *t,
2222 cputime_t *utimescaled, cputime_t *stimescaled);
2223extern cputime_t task_gtime(struct task_struct *t);
2224#else
6fac4829
FW
2225static inline void task_cputime(struct task_struct *t,
2226 cputime_t *utime, cputime_t *stime)
2227{
2228 if (utime)
2229 *utime = t->utime;
2230 if (stime)
2231 *stime = t->stime;
2232}
2233
2234static inline void task_cputime_scaled(struct task_struct *t,
2235 cputime_t *utimescaled,
2236 cputime_t *stimescaled)
2237{
2238 if (utimescaled)
2239 *utimescaled = t->utimescaled;
2240 if (stimescaled)
2241 *stimescaled = t->stimescaled;
2242}
6a61671b
FW
2243
2244static inline cputime_t task_gtime(struct task_struct *t)
2245{
2246 return t->gtime;
2247}
2248#endif
e80d0a1a
FW
2249extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2250extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2251
1da177e4
LT
2252/*
2253 * Per process flags
2254 */
1da177e4 2255#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2256#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2257#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2258#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2259#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2260#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2261#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2262#define PF_DUMPCORE 0x00000200 /* dumped core */
2263#define PF_SIGNALED 0x00000400 /* killed by a signal */
2264#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2265#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2266#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2267#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2268#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2269#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2270#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2271#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2272#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2273#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2274#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2275#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2276#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2277#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2278#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2279#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2280#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2281#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2282
2283/*
2284 * Only the _current_ task can read/write to tsk->flags, but other
2285 * tasks can access tsk->flags in readonly mode for example
2286 * with tsk_used_math (like during threaded core dumping).
2287 * There is however an exception to this rule during ptrace
2288 * or during fork: the ptracer task is allowed to write to the
2289 * child->flags of its traced child (same goes for fork, the parent
2290 * can write to the child->flags), because we're guaranteed the
2291 * child is not running and in turn not changing child->flags
2292 * at the same time the parent does it.
2293 */
2294#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2295#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2296#define clear_used_math() clear_stopped_child_used_math(current)
2297#define set_used_math() set_stopped_child_used_math(current)
2298#define conditional_stopped_child_used_math(condition, child) \
2299 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2300#define conditional_used_math(condition) \
2301 conditional_stopped_child_used_math(condition, current)
2302#define copy_to_stopped_child_used_math(child) \
2303 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2304/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2305#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2306#define used_math() tsk_used_math(current)
2307
934f3072
JB
2308/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2309 * __GFP_FS is also cleared as it implies __GFP_IO.
2310 */
21caf2fc
ML
2311static inline gfp_t memalloc_noio_flags(gfp_t flags)
2312{
2313 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2314 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2315 return flags;
2316}
2317
2318static inline unsigned int memalloc_noio_save(void)
2319{
2320 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2321 current->flags |= PF_MEMALLOC_NOIO;
2322 return flags;
2323}
2324
2325static inline void memalloc_noio_restore(unsigned int flags)
2326{
2327 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2328}
2329
1d4457f9 2330/* Per-process atomic flags. */
a2b86f77 2331#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2332#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2333#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
77ed2c57 2334#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2ad654bc 2335
1d4457f9 2336
e0e5070b
ZL
2337#define TASK_PFA_TEST(name, func) \
2338 static inline bool task_##func(struct task_struct *p) \
2339 { return test_bit(PFA_##name, &p->atomic_flags); }
2340#define TASK_PFA_SET(name, func) \
2341 static inline void task_set_##func(struct task_struct *p) \
2342 { set_bit(PFA_##name, &p->atomic_flags); }
2343#define TASK_PFA_CLEAR(name, func) \
2344 static inline void task_clear_##func(struct task_struct *p) \
2345 { clear_bit(PFA_##name, &p->atomic_flags); }
2346
2347TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2348TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2349
2ad654bc
ZL
2350TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2351TASK_PFA_SET(SPREAD_PAGE, spread_page)
2352TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2353
2354TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2355TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2356TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2357
77ed2c57
TH
2358TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2359TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2360
e5c1902e 2361/*
a8f072c1 2362 * task->jobctl flags
e5c1902e 2363 */
a8f072c1 2364#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2365
a8f072c1
TH
2366#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2367#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2368#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2369#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2370#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2371#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2372#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2373
b76808e6
PD
2374#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2375#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2376#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2377#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2378#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2379#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2380#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2381
fb1d910c 2382#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2383#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2384
7dd3db54 2385extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2386 unsigned long mask);
73ddff2b 2387extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2388extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2389 unsigned long mask);
39efa3ef 2390
f41d911f
PM
2391static inline void rcu_copy_process(struct task_struct *p)
2392{
8315f422 2393#ifdef CONFIG_PREEMPT_RCU
f41d911f 2394 p->rcu_read_lock_nesting = 0;
1d082fd0 2395 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2396 p->rcu_blocked_node = NULL;
f41d911f 2397 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2398#endif /* #ifdef CONFIG_PREEMPT_RCU */
2399#ifdef CONFIG_TASKS_RCU
2400 p->rcu_tasks_holdout = false;
2401 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2402 p->rcu_tasks_idle_cpu = -1;
8315f422 2403#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2404}
2405
907aed48
MG
2406static inline void tsk_restore_flags(struct task_struct *task,
2407 unsigned long orig_flags, unsigned long flags)
2408{
2409 task->flags &= ~flags;
2410 task->flags |= orig_flags & flags;
2411}
2412
f82f8042
JL
2413extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2414 const struct cpumask *trial);
7f51412a
JL
2415extern int task_can_attach(struct task_struct *p,
2416 const struct cpumask *cs_cpus_allowed);
1da177e4 2417#ifdef CONFIG_SMP
1e1b6c51
KM
2418extern void do_set_cpus_allowed(struct task_struct *p,
2419 const struct cpumask *new_mask);
2420
cd8ba7cd 2421extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2422 const struct cpumask *new_mask);
1da177e4 2423#else
1e1b6c51
KM
2424static inline void do_set_cpus_allowed(struct task_struct *p,
2425 const struct cpumask *new_mask)
2426{
2427}
cd8ba7cd 2428static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2429 const struct cpumask *new_mask)
1da177e4 2430{
96f874e2 2431 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2432 return -EINVAL;
2433 return 0;
2434}
2435#endif
e0ad9556 2436
3451d024 2437#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2438void calc_load_enter_idle(void);
2439void calc_load_exit_idle(void);
2440#else
2441static inline void calc_load_enter_idle(void) { }
2442static inline void calc_load_exit_idle(void) { }
3451d024 2443#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2444
b342501c 2445/*
c676329a
PZ
2446 * Do not use outside of architecture code which knows its limitations.
2447 *
2448 * sched_clock() has no promise of monotonicity or bounded drift between
2449 * CPUs, use (which you should not) requires disabling IRQs.
2450 *
2451 * Please use one of the three interfaces below.
b342501c 2452 */
1bbfa6f2 2453extern unsigned long long notrace sched_clock(void);
c676329a 2454/*
489a71b0 2455 * See the comment in kernel/sched/clock.c
c676329a 2456 */
545a2bf7 2457extern u64 running_clock(void);
c676329a
PZ
2458extern u64 sched_clock_cpu(int cpu);
2459
e436d800 2460
c1955a3d 2461extern void sched_clock_init(void);
3e51f33f 2462
c1955a3d 2463#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2464static inline void sched_clock_tick(void)
2465{
2466}
2467
2468static inline void sched_clock_idle_sleep_event(void)
2469{
2470}
2471
2472static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2473{
2474}
2c923e94
DL
2475
2476static inline u64 cpu_clock(int cpu)
2477{
2478 return sched_clock();
2479}
2480
2481static inline u64 local_clock(void)
2482{
2483 return sched_clock();
2484}
3e51f33f 2485#else
c676329a
PZ
2486/*
2487 * Architectures can set this to 1 if they have specified
2488 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2489 * but then during bootup it turns out that sched_clock()
2490 * is reliable after all:
2491 */
35af99e6
PZ
2492extern int sched_clock_stable(void);
2493extern void set_sched_clock_stable(void);
2494extern void clear_sched_clock_stable(void);
c676329a 2495
3e51f33f
PZ
2496extern void sched_clock_tick(void);
2497extern void sched_clock_idle_sleep_event(void);
2498extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2499
2500/*
2501 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2502 * time source that is monotonic per cpu argument and has bounded drift
2503 * between cpus.
2504 *
2505 * ######################### BIG FAT WARNING ##########################
2506 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2507 * # go backwards !! #
2508 * ####################################################################
2509 */
2510static inline u64 cpu_clock(int cpu)
2511{
2512 return sched_clock_cpu(cpu);
2513}
2514
2515static inline u64 local_clock(void)
2516{
2517 return sched_clock_cpu(raw_smp_processor_id());
2518}
3e51f33f
PZ
2519#endif
2520
b52bfee4
VP
2521#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2522/*
2523 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2524 * The reason for this explicit opt-in is not to have perf penalty with
2525 * slow sched_clocks.
2526 */
2527extern void enable_sched_clock_irqtime(void);
2528extern void disable_sched_clock_irqtime(void);
2529#else
2530static inline void enable_sched_clock_irqtime(void) {}
2531static inline void disable_sched_clock_irqtime(void) {}
2532#endif
2533
36c8b586 2534extern unsigned long long
41b86e9c 2535task_sched_runtime(struct task_struct *task);
1da177e4
LT
2536
2537/* sched_exec is called by processes performing an exec */
2538#ifdef CONFIG_SMP
2539extern void sched_exec(void);
2540#else
2541#define sched_exec() {}
2542#endif
2543
2aa44d05
IM
2544extern void sched_clock_idle_sleep_event(void);
2545extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2546
1da177e4
LT
2547#ifdef CONFIG_HOTPLUG_CPU
2548extern void idle_task_exit(void);
2549#else
2550static inline void idle_task_exit(void) {}
2551#endif
2552
3451d024 2553#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2554extern void wake_up_nohz_cpu(int cpu);
06d8308c 2555#else
1c20091e 2556static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2557#endif
2558
ce831b38 2559#ifdef CONFIG_NO_HZ_FULL
265f22a9 2560extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2561#endif
2562
5091faa4 2563#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2564extern void sched_autogroup_create_attach(struct task_struct *p);
2565extern void sched_autogroup_detach(struct task_struct *p);
2566extern void sched_autogroup_fork(struct signal_struct *sig);
2567extern void sched_autogroup_exit(struct signal_struct *sig);
2568#ifdef CONFIG_PROC_FS
2569extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2570extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2571#endif
2572#else
2573static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2574static inline void sched_autogroup_detach(struct task_struct *p) { }
2575static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2576static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2577#endif
2578
fa93384f 2579extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2580extern void set_user_nice(struct task_struct *p, long nice);
2581extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2582/**
2583 * task_nice - return the nice value of a given task.
2584 * @p: the task in question.
2585 *
2586 * Return: The nice value [ -20 ... 0 ... 19 ].
2587 */
2588static inline int task_nice(const struct task_struct *p)
2589{
2590 return PRIO_TO_NICE((p)->static_prio);
2591}
36c8b586
IM
2592extern int can_nice(const struct task_struct *p, const int nice);
2593extern int task_curr(const struct task_struct *p);
1da177e4 2594extern int idle_cpu(int cpu);
fe7de49f
KM
2595extern int sched_setscheduler(struct task_struct *, int,
2596 const struct sched_param *);
961ccddd 2597extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2598 const struct sched_param *);
d50dde5a
DF
2599extern int sched_setattr(struct task_struct *,
2600 const struct sched_attr *);
36c8b586 2601extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2602/**
2603 * is_idle_task - is the specified task an idle task?
fa757281 2604 * @p: the task in question.
e69f6186
YB
2605 *
2606 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2607 */
7061ca3b 2608static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2609{
2610 return p->pid == 0;
2611}
36c8b586 2612extern struct task_struct *curr_task(int cpu);
a458ae2e 2613extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2614
2615void yield(void);
2616
1da177e4 2617union thread_union {
c65eacbe 2618#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 2619 struct thread_info thread_info;
c65eacbe 2620#endif
1da177e4
LT
2621 unsigned long stack[THREAD_SIZE/sizeof(long)];
2622};
2623
2624#ifndef __HAVE_ARCH_KSTACK_END
2625static inline int kstack_end(void *addr)
2626{
2627 /* Reliable end of stack detection:
2628 * Some APM bios versions misalign the stack
2629 */
2630 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2631}
2632#endif
2633
2634extern union thread_union init_thread_union;
2635extern struct task_struct init_task;
2636
2637extern struct mm_struct init_mm;
2638
198fe21b
PE
2639extern struct pid_namespace init_pid_ns;
2640
2641/*
2642 * find a task by one of its numerical ids
2643 *
198fe21b
PE
2644 * find_task_by_pid_ns():
2645 * finds a task by its pid in the specified namespace
228ebcbe
PE
2646 * find_task_by_vpid():
2647 * finds a task by its virtual pid
198fe21b 2648 *
e49859e7 2649 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2650 */
2651
228ebcbe
PE
2652extern struct task_struct *find_task_by_vpid(pid_t nr);
2653extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2654 struct pid_namespace *ns);
198fe21b 2655
1da177e4 2656/* per-UID process charging. */
7b44ab97 2657extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2658static inline struct user_struct *get_uid(struct user_struct *u)
2659{
2660 atomic_inc(&u->__count);
2661 return u;
2662}
2663extern void free_uid(struct user_struct *);
1da177e4
LT
2664
2665#include <asm/current.h>
2666
f0af911a 2667extern void xtime_update(unsigned long ticks);
1da177e4 2668
b3c97528
HH
2669extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2670extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2671extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2672#ifdef CONFIG_SMP
2673 extern void kick_process(struct task_struct *tsk);
2674#else
2675 static inline void kick_process(struct task_struct *tsk) { }
2676#endif
aab03e05 2677extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2678extern void sched_dead(struct task_struct *p);
1da177e4 2679
1da177e4
LT
2680extern void proc_caches_init(void);
2681extern void flush_signals(struct task_struct *);
10ab825b 2682extern void ignore_signals(struct task_struct *);
1da177e4
LT
2683extern void flush_signal_handlers(struct task_struct *, int force_default);
2684extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2685
be0e6f29 2686static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2687{
be0e6f29
ON
2688 struct task_struct *tsk = current;
2689 siginfo_t __info;
1da177e4
LT
2690 int ret;
2691
be0e6f29
ON
2692 spin_lock_irq(&tsk->sighand->siglock);
2693 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2694 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2695
2696 return ret;
53c8f9f1 2697}
1da177e4 2698
9a13049e
ON
2699static inline void kernel_signal_stop(void)
2700{
2701 spin_lock_irq(&current->sighand->siglock);
2702 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2703 __set_current_state(TASK_STOPPED);
2704 spin_unlock_irq(&current->sighand->siglock);
2705
2706 schedule();
2707}
2708
1da177e4
LT
2709extern void release_task(struct task_struct * p);
2710extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2711extern int force_sigsegv(int, struct task_struct *);
2712extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2713extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2714extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2715extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2716 const struct cred *, u32);
c4b92fc1
EB
2717extern int kill_pgrp(struct pid *pid, int sig, int priv);
2718extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2719extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2720extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2721extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2722extern void force_sig(int, struct task_struct *);
1da177e4 2723extern int send_sig(int, struct task_struct *, int);
09faef11 2724extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2725extern struct sigqueue *sigqueue_alloc(void);
2726extern void sigqueue_free(struct sigqueue *);
ac5c2153 2727extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2728extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2729
7e781418
AL
2730#ifdef TIF_RESTORE_SIGMASK
2731/*
2732 * Legacy restore_sigmask accessors. These are inefficient on
2733 * SMP architectures because they require atomic operations.
2734 */
2735
2736/**
2737 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2738 *
2739 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2740 * will run before returning to user mode, to process the flag. For
2741 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2742 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2743 * arch code will notice on return to user mode, in case those bits
2744 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2745 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2746 */
2747static inline void set_restore_sigmask(void)
2748{
2749 set_thread_flag(TIF_RESTORE_SIGMASK);
2750 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2751}
2752static inline void clear_restore_sigmask(void)
2753{
2754 clear_thread_flag(TIF_RESTORE_SIGMASK);
2755}
2756static inline bool test_restore_sigmask(void)
2757{
2758 return test_thread_flag(TIF_RESTORE_SIGMASK);
2759}
2760static inline bool test_and_clear_restore_sigmask(void)
2761{
2762 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2763}
2764
2765#else /* TIF_RESTORE_SIGMASK */
2766
2767/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2768static inline void set_restore_sigmask(void)
2769{
2770 current->restore_sigmask = true;
2771 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2772}
2773static inline void clear_restore_sigmask(void)
2774{
2775 current->restore_sigmask = false;
2776}
2777static inline bool test_restore_sigmask(void)
2778{
2779 return current->restore_sigmask;
2780}
2781static inline bool test_and_clear_restore_sigmask(void)
2782{
2783 if (!current->restore_sigmask)
2784 return false;
2785 current->restore_sigmask = false;
2786 return true;
2787}
2788#endif
2789
51a7b448
AV
2790static inline void restore_saved_sigmask(void)
2791{
2792 if (test_and_clear_restore_sigmask())
77097ae5 2793 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2794}
2795
b7f9a11a
AV
2796static inline sigset_t *sigmask_to_save(void)
2797{
2798 sigset_t *res = &current->blocked;
2799 if (unlikely(test_restore_sigmask()))
2800 res = &current->saved_sigmask;
2801 return res;
2802}
2803
9ec52099
CLG
2804static inline int kill_cad_pid(int sig, int priv)
2805{
2806 return kill_pid(cad_pid, sig, priv);
2807}
2808
1da177e4
LT
2809/* These can be the second arg to send_sig_info/send_group_sig_info. */
2810#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2811#define SEND_SIG_PRIV ((struct siginfo *) 1)
2812#define SEND_SIG_FORCED ((struct siginfo *) 2)
2813
2a855dd0
SAS
2814/*
2815 * True if we are on the alternate signal stack.
2816 */
1da177e4
LT
2817static inline int on_sig_stack(unsigned long sp)
2818{
c876eeab
AL
2819 /*
2820 * If the signal stack is SS_AUTODISARM then, by construction, we
2821 * can't be on the signal stack unless user code deliberately set
2822 * SS_AUTODISARM when we were already on it.
2823 *
2824 * This improves reliability: if user state gets corrupted such that
2825 * the stack pointer points very close to the end of the signal stack,
2826 * then this check will enable the signal to be handled anyway.
2827 */
2828 if (current->sas_ss_flags & SS_AUTODISARM)
2829 return 0;
2830
2a855dd0
SAS
2831#ifdef CONFIG_STACK_GROWSUP
2832 return sp >= current->sas_ss_sp &&
2833 sp - current->sas_ss_sp < current->sas_ss_size;
2834#else
2835 return sp > current->sas_ss_sp &&
2836 sp - current->sas_ss_sp <= current->sas_ss_size;
2837#endif
1da177e4
LT
2838}
2839
2840static inline int sas_ss_flags(unsigned long sp)
2841{
72f15c03
RW
2842 if (!current->sas_ss_size)
2843 return SS_DISABLE;
2844
2845 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2846}
2847
2a742138
SS
2848static inline void sas_ss_reset(struct task_struct *p)
2849{
2850 p->sas_ss_sp = 0;
2851 p->sas_ss_size = 0;
2852 p->sas_ss_flags = SS_DISABLE;
2853}
2854
5a1b98d3
AV
2855static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2856{
2857 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2858#ifdef CONFIG_STACK_GROWSUP
2859 return current->sas_ss_sp;
2860#else
2861 return current->sas_ss_sp + current->sas_ss_size;
2862#endif
2863 return sp;
2864}
2865
1da177e4
LT
2866/*
2867 * Routines for handling mm_structs
2868 */
2869extern struct mm_struct * mm_alloc(void);
2870
2871/* mmdrop drops the mm and the page tables */
b3c97528 2872extern void __mmdrop(struct mm_struct *);
d2005e3f 2873static inline void mmdrop(struct mm_struct *mm)
1da177e4 2874{
6fb43d7b 2875 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2876 __mmdrop(mm);
2877}
2878
7283094e
MH
2879static inline void mmdrop_async_fn(struct work_struct *work)
2880{
2881 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2882 __mmdrop(mm);
2883}
2884
2885static inline void mmdrop_async(struct mm_struct *mm)
2886{
2887 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2888 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2889 schedule_work(&mm->async_put_work);
2890 }
2891}
2892
d2005e3f
ON
2893static inline bool mmget_not_zero(struct mm_struct *mm)
2894{
2895 return atomic_inc_not_zero(&mm->mm_users);
2896}
2897
1da177e4
LT
2898/* mmput gets rid of the mappings and all user-space */
2899extern void mmput(struct mm_struct *);
7ef949d7
MH
2900#ifdef CONFIG_MMU
2901/* same as above but performs the slow path from the async context. Can
ec8d7c14
MH
2902 * be called from the atomic context as well
2903 */
2904extern void mmput_async(struct mm_struct *);
7ef949d7 2905#endif
ec8d7c14 2906
1da177e4
LT
2907/* Grab a reference to a task's mm, if it is not already going away */
2908extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2909/*
2910 * Grab a reference to a task's mm, if it is not already going away
2911 * and ptrace_may_access with the mode parameter passed to it
2912 * succeeds.
2913 */
2914extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2915/* Remove the current tasks stale references to the old mm_struct */
2916extern void mm_release(struct task_struct *, struct mm_struct *);
2917
3033f14a
JT
2918#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2919extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2920 struct task_struct *, unsigned long);
2921#else
6f2c55b8 2922extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2923 struct task_struct *);
3033f14a
JT
2924
2925/* Architectures that haven't opted into copy_thread_tls get the tls argument
2926 * via pt_regs, so ignore the tls argument passed via C. */
2927static inline int copy_thread_tls(
2928 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2929 struct task_struct *p, unsigned long tls)
2930{
2931 return copy_thread(clone_flags, sp, arg, p);
2932}
2933#endif
1da177e4 2934extern void flush_thread(void);
5f56a5df
JS
2935
2936#ifdef CONFIG_HAVE_EXIT_THREAD
e6464694 2937extern void exit_thread(struct task_struct *tsk);
5f56a5df 2938#else
e6464694 2939static inline void exit_thread(struct task_struct *tsk)
5f56a5df
JS
2940{
2941}
2942#endif
1da177e4 2943
1da177e4 2944extern void exit_files(struct task_struct *);
a7e5328a 2945extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2946
1da177e4 2947extern void exit_itimers(struct signal_struct *);
cbaffba1 2948extern void flush_itimer_signals(void);
1da177e4 2949
9402c95f 2950extern void do_group_exit(int);
1da177e4 2951
c4ad8f98 2952extern int do_execve(struct filename *,
d7627467 2953 const char __user * const __user *,
da3d4c5f 2954 const char __user * const __user *);
51f39a1f
DD
2955extern int do_execveat(int, struct filename *,
2956 const char __user * const __user *,
2957 const char __user * const __user *,
2958 int);
3033f14a 2959extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2960extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2961struct task_struct *fork_idle(int);
2aa3a7f8 2962extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2963
82b89778
AH
2964extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2965static inline void set_task_comm(struct task_struct *tsk, const char *from)
2966{
2967 __set_task_comm(tsk, from, false);
2968}
59714d65 2969extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2970
2971#ifdef CONFIG_SMP
317f3941 2972void scheduler_ipi(void);
85ba2d86 2973extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2974#else
184748cc 2975static inline void scheduler_ipi(void) { }
85ba2d86
RM
2976static inline unsigned long wait_task_inactive(struct task_struct *p,
2977 long match_state)
2978{
2979 return 1;
2980}
1da177e4
LT
2981#endif
2982
fafe870f
FW
2983#define tasklist_empty() \
2984 list_empty(&init_task.tasks)
2985
05725f7e
JP
2986#define next_task(p) \
2987 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2988
2989#define for_each_process(p) \
2990 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2991
5bb459bb 2992extern bool current_is_single_threaded(void);
d84f4f99 2993
1da177e4
LT
2994/*
2995 * Careful: do_each_thread/while_each_thread is a double loop so
2996 * 'break' will not work as expected - use goto instead.
2997 */
2998#define do_each_thread(g, t) \
2999 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3000
3001#define while_each_thread(g, t) \
3002 while ((t = next_thread(t)) != g)
3003
0c740d0a
ON
3004#define __for_each_thread(signal, t) \
3005 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3006
3007#define for_each_thread(p, t) \
3008 __for_each_thread((p)->signal, t)
3009
3010/* Careful: this is a double loop, 'break' won't work as expected. */
3011#define for_each_process_thread(p, t) \
3012 for_each_process(p) for_each_thread(p, t)
3013
7e49827c
ON
3014static inline int get_nr_threads(struct task_struct *tsk)
3015{
b3ac022c 3016 return tsk->signal->nr_threads;
7e49827c
ON
3017}
3018
087806b1
ON
3019static inline bool thread_group_leader(struct task_struct *p)
3020{
3021 return p->exit_signal >= 0;
3022}
1da177e4 3023
0804ef4b
EB
3024/* Do to the insanities of de_thread it is possible for a process
3025 * to have the pid of the thread group leader without actually being
3026 * the thread group leader. For iteration through the pids in proc
3027 * all we care about is that we have a task with the appropriate
3028 * pid, we don't actually care if we have the right task.
3029 */
e1403b8e 3030static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 3031{
e1403b8e 3032 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
3033}
3034
bac0abd6 3035static inline
e1403b8e 3036bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 3037{
e1403b8e 3038 return p1->signal == p2->signal;
bac0abd6
PE
3039}
3040
36c8b586 3041static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 3042{
05725f7e
JP
3043 return list_entry_rcu(p->thread_group.next,
3044 struct task_struct, thread_group);
47e65328
ON
3045}
3046
e868171a 3047static inline int thread_group_empty(struct task_struct *p)
1da177e4 3048{
47e65328 3049 return list_empty(&p->thread_group);
1da177e4
LT
3050}
3051
3052#define delay_group_leader(p) \
3053 (thread_group_leader(p) && !thread_group_empty(p))
3054
1da177e4 3055/*
260ea101 3056 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 3057 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 3058 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 3059 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
3060 *
3061 * Nests both inside and outside of read_lock(&tasklist_lock).
3062 * It must not be nested with write_lock_irq(&tasklist_lock),
3063 * neither inside nor outside.
3064 */
3065static inline void task_lock(struct task_struct *p)
3066{
3067 spin_lock(&p->alloc_lock);
3068}
3069
3070static inline void task_unlock(struct task_struct *p)
3071{
3072 spin_unlock(&p->alloc_lock);
3073}
3074
b8ed374e 3075extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
3076 unsigned long *flags);
3077
9388dc30
AV
3078static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3079 unsigned long *flags)
3080{
3081 struct sighand_struct *ret;
3082
3083 ret = __lock_task_sighand(tsk, flags);
3084 (void)__cond_lock(&tsk->sighand->siglock, ret);
3085 return ret;
3086}
b8ed374e 3087
f63ee72e
ON
3088static inline void unlock_task_sighand(struct task_struct *tsk,
3089 unsigned long *flags)
3090{
3091 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3092}
3093
77e4ef99 3094/**
7d7efec3
TH
3095 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3096 * @tsk: task causing the changes
77e4ef99 3097 *
7d7efec3
TH
3098 * All operations which modify a threadgroup - a new thread joining the
3099 * group, death of a member thread (the assertion of PF_EXITING) and
3100 * exec(2) dethreading the process and replacing the leader - are wrapped
3101 * by threadgroup_change_{begin|end}(). This is to provide a place which
3102 * subsystems needing threadgroup stability can hook into for
3103 * synchronization.
77e4ef99 3104 */
7d7efec3 3105static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 3106{
7d7efec3
TH
3107 might_sleep();
3108 cgroup_threadgroup_change_begin(tsk);
4714d1d3 3109}
77e4ef99
TH
3110
3111/**
7d7efec3
TH
3112 * threadgroup_change_end - mark the end of changes to a threadgroup
3113 * @tsk: task causing the changes
77e4ef99 3114 *
7d7efec3 3115 * See threadgroup_change_begin().
77e4ef99 3116 */
7d7efec3 3117static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 3118{
7d7efec3 3119 cgroup_threadgroup_change_end(tsk);
4714d1d3 3120}
4714d1d3 3121
c65eacbe
AL
3122#ifdef CONFIG_THREAD_INFO_IN_TASK
3123
3124static inline struct thread_info *task_thread_info(struct task_struct *task)
3125{
3126 return &task->thread_info;
3127}
c6c314a6
AL
3128
3129/*
3130 * When accessing the stack of a non-current task that might exit, use
3131 * try_get_task_stack() instead. task_stack_page will return a pointer
3132 * that could get freed out from under you.
3133 */
c65eacbe
AL
3134static inline void *task_stack_page(const struct task_struct *task)
3135{
3136 return task->stack;
3137}
c6c314a6 3138
c65eacbe 3139#define setup_thread_stack(new,old) do { } while(0)
c6c314a6 3140
c65eacbe
AL
3141static inline unsigned long *end_of_stack(const struct task_struct *task)
3142{
3143 return task->stack;
3144}
3145
3146#elif !defined(__HAVE_THREAD_FUNCTIONS)
f037360f 3147
f7e4217b 3148#define task_thread_info(task) ((struct thread_info *)(task)->stack)
c65eacbe 3149#define task_stack_page(task) ((void *)(task)->stack)
a1261f54 3150
10ebffde
AV
3151static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3152{
3153 *task_thread_info(p) = *task_thread_info(org);
3154 task_thread_info(p)->task = p;
3155}
3156
6a40281a
CE
3157/*
3158 * Return the address of the last usable long on the stack.
3159 *
3160 * When the stack grows down, this is just above the thread
3161 * info struct. Going any lower will corrupt the threadinfo.
3162 *
3163 * When the stack grows up, this is the highest address.
3164 * Beyond that position, we corrupt data on the next page.
3165 */
10ebffde
AV
3166static inline unsigned long *end_of_stack(struct task_struct *p)
3167{
6a40281a
CE
3168#ifdef CONFIG_STACK_GROWSUP
3169 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3170#else
f7e4217b 3171 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 3172#endif
10ebffde
AV
3173}
3174
f037360f 3175#endif
c6c314a6 3176
68f24b08
AL
3177#ifdef CONFIG_THREAD_INFO_IN_TASK
3178static inline void *try_get_task_stack(struct task_struct *tsk)
3179{
3180 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3181 task_stack_page(tsk) : NULL;
3182}
3183
3184extern void put_task_stack(struct task_struct *tsk);
3185#else
c6c314a6
AL
3186static inline void *try_get_task_stack(struct task_struct *tsk)
3187{
3188 return task_stack_page(tsk);
3189}
3190
3191static inline void put_task_stack(struct task_struct *tsk) {}
68f24b08 3192#endif
c6c314a6 3193
a70857e4
AT
3194#define task_stack_end_corrupted(task) \
3195 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 3196
8b05c7e6
FT
3197static inline int object_is_on_stack(void *obj)
3198{
3199 void *stack = task_stack_page(current);
3200
3201 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3202}
3203
b235beea 3204extern void thread_stack_cache_init(void);
8c9843e5 3205
7c9f8861
ES
3206#ifdef CONFIG_DEBUG_STACK_USAGE
3207static inline unsigned long stack_not_used(struct task_struct *p)
3208{
3209 unsigned long *n = end_of_stack(p);
3210
3211 do { /* Skip over canary */
6c31da34
HD
3212# ifdef CONFIG_STACK_GROWSUP
3213 n--;
3214# else
7c9f8861 3215 n++;
6c31da34 3216# endif
7c9f8861
ES
3217 } while (!*n);
3218
6c31da34
HD
3219# ifdef CONFIG_STACK_GROWSUP
3220 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3221# else
7c9f8861 3222 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 3223# endif
7c9f8861
ES
3224}
3225#endif
d4311ff1 3226extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3227
1da177e4
LT
3228/* set thread flags in other task's structures
3229 * - see asm/thread_info.h for TIF_xxxx flags available
3230 */
3231static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3232{
a1261f54 3233 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3234}
3235
3236static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3237{
a1261f54 3238 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3239}
3240
3241static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3242{
a1261f54 3243 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3244}
3245
3246static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3247{
a1261f54 3248 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3249}
3250
3251static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3252{
a1261f54 3253 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3254}
3255
3256static inline void set_tsk_need_resched(struct task_struct *tsk)
3257{
3258 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3259}
3260
3261static inline void clear_tsk_need_resched(struct task_struct *tsk)
3262{
3263 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3264}
3265
8ae121ac
GH
3266static inline int test_tsk_need_resched(struct task_struct *tsk)
3267{
3268 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3269}
3270
690cc3ff
EB
3271static inline int restart_syscall(void)
3272{
3273 set_tsk_thread_flag(current, TIF_SIGPENDING);
3274 return -ERESTARTNOINTR;
3275}
3276
1da177e4
LT
3277static inline int signal_pending(struct task_struct *p)
3278{
3279 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3280}
f776d12d 3281
d9588725
RM
3282static inline int __fatal_signal_pending(struct task_struct *p)
3283{
3284 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3285}
f776d12d
MW
3286
3287static inline int fatal_signal_pending(struct task_struct *p)
3288{
3289 return signal_pending(p) && __fatal_signal_pending(p);
3290}
3291
16882c1e
ON
3292static inline int signal_pending_state(long state, struct task_struct *p)
3293{
3294 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3295 return 0;
3296 if (!signal_pending(p))
3297 return 0;
3298
16882c1e
ON
3299 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3300}
3301
1da177e4
LT
3302/*
3303 * cond_resched() and cond_resched_lock(): latency reduction via
3304 * explicit rescheduling in places that are safe. The return
3305 * value indicates whether a reschedule was done in fact.
3306 * cond_resched_lock() will drop the spinlock before scheduling,
3307 * cond_resched_softirq() will enable bhs before scheduling.
3308 */
35a773a0 3309#ifndef CONFIG_PREEMPT
c3921ab7 3310extern int _cond_resched(void);
35a773a0
PZ
3311#else
3312static inline int _cond_resched(void) { return 0; }
3313#endif
6f80bd98 3314
613afbf8 3315#define cond_resched() ({ \
3427445a 3316 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3317 _cond_resched(); \
3318})
6f80bd98 3319
613afbf8
FW
3320extern int __cond_resched_lock(spinlock_t *lock);
3321
3322#define cond_resched_lock(lock) ({ \
3427445a 3323 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3324 __cond_resched_lock(lock); \
3325})
3326
3327extern int __cond_resched_softirq(void);
3328
75e1056f 3329#define cond_resched_softirq() ({ \
3427445a 3330 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3331 __cond_resched_softirq(); \
613afbf8 3332})
1da177e4 3333
f6f3c437
SH
3334static inline void cond_resched_rcu(void)
3335{
3336#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3337 rcu_read_unlock();
3338 cond_resched();
3339 rcu_read_lock();
3340#endif
3341}
3342
d1c6d149
VN
3343static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3344{
3345#ifdef CONFIG_DEBUG_PREEMPT
3346 return p->preempt_disable_ip;
3347#else
3348 return 0;
3349#endif
3350}
3351
1da177e4
LT
3352/*
3353 * Does a critical section need to be broken due to another
95c354fe
NP
3354 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3355 * but a general need for low latency)
1da177e4 3356 */
95c354fe 3357static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3358{
95c354fe
NP
3359#ifdef CONFIG_PREEMPT
3360 return spin_is_contended(lock);
3361#else
1da177e4 3362 return 0;
95c354fe 3363#endif
1da177e4
LT
3364}
3365
ee761f62
TG
3366/*
3367 * Idle thread specific functions to determine the need_resched
69dd0f84 3368 * polling state.
ee761f62 3369 */
69dd0f84 3370#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3371static inline int tsk_is_polling(struct task_struct *p)
3372{
3373 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3374}
ea811747
PZ
3375
3376static inline void __current_set_polling(void)
3a98f871
TG
3377{
3378 set_thread_flag(TIF_POLLING_NRFLAG);
3379}
3380
ea811747
PZ
3381static inline bool __must_check current_set_polling_and_test(void)
3382{
3383 __current_set_polling();
3384
3385 /*
3386 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3387 * paired by resched_curr()
ea811747 3388 */
4e857c58 3389 smp_mb__after_atomic();
ea811747
PZ
3390
3391 return unlikely(tif_need_resched());
3392}
3393
3394static inline void __current_clr_polling(void)
3a98f871
TG
3395{
3396 clear_thread_flag(TIF_POLLING_NRFLAG);
3397}
ea811747
PZ
3398
3399static inline bool __must_check current_clr_polling_and_test(void)
3400{
3401 __current_clr_polling();
3402
3403 /*
3404 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3405 * paired by resched_curr()
ea811747 3406 */
4e857c58 3407 smp_mb__after_atomic();
ea811747
PZ
3408
3409 return unlikely(tif_need_resched());
3410}
3411
ee761f62
TG
3412#else
3413static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3414static inline void __current_set_polling(void) { }
3415static inline void __current_clr_polling(void) { }
3416
3417static inline bool __must_check current_set_polling_and_test(void)
3418{
3419 return unlikely(tif_need_resched());
3420}
3421static inline bool __must_check current_clr_polling_and_test(void)
3422{
3423 return unlikely(tif_need_resched());
3424}
ee761f62
TG
3425#endif
3426
8cb75e0c
PZ
3427static inline void current_clr_polling(void)
3428{
3429 __current_clr_polling();
3430
3431 /*
3432 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3433 * Once the bit is cleared, we'll get IPIs with every new
3434 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3435 * fold.
3436 */
8875125e 3437 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3438
3439 preempt_fold_need_resched();
3440}
3441
75f93fed
PZ
3442static __always_inline bool need_resched(void)
3443{
3444 return unlikely(tif_need_resched());
3445}
3446
f06febc9
FM
3447/*
3448 * Thread group CPU time accounting.
3449 */
4cd4c1b4 3450void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3451void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3452
7bb44ade
RM
3453/*
3454 * Reevaluate whether the task has signals pending delivery.
3455 * Wake the task if so.
3456 * This is required every time the blocked sigset_t changes.
3457 * callers must hold sighand->siglock.
3458 */
3459extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3460extern void recalc_sigpending(void);
3461
910ffdb1
ON
3462extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3463
3464static inline void signal_wake_up(struct task_struct *t, bool resume)
3465{
3466 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3467}
3468static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3469{
3470 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3471}
1da177e4
LT
3472
3473/*
3474 * Wrappers for p->thread_info->cpu access. No-op on UP.
3475 */
3476#ifdef CONFIG_SMP
3477
3478static inline unsigned int task_cpu(const struct task_struct *p)
3479{
c65eacbe
AL
3480#ifdef CONFIG_THREAD_INFO_IN_TASK
3481 return p->cpu;
3482#else
a1261f54 3483 return task_thread_info(p)->cpu;
c65eacbe 3484#endif
1da177e4
LT
3485}
3486
b32e86b4
IM
3487static inline int task_node(const struct task_struct *p)
3488{
3489 return cpu_to_node(task_cpu(p));
3490}
3491
c65cc870 3492extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3493
3494#else
3495
3496static inline unsigned int task_cpu(const struct task_struct *p)
3497{
3498 return 0;
3499}
3500
3501static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3502{
3503}
3504
3505#endif /* CONFIG_SMP */
3506
96f874e2
RR
3507extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3508extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3509
7c941438 3510#ifdef CONFIG_CGROUP_SCHED
07e06b01 3511extern struct task_group root_task_group;
8323f26c 3512#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3513
54e99124
DG
3514extern int task_can_switch_user(struct user_struct *up,
3515 struct task_struct *tsk);
3516
4b98d11b
AD
3517#ifdef CONFIG_TASK_XACCT
3518static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3519{
940389b8 3520 tsk->ioac.rchar += amt;
4b98d11b
AD
3521}
3522
3523static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3524{
940389b8 3525 tsk->ioac.wchar += amt;
4b98d11b
AD
3526}
3527
3528static inline void inc_syscr(struct task_struct *tsk)
3529{
940389b8 3530 tsk->ioac.syscr++;
4b98d11b
AD
3531}
3532
3533static inline void inc_syscw(struct task_struct *tsk)
3534{
940389b8 3535 tsk->ioac.syscw++;
4b98d11b
AD
3536}
3537#else
3538static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3539{
3540}
3541
3542static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3543{
3544}
3545
3546static inline void inc_syscr(struct task_struct *tsk)
3547{
3548}
3549
3550static inline void inc_syscw(struct task_struct *tsk)
3551{
3552}
3553#endif
3554
82455257
DH
3555#ifndef TASK_SIZE_OF
3556#define TASK_SIZE_OF(tsk) TASK_SIZE
3557#endif
3558
f98bafa0 3559#ifdef CONFIG_MEMCG
cf475ad2 3560extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3561#else
3562static inline void mm_update_next_owner(struct mm_struct *mm)
3563{
3564}
f98bafa0 3565#endif /* CONFIG_MEMCG */
cf475ad2 3566
3e10e716
JS
3567static inline unsigned long task_rlimit(const struct task_struct *tsk,
3568 unsigned int limit)
3569{
316c1608 3570 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3571}
3572
3573static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3574 unsigned int limit)
3575{
316c1608 3576 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3577}
3578
3579static inline unsigned long rlimit(unsigned int limit)
3580{
3581 return task_rlimit(current, limit);
3582}
3583
3584static inline unsigned long rlimit_max(unsigned int limit)
3585{
3586 return task_rlimit_max(current, limit);
3587}
3588
58919e83
RW
3589#define SCHED_CPUFREQ_RT (1U << 0)
3590#define SCHED_CPUFREQ_DL (1U << 1)
8c34ab19 3591#define SCHED_CPUFREQ_IOWAIT (1U << 2)
58919e83
RW
3592
3593#define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3594
adaf9fcd
RW
3595#ifdef CONFIG_CPU_FREQ
3596struct update_util_data {
58919e83 3597 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
adaf9fcd
RW
3598};
3599
0bed612b 3600void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
58919e83
RW
3601 void (*func)(struct update_util_data *data, u64 time,
3602 unsigned int flags));
0bed612b 3603void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3604#endif /* CONFIG_CPU_FREQ */
3605
1da177e4 3606#endif