]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/linux/sched.h
kernel/crash_core.c: print timestamp using time64_t
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
a3b6714e 24#include <linux/resource.h>
9745512c 25#include <linux/latencytop.h>
5eca1c10
IM
26#include <linux/sched/prio.h>
27#include <linux/signal_types.h>
28#include <linux/mm_types_task.h>
29#include <linux/task_io_accounting.h>
d7822b1e 30#include <linux/rseq.h>
a3b6714e 31
5eca1c10 32/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 33struct audit_context;
c7af7877 34struct backing_dev_info;
bddd87c7 35struct bio_list;
73c10101 36struct blk_plug;
c7af7877 37struct cfs_rq;
c7af7877
IM
38struct fs_struct;
39struct futex_pi_state;
40struct io_context;
41struct mempolicy;
89076bc3 42struct nameidata;
c7af7877
IM
43struct nsproxy;
44struct perf_event_context;
45struct pid_namespace;
46struct pipe_inode_info;
47struct rcu_node;
48struct reclaim_state;
49struct robust_list_head;
50struct sched_attr;
51struct sched_param;
43ae34cb 52struct seq_file;
c7af7877
IM
53struct sighand_struct;
54struct signal_struct;
55struct task_delay_info;
4cf86d77 56struct task_group;
1da177e4 57
4a8342d2
LT
58/*
59 * Task state bitmask. NOTE! These bits are also
60 * encoded in fs/proc/array.c: get_task_state().
61 *
62 * We have two separate sets of flags: task->state
63 * is about runnability, while task->exit_state are
64 * about the task exiting. Confusing, but this way
65 * modifying one set can't modify the other one by
66 * mistake.
67 */
5eca1c10
IM
68
69/* Used in tsk->state: */
92c4bc9f
PZ
70#define TASK_RUNNING 0x0000
71#define TASK_INTERRUPTIBLE 0x0001
72#define TASK_UNINTERRUPTIBLE 0x0002
73#define __TASK_STOPPED 0x0004
74#define __TASK_TRACED 0x0008
5eca1c10 75/* Used in tsk->exit_state: */
92c4bc9f
PZ
76#define EXIT_DEAD 0x0010
77#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
78#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
79/* Used in tsk->state again: */
8ef9925b
PZ
80#define TASK_PARKED 0x0040
81#define TASK_DEAD 0x0080
82#define TASK_WAKEKILL 0x0100
83#define TASK_WAKING 0x0200
92c4bc9f
PZ
84#define TASK_NOLOAD 0x0400
85#define TASK_NEW 0x0800
86#define TASK_STATE_MAX 0x1000
5eca1c10 87
5eca1c10
IM
88/* Convenience macros for the sake of set_current_state: */
89#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
91#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
92
93#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94
95/* Convenience macros for the sake of wake_up(): */
96#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
97
98/* get_task_state(): */
99#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
5eca1c10
IM
103
104#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
1da177e4 113
8eb23b9f
PZ
114#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
b5bf9a90
PZ
116/*
117 * Special states are those that do not use the normal wait-loop pattern. See
118 * the comment with set_special_state().
119 */
120#define is_special_task_state(state) \
1cef1150 121 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 122
8eb23b9f
PZ
123#define __set_current_state(state_value) \
124 do { \
b5bf9a90 125 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
126 current->task_state_change = _THIS_IP_; \
127 current->state = (state_value); \
128 } while (0)
b5bf9a90 129
8eb23b9f
PZ
130#define set_current_state(state_value) \
131 do { \
b5bf9a90 132 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 133 current->task_state_change = _THIS_IP_; \
a2250238 134 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
135 } while (0)
136
b5bf9a90
PZ
137#define set_special_state(state_value) \
138 do { \
139 unsigned long flags; /* may shadow */ \
140 WARN_ON_ONCE(!is_special_task_state(state_value)); \
141 raw_spin_lock_irqsave(&current->pi_lock, flags); \
142 current->task_state_change = _THIS_IP_; \
143 current->state = (state_value); \
144 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
145 } while (0)
8eb23b9f 146#else
498d0c57
AM
147/*
148 * set_current_state() includes a barrier so that the write of current->state
149 * is correctly serialised wrt the caller's subsequent test of whether to
150 * actually sleep:
151 *
a2250238 152 * for (;;) {
498d0c57 153 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
154 * if (!need_sleep)
155 * break;
156 *
157 * schedule();
158 * }
159 * __set_current_state(TASK_RUNNING);
160 *
161 * If the caller does not need such serialisation (because, for instance, the
162 * condition test and condition change and wakeup are under the same lock) then
163 * use __set_current_state().
164 *
165 * The above is typically ordered against the wakeup, which does:
166 *
b5bf9a90
PZ
167 * need_sleep = false;
168 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 169 *
7696f991
AP
170 * where wake_up_state() executes a full memory barrier before accessing the
171 * task state.
a2250238
PZ
172 *
173 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
174 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
175 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 176 *
b5bf9a90
PZ
177 * However, with slightly different timing the wakeup TASK_RUNNING store can
178 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
179 * a problem either because that will result in one extra go around the loop
180 * and our @cond test will save the day.
498d0c57 181 *
a2250238 182 * Also see the comments of try_to_wake_up().
498d0c57 183 */
b5bf9a90
PZ
184#define __set_current_state(state_value) \
185 current->state = (state_value)
186
187#define set_current_state(state_value) \
188 smp_store_mb(current->state, (state_value))
189
190/*
191 * set_special_state() should be used for those states when the blocking task
192 * can not use the regular condition based wait-loop. In that case we must
193 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
194 * will not collide with our state change.
195 */
196#define set_special_state(state_value) \
197 do { \
198 unsigned long flags; /* may shadow */ \
199 raw_spin_lock_irqsave(&current->pi_lock, flags); \
200 current->state = (state_value); \
201 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
202 } while (0)
203
8eb23b9f
PZ
204#endif
205
5eca1c10
IM
206/* Task command name length: */
207#define TASK_COMM_LEN 16
1da177e4 208
1da177e4
LT
209extern void scheduler_tick(void);
210
5eca1c10
IM
211#define MAX_SCHEDULE_TIMEOUT LONG_MAX
212
213extern long schedule_timeout(long timeout);
214extern long schedule_timeout_interruptible(long timeout);
215extern long schedule_timeout_killable(long timeout);
216extern long schedule_timeout_uninterruptible(long timeout);
217extern long schedule_timeout_idle(long timeout);
1da177e4 218asmlinkage void schedule(void);
c5491ea7 219extern void schedule_preempt_disabled(void);
1da177e4 220
10ab5643
TH
221extern int __must_check io_schedule_prepare(void);
222extern void io_schedule_finish(int token);
9cff8ade 223extern long io_schedule_timeout(long timeout);
10ab5643 224extern void io_schedule(void);
9cff8ade 225
d37f761d 226/**
0ba42a59 227 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
228 * @utime: time spent in user mode
229 * @stime: time spent in system mode
9d7fb042 230 * @lock: protects the above two fields
d37f761d 231 *
9d7fb042
PZ
232 * Stores previous user/system time values such that we can guarantee
233 * monotonicity.
d37f761d 234 */
9d7fb042
PZ
235struct prev_cputime {
236#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
237 u64 utime;
238 u64 stime;
239 raw_spinlock_t lock;
9d7fb042 240#endif
d37f761d
FW
241};
242
f06febc9
FM
243/**
244 * struct task_cputime - collected CPU time counts
5613fda9
FW
245 * @utime: time spent in user mode, in nanoseconds
246 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 247 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 248 *
9d7fb042
PZ
249 * This structure groups together three kinds of CPU time that are tracked for
250 * threads and thread groups. Most things considering CPU time want to group
251 * these counts together and treat all three of them in parallel.
f06febc9
FM
252 */
253struct task_cputime {
5eca1c10
IM
254 u64 utime;
255 u64 stime;
256 unsigned long long sum_exec_runtime;
f06febc9 257};
9d7fb042 258
5eca1c10
IM
259/* Alternate field names when used on cache expirations: */
260#define virt_exp utime
261#define prof_exp stime
262#define sched_exp sum_exec_runtime
f06febc9 263
bac5b6b6
FW
264enum vtime_state {
265 /* Task is sleeping or running in a CPU with VTIME inactive: */
266 VTIME_INACTIVE = 0,
267 /* Task runs in userspace in a CPU with VTIME active: */
268 VTIME_USER,
269 /* Task runs in kernelspace in a CPU with VTIME active: */
270 VTIME_SYS,
271};
272
273struct vtime {
274 seqcount_t seqcount;
275 unsigned long long starttime;
276 enum vtime_state state;
2a42eb95
WL
277 u64 utime;
278 u64 stime;
279 u64 gtime;
bac5b6b6
FW
280};
281
1da177e4 282struct sched_info {
7f5f8e8d 283#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
284 /* Cumulative counters: */
285
286 /* # of times we have run on this CPU: */
287 unsigned long pcount;
288
289 /* Time spent waiting on a runqueue: */
290 unsigned long long run_delay;
291
292 /* Timestamps: */
293
294 /* When did we last run on a CPU? */
295 unsigned long long last_arrival;
296
297 /* When were we last queued to run? */
298 unsigned long long last_queued;
1da177e4 299
f6db8347 300#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 301};
1da177e4 302
6ecdd749
YD
303/*
304 * Integer metrics need fixed point arithmetic, e.g., sched/fair
305 * has a few: load, load_avg, util_avg, freq, and capacity.
306 *
307 * We define a basic fixed point arithmetic range, and then formalize
308 * all these metrics based on that basic range.
309 */
5eca1c10
IM
310# define SCHED_FIXEDPOINT_SHIFT 10
311# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 312
20b8a59f 313struct load_weight {
5eca1c10
IM
314 unsigned long weight;
315 u32 inv_weight;
20b8a59f
IM
316};
317
7f65ea42
PB
318/**
319 * struct util_est - Estimation utilization of FAIR tasks
320 * @enqueued: instantaneous estimated utilization of a task/cpu
321 * @ewma: the Exponential Weighted Moving Average (EWMA)
322 * utilization of a task
323 *
324 * Support data structure to track an Exponential Weighted Moving Average
325 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
326 * average each time a task completes an activation. Sample's weight is chosen
327 * so that the EWMA will be relatively insensitive to transient changes to the
328 * task's workload.
329 *
330 * The enqueued attribute has a slightly different meaning for tasks and cpus:
331 * - task: the task's util_avg at last task dequeue time
332 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
333 * Thus, the util_est.enqueued of a task represents the contribution on the
334 * estimated utilization of the CPU where that task is currently enqueued.
335 *
336 * Only for tasks we track a moving average of the past instantaneous
337 * estimated utilization. This allows to absorb sporadic drops in utilization
338 * of an otherwise almost periodic task.
339 */
340struct util_est {
341 unsigned int enqueued;
342 unsigned int ewma;
343#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 344} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 345
9d89c257 346/*
7b595334
YD
347 * The load_avg/util_avg accumulates an infinite geometric series
348 * (see __update_load_avg() in kernel/sched/fair.c).
349 *
350 * [load_avg definition]
351 *
352 * load_avg = runnable% * scale_load_down(load)
353 *
354 * where runnable% is the time ratio that a sched_entity is runnable.
355 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 356 * blocked sched_entities.
7b595334
YD
357 *
358 * load_avg may also take frequency scaling into account:
359 *
360 * load_avg = runnable% * scale_load_down(load) * freq%
361 *
362 * where freq% is the CPU frequency normalized to the highest frequency.
363 *
364 * [util_avg definition]
365 *
366 * util_avg = running% * SCHED_CAPACITY_SCALE
367 *
368 * where running% is the time ratio that a sched_entity is running on
369 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
370 * and blocked sched_entities.
371 *
372 * util_avg may also factor frequency scaling and CPU capacity scaling:
373 *
374 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
375 *
376 * where freq% is the same as above, and capacity% is the CPU capacity
377 * normalized to the greatest capacity (due to uarch differences, etc).
378 *
379 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
380 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
381 * we therefore scale them to as large a range as necessary. This is for
382 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
383 *
384 * [Overflow issue]
385 *
386 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
387 * with the highest load (=88761), always runnable on a single cfs_rq,
388 * and should not overflow as the number already hits PID_MAX_LIMIT.
389 *
390 * For all other cases (including 32-bit kernels), struct load_weight's
391 * weight will overflow first before we do, because:
392 *
393 * Max(load_avg) <= Max(load.weight)
394 *
395 * Then it is the load_weight's responsibility to consider overflow
396 * issues.
9d89c257 397 */
9d85f21c 398struct sched_avg {
5eca1c10
IM
399 u64 last_update_time;
400 u64 load_sum;
1ea6c46a 401 u64 runnable_load_sum;
5eca1c10
IM
402 u32 util_sum;
403 u32 period_contrib;
404 unsigned long load_avg;
1ea6c46a 405 unsigned long runnable_load_avg;
5eca1c10 406 unsigned long util_avg;
7f65ea42 407 struct util_est util_est;
317d359d 408} ____cacheline_aligned;
9d85f21c 409
41acab88 410struct sched_statistics {
7f5f8e8d 411#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
412 u64 wait_start;
413 u64 wait_max;
414 u64 wait_count;
415 u64 wait_sum;
416 u64 iowait_count;
417 u64 iowait_sum;
418
419 u64 sleep_start;
420 u64 sleep_max;
421 s64 sum_sleep_runtime;
422
423 u64 block_start;
424 u64 block_max;
425 u64 exec_max;
426 u64 slice_max;
427
428 u64 nr_migrations_cold;
429 u64 nr_failed_migrations_affine;
430 u64 nr_failed_migrations_running;
431 u64 nr_failed_migrations_hot;
432 u64 nr_forced_migrations;
433
434 u64 nr_wakeups;
435 u64 nr_wakeups_sync;
436 u64 nr_wakeups_migrate;
437 u64 nr_wakeups_local;
438 u64 nr_wakeups_remote;
439 u64 nr_wakeups_affine;
440 u64 nr_wakeups_affine_attempts;
441 u64 nr_wakeups_passive;
442 u64 nr_wakeups_idle;
41acab88 443#endif
7f5f8e8d 444};
41acab88
LDM
445
446struct sched_entity {
5eca1c10
IM
447 /* For load-balancing: */
448 struct load_weight load;
1ea6c46a 449 unsigned long runnable_weight;
5eca1c10
IM
450 struct rb_node run_node;
451 struct list_head group_node;
452 unsigned int on_rq;
41acab88 453
5eca1c10
IM
454 u64 exec_start;
455 u64 sum_exec_runtime;
456 u64 vruntime;
457 u64 prev_sum_exec_runtime;
41acab88 458
5eca1c10 459 u64 nr_migrations;
41acab88 460
5eca1c10 461 struct sched_statistics statistics;
94c18227 462
20b8a59f 463#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
464 int depth;
465 struct sched_entity *parent;
20b8a59f 466 /* rq on which this entity is (to be) queued: */
5eca1c10 467 struct cfs_rq *cfs_rq;
20b8a59f 468 /* rq "owned" by this entity/group: */
5eca1c10 469 struct cfs_rq *my_q;
20b8a59f 470#endif
8bd75c77 471
141965c7 472#ifdef CONFIG_SMP
5a107804
JO
473 /*
474 * Per entity load average tracking.
475 *
476 * Put into separate cache line so it does not
477 * collide with read-mostly values above.
478 */
317d359d 479 struct sched_avg avg;
9d85f21c 480#endif
20b8a59f 481};
70b97a7f 482
fa717060 483struct sched_rt_entity {
5eca1c10
IM
484 struct list_head run_list;
485 unsigned long timeout;
486 unsigned long watchdog_stamp;
487 unsigned int time_slice;
488 unsigned short on_rq;
489 unsigned short on_list;
490
491 struct sched_rt_entity *back;
052f1dc7 492#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 493 struct sched_rt_entity *parent;
6f505b16 494 /* rq on which this entity is (to be) queued: */
5eca1c10 495 struct rt_rq *rt_rq;
6f505b16 496 /* rq "owned" by this entity/group: */
5eca1c10 497 struct rt_rq *my_q;
6f505b16 498#endif
3859a271 499} __randomize_layout;
fa717060 500
aab03e05 501struct sched_dl_entity {
5eca1c10 502 struct rb_node rb_node;
aab03e05
DF
503
504 /*
505 * Original scheduling parameters. Copied here from sched_attr
4027d080 506 * during sched_setattr(), they will remain the same until
507 * the next sched_setattr().
aab03e05 508 */
5eca1c10
IM
509 u64 dl_runtime; /* Maximum runtime for each instance */
510 u64 dl_deadline; /* Relative deadline of each instance */
511 u64 dl_period; /* Separation of two instances (period) */
54d6d303 512 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 513 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
514
515 /*
516 * Actual scheduling parameters. Initialized with the values above,
517 * they are continously updated during task execution. Note that
518 * the remaining runtime could be < 0 in case we are in overrun.
519 */
5eca1c10
IM
520 s64 runtime; /* Remaining runtime for this instance */
521 u64 deadline; /* Absolute deadline for this instance */
522 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
523
524 /*
525 * Some bool flags:
526 *
527 * @dl_throttled tells if we exhausted the runtime. If so, the
528 * task has to wait for a replenishment to be performed at the
529 * next firing of dl_timer.
530 *
2d3d891d
DF
531 * @dl_boosted tells if we are boosted due to DI. If so we are
532 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
533 * exit the critical section);
534 *
5eca1c10 535 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 536 * all its available runtime during the last job.
209a0cbd
LA
537 *
538 * @dl_non_contending tells if the task is inactive while still
539 * contributing to the active utilization. In other words, it
540 * indicates if the inactive timer has been armed and its handler
541 * has not been executed yet. This flag is useful to avoid race
542 * conditions between the inactive timer handler and the wakeup
543 * code.
34be3930
JL
544 *
545 * @dl_overrun tells if the task asked to be informed about runtime
546 * overruns.
aab03e05 547 */
aa5222e9
DC
548 unsigned int dl_throttled : 1;
549 unsigned int dl_boosted : 1;
550 unsigned int dl_yielded : 1;
551 unsigned int dl_non_contending : 1;
34be3930 552 unsigned int dl_overrun : 1;
aab03e05
DF
553
554 /*
555 * Bandwidth enforcement timer. Each -deadline task has its
556 * own bandwidth to be enforced, thus we need one timer per task.
557 */
5eca1c10 558 struct hrtimer dl_timer;
209a0cbd
LA
559
560 /*
561 * Inactive timer, responsible for decreasing the active utilization
562 * at the "0-lag time". When a -deadline task blocks, it contributes
563 * to GRUB's active utilization until the "0-lag time", hence a
564 * timer is needed to decrease the active utilization at the correct
565 * time.
566 */
567 struct hrtimer inactive_timer;
aab03e05 568};
8bd75c77 569
1d082fd0
PM
570union rcu_special {
571 struct {
5eca1c10
IM
572 u8 blocked;
573 u8 need_qs;
574 u8 exp_need_qs;
575
576 /* Otherwise the compiler can store garbage here: */
577 u8 pad;
8203d6d0
PM
578 } b; /* Bits. */
579 u32 s; /* Set of bits. */
1d082fd0 580};
86848966 581
8dc85d54
PZ
582enum perf_event_task_context {
583 perf_invalid_context = -1,
584 perf_hw_context = 0,
89a1e187 585 perf_sw_context,
8dc85d54
PZ
586 perf_nr_task_contexts,
587};
588
eb61baf6
IM
589struct wake_q_node {
590 struct wake_q_node *next;
591};
592
1da177e4 593struct task_struct {
c65eacbe
AL
594#ifdef CONFIG_THREAD_INFO_IN_TASK
595 /*
596 * For reasons of header soup (see current_thread_info()), this
597 * must be the first element of task_struct.
598 */
5eca1c10 599 struct thread_info thread_info;
c65eacbe 600#endif
5eca1c10
IM
601 /* -1 unrunnable, 0 runnable, >0 stopped: */
602 volatile long state;
29e48ce8
KC
603
604 /*
605 * This begins the randomizable portion of task_struct. Only
606 * scheduling-critical items should be added above here.
607 */
608 randomized_struct_fields_start
609
5eca1c10
IM
610 void *stack;
611 atomic_t usage;
612 /* Per task flags (PF_*), defined further below: */
613 unsigned int flags;
614 unsigned int ptrace;
1da177e4 615
2dd73a4f 616#ifdef CONFIG_SMP
5eca1c10
IM
617 struct llist_node wake_entry;
618 int on_cpu;
c65eacbe 619#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
620 /* Current CPU: */
621 unsigned int cpu;
c65eacbe 622#endif
5eca1c10
IM
623 unsigned int wakee_flips;
624 unsigned long wakee_flip_decay_ts;
625 struct task_struct *last_wakee;
ac66f547 626
32e839dd
MG
627 /*
628 * recent_used_cpu is initially set as the last CPU used by a task
629 * that wakes affine another task. Waker/wakee relationships can
630 * push tasks around a CPU where each wakeup moves to the next one.
631 * Tracking a recently used CPU allows a quick search for a recently
632 * used CPU that may be idle.
633 */
634 int recent_used_cpu;
5eca1c10 635 int wake_cpu;
2dd73a4f 636#endif
5eca1c10
IM
637 int on_rq;
638
639 int prio;
640 int static_prio;
641 int normal_prio;
642 unsigned int rt_priority;
50e645a8 643
5eca1c10
IM
644 const struct sched_class *sched_class;
645 struct sched_entity se;
646 struct sched_rt_entity rt;
8323f26c 647#ifdef CONFIG_CGROUP_SCHED
5eca1c10 648 struct task_group *sched_task_group;
8323f26c 649#endif
5eca1c10 650 struct sched_dl_entity dl;
1da177e4 651
e107be36 652#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
653 /* List of struct preempt_notifier: */
654 struct hlist_head preempt_notifiers;
e107be36
AK
655#endif
656
6c5c9341 657#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 658 unsigned int btrace_seq;
6c5c9341 659#endif
1da177e4 660
5eca1c10
IM
661 unsigned int policy;
662 int nr_cpus_allowed;
663 cpumask_t cpus_allowed;
1da177e4 664
a57eb940 665#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
666 int rcu_read_lock_nesting;
667 union rcu_special rcu_read_unlock_special;
668 struct list_head rcu_node_entry;
669 struct rcu_node *rcu_blocked_node;
28f6569a 670#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 671
8315f422 672#ifdef CONFIG_TASKS_RCU
5eca1c10 673 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
674 u8 rcu_tasks_holdout;
675 u8 rcu_tasks_idx;
5eca1c10 676 int rcu_tasks_idle_cpu;
ccdd29ff 677 struct list_head rcu_tasks_holdout_list;
8315f422 678#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 679
5eca1c10 680 struct sched_info sched_info;
1da177e4 681
5eca1c10 682 struct list_head tasks;
806c09a7 683#ifdef CONFIG_SMP
5eca1c10
IM
684 struct plist_node pushable_tasks;
685 struct rb_node pushable_dl_tasks;
806c09a7 686#endif
1da177e4 687
5eca1c10
IM
688 struct mm_struct *mm;
689 struct mm_struct *active_mm;
314ff785
IM
690
691 /* Per-thread vma caching: */
5eca1c10 692 struct vmacache vmacache;
314ff785 693
5eca1c10
IM
694#ifdef SPLIT_RSS_COUNTING
695 struct task_rss_stat rss_stat;
34e55232 696#endif
5eca1c10
IM
697 int exit_state;
698 int exit_code;
699 int exit_signal;
700 /* The signal sent when the parent dies: */
701 int pdeath_signal;
702 /* JOBCTL_*, siglock protected: */
703 unsigned long jobctl;
704
705 /* Used for emulating ABI behavior of previous Linux versions: */
706 unsigned int personality;
707
708 /* Scheduler bits, serialized by scheduler locks: */
709 unsigned sched_reset_on_fork:1;
710 unsigned sched_contributes_to_load:1;
711 unsigned sched_migrated:1;
712 unsigned sched_remote_wakeup:1;
713 /* Force alignment to the next boundary: */
714 unsigned :0;
715
716 /* Unserialized, strictly 'current' */
717
718 /* Bit to tell LSMs we're in execve(): */
719 unsigned in_execve:1;
720 unsigned in_iowait:1;
721#ifndef TIF_RESTORE_SIGMASK
722 unsigned restore_sigmask:1;
7e781418 723#endif
626ebc41 724#ifdef CONFIG_MEMCG
29ef680a 725 unsigned in_user_fault:1;
84c07d11 726#ifdef CONFIG_MEMCG_KMEM
5eca1c10 727 unsigned memcg_kmem_skip_account:1;
6f185c29 728#endif
127424c8 729#endif
ff303e66 730#ifdef CONFIG_COMPAT_BRK
5eca1c10 731 unsigned brk_randomized:1;
ff303e66 732#endif
77f88796
TH
733#ifdef CONFIG_CGROUPS
734 /* disallow userland-initiated cgroup migration */
735 unsigned no_cgroup_migration:1;
736#endif
d09d8df3
JB
737#ifdef CONFIG_BLK_CGROUP
738 /* to be used once the psi infrastructure lands upstream. */
739 unsigned use_memdelay:1;
740#endif
6f185c29 741
5eca1c10 742 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 743
5eca1c10 744 struct restart_block restart_block;
f56141e3 745
5eca1c10
IM
746 pid_t pid;
747 pid_t tgid;
0a425405 748
050e9baa 749#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
750 /* Canary value for the -fstack-protector GCC feature: */
751 unsigned long stack_canary;
1314562a 752#endif
4d1d61a6 753 /*
5eca1c10 754 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 755 * older sibling, respectively. (p->father can be replaced with
f470021a 756 * p->real_parent->pid)
1da177e4 757 */
5eca1c10
IM
758
759 /* Real parent process: */
760 struct task_struct __rcu *real_parent;
761
762 /* Recipient of SIGCHLD, wait4() reports: */
763 struct task_struct __rcu *parent;
764
1da177e4 765 /*
5eca1c10 766 * Children/sibling form the list of natural children:
1da177e4 767 */
5eca1c10
IM
768 struct list_head children;
769 struct list_head sibling;
770 struct task_struct *group_leader;
1da177e4 771
f470021a 772 /*
5eca1c10
IM
773 * 'ptraced' is the list of tasks this task is using ptrace() on.
774 *
f470021a 775 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 776 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 777 */
5eca1c10
IM
778 struct list_head ptraced;
779 struct list_head ptrace_entry;
f470021a 780
1da177e4 781 /* PID/PID hash table linkage. */
5eca1c10
IM
782 struct pid_link pids[PIDTYPE_MAX];
783 struct list_head thread_group;
784 struct list_head thread_node;
785
786 struct completion *vfork_done;
1da177e4 787
5eca1c10
IM
788 /* CLONE_CHILD_SETTID: */
789 int __user *set_child_tid;
1da177e4 790
5eca1c10
IM
791 /* CLONE_CHILD_CLEARTID: */
792 int __user *clear_child_tid;
793
794 u64 utime;
795 u64 stime;
40565b5a 796#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
797 u64 utimescaled;
798 u64 stimescaled;
40565b5a 799#endif
5eca1c10
IM
800 u64 gtime;
801 struct prev_cputime prev_cputime;
6a61671b 802#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 803 struct vtime vtime;
d99ca3b9 804#endif
d027d45d
FW
805
806#ifdef CONFIG_NO_HZ_FULL
5eca1c10 807 atomic_t tick_dep_mask;
d027d45d 808#endif
5eca1c10
IM
809 /* Context switch counts: */
810 unsigned long nvcsw;
811 unsigned long nivcsw;
812
813 /* Monotonic time in nsecs: */
814 u64 start_time;
815
816 /* Boot based time in nsecs: */
817 u64 real_start_time;
818
819 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
820 unsigned long min_flt;
821 unsigned long maj_flt;
1da177e4 822
b18b6a9c 823#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
824 struct task_cputime cputime_expires;
825 struct list_head cpu_timers[3];
b18b6a9c 826#endif
1da177e4 827
5eca1c10
IM
828 /* Process credentials: */
829
830 /* Tracer's credentials at attach: */
831 const struct cred __rcu *ptracer_cred;
832
833 /* Objective and real subjective task credentials (COW): */
834 const struct cred __rcu *real_cred;
835
836 /* Effective (overridable) subjective task credentials (COW): */
837 const struct cred __rcu *cred;
838
839 /*
840 * executable name, excluding path.
841 *
842 * - normally initialized setup_new_exec()
843 * - access it with [gs]et_task_comm()
844 * - lock it with task_lock()
845 */
846 char comm[TASK_COMM_LEN];
847
848 struct nameidata *nameidata;
849
3d5b6fcc 850#ifdef CONFIG_SYSVIPC
5eca1c10
IM
851 struct sysv_sem sysvsem;
852 struct sysv_shm sysvshm;
3d5b6fcc 853#endif
e162b39a 854#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 855 unsigned long last_switch_count;
82a1fcb9 856#endif
5eca1c10
IM
857 /* Filesystem information: */
858 struct fs_struct *fs;
859
860 /* Open file information: */
861 struct files_struct *files;
862
863 /* Namespaces: */
864 struct nsproxy *nsproxy;
865
866 /* Signal handlers: */
867 struct signal_struct *signal;
868 struct sighand_struct *sighand;
869 sigset_t blocked;
870 sigset_t real_blocked;
871 /* Restored if set_restore_sigmask() was used: */
872 sigset_t saved_sigmask;
873 struct sigpending pending;
874 unsigned long sas_ss_sp;
875 size_t sas_ss_size;
876 unsigned int sas_ss_flags;
877
878 struct callback_head *task_works;
879
880 struct audit_context *audit_context;
bfef93a5 881#ifdef CONFIG_AUDITSYSCALL
5eca1c10
IM
882 kuid_t loginuid;
883 unsigned int sessionid;
bfef93a5 884#endif
5eca1c10
IM
885 struct seccomp seccomp;
886
887 /* Thread group tracking: */
888 u32 parent_exec_id;
889 u32 self_exec_id;
1da177e4 890
5eca1c10
IM
891 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
892 spinlock_t alloc_lock;
1da177e4 893
b29739f9 894 /* Protection of the PI data structures: */
5eca1c10 895 raw_spinlock_t pi_lock;
b29739f9 896
5eca1c10 897 struct wake_q_node wake_q;
76751049 898
23f78d4a 899#ifdef CONFIG_RT_MUTEXES
5eca1c10 900 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 901 struct rb_root_cached pi_waiters;
e96a7705
XP
902 /* Updated under owner's pi_lock and rq lock */
903 struct task_struct *pi_top_task;
5eca1c10
IM
904 /* Deadlock detection and priority inheritance handling: */
905 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
906#endif
907
408894ee 908#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
909 /* Mutex deadlock detection: */
910 struct mutex_waiter *blocked_on;
408894ee 911#endif
5eca1c10 912
de30a2b3 913#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
914 unsigned int irq_events;
915 unsigned long hardirq_enable_ip;
916 unsigned long hardirq_disable_ip;
917 unsigned int hardirq_enable_event;
918 unsigned int hardirq_disable_event;
919 int hardirqs_enabled;
920 int hardirq_context;
921 unsigned long softirq_disable_ip;
922 unsigned long softirq_enable_ip;
923 unsigned int softirq_disable_event;
924 unsigned int softirq_enable_event;
925 int softirqs_enabled;
926 int softirq_context;
de30a2b3 927#endif
5eca1c10 928
fbb9ce95 929#ifdef CONFIG_LOCKDEP
5eca1c10
IM
930# define MAX_LOCK_DEPTH 48UL
931 u64 curr_chain_key;
932 int lockdep_depth;
933 unsigned int lockdep_recursion;
934 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 935#endif
5eca1c10 936
c6d30853 937#ifdef CONFIG_UBSAN
5eca1c10 938 unsigned int in_ubsan;
c6d30853 939#endif
408894ee 940
5eca1c10
IM
941 /* Journalling filesystem info: */
942 void *journal_info;
1da177e4 943
5eca1c10
IM
944 /* Stacked block device info: */
945 struct bio_list *bio_list;
d89d8796 946
73c10101 947#ifdef CONFIG_BLOCK
5eca1c10
IM
948 /* Stack plugging: */
949 struct blk_plug *plug;
73c10101
JA
950#endif
951
5eca1c10
IM
952 /* VM state: */
953 struct reclaim_state *reclaim_state;
954
955 struct backing_dev_info *backing_dev_info;
1da177e4 956
5eca1c10 957 struct io_context *io_context;
1da177e4 958
5eca1c10
IM
959 /* Ptrace state: */
960 unsigned long ptrace_message;
961 siginfo_t *last_siginfo;
1da177e4 962
5eca1c10
IM
963 struct task_io_accounting ioac;
964#ifdef CONFIG_TASK_XACCT
965 /* Accumulated RSS usage: */
966 u64 acct_rss_mem1;
967 /* Accumulated virtual memory usage: */
968 u64 acct_vm_mem1;
969 /* stime + utime since last update: */
970 u64 acct_timexpd;
1da177e4
LT
971#endif
972#ifdef CONFIG_CPUSETS
5eca1c10
IM
973 /* Protected by ->alloc_lock: */
974 nodemask_t mems_allowed;
975 /* Seqence number to catch updates: */
976 seqcount_t mems_allowed_seq;
977 int cpuset_mem_spread_rotor;
978 int cpuset_slab_spread_rotor;
1da177e4 979#endif
ddbcc7e8 980#ifdef CONFIG_CGROUPS
5eca1c10
IM
981 /* Control Group info protected by css_set_lock: */
982 struct css_set __rcu *cgroups;
983 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
984 struct list_head cg_list;
ddbcc7e8 985#endif
f01d7d51 986#ifdef CONFIG_INTEL_RDT
0734ded1 987 u32 closid;
d6aaba61 988 u32 rmid;
e02737d5 989#endif
42b2dd0a 990#ifdef CONFIG_FUTEX
5eca1c10 991 struct robust_list_head __user *robust_list;
34f192c6
IM
992#ifdef CONFIG_COMPAT
993 struct compat_robust_list_head __user *compat_robust_list;
994#endif
5eca1c10
IM
995 struct list_head pi_state_list;
996 struct futex_pi_state *pi_state_cache;
c7aceaba 997#endif
cdd6c482 998#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
999 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1000 struct mutex perf_event_mutex;
1001 struct list_head perf_event_list;
a63eaf34 1002#endif
8f47b187 1003#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1004 unsigned long preempt_disable_ip;
8f47b187 1005#endif
c7aceaba 1006#ifdef CONFIG_NUMA
5eca1c10
IM
1007 /* Protected by alloc_lock: */
1008 struct mempolicy *mempolicy;
45816682 1009 short il_prev;
5eca1c10 1010 short pref_node_fork;
42b2dd0a 1011#endif
cbee9f88 1012#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1013 int numa_scan_seq;
1014 unsigned int numa_scan_period;
1015 unsigned int numa_scan_period_max;
1016 int numa_preferred_nid;
1017 unsigned long numa_migrate_retry;
1018 /* Migration stamp: */
1019 u64 node_stamp;
1020 u64 last_task_numa_placement;
1021 u64 last_sum_exec_runtime;
1022 struct callback_head numa_work;
1023
5eca1c10 1024 struct numa_group *numa_group;
8c8a743c 1025
745d6147 1026 /*
44dba3d5
IM
1027 * numa_faults is an array split into four regions:
1028 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1029 * in this precise order.
1030 *
1031 * faults_memory: Exponential decaying average of faults on a per-node
1032 * basis. Scheduling placement decisions are made based on these
1033 * counts. The values remain static for the duration of a PTE scan.
1034 * faults_cpu: Track the nodes the process was running on when a NUMA
1035 * hinting fault was incurred.
1036 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1037 * during the current scan window. When the scan completes, the counts
1038 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1039 */
5eca1c10
IM
1040 unsigned long *numa_faults;
1041 unsigned long total_numa_faults;
745d6147 1042
04bb2f94
RR
1043 /*
1044 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1045 * scan window were remote/local or failed to migrate. The task scan
1046 * period is adapted based on the locality of the faults with different
1047 * weights depending on whether they were shared or private faults
04bb2f94 1048 */
5eca1c10 1049 unsigned long numa_faults_locality[3];
04bb2f94 1050
5eca1c10 1051 unsigned long numa_pages_migrated;
cbee9f88
PZ
1052#endif /* CONFIG_NUMA_BALANCING */
1053
d7822b1e
MD
1054#ifdef CONFIG_RSEQ
1055 struct rseq __user *rseq;
1056 u32 rseq_len;
1057 u32 rseq_sig;
1058 /*
1059 * RmW on rseq_event_mask must be performed atomically
1060 * with respect to preemption.
1061 */
1062 unsigned long rseq_event_mask;
1063#endif
1064
5eca1c10 1065 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1066
5eca1c10 1067 struct rcu_head rcu;
b92ce558 1068
5eca1c10
IM
1069 /* Cache last used pipe for splice(): */
1070 struct pipe_inode_info *splice_pipe;
5640f768 1071
5eca1c10 1072 struct page_frag task_frag;
5640f768 1073
47913d4e
IM
1074#ifdef CONFIG_TASK_DELAY_ACCT
1075 struct task_delay_info *delays;
f4f154fd 1076#endif
47913d4e 1077
f4f154fd 1078#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1079 int make_it_fail;
9049f2f6 1080 unsigned int fail_nth;
ca74e92b 1081#endif
9d823e8f 1082 /*
5eca1c10
IM
1083 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1084 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1085 */
5eca1c10
IM
1086 int nr_dirtied;
1087 int nr_dirtied_pause;
1088 /* Start of a write-and-pause period: */
1089 unsigned long dirty_paused_when;
9d823e8f 1090
9745512c 1091#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1092 int latency_record_count;
1093 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1094#endif
6976675d 1095 /*
5eca1c10 1096 * Time slack values; these are used to round up poll() and
6976675d
AV
1097 * select() etc timeout values. These are in nanoseconds.
1098 */
5eca1c10
IM
1099 u64 timer_slack_ns;
1100 u64 default_timer_slack_ns;
f8d570a4 1101
0b24becc 1102#ifdef CONFIG_KASAN
5eca1c10 1103 unsigned int kasan_depth;
0b24becc 1104#endif
5eca1c10 1105
fb52607a 1106#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1107 /* Index of current stored address in ret_stack: */
1108 int curr_ret_stack;
1109
1110 /* Stack of return addresses for return function tracing: */
1111 struct ftrace_ret_stack *ret_stack;
1112
1113 /* Timestamp for last schedule: */
1114 unsigned long long ftrace_timestamp;
1115
f201ae23
FW
1116 /*
1117 * Number of functions that haven't been traced
5eca1c10 1118 * because of depth overrun:
f201ae23 1119 */
5eca1c10
IM
1120 atomic_t trace_overrun;
1121
1122 /* Pause tracing: */
1123 atomic_t tracing_graph_pause;
f201ae23 1124#endif
5eca1c10 1125
ea4e2bc4 1126#ifdef CONFIG_TRACING
5eca1c10
IM
1127 /* State flags for use by tracers: */
1128 unsigned long trace;
1129
1130 /* Bitmask and counter of trace recursion: */
1131 unsigned long trace_recursion;
261842b7 1132#endif /* CONFIG_TRACING */
5eca1c10 1133
5c9a8750 1134#ifdef CONFIG_KCOV
5eca1c10 1135 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1136 unsigned int kcov_mode;
5eca1c10
IM
1137
1138 /* Size of the kcov_area: */
1139 unsigned int kcov_size;
1140
1141 /* Buffer for coverage collection: */
1142 void *kcov_area;
1143
1144 /* KCOV descriptor wired with this task or NULL: */
1145 struct kcov *kcov;
5c9a8750 1146#endif
5eca1c10 1147
6f185c29 1148#ifdef CONFIG_MEMCG
5eca1c10
IM
1149 struct mem_cgroup *memcg_in_oom;
1150 gfp_t memcg_oom_gfp_mask;
1151 int memcg_oom_order;
b23afb93 1152
5eca1c10
IM
1153 /* Number of pages to reclaim on returning to userland: */
1154 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1155
1156 /* Used by memcontrol for targeted memcg charge: */
1157 struct mem_cgroup *active_memcg;
569b846d 1158#endif
5eca1c10 1159
d09d8df3
JB
1160#ifdef CONFIG_BLK_CGROUP
1161 struct request_queue *throttle_queue;
1162#endif
1163
0326f5a9 1164#ifdef CONFIG_UPROBES
5eca1c10 1165 struct uprobe_task *utask;
0326f5a9 1166#endif
cafe5635 1167#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1168 unsigned int sequential_io;
1169 unsigned int sequential_io_avg;
cafe5635 1170#endif
8eb23b9f 1171#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1172 unsigned long task_state_change;
8eb23b9f 1173#endif
5eca1c10 1174 int pagefault_disabled;
03049269 1175#ifdef CONFIG_MMU
5eca1c10 1176 struct task_struct *oom_reaper_list;
03049269 1177#endif
ba14a194 1178#ifdef CONFIG_VMAP_STACK
5eca1c10 1179 struct vm_struct *stack_vm_area;
ba14a194 1180#endif
68f24b08 1181#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
1182 /* A live task holds one reference: */
1183 atomic_t stack_refcount;
d83a7cb3
JP
1184#endif
1185#ifdef CONFIG_LIVEPATCH
1186 int patch_state;
0302e28d 1187#endif
e4e55b47
TH
1188#ifdef CONFIG_SECURITY
1189 /* Used by LSM modules for access restriction: */
1190 void *security;
68f24b08 1191#endif
29e48ce8
KC
1192
1193 /*
1194 * New fields for task_struct should be added above here, so that
1195 * they are included in the randomized portion of task_struct.
1196 */
1197 randomized_struct_fields_end
1198
5eca1c10
IM
1199 /* CPU-specific state of this task: */
1200 struct thread_struct thread;
1201
1202 /*
1203 * WARNING: on x86, 'thread_struct' contains a variable-sized
1204 * structure. It *MUST* be at the end of 'task_struct'.
1205 *
1206 * Do not put anything below here!
1207 */
1da177e4
LT
1208};
1209
e868171a 1210static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1211{
1212 return task->pids[PIDTYPE_PID].pid;
1213}
1214
e868171a 1215static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1216{
1217 return task->group_leader->pids[PIDTYPE_PID].pid;
1218}
1219
6dda81f4 1220/*
5eca1c10 1221 * Without tasklist or RCU lock it is not safe to dereference
6dda81f4
ON
1222 * the result of task_pgrp/task_session even if task == current,
1223 * we can race with another thread doing sys_setsid/sys_setpgid.
1224 */
e868171a 1225static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1226{
1227 return task->group_leader->pids[PIDTYPE_PGID].pid;
1228}
1229
e868171a 1230static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1231{
1232 return task->group_leader->pids[PIDTYPE_SID].pid;
1233}
1234
7af57294
PE
1235/*
1236 * the helpers to get the task's different pids as they are seen
1237 * from various namespaces
1238 *
1239 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1240 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1241 * current.
7af57294
PE
1242 * task_xid_nr_ns() : id seen from the ns specified;
1243 *
7af57294
PE
1244 * see also pid_nr() etc in include/linux/pid.h
1245 */
5eca1c10 1246pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1247
e868171a 1248static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1249{
1250 return tsk->pid;
1251}
1252
5eca1c10 1253static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1254{
1255 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1256}
7af57294
PE
1257
1258static inline pid_t task_pid_vnr(struct task_struct *tsk)
1259{
52ee2dfd 1260 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1261}
1262
1263
e868171a 1264static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1265{
1266 return tsk->tgid;
1267}
1268
5eca1c10
IM
1269/**
1270 * pid_alive - check that a task structure is not stale
1271 * @p: Task structure to be checked.
1272 *
1273 * Test if a process is not yet dead (at most zombie state)
1274 * If pid_alive fails, then pointers within the task structure
1275 * can be stale and must not be dereferenced.
1276 *
1277 * Return: 1 if the process is alive. 0 otherwise.
1278 */
1279static inline int pid_alive(const struct task_struct *p)
1280{
1281 return p->pids[PIDTYPE_PID].pid != NULL;
1282}
7af57294 1283
5eca1c10 1284static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1285{
52ee2dfd 1286 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1287}
1288
7af57294
PE
1289static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1290{
52ee2dfd 1291 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1292}
1293
1294
5eca1c10 1295static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1296{
52ee2dfd 1297 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1298}
1299
7af57294
PE
1300static inline pid_t task_session_vnr(struct task_struct *tsk)
1301{
52ee2dfd 1302 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1303}
1304
dd1c1f2f
ON
1305static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1306{
1307 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1308}
1309
1310static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1311{
1312 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1313}
1314
1315static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1316{
1317 pid_t pid = 0;
1318
1319 rcu_read_lock();
1320 if (pid_alive(tsk))
1321 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1322 rcu_read_unlock();
1323
1324 return pid;
1325}
1326
1327static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1328{
1329 return task_ppid_nr_ns(tsk, &init_pid_ns);
1330}
1331
5eca1c10 1332/* Obsolete, do not use: */
1b0f7ffd
ON
1333static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1334{
1335 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1336}
7af57294 1337
06eb6184
PZ
1338#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1339#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1340
1d48b080 1341static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1342{
1593baab
PZ
1343 unsigned int tsk_state = READ_ONCE(tsk->state);
1344 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1345
06eb6184
PZ
1346 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1347
06eb6184
PZ
1348 if (tsk_state == TASK_IDLE)
1349 state = TASK_REPORT_IDLE;
1350
1593baab
PZ
1351 return fls(state);
1352}
1353
1d48b080 1354static inline char task_index_to_char(unsigned int state)
1593baab 1355{
8ef9925b 1356 static const char state_char[] = "RSDTtXZPI";
1593baab 1357
06eb6184 1358 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1359
1593baab
PZ
1360 return state_char[state];
1361}
1362
1363static inline char task_state_to_char(struct task_struct *tsk)
1364{
1d48b080 1365 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1366}
1367
f400e198 1368/**
570f5241
SS
1369 * is_global_init - check if a task structure is init. Since init
1370 * is free to have sub-threads we need to check tgid.
3260259f
HK
1371 * @tsk: Task structure to be checked.
1372 *
1373 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1374 *
1375 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1376 */
e868171a 1377static inline int is_global_init(struct task_struct *tsk)
b461cc03 1378{
570f5241 1379 return task_tgid_nr(tsk) == 1;
b461cc03 1380}
b460cbc5 1381
9ec52099
CLG
1382extern struct pid *cad_pid;
1383
1da177e4
LT
1384/*
1385 * Per process flags
1386 */
5eca1c10
IM
1387#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1388#define PF_EXITING 0x00000004 /* Getting shut down */
1389#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1390#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1391#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1392#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1393#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1394#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1395#define PF_DUMPCORE 0x00000200 /* Dumped core */
1396#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1397#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1398#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1399#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1400#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1401#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1402#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1403#define PF_KSWAPD 0x00020000 /* I am kswapd */
1404#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1405#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1406#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1407#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1408#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1409#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1410#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1411#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1412#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1413#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1414#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1415
1416/*
1417 * Only the _current_ task can read/write to tsk->flags, but other
1418 * tasks can access tsk->flags in readonly mode for example
1419 * with tsk_used_math (like during threaded core dumping).
1420 * There is however an exception to this rule during ptrace
1421 * or during fork: the ptracer task is allowed to write to the
1422 * child->flags of its traced child (same goes for fork, the parent
1423 * can write to the child->flags), because we're guaranteed the
1424 * child is not running and in turn not changing child->flags
1425 * at the same time the parent does it.
1426 */
5eca1c10
IM
1427#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1428#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1429#define clear_used_math() clear_stopped_child_used_math(current)
1430#define set_used_math() set_stopped_child_used_math(current)
1431
1da177e4
LT
1432#define conditional_stopped_child_used_math(condition, child) \
1433 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1434
1435#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1436
1da177e4
LT
1437#define copy_to_stopped_child_used_math(child) \
1438 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1439
1da177e4 1440/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1441#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1442#define used_math() tsk_used_math(current)
1da177e4 1443
62ec05dd
TG
1444static inline bool is_percpu_thread(void)
1445{
1446#ifdef CONFIG_SMP
1447 return (current->flags & PF_NO_SETAFFINITY) &&
1448 (current->nr_cpus_allowed == 1);
1449#else
1450 return true;
1451#endif
1452}
1453
1d4457f9 1454/* Per-process atomic flags. */
5eca1c10
IM
1455#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1456#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1457#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1458#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1459#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1d4457f9 1460
e0e5070b
ZL
1461#define TASK_PFA_TEST(name, func) \
1462 static inline bool task_##func(struct task_struct *p) \
1463 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1464
e0e5070b
ZL
1465#define TASK_PFA_SET(name, func) \
1466 static inline void task_set_##func(struct task_struct *p) \
1467 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1468
e0e5070b
ZL
1469#define TASK_PFA_CLEAR(name, func) \
1470 static inline void task_clear_##func(struct task_struct *p) \
1471 { clear_bit(PFA_##name, &p->atomic_flags); }
1472
1473TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1474TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1475
2ad654bc
ZL
1476TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1477TASK_PFA_SET(SPREAD_PAGE, spread_page)
1478TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1479
1480TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1481TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1482TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1483
356e4bff
TG
1484TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1485TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1486TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1487
1488TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1489TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1490
5eca1c10 1491static inline void
717a94b5 1492current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1493{
717a94b5
N
1494 current->flags &= ~flags;
1495 current->flags |= orig_flags & flags;
907aed48
MG
1496}
1497
5eca1c10
IM
1498extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1499extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1500#ifdef CONFIG_SMP
5eca1c10
IM
1501extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1502extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1503#else
5eca1c10 1504static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1505{
1506}
5eca1c10 1507static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1508{
96f874e2 1509 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1510 return -EINVAL;
1511 return 0;
1512}
1513#endif
e0ad9556 1514
6d0d2878
CB
1515#ifndef cpu_relax_yield
1516#define cpu_relax_yield() cpu_relax()
1517#endif
1518
fa93384f 1519extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1520extern void set_user_nice(struct task_struct *p, long nice);
1521extern int task_prio(const struct task_struct *p);
5eca1c10 1522
d0ea0268
DY
1523/**
1524 * task_nice - return the nice value of a given task.
1525 * @p: the task in question.
1526 *
1527 * Return: The nice value [ -20 ... 0 ... 19 ].
1528 */
1529static inline int task_nice(const struct task_struct *p)
1530{
1531 return PRIO_TO_NICE((p)->static_prio);
1532}
5eca1c10 1533
36c8b586
IM
1534extern int can_nice(const struct task_struct *p, const int nice);
1535extern int task_curr(const struct task_struct *p);
1da177e4 1536extern int idle_cpu(int cpu);
943d355d 1537extern int available_idle_cpu(int cpu);
5eca1c10
IM
1538extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1539extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1540extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1541extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1542extern struct task_struct *idle_task(int cpu);
5eca1c10 1543
c4f30608
PM
1544/**
1545 * is_idle_task - is the specified task an idle task?
fa757281 1546 * @p: the task in question.
e69f6186
YB
1547 *
1548 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1549 */
7061ca3b 1550static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1551{
c1de45ca 1552 return !!(p->flags & PF_IDLE);
c4f30608 1553}
5eca1c10 1554
36c8b586 1555extern struct task_struct *curr_task(int cpu);
a458ae2e 1556extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1557
1558void yield(void);
1559
1da177e4 1560union thread_union {
0500871f
DH
1561#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1562 struct task_struct task;
1563#endif
c65eacbe 1564#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1565 struct thread_info thread_info;
c65eacbe 1566#endif
1da177e4
LT
1567 unsigned long stack[THREAD_SIZE/sizeof(long)];
1568};
1569
0500871f
DH
1570#ifndef CONFIG_THREAD_INFO_IN_TASK
1571extern struct thread_info init_thread_info;
1572#endif
1573
1574extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1575
f3ac6067
IM
1576#ifdef CONFIG_THREAD_INFO_IN_TASK
1577static inline struct thread_info *task_thread_info(struct task_struct *task)
1578{
1579 return &task->thread_info;
1580}
1581#elif !defined(__HAVE_THREAD_FUNCTIONS)
1582# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1583#endif
1584
198fe21b
PE
1585/*
1586 * find a task by one of its numerical ids
1587 *
198fe21b
PE
1588 * find_task_by_pid_ns():
1589 * finds a task by its pid in the specified namespace
228ebcbe
PE
1590 * find_task_by_vpid():
1591 * finds a task by its virtual pid
198fe21b 1592 *
e49859e7 1593 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1594 */
1595
228ebcbe 1596extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1597extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1598
2ee08260
MR
1599/*
1600 * find a task by its virtual pid and get the task struct
1601 */
1602extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1603
b3c97528
HH
1604extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1605extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1606extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1607
1da177e4 1608#ifdef CONFIG_SMP
5eca1c10 1609extern void kick_process(struct task_struct *tsk);
1da177e4 1610#else
5eca1c10 1611static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1612#endif
1da177e4 1613
82b89778 1614extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1615
82b89778
AH
1616static inline void set_task_comm(struct task_struct *tsk, const char *from)
1617{
1618 __set_task_comm(tsk, from, false);
1619}
5eca1c10 1620
3756f640
AB
1621extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1622#define get_task_comm(buf, tsk) ({ \
1623 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1624 __get_task_comm(buf, sizeof(buf), tsk); \
1625})
1da177e4
LT
1626
1627#ifdef CONFIG_SMP
317f3941 1628void scheduler_ipi(void);
85ba2d86 1629extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1630#else
184748cc 1631static inline void scheduler_ipi(void) { }
5eca1c10 1632static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1633{
1634 return 1;
1635}
1da177e4
LT
1636#endif
1637
5eca1c10
IM
1638/*
1639 * Set thread flags in other task's structures.
1640 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1641 */
1642static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1643{
a1261f54 1644 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1645}
1646
1647static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1648{
a1261f54 1649 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1650}
1651
93ee37c2
DM
1652static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1653 bool value)
1654{
1655 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1656}
1657
1da177e4
LT
1658static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1659{
a1261f54 1660 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1661}
1662
1663static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1664{
a1261f54 1665 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1666}
1667
1668static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1669{
a1261f54 1670 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1671}
1672
1673static inline void set_tsk_need_resched(struct task_struct *tsk)
1674{
1675 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1676}
1677
1678static inline void clear_tsk_need_resched(struct task_struct *tsk)
1679{
1680 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1681}
1682
8ae121ac
GH
1683static inline int test_tsk_need_resched(struct task_struct *tsk)
1684{
1685 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1686}
1687
1da177e4
LT
1688/*
1689 * cond_resched() and cond_resched_lock(): latency reduction via
1690 * explicit rescheduling in places that are safe. The return
1691 * value indicates whether a reschedule was done in fact.
1692 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1693 */
35a773a0 1694#ifndef CONFIG_PREEMPT
c3921ab7 1695extern int _cond_resched(void);
35a773a0
PZ
1696#else
1697static inline int _cond_resched(void) { return 0; }
1698#endif
6f80bd98 1699
613afbf8 1700#define cond_resched() ({ \
3427445a 1701 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1702 _cond_resched(); \
1703})
6f80bd98 1704
613afbf8
FW
1705extern int __cond_resched_lock(spinlock_t *lock);
1706
1707#define cond_resched_lock(lock) ({ \
3427445a 1708 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1709 __cond_resched_lock(lock); \
1710})
1711
f6f3c437
SH
1712static inline void cond_resched_rcu(void)
1713{
1714#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1715 rcu_read_unlock();
1716 cond_resched();
1717 rcu_read_lock();
1718#endif
1719}
1720
1da177e4
LT
1721/*
1722 * Does a critical section need to be broken due to another
95c354fe
NP
1723 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1724 * but a general need for low latency)
1da177e4 1725 */
95c354fe 1726static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1727{
95c354fe
NP
1728#ifdef CONFIG_PREEMPT
1729 return spin_is_contended(lock);
1730#else
1da177e4 1731 return 0;
95c354fe 1732#endif
1da177e4
LT
1733}
1734
75f93fed
PZ
1735static __always_inline bool need_resched(void)
1736{
1737 return unlikely(tif_need_resched());
1738}
1739
1da177e4
LT
1740/*
1741 * Wrappers for p->thread_info->cpu access. No-op on UP.
1742 */
1743#ifdef CONFIG_SMP
1744
1745static inline unsigned int task_cpu(const struct task_struct *p)
1746{
c65eacbe
AL
1747#ifdef CONFIG_THREAD_INFO_IN_TASK
1748 return p->cpu;
1749#else
a1261f54 1750 return task_thread_info(p)->cpu;
c65eacbe 1751#endif
1da177e4
LT
1752}
1753
c65cc870 1754extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1755
1756#else
1757
1758static inline unsigned int task_cpu(const struct task_struct *p)
1759{
1760 return 0;
1761}
1762
1763static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1764{
1765}
1766
1767#endif /* CONFIG_SMP */
1768
d9345c65
PX
1769/*
1770 * In order to reduce various lock holder preemption latencies provide an
1771 * interface to see if a vCPU is currently running or not.
1772 *
1773 * This allows us to terminate optimistic spin loops and block, analogous to
1774 * the native optimistic spin heuristic of testing if the lock owner task is
1775 * running or not.
1776 */
1777#ifndef vcpu_is_preempted
1778# define vcpu_is_preempted(cpu) false
1779#endif
1780
96f874e2
RR
1781extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1782extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1783
82455257
DH
1784#ifndef TASK_SIZE_OF
1785#define TASK_SIZE_OF(tsk) TASK_SIZE
1786#endif
1787
d7822b1e
MD
1788#ifdef CONFIG_RSEQ
1789
1790/*
1791 * Map the event mask on the user-space ABI enum rseq_cs_flags
1792 * for direct mask checks.
1793 */
1794enum rseq_event_mask_bits {
1795 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1796 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1797 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1798};
1799
1800enum rseq_event_mask {
1801 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1802 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1803 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1804};
1805
1806static inline void rseq_set_notify_resume(struct task_struct *t)
1807{
1808 if (t->rseq)
1809 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1810}
1811
784e0300 1812void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1813
784e0300
WD
1814static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1815 struct pt_regs *regs)
d7822b1e
MD
1816{
1817 if (current->rseq)
784e0300 1818 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1819}
1820
784e0300
WD
1821static inline void rseq_signal_deliver(struct ksignal *ksig,
1822 struct pt_regs *regs)
d7822b1e
MD
1823{
1824 preempt_disable();
1825 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1826 preempt_enable();
784e0300 1827 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1828}
1829
1830/* rseq_preempt() requires preemption to be disabled. */
1831static inline void rseq_preempt(struct task_struct *t)
1832{
1833 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1834 rseq_set_notify_resume(t);
1835}
1836
1837/* rseq_migrate() requires preemption to be disabled. */
1838static inline void rseq_migrate(struct task_struct *t)
1839{
1840 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1841 rseq_set_notify_resume(t);
1842}
1843
1844/*
1845 * If parent process has a registered restartable sequences area, the
9a789fcf 1846 * child inherits. Only applies when forking a process, not a thread.
d7822b1e
MD
1847 */
1848static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1849{
1850 if (clone_flags & CLONE_THREAD) {
1851 t->rseq = NULL;
1852 t->rseq_len = 0;
1853 t->rseq_sig = 0;
1854 t->rseq_event_mask = 0;
1855 } else {
1856 t->rseq = current->rseq;
1857 t->rseq_len = current->rseq_len;
1858 t->rseq_sig = current->rseq_sig;
1859 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1860 }
1861}
1862
1863static inline void rseq_execve(struct task_struct *t)
1864{
1865 t->rseq = NULL;
1866 t->rseq_len = 0;
1867 t->rseq_sig = 0;
1868 t->rseq_event_mask = 0;
1869}
1870
1871#else
1872
1873static inline void rseq_set_notify_resume(struct task_struct *t)
1874{
1875}
784e0300
WD
1876static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1877 struct pt_regs *regs)
d7822b1e
MD
1878{
1879}
784e0300
WD
1880static inline void rseq_signal_deliver(struct ksignal *ksig,
1881 struct pt_regs *regs)
d7822b1e
MD
1882{
1883}
1884static inline void rseq_preempt(struct task_struct *t)
1885{
1886}
1887static inline void rseq_migrate(struct task_struct *t)
1888{
1889}
1890static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1891{
1892}
1893static inline void rseq_execve(struct task_struct *t)
1894{
1895}
1896
1897#endif
1898
1899#ifdef CONFIG_DEBUG_RSEQ
1900
1901void rseq_syscall(struct pt_regs *regs);
1902
1903#else
1904
1905static inline void rseq_syscall(struct pt_regs *regs)
1906{
1907}
1908
1909#endif
1910
1da177e4 1911#endif