]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/linux/sched.h
sched/cputime, powerpc: Remove cputime_to_scaled()
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
e56d0903 44#include <linux/rcupdate.h>
05725f7e 45#include <linux/rculist.h>
23f78d4a 46#include <linux/rtmutex.h>
1da177e4 47
a3b6714e
DW
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
5c9a8750 53#include <linux/kcov.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
180extern void cpu_load_update_nohz_start(void);
181extern void cpu_load_update_nohz_stop(void);
3289bdb4 182#else
1f41906a
FW
183static inline void cpu_load_update_nohz_start(void) { }
184static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 185#endif
1da177e4 186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8 221#define TASK_NOLOAD 1024
7dc603c9
PZ
222#define TASK_NEW 2048
223#define TASK_STATE_MAX 4096
f021a3c2 224
7dc603c9 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
73342151 226
e1781538
PZ
227extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
229
230/* Convenience macros for the sake of set_task_state */
231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 234
80ed87c8
PZ
235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
92a1f4bc
MW
237/* Convenience macros for the sake of wake_up */
238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
240
241/* get_task_state() */
242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 245
f021a3c2
MW
246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 248#define task_is_stopped_or_traced(task) \
f021a3c2 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 250#define task_contributes_to_load(task) \
e3c8ca83 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
1da177e4 254
8eb23b9f
PZ
255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257#define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262#define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
a2250238 265 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
266 } while (0)
267
8eb23b9f
PZ
268#define __set_current_state(state_value) \
269 do { \
270 current->task_state_change = _THIS_IP_; \
271 current->state = (state_value); \
272 } while (0)
273#define set_current_state(state_value) \
274 do { \
275 current->task_state_change = _THIS_IP_; \
a2250238 276 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
277 } while (0)
278
279#else
280
a2250238
PZ
281/*
282 * @tsk had better be current, or you get to keep the pieces.
283 *
284 * The only reason is that computing current can be more expensive than
285 * using a pointer that's already available.
286 *
287 * Therefore, see set_current_state().
288 */
1da177e4
LT
289#define __set_task_state(tsk, state_value) \
290 do { (tsk)->state = (state_value); } while (0)
291#define set_task_state(tsk, state_value) \
b92b8b35 292 smp_store_mb((tsk)->state, (state_value))
1da177e4 293
498d0c57
AM
294/*
295 * set_current_state() includes a barrier so that the write of current->state
296 * is correctly serialised wrt the caller's subsequent test of whether to
297 * actually sleep:
298 *
a2250238 299 * for (;;) {
498d0c57 300 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
301 * if (!need_sleep)
302 * break;
303 *
304 * schedule();
305 * }
306 * __set_current_state(TASK_RUNNING);
307 *
308 * If the caller does not need such serialisation (because, for instance, the
309 * condition test and condition change and wakeup are under the same lock) then
310 * use __set_current_state().
311 *
312 * The above is typically ordered against the wakeup, which does:
313 *
314 * need_sleep = false;
315 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
316 *
317 * Where wake_up_state() (and all other wakeup primitives) imply enough
318 * barriers to order the store of the variable against wakeup.
319 *
320 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
321 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
322 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
323 *
324 * This is obviously fine, since they both store the exact same value.
498d0c57 325 *
a2250238 326 * Also see the comments of try_to_wake_up().
498d0c57 327 */
8eb23b9f 328#define __set_current_state(state_value) \
1da177e4 329 do { current->state = (state_value); } while (0)
8eb23b9f 330#define set_current_state(state_value) \
b92b8b35 331 smp_store_mb(current->state, (state_value))
1da177e4 332
8eb23b9f
PZ
333#endif
334
1da177e4
LT
335/* Task command name length */
336#define TASK_COMM_LEN 16
337
1da177e4
LT
338#include <linux/spinlock.h>
339
340/*
341 * This serializes "schedule()" and also protects
342 * the run-queue from deletions/modifications (but
343 * _adding_ to the beginning of the run-queue has
344 * a separate lock).
345 */
346extern rwlock_t tasklist_lock;
347extern spinlock_t mmlist_lock;
348
36c8b586 349struct task_struct;
1da177e4 350
db1466b3
PM
351#ifdef CONFIG_PROVE_RCU
352extern int lockdep_tasklist_lock_is_held(void);
353#endif /* #ifdef CONFIG_PROVE_RCU */
354
1da177e4
LT
355extern void sched_init(void);
356extern void sched_init_smp(void);
2d07b255 357extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 358extern void init_idle(struct task_struct *idle, int cpu);
1df21055 359extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 360
3fa0818b
RR
361extern cpumask_var_t cpu_isolated_map;
362
89f19f04 363extern int runqueue_is_locked(int cpu);
017730c1 364
3451d024 365#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 366extern void nohz_balance_enter_idle(int cpu);
69e1e811 367extern void set_cpu_sd_state_idle(void);
bc7a34b8 368extern int get_nohz_timer_target(void);
46cb4b7c 369#else
c1cc017c 370static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 371static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 372#endif
1da177e4 373
e59e2ae2 374/*
39bc89fd 375 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
376 */
377extern void show_state_filter(unsigned long state_filter);
378
379static inline void show_state(void)
380{
39bc89fd 381 show_state_filter(0);
e59e2ae2
IM
382}
383
1da177e4
LT
384extern void show_regs(struct pt_regs *);
385
386/*
387 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
388 * task), SP is the stack pointer of the first frame that should be shown in the back
389 * trace (or NULL if the entire call-chain of the task should be shown).
390 */
391extern void show_stack(struct task_struct *task, unsigned long *sp);
392
1da177e4
LT
393extern void cpu_init (void);
394extern void trap_init(void);
395extern void update_process_times(int user);
396extern void scheduler_tick(void);
9cf7243d 397extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
398extern int sched_cpu_activate(unsigned int cpu);
399extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 400
f2785ddb
TG
401#ifdef CONFIG_HOTPLUG_CPU
402extern int sched_cpu_dying(unsigned int cpu);
403#else
404# define sched_cpu_dying NULL
405#endif
1da177e4 406
82a1fcb9
IM
407extern void sched_show_task(struct task_struct *p);
408
19cc36c0 409#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 410extern void touch_softlockup_watchdog_sched(void);
8446f1d3 411extern void touch_softlockup_watchdog(void);
d6ad3e28 412extern void touch_softlockup_watchdog_sync(void);
04c9167f 413extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
414extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
415 void __user *buffer,
416 size_t *lenp, loff_t *ppos);
9c44bc03 417extern unsigned int softlockup_panic;
ac1f5912 418extern unsigned int hardlockup_panic;
004417a6 419void lockup_detector_init(void);
8446f1d3 420#else
03e0d461
TH
421static inline void touch_softlockup_watchdog_sched(void)
422{
423}
8446f1d3
IM
424static inline void touch_softlockup_watchdog(void)
425{
426}
d6ad3e28
JW
427static inline void touch_softlockup_watchdog_sync(void)
428{
429}
04c9167f
JF
430static inline void touch_all_softlockup_watchdogs(void)
431{
432}
004417a6
PZ
433static inline void lockup_detector_init(void)
434{
435}
8446f1d3
IM
436#endif
437
8b414521
MT
438#ifdef CONFIG_DETECT_HUNG_TASK
439void reset_hung_task_detector(void);
440#else
441static inline void reset_hung_task_detector(void)
442{
443}
444#endif
445
1da177e4
LT
446/* Attach to any functions which should be ignored in wchan output. */
447#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
448
449/* Linker adds these: start and end of __sched functions */
450extern char __sched_text_start[], __sched_text_end[];
451
1da177e4
LT
452/* Is this address in the __sched functions? */
453extern int in_sched_functions(unsigned long addr);
454
455#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 456extern signed long schedule_timeout(signed long timeout);
64ed93a2 457extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 458extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 459extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 460extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 461asmlinkage void schedule(void);
c5491ea7 462extern void schedule_preempt_disabled(void);
1da177e4 463
9cff8ade
N
464extern long io_schedule_timeout(long timeout);
465
466static inline void io_schedule(void)
467{
468 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
469}
470
9af6528e
PZ
471void __noreturn do_task_dead(void);
472
ab516013 473struct nsproxy;
acce292c 474struct user_namespace;
1da177e4 475
efc1a3b1
DH
476#ifdef CONFIG_MMU
477extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
478extern unsigned long
479arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
480 unsigned long, unsigned long);
481extern unsigned long
482arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
483 unsigned long len, unsigned long pgoff,
484 unsigned long flags);
efc1a3b1
DH
485#else
486static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
487#endif
1da177e4 488
d049f74f
KC
489#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
490#define SUID_DUMP_USER 1 /* Dump as user of process */
491#define SUID_DUMP_ROOT 2 /* Dump as root */
492
6c5d5238 493/* mm flags */
f8af4da3 494
7288e118 495/* for SUID_DUMP_* above */
3cb4a0bb 496#define MMF_DUMPABLE_BITS 2
f8af4da3 497#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 498
942be387
ON
499extern void set_dumpable(struct mm_struct *mm, int value);
500/*
501 * This returns the actual value of the suid_dumpable flag. For things
502 * that are using this for checking for privilege transitions, it must
503 * test against SUID_DUMP_USER rather than treating it as a boolean
504 * value.
505 */
506static inline int __get_dumpable(unsigned long mm_flags)
507{
508 return mm_flags & MMF_DUMPABLE_MASK;
509}
510
511static inline int get_dumpable(struct mm_struct *mm)
512{
513 return __get_dumpable(mm->flags);
514}
515
3cb4a0bb
KH
516/* coredump filter bits */
517#define MMF_DUMP_ANON_PRIVATE 2
518#define MMF_DUMP_ANON_SHARED 3
519#define MMF_DUMP_MAPPED_PRIVATE 4
520#define MMF_DUMP_MAPPED_SHARED 5
82df3973 521#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
522#define MMF_DUMP_HUGETLB_PRIVATE 7
523#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
524#define MMF_DUMP_DAX_PRIVATE 9
525#define MMF_DUMP_DAX_SHARED 10
f8af4da3 526
3cb4a0bb 527#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 528#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
529#define MMF_DUMP_FILTER_MASK \
530 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
531#define MMF_DUMP_FILTER_DEFAULT \
e575f111 532 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
533 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
534
535#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
536# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
537#else
538# define MMF_DUMP_MASK_DEFAULT_ELF 0
539#endif
f8af4da3
HD
540 /* leave room for more dump flags */
541#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 542#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 543#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 544
9f68f672
ON
545#define MMF_HAS_UPROBES 19 /* has uprobes */
546#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
862e3073 547#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
3f70dc38 548#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
6fcb52a5 549#define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
f8ac4ec9 550
f8af4da3 551#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 552
1da177e4
LT
553struct sighand_struct {
554 atomic_t count;
555 struct k_sigaction action[_NSIG];
556 spinlock_t siglock;
b8fceee1 557 wait_queue_head_t signalfd_wqh;
1da177e4
LT
558};
559
0e464814 560struct pacct_struct {
f6ec29a4
KK
561 int ac_flag;
562 long ac_exitcode;
0e464814 563 unsigned long ac_mem;
77787bfb
KK
564 cputime_t ac_utime, ac_stime;
565 unsigned long ac_minflt, ac_majflt;
0e464814
KK
566};
567
42c4ab41
SG
568struct cpu_itimer {
569 cputime_t expires;
570 cputime_t incr;
8356b5f9
SG
571 u32 error;
572 u32 incr_error;
42c4ab41
SG
573};
574
d37f761d 575/**
9d7fb042 576 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
577 * @utime: time spent in user mode
578 * @stime: time spent in system mode
9d7fb042 579 * @lock: protects the above two fields
d37f761d 580 *
9d7fb042
PZ
581 * Stores previous user/system time values such that we can guarantee
582 * monotonicity.
d37f761d 583 */
9d7fb042
PZ
584struct prev_cputime {
585#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
586 cputime_t utime;
587 cputime_t stime;
9d7fb042
PZ
588 raw_spinlock_t lock;
589#endif
d37f761d
FW
590};
591
9d7fb042
PZ
592static inline void prev_cputime_init(struct prev_cputime *prev)
593{
594#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
595 prev->utime = prev->stime = 0;
596 raw_spin_lock_init(&prev->lock);
597#endif
598}
599
f06febc9
FM
600/**
601 * struct task_cputime - collected CPU time counts
602 * @utime: time spent in user mode, in &cputime_t units
603 * @stime: time spent in kernel mode, in &cputime_t units
604 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 605 *
9d7fb042
PZ
606 * This structure groups together three kinds of CPU time that are tracked for
607 * threads and thread groups. Most things considering CPU time want to group
608 * these counts together and treat all three of them in parallel.
f06febc9
FM
609 */
610struct task_cputime {
611 cputime_t utime;
612 cputime_t stime;
613 unsigned long long sum_exec_runtime;
614};
9d7fb042 615
f06febc9 616/* Alternate field names when used to cache expirations. */
f06febc9 617#define virt_exp utime
9d7fb042 618#define prof_exp stime
f06febc9
FM
619#define sched_exp sum_exec_runtime
620
4cd4c1b4
PZ
621#define INIT_CPUTIME \
622 (struct task_cputime) { \
64861634
MS
623 .utime = 0, \
624 .stime = 0, \
4cd4c1b4
PZ
625 .sum_exec_runtime = 0, \
626 }
627
971e8a98
JL
628/*
629 * This is the atomic variant of task_cputime, which can be used for
630 * storing and updating task_cputime statistics without locking.
631 */
632struct task_cputime_atomic {
633 atomic64_t utime;
634 atomic64_t stime;
635 atomic64_t sum_exec_runtime;
636};
637
638#define INIT_CPUTIME_ATOMIC \
639 (struct task_cputime_atomic) { \
640 .utime = ATOMIC64_INIT(0), \
641 .stime = ATOMIC64_INIT(0), \
642 .sum_exec_runtime = ATOMIC64_INIT(0), \
643 }
644
609ca066 645#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 646
c99e6efe 647/*
87dcbc06
PZ
648 * Disable preemption until the scheduler is running -- use an unconditional
649 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 650 *
87dcbc06 651 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 652 */
87dcbc06 653#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 654
c99e6efe 655/*
609ca066
PZ
656 * Initial preempt_count value; reflects the preempt_count schedule invariant
657 * which states that during context switches:
d86ee480 658 *
609ca066
PZ
659 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
660 *
661 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
662 * Note: See finish_task_switch().
c99e6efe 663 */
609ca066 664#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 665
f06febc9 666/**
4cd4c1b4 667 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 668 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
669 * @running: true when there are timers running and
670 * @cputime_atomic receives updates.
c8d75aa4
JL
671 * @checking_timer: true when a thread in the group is in the
672 * process of checking for thread group timers.
f06febc9
FM
673 *
674 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 675 * used for thread group CPU timer calculations.
f06febc9 676 */
4cd4c1b4 677struct thread_group_cputimer {
71107445 678 struct task_cputime_atomic cputime_atomic;
d5c373eb 679 bool running;
c8d75aa4 680 bool checking_timer;
f06febc9 681};
f06febc9 682
4714d1d3 683#include <linux/rwsem.h>
5091faa4
MG
684struct autogroup;
685
1da177e4 686/*
e815f0a8 687 * NOTE! "signal_struct" does not have its own
1da177e4
LT
688 * locking, because a shared signal_struct always
689 * implies a shared sighand_struct, so locking
690 * sighand_struct is always a proper superset of
691 * the locking of signal_struct.
692 */
693struct signal_struct {
ea6d290c 694 atomic_t sigcnt;
1da177e4 695 atomic_t live;
b3ac022c 696 int nr_threads;
0c740d0a 697 struct list_head thread_head;
1da177e4
LT
698
699 wait_queue_head_t wait_chldexit; /* for wait4() */
700
701 /* current thread group signal load-balancing target: */
36c8b586 702 struct task_struct *curr_target;
1da177e4
LT
703
704 /* shared signal handling: */
705 struct sigpending shared_pending;
706
707 /* thread group exit support */
708 int group_exit_code;
709 /* overloaded:
710 * - notify group_exit_task when ->count is equal to notify_count
711 * - everyone except group_exit_task is stopped during signal delivery
712 * of fatal signals, group_exit_task processes the signal.
713 */
1da177e4 714 int notify_count;
07dd20e0 715 struct task_struct *group_exit_task;
1da177e4
LT
716
717 /* thread group stop support, overloads group_exit_code too */
718 int group_stop_count;
719 unsigned int flags; /* see SIGNAL_* flags below */
720
ebec18a6
LP
721 /*
722 * PR_SET_CHILD_SUBREAPER marks a process, like a service
723 * manager, to re-parent orphan (double-forking) child processes
724 * to this process instead of 'init'. The service manager is
725 * able to receive SIGCHLD signals and is able to investigate
726 * the process until it calls wait(). All children of this
727 * process will inherit a flag if they should look for a
728 * child_subreaper process at exit.
729 */
730 unsigned int is_child_subreaper:1;
731 unsigned int has_child_subreaper:1;
732
1da177e4 733 /* POSIX.1b Interval Timers */
5ed67f05
PE
734 int posix_timer_id;
735 struct list_head posix_timers;
1da177e4
LT
736
737 /* ITIMER_REAL timer for the process */
2ff678b8 738 struct hrtimer real_timer;
fea9d175 739 struct pid *leader_pid;
2ff678b8 740 ktime_t it_real_incr;
1da177e4 741
42c4ab41
SG
742 /*
743 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
744 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
745 * values are defined to 0 and 1 respectively
746 */
747 struct cpu_itimer it[2];
1da177e4 748
f06febc9 749 /*
4cd4c1b4
PZ
750 * Thread group totals for process CPU timers.
751 * See thread_group_cputimer(), et al, for details.
f06febc9 752 */
4cd4c1b4 753 struct thread_group_cputimer cputimer;
f06febc9
FM
754
755 /* Earliest-expiration cache. */
756 struct task_cputime cputime_expires;
757
d027d45d 758#ifdef CONFIG_NO_HZ_FULL
f009a7a7 759 atomic_t tick_dep_mask;
d027d45d
FW
760#endif
761
f06febc9
FM
762 struct list_head cpu_timers[3];
763
ab521dc0 764 struct pid *tty_old_pgrp;
1ec320af 765
1da177e4
LT
766 /* boolean value for session group leader */
767 int leader;
768
769 struct tty_struct *tty; /* NULL if no tty */
770
5091faa4
MG
771#ifdef CONFIG_SCHED_AUTOGROUP
772 struct autogroup *autogroup;
773#endif
1da177e4
LT
774 /*
775 * Cumulative resource counters for dead threads in the group,
776 * and for reaped dead child processes forked by this group.
777 * Live threads maintain their own counters and add to these
778 * in __exit_signal, except for the group leader.
779 */
e78c3496 780 seqlock_t stats_lock;
32bd671d 781 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
782 cputime_t gtime;
783 cputime_t cgtime;
9d7fb042 784 struct prev_cputime prev_cputime;
1da177e4
LT
785 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
786 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 787 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 788 unsigned long maxrss, cmaxrss;
940389b8 789 struct task_io_accounting ioac;
1da177e4 790
32bd671d
PZ
791 /*
792 * Cumulative ns of schedule CPU time fo dead threads in the
793 * group, not including a zombie group leader, (This only differs
794 * from jiffies_to_ns(utime + stime) if sched_clock uses something
795 * other than jiffies.)
796 */
797 unsigned long long sum_sched_runtime;
798
1da177e4
LT
799 /*
800 * We don't bother to synchronize most readers of this at all,
801 * because there is no reader checking a limit that actually needs
802 * to get both rlim_cur and rlim_max atomically, and either one
803 * alone is a single word that can safely be read normally.
804 * getrlimit/setrlimit use task_lock(current->group_leader) to
805 * protect this instead of the siglock, because they really
806 * have no need to disable irqs.
807 */
808 struct rlimit rlim[RLIM_NLIMITS];
809
0e464814
KK
810#ifdef CONFIG_BSD_PROCESS_ACCT
811 struct pacct_struct pacct; /* per-process accounting information */
812#endif
ad4ecbcb 813#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
814 struct taskstats *stats;
815#endif
522ed776
MT
816#ifdef CONFIG_AUDIT
817 unsigned audit_tty;
818 struct tty_audit_buf *tty_audit_buf;
819#endif
28b83c51 820
c96fc2d8
TH
821 /*
822 * Thread is the potential origin of an oom condition; kill first on
823 * oom
824 */
825 bool oom_flag_origin;
a9c58b90
DR
826 short oom_score_adj; /* OOM kill score adjustment */
827 short oom_score_adj_min; /* OOM kill score adjustment min value.
828 * Only settable by CAP_SYS_RESOURCE. */
26db62f1
MH
829 struct mm_struct *oom_mm; /* recorded mm when the thread group got
830 * killed by the oom killer */
9b1bf12d
KM
831
832 struct mutex cred_guard_mutex; /* guard against foreign influences on
833 * credential calculations
834 * (notably. ptrace) */
1da177e4
LT
835};
836
837/*
838 * Bits in flags field of signal_struct.
839 */
840#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
841#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
842#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 843#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
844/*
845 * Pending notifications to parent.
846 */
847#define SIGNAL_CLD_STOPPED 0x00000010
848#define SIGNAL_CLD_CONTINUED 0x00000020
849#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 850
fae5fa44
ON
851#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
852
ed5d2cac
ON
853/* If true, all threads except ->group_exit_task have pending SIGKILL */
854static inline int signal_group_exit(const struct signal_struct *sig)
855{
856 return (sig->flags & SIGNAL_GROUP_EXIT) ||
857 (sig->group_exit_task != NULL);
858}
859
1da177e4
LT
860/*
861 * Some day this will be a full-fledged user tracking system..
862 */
863struct user_struct {
864 atomic_t __count; /* reference count */
865 atomic_t processes; /* How many processes does this user have? */
1da177e4 866 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 867#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
868 atomic_t inotify_watches; /* How many inotify watches does this user have? */
869 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
870#endif
4afeff85
EP
871#ifdef CONFIG_FANOTIFY
872 atomic_t fanotify_listeners;
873#endif
7ef9964e 874#ifdef CONFIG_EPOLL
52bd19f7 875 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 876#endif
970a8645 877#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
878 /* protected by mq_lock */
879 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 880#endif
1da177e4 881 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 882 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 883 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
884
885#ifdef CONFIG_KEYS
886 struct key *uid_keyring; /* UID specific keyring */
887 struct key *session_keyring; /* UID's default session keyring */
888#endif
889
890 /* Hash table maintenance information */
735de223 891 struct hlist_node uidhash_node;
7b44ab97 892 kuid_t uid;
24e377a8 893
aaac3ba9 894#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
895 atomic_long_t locked_vm;
896#endif
1da177e4
LT
897};
898
eb41d946 899extern int uids_sysfs_init(void);
5cb350ba 900
7b44ab97 901extern struct user_struct *find_user(kuid_t);
1da177e4
LT
902
903extern struct user_struct root_user;
904#define INIT_USER (&root_user)
905
b6dff3ec 906
1da177e4
LT
907struct backing_dev_info;
908struct reclaim_state;
909
f6db8347 910#ifdef CONFIG_SCHED_INFO
1da177e4
LT
911struct sched_info {
912 /* cumulative counters */
2d72376b 913 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 914 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
915
916 /* timestamps */
172ba844
BS
917 unsigned long long last_arrival,/* when we last ran on a cpu */
918 last_queued; /* when we were last queued to run */
1da177e4 919};
f6db8347 920#endif /* CONFIG_SCHED_INFO */
1da177e4 921
ca74e92b
SN
922#ifdef CONFIG_TASK_DELAY_ACCT
923struct task_delay_info {
924 spinlock_t lock;
925 unsigned int flags; /* Private per-task flags */
926
927 /* For each stat XXX, add following, aligned appropriately
928 *
929 * struct timespec XXX_start, XXX_end;
930 * u64 XXX_delay;
931 * u32 XXX_count;
932 *
933 * Atomicity of updates to XXX_delay, XXX_count protected by
934 * single lock above (split into XXX_lock if contention is an issue).
935 */
0ff92245
SN
936
937 /*
938 * XXX_count is incremented on every XXX operation, the delay
939 * associated with the operation is added to XXX_delay.
940 * XXX_delay contains the accumulated delay time in nanoseconds.
941 */
9667a23d 942 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
943 u64 blkio_delay; /* wait for sync block io completion */
944 u64 swapin_delay; /* wait for swapin block io completion */
945 u32 blkio_count; /* total count of the number of sync block */
946 /* io operations performed */
947 u32 swapin_count; /* total count of the number of swapin block */
948 /* io operations performed */
873b4771 949
9667a23d 950 u64 freepages_start;
873b4771
KK
951 u64 freepages_delay; /* wait for memory reclaim */
952 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 953};
52f17b6c
CS
954#endif /* CONFIG_TASK_DELAY_ACCT */
955
956static inline int sched_info_on(void)
957{
958#ifdef CONFIG_SCHEDSTATS
959 return 1;
960#elif defined(CONFIG_TASK_DELAY_ACCT)
961 extern int delayacct_on;
962 return delayacct_on;
963#else
964 return 0;
ca74e92b 965#endif
52f17b6c 966}
ca74e92b 967
cb251765
MG
968#ifdef CONFIG_SCHEDSTATS
969void force_schedstat_enabled(void);
970#endif
971
d15bcfdb
IM
972enum cpu_idle_type {
973 CPU_IDLE,
974 CPU_NOT_IDLE,
975 CPU_NEWLY_IDLE,
976 CPU_MAX_IDLE_TYPES
1da177e4
LT
977};
978
6ecdd749
YD
979/*
980 * Integer metrics need fixed point arithmetic, e.g., sched/fair
981 * has a few: load, load_avg, util_avg, freq, and capacity.
982 *
983 * We define a basic fixed point arithmetic range, and then formalize
984 * all these metrics based on that basic range.
985 */
986# define SCHED_FIXEDPOINT_SHIFT 10
987# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
988
1399fa78 989/*
ca8ce3d0 990 * Increase resolution of cpu_capacity calculations
1399fa78 991 */
6ecdd749 992#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 993#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 994
76751049
PZ
995/*
996 * Wake-queues are lists of tasks with a pending wakeup, whose
997 * callers have already marked the task as woken internally,
998 * and can thus carry on. A common use case is being able to
999 * do the wakeups once the corresponding user lock as been
1000 * released.
1001 *
1002 * We hold reference to each task in the list across the wakeup,
1003 * thus guaranteeing that the memory is still valid by the time
1004 * the actual wakeups are performed in wake_up_q().
1005 *
1006 * One per task suffices, because there's never a need for a task to be
1007 * in two wake queues simultaneously; it is forbidden to abandon a task
1008 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
1009 * already in a wake queue, the wakeup will happen soon and the second
1010 * waker can just skip it.
1011 *
1012 * The WAKE_Q macro declares and initializes the list head.
1013 * wake_up_q() does NOT reinitialize the list; it's expected to be
1014 * called near the end of a function, where the fact that the queue is
1015 * not used again will be easy to see by inspection.
1016 *
1017 * Note that this can cause spurious wakeups. schedule() callers
1018 * must ensure the call is done inside a loop, confirming that the
1019 * wakeup condition has in fact occurred.
1020 */
1021struct wake_q_node {
1022 struct wake_q_node *next;
1023};
1024
1025struct wake_q_head {
1026 struct wake_q_node *first;
1027 struct wake_q_node **lastp;
1028};
1029
1030#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1031
1032#define WAKE_Q(name) \
1033 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1034
1035extern void wake_q_add(struct wake_q_head *head,
1036 struct task_struct *task);
1037extern void wake_up_q(struct wake_q_head *head);
1038
1399fa78
NR
1039/*
1040 * sched-domains (multiprocessor balancing) declarations:
1041 */
2dd73a4f 1042#ifdef CONFIG_SMP
b5d978e0
PZ
1043#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1044#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1045#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1046#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1047#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1048#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1f6e6c7c 1049#define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
bd425d4b 1050#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
d77b3ed5 1051#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1052#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1053#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1054#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1055#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1056#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1057#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1058
143e1e28 1059#ifdef CONFIG_SCHED_SMT
b6220ad6 1060static inline int cpu_smt_flags(void)
143e1e28 1061{
5d4dfddd 1062 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1063}
1064#endif
1065
1066#ifdef CONFIG_SCHED_MC
b6220ad6 1067static inline int cpu_core_flags(void)
143e1e28
VG
1068{
1069 return SD_SHARE_PKG_RESOURCES;
1070}
1071#endif
1072
1073#ifdef CONFIG_NUMA
b6220ad6 1074static inline int cpu_numa_flags(void)
143e1e28
VG
1075{
1076 return SD_NUMA;
1077}
1078#endif
532cb4c4 1079
1d3504fc
HS
1080struct sched_domain_attr {
1081 int relax_domain_level;
1082};
1083
1084#define SD_ATTR_INIT (struct sched_domain_attr) { \
1085 .relax_domain_level = -1, \
1086}
1087
60495e77
PZ
1088extern int sched_domain_level_max;
1089
5e6521ea
LZ
1090struct sched_group;
1091
24fc7edb
PZ
1092struct sched_domain_shared {
1093 atomic_t ref;
0e369d75 1094 atomic_t nr_busy_cpus;
10e2f1ac 1095 int has_idle_cores;
24fc7edb
PZ
1096};
1097
1da177e4
LT
1098struct sched_domain {
1099 /* These fields must be setup */
1100 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1101 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1102 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1103 unsigned long min_interval; /* Minimum balance interval ms */
1104 unsigned long max_interval; /* Maximum balance interval ms */
1105 unsigned int busy_factor; /* less balancing by factor if busy */
1106 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1107 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1108 unsigned int busy_idx;
1109 unsigned int idle_idx;
1110 unsigned int newidle_idx;
1111 unsigned int wake_idx;
147cbb4b 1112 unsigned int forkexec_idx;
a52bfd73 1113 unsigned int smt_gain;
25f55d9d
VG
1114
1115 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1116 int flags; /* See SD_* */
60495e77 1117 int level;
1da177e4
LT
1118
1119 /* Runtime fields. */
1120 unsigned long last_balance; /* init to jiffies. units in jiffies */
1121 unsigned int balance_interval; /* initialise to 1. units in ms. */
1122 unsigned int nr_balance_failed; /* initialise to 0 */
1123
f48627e6 1124 /* idle_balance() stats */
9bd721c5 1125 u64 max_newidle_lb_cost;
f48627e6 1126 unsigned long next_decay_max_lb_cost;
2398f2c6 1127
10e2f1ac
PZ
1128 u64 avg_scan_cost; /* select_idle_sibling */
1129
1da177e4
LT
1130#ifdef CONFIG_SCHEDSTATS
1131 /* load_balance() stats */
480b9434
KC
1132 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1133 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1134 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1135 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1136 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1137 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1138 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1139 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1140
1141 /* Active load balancing */
480b9434
KC
1142 unsigned int alb_count;
1143 unsigned int alb_failed;
1144 unsigned int alb_pushed;
1da177e4 1145
68767a0a 1146 /* SD_BALANCE_EXEC stats */
480b9434
KC
1147 unsigned int sbe_count;
1148 unsigned int sbe_balanced;
1149 unsigned int sbe_pushed;
1da177e4 1150
68767a0a 1151 /* SD_BALANCE_FORK stats */
480b9434
KC
1152 unsigned int sbf_count;
1153 unsigned int sbf_balanced;
1154 unsigned int sbf_pushed;
68767a0a 1155
1da177e4 1156 /* try_to_wake_up() stats */
480b9434
KC
1157 unsigned int ttwu_wake_remote;
1158 unsigned int ttwu_move_affine;
1159 unsigned int ttwu_move_balance;
1da177e4 1160#endif
a5d8c348
IM
1161#ifdef CONFIG_SCHED_DEBUG
1162 char *name;
1163#endif
dce840a0
PZ
1164 union {
1165 void *private; /* used during construction */
1166 struct rcu_head rcu; /* used during destruction */
1167 };
24fc7edb 1168 struct sched_domain_shared *shared;
6c99e9ad 1169
669c55e9 1170 unsigned int span_weight;
4200efd9
IM
1171 /*
1172 * Span of all CPUs in this domain.
1173 *
1174 * NOTE: this field is variable length. (Allocated dynamically
1175 * by attaching extra space to the end of the structure,
1176 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1177 */
1178 unsigned long span[0];
1da177e4
LT
1179};
1180
758b2cdc
RR
1181static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1182{
6c99e9ad 1183 return to_cpumask(sd->span);
758b2cdc
RR
1184}
1185
acc3f5d7 1186extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1187 struct sched_domain_attr *dattr_new);
029190c5 1188
acc3f5d7
RR
1189/* Allocate an array of sched domains, for partition_sched_domains(). */
1190cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1191void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1192
39be3501
PZ
1193bool cpus_share_cache(int this_cpu, int that_cpu);
1194
143e1e28 1195typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1196typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1197
1198#define SDTL_OVERLAP 0x01
1199
1200struct sd_data {
1201 struct sched_domain **__percpu sd;
24fc7edb 1202 struct sched_domain_shared **__percpu sds;
143e1e28 1203 struct sched_group **__percpu sg;
63b2ca30 1204 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1205};
1206
1207struct sched_domain_topology_level {
1208 sched_domain_mask_f mask;
1209 sched_domain_flags_f sd_flags;
1210 int flags;
1211 int numa_level;
1212 struct sd_data data;
1213#ifdef CONFIG_SCHED_DEBUG
1214 char *name;
1215#endif
1216};
1217
143e1e28 1218extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1219extern void wake_up_if_idle(int cpu);
143e1e28
VG
1220
1221#ifdef CONFIG_SCHED_DEBUG
1222# define SD_INIT_NAME(type) .name = #type
1223#else
1224# define SD_INIT_NAME(type)
1225#endif
1226
1b427c15 1227#else /* CONFIG_SMP */
1da177e4 1228
1b427c15 1229struct sched_domain_attr;
d02c7a8c 1230
1b427c15 1231static inline void
acc3f5d7 1232partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1233 struct sched_domain_attr *dattr_new)
1234{
d02c7a8c 1235}
39be3501
PZ
1236
1237static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1238{
1239 return true;
1240}
1241
1b427c15 1242#endif /* !CONFIG_SMP */
1da177e4 1243
47fe38fc 1244
1da177e4 1245struct io_context; /* See blkdev.h */
1da177e4 1246
1da177e4 1247
383f2835 1248#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1249extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1250#else
1251static inline void prefetch_stack(struct task_struct *t) { }
1252#endif
1da177e4
LT
1253
1254struct audit_context; /* See audit.c */
1255struct mempolicy;
b92ce558 1256struct pipe_inode_info;
4865ecf1 1257struct uts_namespace;
1da177e4 1258
20b8a59f 1259struct load_weight {
9dbdb155
PZ
1260 unsigned long weight;
1261 u32 inv_weight;
20b8a59f
IM
1262};
1263
9d89c257 1264/*
7b595334
YD
1265 * The load_avg/util_avg accumulates an infinite geometric series
1266 * (see __update_load_avg() in kernel/sched/fair.c).
1267 *
1268 * [load_avg definition]
1269 *
1270 * load_avg = runnable% * scale_load_down(load)
1271 *
1272 * where runnable% is the time ratio that a sched_entity is runnable.
1273 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1274 * blocked sched_entities.
7b595334
YD
1275 *
1276 * load_avg may also take frequency scaling into account:
1277 *
1278 * load_avg = runnable% * scale_load_down(load) * freq%
1279 *
1280 * where freq% is the CPU frequency normalized to the highest frequency.
1281 *
1282 * [util_avg definition]
1283 *
1284 * util_avg = running% * SCHED_CAPACITY_SCALE
1285 *
1286 * where running% is the time ratio that a sched_entity is running on
1287 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1288 * and blocked sched_entities.
1289 *
1290 * util_avg may also factor frequency scaling and CPU capacity scaling:
1291 *
1292 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1293 *
1294 * where freq% is the same as above, and capacity% is the CPU capacity
1295 * normalized to the greatest capacity (due to uarch differences, etc).
1296 *
1297 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1298 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1299 * we therefore scale them to as large a range as necessary. This is for
1300 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1301 *
1302 * [Overflow issue]
1303 *
1304 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1305 * with the highest load (=88761), always runnable on a single cfs_rq,
1306 * and should not overflow as the number already hits PID_MAX_LIMIT.
1307 *
1308 * For all other cases (including 32-bit kernels), struct load_weight's
1309 * weight will overflow first before we do, because:
1310 *
1311 * Max(load_avg) <= Max(load.weight)
1312 *
1313 * Then it is the load_weight's responsibility to consider overflow
1314 * issues.
9d89c257 1315 */
9d85f21c 1316struct sched_avg {
9d89c257
YD
1317 u64 last_update_time, load_sum;
1318 u32 util_sum, period_contrib;
1319 unsigned long load_avg, util_avg;
9d85f21c
PT
1320};
1321
94c18227 1322#ifdef CONFIG_SCHEDSTATS
41acab88 1323struct sched_statistics {
20b8a59f 1324 u64 wait_start;
94c18227 1325 u64 wait_max;
6d082592
AV
1326 u64 wait_count;
1327 u64 wait_sum;
8f0dfc34
AV
1328 u64 iowait_count;
1329 u64 iowait_sum;
94c18227 1330
20b8a59f 1331 u64 sleep_start;
20b8a59f 1332 u64 sleep_max;
94c18227
IM
1333 s64 sum_sleep_runtime;
1334
1335 u64 block_start;
20b8a59f
IM
1336 u64 block_max;
1337 u64 exec_max;
eba1ed4b 1338 u64 slice_max;
cc367732 1339
cc367732
IM
1340 u64 nr_migrations_cold;
1341 u64 nr_failed_migrations_affine;
1342 u64 nr_failed_migrations_running;
1343 u64 nr_failed_migrations_hot;
1344 u64 nr_forced_migrations;
cc367732
IM
1345
1346 u64 nr_wakeups;
1347 u64 nr_wakeups_sync;
1348 u64 nr_wakeups_migrate;
1349 u64 nr_wakeups_local;
1350 u64 nr_wakeups_remote;
1351 u64 nr_wakeups_affine;
1352 u64 nr_wakeups_affine_attempts;
1353 u64 nr_wakeups_passive;
1354 u64 nr_wakeups_idle;
41acab88
LDM
1355};
1356#endif
1357
1358struct sched_entity {
1359 struct load_weight load; /* for load-balancing */
1360 struct rb_node run_node;
1361 struct list_head group_node;
1362 unsigned int on_rq;
1363
1364 u64 exec_start;
1365 u64 sum_exec_runtime;
1366 u64 vruntime;
1367 u64 prev_sum_exec_runtime;
1368
41acab88
LDM
1369 u64 nr_migrations;
1370
41acab88
LDM
1371#ifdef CONFIG_SCHEDSTATS
1372 struct sched_statistics statistics;
94c18227
IM
1373#endif
1374
20b8a59f 1375#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1376 int depth;
20b8a59f
IM
1377 struct sched_entity *parent;
1378 /* rq on which this entity is (to be) queued: */
1379 struct cfs_rq *cfs_rq;
1380 /* rq "owned" by this entity/group: */
1381 struct cfs_rq *my_q;
1382#endif
8bd75c77 1383
141965c7 1384#ifdef CONFIG_SMP
5a107804
JO
1385 /*
1386 * Per entity load average tracking.
1387 *
1388 * Put into separate cache line so it does not
1389 * collide with read-mostly values above.
1390 */
1391 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1392#endif
20b8a59f 1393};
70b97a7f 1394
fa717060
PZ
1395struct sched_rt_entity {
1396 struct list_head run_list;
78f2c7db 1397 unsigned long timeout;
57d2aa00 1398 unsigned long watchdog_stamp;
bee367ed 1399 unsigned int time_slice;
ff77e468
PZ
1400 unsigned short on_rq;
1401 unsigned short on_list;
6f505b16 1402
58d6c2d7 1403 struct sched_rt_entity *back;
052f1dc7 1404#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1405 struct sched_rt_entity *parent;
1406 /* rq on which this entity is (to be) queued: */
1407 struct rt_rq *rt_rq;
1408 /* rq "owned" by this entity/group: */
1409 struct rt_rq *my_q;
1410#endif
fa717060
PZ
1411};
1412
aab03e05
DF
1413struct sched_dl_entity {
1414 struct rb_node rb_node;
1415
1416 /*
1417 * Original scheduling parameters. Copied here from sched_attr
4027d080 1418 * during sched_setattr(), they will remain the same until
1419 * the next sched_setattr().
aab03e05
DF
1420 */
1421 u64 dl_runtime; /* maximum runtime for each instance */
1422 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1423 u64 dl_period; /* separation of two instances (period) */
332ac17e 1424 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1425
1426 /*
1427 * Actual scheduling parameters. Initialized with the values above,
1428 * they are continously updated during task execution. Note that
1429 * the remaining runtime could be < 0 in case we are in overrun.
1430 */
1431 s64 runtime; /* remaining runtime for this instance */
1432 u64 deadline; /* absolute deadline for this instance */
1433 unsigned int flags; /* specifying the scheduler behaviour */
1434
1435 /*
1436 * Some bool flags:
1437 *
1438 * @dl_throttled tells if we exhausted the runtime. If so, the
1439 * task has to wait for a replenishment to be performed at the
1440 * next firing of dl_timer.
1441 *
2d3d891d
DF
1442 * @dl_boosted tells if we are boosted due to DI. If so we are
1443 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1444 * exit the critical section);
1445 *
1446 * @dl_yielded tells if task gave up the cpu before consuming
1447 * all its available runtime during the last job.
aab03e05 1448 */
72f9f3fd 1449 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1450
1451 /*
1452 * Bandwidth enforcement timer. Each -deadline task has its
1453 * own bandwidth to be enforced, thus we need one timer per task.
1454 */
1455 struct hrtimer dl_timer;
1456};
8bd75c77 1457
1d082fd0
PM
1458union rcu_special {
1459 struct {
8203d6d0
PM
1460 u8 blocked;
1461 u8 need_qs;
1462 u8 exp_need_qs;
1463 u8 pad; /* Otherwise the compiler can store garbage here. */
1464 } b; /* Bits. */
1465 u32 s; /* Set of bits. */
1d082fd0 1466};
86848966
PM
1467struct rcu_node;
1468
8dc85d54
PZ
1469enum perf_event_task_context {
1470 perf_invalid_context = -1,
1471 perf_hw_context = 0,
89a1e187 1472 perf_sw_context,
8dc85d54
PZ
1473 perf_nr_task_contexts,
1474};
1475
72b252ae
MG
1476/* Track pages that require TLB flushes */
1477struct tlbflush_unmap_batch {
1478 /*
1479 * Each bit set is a CPU that potentially has a TLB entry for one of
1480 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1481 */
1482 struct cpumask cpumask;
1483
1484 /* True if any bit in cpumask is set */
1485 bool flush_required;
d950c947
MG
1486
1487 /*
1488 * If true then the PTE was dirty when unmapped. The entry must be
1489 * flushed before IO is initiated or a stale TLB entry potentially
1490 * allows an update without redirtying the page.
1491 */
1492 bool writable;
72b252ae
MG
1493};
1494
1da177e4 1495struct task_struct {
c65eacbe
AL
1496#ifdef CONFIG_THREAD_INFO_IN_TASK
1497 /*
1498 * For reasons of header soup (see current_thread_info()), this
1499 * must be the first element of task_struct.
1500 */
1501 struct thread_info thread_info;
1502#endif
1da177e4 1503 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1504 void *stack;
1da177e4 1505 atomic_t usage;
97dc32cd
WC
1506 unsigned int flags; /* per process flags, defined below */
1507 unsigned int ptrace;
1da177e4 1508
2dd73a4f 1509#ifdef CONFIG_SMP
fa14ff4a 1510 struct llist_node wake_entry;
3ca7a440 1511 int on_cpu;
c65eacbe
AL
1512#ifdef CONFIG_THREAD_INFO_IN_TASK
1513 unsigned int cpu; /* current CPU */
1514#endif
63b0e9ed 1515 unsigned int wakee_flips;
62470419 1516 unsigned long wakee_flip_decay_ts;
63b0e9ed 1517 struct task_struct *last_wakee;
ac66f547
PZ
1518
1519 int wake_cpu;
2dd73a4f 1520#endif
fd2f4419 1521 int on_rq;
50e645a8 1522
b29739f9 1523 int prio, static_prio, normal_prio;
c7aceaba 1524 unsigned int rt_priority;
5522d5d5 1525 const struct sched_class *sched_class;
20b8a59f 1526 struct sched_entity se;
fa717060 1527 struct sched_rt_entity rt;
8323f26c
PZ
1528#ifdef CONFIG_CGROUP_SCHED
1529 struct task_group *sched_task_group;
1530#endif
aab03e05 1531 struct sched_dl_entity dl;
1da177e4 1532
e107be36
AK
1533#ifdef CONFIG_PREEMPT_NOTIFIERS
1534 /* list of struct preempt_notifier: */
1535 struct hlist_head preempt_notifiers;
1536#endif
1537
6c5c9341 1538#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1539 unsigned int btrace_seq;
6c5c9341 1540#endif
1da177e4 1541
97dc32cd 1542 unsigned int policy;
29baa747 1543 int nr_cpus_allowed;
1da177e4 1544 cpumask_t cpus_allowed;
1da177e4 1545
a57eb940 1546#ifdef CONFIG_PREEMPT_RCU
e260be67 1547 int rcu_read_lock_nesting;
1d082fd0 1548 union rcu_special rcu_read_unlock_special;
f41d911f 1549 struct list_head rcu_node_entry;
a57eb940 1550 struct rcu_node *rcu_blocked_node;
28f6569a 1551#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1552#ifdef CONFIG_TASKS_RCU
1553 unsigned long rcu_tasks_nvcsw;
1554 bool rcu_tasks_holdout;
1555 struct list_head rcu_tasks_holdout_list;
176f8f7a 1556 int rcu_tasks_idle_cpu;
8315f422 1557#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1558
f6db8347 1559#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1560 struct sched_info sched_info;
1561#endif
1562
1563 struct list_head tasks;
806c09a7 1564#ifdef CONFIG_SMP
917b627d 1565 struct plist_node pushable_tasks;
1baca4ce 1566 struct rb_node pushable_dl_tasks;
806c09a7 1567#endif
1da177e4
LT
1568
1569 struct mm_struct *mm, *active_mm;
615d6e87
DB
1570 /* per-thread vma caching */
1571 u32 vmacache_seqnum;
1572 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1573#if defined(SPLIT_RSS_COUNTING)
1574 struct task_rss_stat rss_stat;
1575#endif
1da177e4 1576/* task state */
97dc32cd 1577 int exit_state;
1da177e4
LT
1578 int exit_code, exit_signal;
1579 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1580 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1581
1582 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1583 unsigned int personality;
9b89f6ba 1584
be958bdc 1585 /* scheduler bits, serialized by scheduler locks */
ca94c442 1586 unsigned sched_reset_on_fork:1;
a8e4f2ea 1587 unsigned sched_contributes_to_load:1;
ff303e66 1588 unsigned sched_migrated:1;
b7e7ade3 1589 unsigned sched_remote_wakeup:1;
be958bdc
PZ
1590 unsigned :0; /* force alignment to the next boundary */
1591
1592 /* unserialized, strictly 'current' */
1593 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1594 unsigned in_iowait:1;
7e781418
AL
1595#if !defined(TIF_RESTORE_SIGMASK)
1596 unsigned restore_sigmask:1;
1597#endif
626ebc41
TH
1598#ifdef CONFIG_MEMCG
1599 unsigned memcg_may_oom:1;
127424c8 1600#ifndef CONFIG_SLOB
6f185c29
VD
1601 unsigned memcg_kmem_skip_account:1;
1602#endif
127424c8 1603#endif
ff303e66
PZ
1604#ifdef CONFIG_COMPAT_BRK
1605 unsigned brk_randomized:1;
1606#endif
6f185c29 1607
1d4457f9
KC
1608 unsigned long atomic_flags; /* Flags needing atomic access. */
1609
f56141e3
AL
1610 struct restart_block restart_block;
1611
1da177e4
LT
1612 pid_t pid;
1613 pid_t tgid;
0a425405 1614
1314562a 1615#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1616 /* Canary value for the -fstack-protector gcc feature */
1617 unsigned long stack_canary;
1314562a 1618#endif
4d1d61a6 1619 /*
1da177e4 1620 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1621 * older sibling, respectively. (p->father can be replaced with
f470021a 1622 * p->real_parent->pid)
1da177e4 1623 */
abd63bc3
KC
1624 struct task_struct __rcu *real_parent; /* real parent process */
1625 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1626 /*
f470021a 1627 * children/sibling forms the list of my natural children
1da177e4
LT
1628 */
1629 struct list_head children; /* list of my children */
1630 struct list_head sibling; /* linkage in my parent's children list */
1631 struct task_struct *group_leader; /* threadgroup leader */
1632
f470021a
RM
1633 /*
1634 * ptraced is the list of tasks this task is using ptrace on.
1635 * This includes both natural children and PTRACE_ATTACH targets.
1636 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1637 */
1638 struct list_head ptraced;
1639 struct list_head ptrace_entry;
1640
1da177e4 1641 /* PID/PID hash table linkage. */
92476d7f 1642 struct pid_link pids[PIDTYPE_MAX];
47e65328 1643 struct list_head thread_group;
0c740d0a 1644 struct list_head thread_node;
1da177e4
LT
1645
1646 struct completion *vfork_done; /* for vfork() */
1647 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1648 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1649
c66f08be 1650 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1651 cputime_t gtime;
9d7fb042 1652 struct prev_cputime prev_cputime;
6a61671b 1653#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1654 seqcount_t vtime_seqcount;
6a61671b
FW
1655 unsigned long long vtime_snap;
1656 enum {
7098c1ea
FW
1657 /* Task is sleeping or running in a CPU with VTIME inactive */
1658 VTIME_INACTIVE = 0,
1659 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1660 VTIME_USER,
7098c1ea 1661 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1662 VTIME_SYS,
1663 } vtime_snap_whence;
d99ca3b9 1664#endif
d027d45d
FW
1665
1666#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1667 atomic_t tick_dep_mask;
d027d45d 1668#endif
1da177e4 1669 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1670 u64 start_time; /* monotonic time in nsec */
57e0be04 1671 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1672/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1673 unsigned long min_flt, maj_flt;
1674
f06febc9 1675 struct task_cputime cputime_expires;
1da177e4
LT
1676 struct list_head cpu_timers[3];
1677
1678/* process credentials */
1b0ba1c9 1679 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1680 * credentials (COW) */
1b0ba1c9 1681 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1682 * credentials (COW) */
36772092
PBG
1683 char comm[TASK_COMM_LEN]; /* executable name excluding path
1684 - access with [gs]et_task_comm (which lock
1685 it with task_lock())
221af7f8 1686 - initialized normally by setup_new_exec */
1da177e4 1687/* file system info */
756daf26 1688 struct nameidata *nameidata;
3d5b6fcc 1689#ifdef CONFIG_SYSVIPC
1da177e4
LT
1690/* ipc stuff */
1691 struct sysv_sem sysvsem;
ab602f79 1692 struct sysv_shm sysvshm;
3d5b6fcc 1693#endif
e162b39a 1694#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1695/* hung task detection */
82a1fcb9
IM
1696 unsigned long last_switch_count;
1697#endif
1da177e4
LT
1698/* filesystem information */
1699 struct fs_struct *fs;
1700/* open file information */
1701 struct files_struct *files;
1651e14e 1702/* namespaces */
ab516013 1703 struct nsproxy *nsproxy;
1da177e4
LT
1704/* signal handlers */
1705 struct signal_struct *signal;
1706 struct sighand_struct *sighand;
1707
1708 sigset_t blocked, real_blocked;
f3de272b 1709 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1710 struct sigpending pending;
1711
1712 unsigned long sas_ss_sp;
1713 size_t sas_ss_size;
2a742138 1714 unsigned sas_ss_flags;
2e01fabe 1715
67d12145 1716 struct callback_head *task_works;
e73f8959 1717
1da177e4 1718 struct audit_context *audit_context;
bfef93a5 1719#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1720 kuid_t loginuid;
4746ec5b 1721 unsigned int sessionid;
bfef93a5 1722#endif
932ecebb 1723 struct seccomp seccomp;
1da177e4
LT
1724
1725/* Thread group tracking */
1726 u32 parent_exec_id;
1727 u32 self_exec_id;
58568d2a
MX
1728/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1729 * mempolicy */
1da177e4 1730 spinlock_t alloc_lock;
1da177e4 1731
b29739f9 1732 /* Protection of the PI data structures: */
1d615482 1733 raw_spinlock_t pi_lock;
b29739f9 1734
76751049
PZ
1735 struct wake_q_node wake_q;
1736
23f78d4a
IM
1737#ifdef CONFIG_RT_MUTEXES
1738 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1739 struct rb_root pi_waiters;
1740 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1741 /* Deadlock detection and priority inheritance handling */
1742 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1743#endif
1744
408894ee
IM
1745#ifdef CONFIG_DEBUG_MUTEXES
1746 /* mutex deadlock detection */
1747 struct mutex_waiter *blocked_on;
1748#endif
de30a2b3
IM
1749#ifdef CONFIG_TRACE_IRQFLAGS
1750 unsigned int irq_events;
de30a2b3 1751 unsigned long hardirq_enable_ip;
de30a2b3 1752 unsigned long hardirq_disable_ip;
fa1452e8 1753 unsigned int hardirq_enable_event;
de30a2b3 1754 unsigned int hardirq_disable_event;
fa1452e8
HS
1755 int hardirqs_enabled;
1756 int hardirq_context;
de30a2b3 1757 unsigned long softirq_disable_ip;
de30a2b3 1758 unsigned long softirq_enable_ip;
fa1452e8 1759 unsigned int softirq_disable_event;
de30a2b3 1760 unsigned int softirq_enable_event;
fa1452e8 1761 int softirqs_enabled;
de30a2b3
IM
1762 int softirq_context;
1763#endif
fbb9ce95 1764#ifdef CONFIG_LOCKDEP
bdb9441e 1765# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1766 u64 curr_chain_key;
1767 int lockdep_depth;
fbb9ce95 1768 unsigned int lockdep_recursion;
c7aceaba 1769 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1770 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1771#endif
c6d30853
AR
1772#ifdef CONFIG_UBSAN
1773 unsigned int in_ubsan;
1774#endif
408894ee 1775
1da177e4
LT
1776/* journalling filesystem info */
1777 void *journal_info;
1778
d89d8796 1779/* stacked block device info */
bddd87c7 1780 struct bio_list *bio_list;
d89d8796 1781
73c10101
JA
1782#ifdef CONFIG_BLOCK
1783/* stack plugging */
1784 struct blk_plug *plug;
1785#endif
1786
1da177e4
LT
1787/* VM state */
1788 struct reclaim_state *reclaim_state;
1789
1da177e4
LT
1790 struct backing_dev_info *backing_dev_info;
1791
1792 struct io_context *io_context;
1793
1794 unsigned long ptrace_message;
1795 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1796 struct task_io_accounting ioac;
8f0ab514 1797#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1798 u64 acct_rss_mem1; /* accumulated rss usage */
1799 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1800 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1801#endif
1802#ifdef CONFIG_CPUSETS
58568d2a 1803 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1804 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1805 int cpuset_mem_spread_rotor;
6adef3eb 1806 int cpuset_slab_spread_rotor;
1da177e4 1807#endif
ddbcc7e8 1808#ifdef CONFIG_CGROUPS
817929ec 1809 /* Control Group info protected by css_set_lock */
2c392b8c 1810 struct css_set __rcu *cgroups;
817929ec
PM
1811 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1812 struct list_head cg_list;
ddbcc7e8 1813#endif
42b2dd0a 1814#ifdef CONFIG_FUTEX
0771dfef 1815 struct robust_list_head __user *robust_list;
34f192c6
IM
1816#ifdef CONFIG_COMPAT
1817 struct compat_robust_list_head __user *compat_robust_list;
1818#endif
c87e2837
IM
1819 struct list_head pi_state_list;
1820 struct futex_pi_state *pi_state_cache;
c7aceaba 1821#endif
cdd6c482 1822#ifdef CONFIG_PERF_EVENTS
8dc85d54 1823 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1824 struct mutex perf_event_mutex;
1825 struct list_head perf_event_list;
a63eaf34 1826#endif
8f47b187
TG
1827#ifdef CONFIG_DEBUG_PREEMPT
1828 unsigned long preempt_disable_ip;
1829#endif
c7aceaba 1830#ifdef CONFIG_NUMA
58568d2a 1831 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1832 short il_next;
207205a2 1833 short pref_node_fork;
42b2dd0a 1834#endif
cbee9f88
PZ
1835#ifdef CONFIG_NUMA_BALANCING
1836 int numa_scan_seq;
cbee9f88 1837 unsigned int numa_scan_period;
598f0ec0 1838 unsigned int numa_scan_period_max;
de1c9ce6 1839 int numa_preferred_nid;
6b9a7460 1840 unsigned long numa_migrate_retry;
cbee9f88 1841 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1842 u64 last_task_numa_placement;
1843 u64 last_sum_exec_runtime;
cbee9f88 1844 struct callback_head numa_work;
f809ca9a 1845
8c8a743c
PZ
1846 struct list_head numa_entry;
1847 struct numa_group *numa_group;
1848
745d6147 1849 /*
44dba3d5
IM
1850 * numa_faults is an array split into four regions:
1851 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1852 * in this precise order.
1853 *
1854 * faults_memory: Exponential decaying average of faults on a per-node
1855 * basis. Scheduling placement decisions are made based on these
1856 * counts. The values remain static for the duration of a PTE scan.
1857 * faults_cpu: Track the nodes the process was running on when a NUMA
1858 * hinting fault was incurred.
1859 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1860 * during the current scan window. When the scan completes, the counts
1861 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1862 */
44dba3d5 1863 unsigned long *numa_faults;
83e1d2cd 1864 unsigned long total_numa_faults;
745d6147 1865
04bb2f94
RR
1866 /*
1867 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1868 * scan window were remote/local or failed to migrate. The task scan
1869 * period is adapted based on the locality of the faults with different
1870 * weights depending on whether they were shared or private faults
04bb2f94 1871 */
074c2381 1872 unsigned long numa_faults_locality[3];
04bb2f94 1873
b32e86b4 1874 unsigned long numa_pages_migrated;
cbee9f88
PZ
1875#endif /* CONFIG_NUMA_BALANCING */
1876
72b252ae
MG
1877#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1878 struct tlbflush_unmap_batch tlb_ubc;
1879#endif
1880
e56d0903 1881 struct rcu_head rcu;
b92ce558
JA
1882
1883 /*
1884 * cache last used pipe for splice
1885 */
1886 struct pipe_inode_info *splice_pipe;
5640f768
ED
1887
1888 struct page_frag task_frag;
1889
ca74e92b
SN
1890#ifdef CONFIG_TASK_DELAY_ACCT
1891 struct task_delay_info *delays;
f4f154fd
AM
1892#endif
1893#ifdef CONFIG_FAULT_INJECTION
1894 int make_it_fail;
ca74e92b 1895#endif
9d823e8f
WF
1896 /*
1897 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1898 * balance_dirty_pages() for some dirty throttling pause
1899 */
1900 int nr_dirtied;
1901 int nr_dirtied_pause;
83712358 1902 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1903
9745512c
AV
1904#ifdef CONFIG_LATENCYTOP
1905 int latency_record_count;
1906 struct latency_record latency_record[LT_SAVECOUNT];
1907#endif
6976675d
AV
1908 /*
1909 * time slack values; these are used to round up poll() and
1910 * select() etc timeout values. These are in nanoseconds.
1911 */
da8b44d5
JS
1912 u64 timer_slack_ns;
1913 u64 default_timer_slack_ns;
f8d570a4 1914
0b24becc
AR
1915#ifdef CONFIG_KASAN
1916 unsigned int kasan_depth;
1917#endif
fb52607a 1918#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1919 /* Index of current stored address in ret_stack */
f201ae23
FW
1920 int curr_ret_stack;
1921 /* Stack of return addresses for return function tracing */
1922 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1923 /* time stamp for last schedule */
1924 unsigned long long ftrace_timestamp;
f201ae23
FW
1925 /*
1926 * Number of functions that haven't been traced
1927 * because of depth overrun.
1928 */
1929 atomic_t trace_overrun;
380c4b14
FW
1930 /* Pause for the tracing */
1931 atomic_t tracing_graph_pause;
f201ae23 1932#endif
ea4e2bc4
SR
1933#ifdef CONFIG_TRACING
1934 /* state flags for use by tracers */
1935 unsigned long trace;
b1cff0ad 1936 /* bitmask and counter of trace recursion */
261842b7
SR
1937 unsigned long trace_recursion;
1938#endif /* CONFIG_TRACING */
5c9a8750
DV
1939#ifdef CONFIG_KCOV
1940 /* Coverage collection mode enabled for this task (0 if disabled). */
1941 enum kcov_mode kcov_mode;
1942 /* Size of the kcov_area. */
1943 unsigned kcov_size;
1944 /* Buffer for coverage collection. */
1945 void *kcov_area;
1946 /* kcov desciptor wired with this task or NULL. */
1947 struct kcov *kcov;
1948#endif
6f185c29 1949#ifdef CONFIG_MEMCG
626ebc41
TH
1950 struct mem_cgroup *memcg_in_oom;
1951 gfp_t memcg_oom_gfp_mask;
1952 int memcg_oom_order;
b23afb93
TH
1953
1954 /* number of pages to reclaim on returning to userland */
1955 unsigned int memcg_nr_pages_over_high;
569b846d 1956#endif
0326f5a9
SD
1957#ifdef CONFIG_UPROBES
1958 struct uprobe_task *utask;
0326f5a9 1959#endif
cafe5635
KO
1960#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1961 unsigned int sequential_io;
1962 unsigned int sequential_io_avg;
1963#endif
8eb23b9f
PZ
1964#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1965 unsigned long task_state_change;
1966#endif
8bcbde54 1967 int pagefault_disabled;
03049269 1968#ifdef CONFIG_MMU
29c696e1 1969 struct task_struct *oom_reaper_list;
03049269 1970#endif
ba14a194
AL
1971#ifdef CONFIG_VMAP_STACK
1972 struct vm_struct *stack_vm_area;
1973#endif
68f24b08
AL
1974#ifdef CONFIG_THREAD_INFO_IN_TASK
1975 /* A live task holds one reference. */
1976 atomic_t stack_refcount;
1977#endif
0c8c0f03
DH
1978/* CPU-specific state of this task */
1979 struct thread_struct thread;
1980/*
1981 * WARNING: on x86, 'thread_struct' contains a variable-sized
1982 * structure. It *MUST* be at the end of 'task_struct'.
1983 *
1984 * Do not put anything below here!
1985 */
1da177e4
LT
1986};
1987
5aaeb5c0
IM
1988#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1989extern int arch_task_struct_size __read_mostly;
1990#else
1991# define arch_task_struct_size (sizeof(struct task_struct))
1992#endif
0c8c0f03 1993
ba14a194
AL
1994#ifdef CONFIG_VMAP_STACK
1995static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1996{
1997 return t->stack_vm_area;
1998}
1999#else
2000static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2001{
2002 return NULL;
2003}
2004#endif
2005
76e6eee0 2006/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 2007#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 2008
50605ffb
TG
2009static inline int tsk_nr_cpus_allowed(struct task_struct *p)
2010{
2011 return p->nr_cpus_allowed;
2012}
2013
6688cc05
PZ
2014#define TNF_MIGRATED 0x01
2015#define TNF_NO_GROUP 0x02
dabe1d99 2016#define TNF_SHARED 0x04
04bb2f94 2017#define TNF_FAULT_LOCAL 0x08
074c2381 2018#define TNF_MIGRATE_FAIL 0x10
6688cc05 2019
b18dc5f2
MH
2020static inline bool in_vfork(struct task_struct *tsk)
2021{
2022 bool ret;
2023
2024 /*
2025 * need RCU to access ->real_parent if CLONE_VM was used along with
2026 * CLONE_PARENT.
2027 *
2028 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2029 * imply CLONE_VM
2030 *
2031 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2032 * ->real_parent is not necessarily the task doing vfork(), so in
2033 * theory we can't rely on task_lock() if we want to dereference it.
2034 *
2035 * And in this case we can't trust the real_parent->mm == tsk->mm
2036 * check, it can be false negative. But we do not care, if init or
2037 * another oom-unkillable task does this it should blame itself.
2038 */
2039 rcu_read_lock();
2040 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2041 rcu_read_unlock();
2042
2043 return ret;
2044}
2045
cbee9f88 2046#ifdef CONFIG_NUMA_BALANCING
6688cc05 2047extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 2048extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 2049extern void set_numabalancing_state(bool enabled);
82727018 2050extern void task_numa_free(struct task_struct *p);
10f39042
RR
2051extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2052 int src_nid, int dst_cpu);
cbee9f88 2053#else
ac8e895b 2054static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 2055 int flags)
cbee9f88
PZ
2056{
2057}
e29cf08b
MG
2058static inline pid_t task_numa_group_id(struct task_struct *p)
2059{
2060 return 0;
2061}
1a687c2e
MG
2062static inline void set_numabalancing_state(bool enabled)
2063{
2064}
82727018
RR
2065static inline void task_numa_free(struct task_struct *p)
2066{
2067}
10f39042
RR
2068static inline bool should_numa_migrate_memory(struct task_struct *p,
2069 struct page *page, int src_nid, int dst_cpu)
2070{
2071 return true;
2072}
cbee9f88
PZ
2073#endif
2074
e868171a 2075static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
2076{
2077 return task->pids[PIDTYPE_PID].pid;
2078}
2079
e868171a 2080static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
2081{
2082 return task->group_leader->pids[PIDTYPE_PID].pid;
2083}
2084
6dda81f4
ON
2085/*
2086 * Without tasklist or rcu lock it is not safe to dereference
2087 * the result of task_pgrp/task_session even if task == current,
2088 * we can race with another thread doing sys_setsid/sys_setpgid.
2089 */
e868171a 2090static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
2091{
2092 return task->group_leader->pids[PIDTYPE_PGID].pid;
2093}
2094
e868171a 2095static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
2096{
2097 return task->group_leader->pids[PIDTYPE_SID].pid;
2098}
2099
7af57294
PE
2100struct pid_namespace;
2101
2102/*
2103 * the helpers to get the task's different pids as they are seen
2104 * from various namespaces
2105 *
2106 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2107 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2108 * current.
7af57294
PE
2109 * task_xid_nr_ns() : id seen from the ns specified;
2110 *
2111 * set_task_vxid() : assigns a virtual id to a task;
2112 *
7af57294
PE
2113 * see also pid_nr() etc in include/linux/pid.h
2114 */
52ee2dfd
ON
2115pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2116 struct pid_namespace *ns);
7af57294 2117
e868171a 2118static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2119{
2120 return tsk->pid;
2121}
2122
52ee2dfd
ON
2123static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2124 struct pid_namespace *ns)
2125{
2126 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2127}
7af57294
PE
2128
2129static inline pid_t task_pid_vnr(struct task_struct *tsk)
2130{
52ee2dfd 2131 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2132}
2133
2134
e868171a 2135static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2136{
2137 return tsk->tgid;
2138}
2139
2f2a3a46 2140pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2141
2142static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2143{
2144 return pid_vnr(task_tgid(tsk));
2145}
2146
2147
80e0b6e8 2148static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2149static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2150{
2151 pid_t pid = 0;
2152
2153 rcu_read_lock();
2154 if (pid_alive(tsk))
2155 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2156 rcu_read_unlock();
2157
2158 return pid;
2159}
2160
2161static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2162{
2163 return task_ppid_nr_ns(tsk, &init_pid_ns);
2164}
2165
52ee2dfd
ON
2166static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2167 struct pid_namespace *ns)
7af57294 2168{
52ee2dfd 2169 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2170}
2171
7af57294
PE
2172static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2173{
52ee2dfd 2174 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2175}
2176
2177
52ee2dfd
ON
2178static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2179 struct pid_namespace *ns)
7af57294 2180{
52ee2dfd 2181 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2182}
2183
7af57294
PE
2184static inline pid_t task_session_vnr(struct task_struct *tsk)
2185{
52ee2dfd 2186 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2187}
2188
1b0f7ffd
ON
2189/* obsolete, do not use */
2190static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2191{
2192 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2193}
7af57294 2194
1da177e4
LT
2195/**
2196 * pid_alive - check that a task structure is not stale
2197 * @p: Task structure to be checked.
2198 *
2199 * Test if a process is not yet dead (at most zombie state)
2200 * If pid_alive fails, then pointers within the task structure
2201 * can be stale and must not be dereferenced.
e69f6186
YB
2202 *
2203 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2204 */
ad36d282 2205static inline int pid_alive(const struct task_struct *p)
1da177e4 2206{
92476d7f 2207 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2208}
2209
f400e198 2210/**
570f5241
SS
2211 * is_global_init - check if a task structure is init. Since init
2212 * is free to have sub-threads we need to check tgid.
3260259f
HK
2213 * @tsk: Task structure to be checked.
2214 *
2215 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2216 *
2217 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2218 */
e868171a 2219static inline int is_global_init(struct task_struct *tsk)
b461cc03 2220{
570f5241 2221 return task_tgid_nr(tsk) == 1;
b461cc03 2222}
b460cbc5 2223
9ec52099
CLG
2224extern struct pid *cad_pid;
2225
1da177e4 2226extern void free_task(struct task_struct *tsk);
1da177e4 2227#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2228
158d9ebd 2229extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2230
2231static inline void put_task_struct(struct task_struct *t)
2232{
2233 if (atomic_dec_and_test(&t->usage))
8c7904a0 2234 __put_task_struct(t);
e56d0903 2235}
1da177e4 2236
150593bf
ON
2237struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2238struct task_struct *try_get_task_struct(struct task_struct **ptask);
2239
6a61671b
FW
2240#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2241extern void task_cputime(struct task_struct *t,
2242 cputime_t *utime, cputime_t *stime);
2243extern void task_cputime_scaled(struct task_struct *t,
2244 cputime_t *utimescaled, cputime_t *stimescaled);
2245extern cputime_t task_gtime(struct task_struct *t);
2246#else
6fac4829
FW
2247static inline void task_cputime(struct task_struct *t,
2248 cputime_t *utime, cputime_t *stime)
2249{
2250 if (utime)
2251 *utime = t->utime;
2252 if (stime)
2253 *stime = t->stime;
2254}
2255
2256static inline void task_cputime_scaled(struct task_struct *t,
2257 cputime_t *utimescaled,
2258 cputime_t *stimescaled)
2259{
2260 if (utimescaled)
2261 *utimescaled = t->utimescaled;
2262 if (stimescaled)
2263 *stimescaled = t->stimescaled;
2264}
6a61671b
FW
2265
2266static inline cputime_t task_gtime(struct task_struct *t)
2267{
2268 return t->gtime;
2269}
2270#endif
e80d0a1a
FW
2271extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2272extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2273
1da177e4
LT
2274/*
2275 * Per process flags
2276 */
1da177e4 2277#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2278#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2279#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2280#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2281#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2282#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2283#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2284#define PF_DUMPCORE 0x00000200 /* dumped core */
2285#define PF_SIGNALED 0x00000400 /* killed by a signal */
2286#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2287#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2288#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2289#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2290#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2291#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2292#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2293#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2294#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2295#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2296#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2297#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2298#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2299#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2300#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2301#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2302#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2303#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2304
2305/*
2306 * Only the _current_ task can read/write to tsk->flags, but other
2307 * tasks can access tsk->flags in readonly mode for example
2308 * with tsk_used_math (like during threaded core dumping).
2309 * There is however an exception to this rule during ptrace
2310 * or during fork: the ptracer task is allowed to write to the
2311 * child->flags of its traced child (same goes for fork, the parent
2312 * can write to the child->flags), because we're guaranteed the
2313 * child is not running and in turn not changing child->flags
2314 * at the same time the parent does it.
2315 */
2316#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2317#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2318#define clear_used_math() clear_stopped_child_used_math(current)
2319#define set_used_math() set_stopped_child_used_math(current)
2320#define conditional_stopped_child_used_math(condition, child) \
2321 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2322#define conditional_used_math(condition) \
2323 conditional_stopped_child_used_math(condition, current)
2324#define copy_to_stopped_child_used_math(child) \
2325 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2326/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2327#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2328#define used_math() tsk_used_math(current)
2329
934f3072
JB
2330/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2331 * __GFP_FS is also cleared as it implies __GFP_IO.
2332 */
21caf2fc
ML
2333static inline gfp_t memalloc_noio_flags(gfp_t flags)
2334{
2335 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2336 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2337 return flags;
2338}
2339
2340static inline unsigned int memalloc_noio_save(void)
2341{
2342 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2343 current->flags |= PF_MEMALLOC_NOIO;
2344 return flags;
2345}
2346
2347static inline void memalloc_noio_restore(unsigned int flags)
2348{
2349 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2350}
2351
1d4457f9 2352/* Per-process atomic flags. */
a2b86f77 2353#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2354#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2355#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
77ed2c57 2356#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2ad654bc 2357
1d4457f9 2358
e0e5070b
ZL
2359#define TASK_PFA_TEST(name, func) \
2360 static inline bool task_##func(struct task_struct *p) \
2361 { return test_bit(PFA_##name, &p->atomic_flags); }
2362#define TASK_PFA_SET(name, func) \
2363 static inline void task_set_##func(struct task_struct *p) \
2364 { set_bit(PFA_##name, &p->atomic_flags); }
2365#define TASK_PFA_CLEAR(name, func) \
2366 static inline void task_clear_##func(struct task_struct *p) \
2367 { clear_bit(PFA_##name, &p->atomic_flags); }
2368
2369TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2370TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2371
2ad654bc
ZL
2372TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2373TASK_PFA_SET(SPREAD_PAGE, spread_page)
2374TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2375
2376TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2377TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2378TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2379
77ed2c57
TH
2380TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2381TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2382
e5c1902e 2383/*
a8f072c1 2384 * task->jobctl flags
e5c1902e 2385 */
a8f072c1 2386#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2387
a8f072c1
TH
2388#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2389#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2390#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2391#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2392#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2393#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2394#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2395
b76808e6
PD
2396#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2397#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2398#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2399#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2400#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2401#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2402#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2403
fb1d910c 2404#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2405#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2406
7dd3db54 2407extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2408 unsigned long mask);
73ddff2b 2409extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2410extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2411 unsigned long mask);
39efa3ef 2412
f41d911f
PM
2413static inline void rcu_copy_process(struct task_struct *p)
2414{
8315f422 2415#ifdef CONFIG_PREEMPT_RCU
f41d911f 2416 p->rcu_read_lock_nesting = 0;
1d082fd0 2417 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2418 p->rcu_blocked_node = NULL;
f41d911f 2419 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2420#endif /* #ifdef CONFIG_PREEMPT_RCU */
2421#ifdef CONFIG_TASKS_RCU
2422 p->rcu_tasks_holdout = false;
2423 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2424 p->rcu_tasks_idle_cpu = -1;
8315f422 2425#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2426}
2427
907aed48
MG
2428static inline void tsk_restore_flags(struct task_struct *task,
2429 unsigned long orig_flags, unsigned long flags)
2430{
2431 task->flags &= ~flags;
2432 task->flags |= orig_flags & flags;
2433}
2434
f82f8042
JL
2435extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2436 const struct cpumask *trial);
7f51412a
JL
2437extern int task_can_attach(struct task_struct *p,
2438 const struct cpumask *cs_cpus_allowed);
1da177e4 2439#ifdef CONFIG_SMP
1e1b6c51
KM
2440extern void do_set_cpus_allowed(struct task_struct *p,
2441 const struct cpumask *new_mask);
2442
cd8ba7cd 2443extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2444 const struct cpumask *new_mask);
1da177e4 2445#else
1e1b6c51
KM
2446static inline void do_set_cpus_allowed(struct task_struct *p,
2447 const struct cpumask *new_mask)
2448{
2449}
cd8ba7cd 2450static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2451 const struct cpumask *new_mask)
1da177e4 2452{
96f874e2 2453 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2454 return -EINVAL;
2455 return 0;
2456}
2457#endif
e0ad9556 2458
3451d024 2459#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2460void calc_load_enter_idle(void);
2461void calc_load_exit_idle(void);
2462#else
2463static inline void calc_load_enter_idle(void) { }
2464static inline void calc_load_exit_idle(void) { }
3451d024 2465#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2466
b342501c 2467/*
c676329a
PZ
2468 * Do not use outside of architecture code which knows its limitations.
2469 *
2470 * sched_clock() has no promise of monotonicity or bounded drift between
2471 * CPUs, use (which you should not) requires disabling IRQs.
2472 *
2473 * Please use one of the three interfaces below.
b342501c 2474 */
1bbfa6f2 2475extern unsigned long long notrace sched_clock(void);
c676329a 2476/*
489a71b0 2477 * See the comment in kernel/sched/clock.c
c676329a 2478 */
545a2bf7 2479extern u64 running_clock(void);
c676329a
PZ
2480extern u64 sched_clock_cpu(int cpu);
2481
e436d800 2482
c1955a3d 2483extern void sched_clock_init(void);
3e51f33f 2484
c1955a3d 2485#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2486static inline void sched_clock_tick(void)
2487{
2488}
2489
2490static inline void sched_clock_idle_sleep_event(void)
2491{
2492}
2493
2494static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2495{
2496}
2c923e94
DL
2497
2498static inline u64 cpu_clock(int cpu)
2499{
2500 return sched_clock();
2501}
2502
2503static inline u64 local_clock(void)
2504{
2505 return sched_clock();
2506}
3e51f33f 2507#else
c676329a
PZ
2508/*
2509 * Architectures can set this to 1 if they have specified
2510 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2511 * but then during bootup it turns out that sched_clock()
2512 * is reliable after all:
2513 */
35af99e6
PZ
2514extern int sched_clock_stable(void);
2515extern void set_sched_clock_stable(void);
2516extern void clear_sched_clock_stable(void);
c676329a 2517
3e51f33f
PZ
2518extern void sched_clock_tick(void);
2519extern void sched_clock_idle_sleep_event(void);
2520extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2521
2522/*
2523 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2524 * time source that is monotonic per cpu argument and has bounded drift
2525 * between cpus.
2526 *
2527 * ######################### BIG FAT WARNING ##########################
2528 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2529 * # go backwards !! #
2530 * ####################################################################
2531 */
2532static inline u64 cpu_clock(int cpu)
2533{
2534 return sched_clock_cpu(cpu);
2535}
2536
2537static inline u64 local_clock(void)
2538{
2539 return sched_clock_cpu(raw_smp_processor_id());
2540}
3e51f33f
PZ
2541#endif
2542
b52bfee4
VP
2543#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2544/*
2545 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2546 * The reason for this explicit opt-in is not to have perf penalty with
2547 * slow sched_clocks.
2548 */
2549extern void enable_sched_clock_irqtime(void);
2550extern void disable_sched_clock_irqtime(void);
2551#else
2552static inline void enable_sched_clock_irqtime(void) {}
2553static inline void disable_sched_clock_irqtime(void) {}
2554#endif
2555
36c8b586 2556extern unsigned long long
41b86e9c 2557task_sched_runtime(struct task_struct *task);
1da177e4
LT
2558
2559/* sched_exec is called by processes performing an exec */
2560#ifdef CONFIG_SMP
2561extern void sched_exec(void);
2562#else
2563#define sched_exec() {}
2564#endif
2565
2aa44d05
IM
2566extern void sched_clock_idle_sleep_event(void);
2567extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2568
1da177e4
LT
2569#ifdef CONFIG_HOTPLUG_CPU
2570extern void idle_task_exit(void);
2571#else
2572static inline void idle_task_exit(void) {}
2573#endif
2574
3451d024 2575#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2576extern void wake_up_nohz_cpu(int cpu);
06d8308c 2577#else
1c20091e 2578static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2579#endif
2580
ce831b38 2581#ifdef CONFIG_NO_HZ_FULL
265f22a9 2582extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2583#endif
2584
5091faa4 2585#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2586extern void sched_autogroup_create_attach(struct task_struct *p);
2587extern void sched_autogroup_detach(struct task_struct *p);
2588extern void sched_autogroup_fork(struct signal_struct *sig);
2589extern void sched_autogroup_exit(struct signal_struct *sig);
2590#ifdef CONFIG_PROC_FS
2591extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2592extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2593#endif
2594#else
2595static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2596static inline void sched_autogroup_detach(struct task_struct *p) { }
2597static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2598static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2599#endif
2600
fa93384f 2601extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2602extern void set_user_nice(struct task_struct *p, long nice);
2603extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2604/**
2605 * task_nice - return the nice value of a given task.
2606 * @p: the task in question.
2607 *
2608 * Return: The nice value [ -20 ... 0 ... 19 ].
2609 */
2610static inline int task_nice(const struct task_struct *p)
2611{
2612 return PRIO_TO_NICE((p)->static_prio);
2613}
36c8b586
IM
2614extern int can_nice(const struct task_struct *p, const int nice);
2615extern int task_curr(const struct task_struct *p);
1da177e4 2616extern int idle_cpu(int cpu);
fe7de49f
KM
2617extern int sched_setscheduler(struct task_struct *, int,
2618 const struct sched_param *);
961ccddd 2619extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2620 const struct sched_param *);
d50dde5a
DF
2621extern int sched_setattr(struct task_struct *,
2622 const struct sched_attr *);
36c8b586 2623extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2624/**
2625 * is_idle_task - is the specified task an idle task?
fa757281 2626 * @p: the task in question.
e69f6186
YB
2627 *
2628 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2629 */
7061ca3b 2630static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2631{
2632 return p->pid == 0;
2633}
36c8b586 2634extern struct task_struct *curr_task(int cpu);
a458ae2e 2635extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2636
2637void yield(void);
2638
1da177e4 2639union thread_union {
c65eacbe 2640#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 2641 struct thread_info thread_info;
c65eacbe 2642#endif
1da177e4
LT
2643 unsigned long stack[THREAD_SIZE/sizeof(long)];
2644};
2645
2646#ifndef __HAVE_ARCH_KSTACK_END
2647static inline int kstack_end(void *addr)
2648{
2649 /* Reliable end of stack detection:
2650 * Some APM bios versions misalign the stack
2651 */
2652 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2653}
2654#endif
2655
2656extern union thread_union init_thread_union;
2657extern struct task_struct init_task;
2658
2659extern struct mm_struct init_mm;
2660
198fe21b
PE
2661extern struct pid_namespace init_pid_ns;
2662
2663/*
2664 * find a task by one of its numerical ids
2665 *
198fe21b
PE
2666 * find_task_by_pid_ns():
2667 * finds a task by its pid in the specified namespace
228ebcbe
PE
2668 * find_task_by_vpid():
2669 * finds a task by its virtual pid
198fe21b 2670 *
e49859e7 2671 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2672 */
2673
228ebcbe
PE
2674extern struct task_struct *find_task_by_vpid(pid_t nr);
2675extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2676 struct pid_namespace *ns);
198fe21b 2677
1da177e4 2678/* per-UID process charging. */
7b44ab97 2679extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2680static inline struct user_struct *get_uid(struct user_struct *u)
2681{
2682 atomic_inc(&u->__count);
2683 return u;
2684}
2685extern void free_uid(struct user_struct *);
1da177e4
LT
2686
2687#include <asm/current.h>
2688
f0af911a 2689extern void xtime_update(unsigned long ticks);
1da177e4 2690
b3c97528
HH
2691extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2692extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2693extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2694#ifdef CONFIG_SMP
2695 extern void kick_process(struct task_struct *tsk);
2696#else
2697 static inline void kick_process(struct task_struct *tsk) { }
2698#endif
aab03e05 2699extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2700extern void sched_dead(struct task_struct *p);
1da177e4 2701
1da177e4
LT
2702extern void proc_caches_init(void);
2703extern void flush_signals(struct task_struct *);
10ab825b 2704extern void ignore_signals(struct task_struct *);
1da177e4
LT
2705extern void flush_signal_handlers(struct task_struct *, int force_default);
2706extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2707
be0e6f29 2708static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2709{
be0e6f29
ON
2710 struct task_struct *tsk = current;
2711 siginfo_t __info;
1da177e4
LT
2712 int ret;
2713
be0e6f29
ON
2714 spin_lock_irq(&tsk->sighand->siglock);
2715 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2716 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2717
2718 return ret;
53c8f9f1 2719}
1da177e4 2720
9a13049e
ON
2721static inline void kernel_signal_stop(void)
2722{
2723 spin_lock_irq(&current->sighand->siglock);
2724 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2725 __set_current_state(TASK_STOPPED);
2726 spin_unlock_irq(&current->sighand->siglock);
2727
2728 schedule();
2729}
2730
1da177e4
LT
2731extern void release_task(struct task_struct * p);
2732extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2733extern int force_sigsegv(int, struct task_struct *);
2734extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2735extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2736extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2737extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2738 const struct cred *, u32);
c4b92fc1
EB
2739extern int kill_pgrp(struct pid *pid, int sig, int priv);
2740extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2741extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2742extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2743extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2744extern void force_sig(int, struct task_struct *);
1da177e4 2745extern int send_sig(int, struct task_struct *, int);
09faef11 2746extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2747extern struct sigqueue *sigqueue_alloc(void);
2748extern void sigqueue_free(struct sigqueue *);
ac5c2153 2749extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2750extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2751
7e781418
AL
2752#ifdef TIF_RESTORE_SIGMASK
2753/*
2754 * Legacy restore_sigmask accessors. These are inefficient on
2755 * SMP architectures because they require atomic operations.
2756 */
2757
2758/**
2759 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2760 *
2761 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2762 * will run before returning to user mode, to process the flag. For
2763 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2764 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2765 * arch code will notice on return to user mode, in case those bits
2766 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2767 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2768 */
2769static inline void set_restore_sigmask(void)
2770{
2771 set_thread_flag(TIF_RESTORE_SIGMASK);
2772 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2773}
2774static inline void clear_restore_sigmask(void)
2775{
2776 clear_thread_flag(TIF_RESTORE_SIGMASK);
2777}
2778static inline bool test_restore_sigmask(void)
2779{
2780 return test_thread_flag(TIF_RESTORE_SIGMASK);
2781}
2782static inline bool test_and_clear_restore_sigmask(void)
2783{
2784 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2785}
2786
2787#else /* TIF_RESTORE_SIGMASK */
2788
2789/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2790static inline void set_restore_sigmask(void)
2791{
2792 current->restore_sigmask = true;
2793 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2794}
2795static inline void clear_restore_sigmask(void)
2796{
2797 current->restore_sigmask = false;
2798}
2799static inline bool test_restore_sigmask(void)
2800{
2801 return current->restore_sigmask;
2802}
2803static inline bool test_and_clear_restore_sigmask(void)
2804{
2805 if (!current->restore_sigmask)
2806 return false;
2807 current->restore_sigmask = false;
2808 return true;
2809}
2810#endif
2811
51a7b448
AV
2812static inline void restore_saved_sigmask(void)
2813{
2814 if (test_and_clear_restore_sigmask())
77097ae5 2815 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2816}
2817
b7f9a11a
AV
2818static inline sigset_t *sigmask_to_save(void)
2819{
2820 sigset_t *res = &current->blocked;
2821 if (unlikely(test_restore_sigmask()))
2822 res = &current->saved_sigmask;
2823 return res;
2824}
2825
9ec52099
CLG
2826static inline int kill_cad_pid(int sig, int priv)
2827{
2828 return kill_pid(cad_pid, sig, priv);
2829}
2830
1da177e4
LT
2831/* These can be the second arg to send_sig_info/send_group_sig_info. */
2832#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2833#define SEND_SIG_PRIV ((struct siginfo *) 1)
2834#define SEND_SIG_FORCED ((struct siginfo *) 2)
2835
2a855dd0
SAS
2836/*
2837 * True if we are on the alternate signal stack.
2838 */
1da177e4
LT
2839static inline int on_sig_stack(unsigned long sp)
2840{
c876eeab
AL
2841 /*
2842 * If the signal stack is SS_AUTODISARM then, by construction, we
2843 * can't be on the signal stack unless user code deliberately set
2844 * SS_AUTODISARM when we were already on it.
2845 *
2846 * This improves reliability: if user state gets corrupted such that
2847 * the stack pointer points very close to the end of the signal stack,
2848 * then this check will enable the signal to be handled anyway.
2849 */
2850 if (current->sas_ss_flags & SS_AUTODISARM)
2851 return 0;
2852
2a855dd0
SAS
2853#ifdef CONFIG_STACK_GROWSUP
2854 return sp >= current->sas_ss_sp &&
2855 sp - current->sas_ss_sp < current->sas_ss_size;
2856#else
2857 return sp > current->sas_ss_sp &&
2858 sp - current->sas_ss_sp <= current->sas_ss_size;
2859#endif
1da177e4
LT
2860}
2861
2862static inline int sas_ss_flags(unsigned long sp)
2863{
72f15c03
RW
2864 if (!current->sas_ss_size)
2865 return SS_DISABLE;
2866
2867 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2868}
2869
2a742138
SS
2870static inline void sas_ss_reset(struct task_struct *p)
2871{
2872 p->sas_ss_sp = 0;
2873 p->sas_ss_size = 0;
2874 p->sas_ss_flags = SS_DISABLE;
2875}
2876
5a1b98d3
AV
2877static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2878{
2879 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2880#ifdef CONFIG_STACK_GROWSUP
2881 return current->sas_ss_sp;
2882#else
2883 return current->sas_ss_sp + current->sas_ss_size;
2884#endif
2885 return sp;
2886}
2887
1da177e4
LT
2888/*
2889 * Routines for handling mm_structs
2890 */
2891extern struct mm_struct * mm_alloc(void);
2892
2893/* mmdrop drops the mm and the page tables */
b3c97528 2894extern void __mmdrop(struct mm_struct *);
d2005e3f 2895static inline void mmdrop(struct mm_struct *mm)
1da177e4 2896{
6fb43d7b 2897 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2898 __mmdrop(mm);
2899}
2900
7283094e
MH
2901static inline void mmdrop_async_fn(struct work_struct *work)
2902{
2903 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2904 __mmdrop(mm);
2905}
2906
2907static inline void mmdrop_async(struct mm_struct *mm)
2908{
2909 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2910 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2911 schedule_work(&mm->async_put_work);
2912 }
2913}
2914
d2005e3f
ON
2915static inline bool mmget_not_zero(struct mm_struct *mm)
2916{
2917 return atomic_inc_not_zero(&mm->mm_users);
2918}
2919
1da177e4
LT
2920/* mmput gets rid of the mappings and all user-space */
2921extern void mmput(struct mm_struct *);
7ef949d7
MH
2922#ifdef CONFIG_MMU
2923/* same as above but performs the slow path from the async context. Can
ec8d7c14
MH
2924 * be called from the atomic context as well
2925 */
2926extern void mmput_async(struct mm_struct *);
7ef949d7 2927#endif
ec8d7c14 2928
1da177e4
LT
2929/* Grab a reference to a task's mm, if it is not already going away */
2930extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2931/*
2932 * Grab a reference to a task's mm, if it is not already going away
2933 * and ptrace_may_access with the mode parameter passed to it
2934 * succeeds.
2935 */
2936extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2937/* Remove the current tasks stale references to the old mm_struct */
2938extern void mm_release(struct task_struct *, struct mm_struct *);
2939
3033f14a
JT
2940#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2941extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2942 struct task_struct *, unsigned long);
2943#else
6f2c55b8 2944extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2945 struct task_struct *);
3033f14a
JT
2946
2947/* Architectures that haven't opted into copy_thread_tls get the tls argument
2948 * via pt_regs, so ignore the tls argument passed via C. */
2949static inline int copy_thread_tls(
2950 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2951 struct task_struct *p, unsigned long tls)
2952{
2953 return copy_thread(clone_flags, sp, arg, p);
2954}
2955#endif
1da177e4 2956extern void flush_thread(void);
5f56a5df
JS
2957
2958#ifdef CONFIG_HAVE_EXIT_THREAD
e6464694 2959extern void exit_thread(struct task_struct *tsk);
5f56a5df 2960#else
e6464694 2961static inline void exit_thread(struct task_struct *tsk)
5f56a5df
JS
2962{
2963}
2964#endif
1da177e4 2965
1da177e4 2966extern void exit_files(struct task_struct *);
a7e5328a 2967extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2968
1da177e4 2969extern void exit_itimers(struct signal_struct *);
cbaffba1 2970extern void flush_itimer_signals(void);
1da177e4 2971
9402c95f 2972extern void do_group_exit(int);
1da177e4 2973
c4ad8f98 2974extern int do_execve(struct filename *,
d7627467 2975 const char __user * const __user *,
da3d4c5f 2976 const char __user * const __user *);
51f39a1f
DD
2977extern int do_execveat(int, struct filename *,
2978 const char __user * const __user *,
2979 const char __user * const __user *,
2980 int);
3033f14a 2981extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2982extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2983struct task_struct *fork_idle(int);
2aa3a7f8 2984extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2985
82b89778
AH
2986extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2987static inline void set_task_comm(struct task_struct *tsk, const char *from)
2988{
2989 __set_task_comm(tsk, from, false);
2990}
59714d65 2991extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2992
2993#ifdef CONFIG_SMP
317f3941 2994void scheduler_ipi(void);
85ba2d86 2995extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2996#else
184748cc 2997static inline void scheduler_ipi(void) { }
85ba2d86
RM
2998static inline unsigned long wait_task_inactive(struct task_struct *p,
2999 long match_state)
3000{
3001 return 1;
3002}
1da177e4
LT
3003#endif
3004
fafe870f
FW
3005#define tasklist_empty() \
3006 list_empty(&init_task.tasks)
3007
05725f7e
JP
3008#define next_task(p) \
3009 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
3010
3011#define for_each_process(p) \
3012 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3013
5bb459bb 3014extern bool current_is_single_threaded(void);
d84f4f99 3015
1da177e4
LT
3016/*
3017 * Careful: do_each_thread/while_each_thread is a double loop so
3018 * 'break' will not work as expected - use goto instead.
3019 */
3020#define do_each_thread(g, t) \
3021 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3022
3023#define while_each_thread(g, t) \
3024 while ((t = next_thread(t)) != g)
3025
0c740d0a
ON
3026#define __for_each_thread(signal, t) \
3027 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3028
3029#define for_each_thread(p, t) \
3030 __for_each_thread((p)->signal, t)
3031
3032/* Careful: this is a double loop, 'break' won't work as expected. */
3033#define for_each_process_thread(p, t) \
3034 for_each_process(p) for_each_thread(p, t)
3035
7e49827c
ON
3036static inline int get_nr_threads(struct task_struct *tsk)
3037{
b3ac022c 3038 return tsk->signal->nr_threads;
7e49827c
ON
3039}
3040
087806b1
ON
3041static inline bool thread_group_leader(struct task_struct *p)
3042{
3043 return p->exit_signal >= 0;
3044}
1da177e4 3045
0804ef4b
EB
3046/* Do to the insanities of de_thread it is possible for a process
3047 * to have the pid of the thread group leader without actually being
3048 * the thread group leader. For iteration through the pids in proc
3049 * all we care about is that we have a task with the appropriate
3050 * pid, we don't actually care if we have the right task.
3051 */
e1403b8e 3052static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 3053{
e1403b8e 3054 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
3055}
3056
bac0abd6 3057static inline
e1403b8e 3058bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 3059{
e1403b8e 3060 return p1->signal == p2->signal;
bac0abd6
PE
3061}
3062
36c8b586 3063static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 3064{
05725f7e
JP
3065 return list_entry_rcu(p->thread_group.next,
3066 struct task_struct, thread_group);
47e65328
ON
3067}
3068
e868171a 3069static inline int thread_group_empty(struct task_struct *p)
1da177e4 3070{
47e65328 3071 return list_empty(&p->thread_group);
1da177e4
LT
3072}
3073
3074#define delay_group_leader(p) \
3075 (thread_group_leader(p) && !thread_group_empty(p))
3076
1da177e4 3077/*
260ea101 3078 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 3079 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 3080 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 3081 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
3082 *
3083 * Nests both inside and outside of read_lock(&tasklist_lock).
3084 * It must not be nested with write_lock_irq(&tasklist_lock),
3085 * neither inside nor outside.
3086 */
3087static inline void task_lock(struct task_struct *p)
3088{
3089 spin_lock(&p->alloc_lock);
3090}
3091
3092static inline void task_unlock(struct task_struct *p)
3093{
3094 spin_unlock(&p->alloc_lock);
3095}
3096
b8ed374e 3097extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
3098 unsigned long *flags);
3099
9388dc30
AV
3100static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3101 unsigned long *flags)
3102{
3103 struct sighand_struct *ret;
3104
3105 ret = __lock_task_sighand(tsk, flags);
3106 (void)__cond_lock(&tsk->sighand->siglock, ret);
3107 return ret;
3108}
b8ed374e 3109
f63ee72e
ON
3110static inline void unlock_task_sighand(struct task_struct *tsk,
3111 unsigned long *flags)
3112{
3113 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3114}
3115
77e4ef99 3116/**
7d7efec3
TH
3117 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3118 * @tsk: task causing the changes
77e4ef99 3119 *
7d7efec3
TH
3120 * All operations which modify a threadgroup - a new thread joining the
3121 * group, death of a member thread (the assertion of PF_EXITING) and
3122 * exec(2) dethreading the process and replacing the leader - are wrapped
3123 * by threadgroup_change_{begin|end}(). This is to provide a place which
3124 * subsystems needing threadgroup stability can hook into for
3125 * synchronization.
77e4ef99 3126 */
7d7efec3 3127static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 3128{
7d7efec3
TH
3129 might_sleep();
3130 cgroup_threadgroup_change_begin(tsk);
4714d1d3 3131}
77e4ef99
TH
3132
3133/**
7d7efec3
TH
3134 * threadgroup_change_end - mark the end of changes to a threadgroup
3135 * @tsk: task causing the changes
77e4ef99 3136 *
7d7efec3 3137 * See threadgroup_change_begin().
77e4ef99 3138 */
7d7efec3 3139static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 3140{
7d7efec3 3141 cgroup_threadgroup_change_end(tsk);
4714d1d3 3142}
4714d1d3 3143
c65eacbe
AL
3144#ifdef CONFIG_THREAD_INFO_IN_TASK
3145
3146static inline struct thread_info *task_thread_info(struct task_struct *task)
3147{
3148 return &task->thread_info;
3149}
c6c314a6
AL
3150
3151/*
3152 * When accessing the stack of a non-current task that might exit, use
3153 * try_get_task_stack() instead. task_stack_page will return a pointer
3154 * that could get freed out from under you.
3155 */
c65eacbe
AL
3156static inline void *task_stack_page(const struct task_struct *task)
3157{
3158 return task->stack;
3159}
c6c314a6 3160
c65eacbe 3161#define setup_thread_stack(new,old) do { } while(0)
c6c314a6 3162
c65eacbe
AL
3163static inline unsigned long *end_of_stack(const struct task_struct *task)
3164{
3165 return task->stack;
3166}
3167
3168#elif !defined(__HAVE_THREAD_FUNCTIONS)
f037360f 3169
f7e4217b 3170#define task_thread_info(task) ((struct thread_info *)(task)->stack)
c65eacbe 3171#define task_stack_page(task) ((void *)(task)->stack)
a1261f54 3172
10ebffde
AV
3173static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3174{
3175 *task_thread_info(p) = *task_thread_info(org);
3176 task_thread_info(p)->task = p;
3177}
3178
6a40281a
CE
3179/*
3180 * Return the address of the last usable long on the stack.
3181 *
3182 * When the stack grows down, this is just above the thread
3183 * info struct. Going any lower will corrupt the threadinfo.
3184 *
3185 * When the stack grows up, this is the highest address.
3186 * Beyond that position, we corrupt data on the next page.
3187 */
10ebffde
AV
3188static inline unsigned long *end_of_stack(struct task_struct *p)
3189{
6a40281a
CE
3190#ifdef CONFIG_STACK_GROWSUP
3191 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3192#else
f7e4217b 3193 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 3194#endif
10ebffde
AV
3195}
3196
f037360f 3197#endif
c6c314a6 3198
68f24b08
AL
3199#ifdef CONFIG_THREAD_INFO_IN_TASK
3200static inline void *try_get_task_stack(struct task_struct *tsk)
3201{
3202 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3203 task_stack_page(tsk) : NULL;
3204}
3205
3206extern void put_task_stack(struct task_struct *tsk);
3207#else
c6c314a6
AL
3208static inline void *try_get_task_stack(struct task_struct *tsk)
3209{
3210 return task_stack_page(tsk);
3211}
3212
3213static inline void put_task_stack(struct task_struct *tsk) {}
68f24b08 3214#endif
c6c314a6 3215
a70857e4
AT
3216#define task_stack_end_corrupted(task) \
3217 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 3218
8b05c7e6
FT
3219static inline int object_is_on_stack(void *obj)
3220{
3221 void *stack = task_stack_page(current);
3222
3223 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3224}
3225
b235beea 3226extern void thread_stack_cache_init(void);
8c9843e5 3227
7c9f8861
ES
3228#ifdef CONFIG_DEBUG_STACK_USAGE
3229static inline unsigned long stack_not_used(struct task_struct *p)
3230{
3231 unsigned long *n = end_of_stack(p);
3232
3233 do { /* Skip over canary */
6c31da34
HD
3234# ifdef CONFIG_STACK_GROWSUP
3235 n--;
3236# else
7c9f8861 3237 n++;
6c31da34 3238# endif
7c9f8861
ES
3239 } while (!*n);
3240
6c31da34
HD
3241# ifdef CONFIG_STACK_GROWSUP
3242 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3243# else
7c9f8861 3244 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 3245# endif
7c9f8861
ES
3246}
3247#endif
d4311ff1 3248extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3249
1da177e4
LT
3250/* set thread flags in other task's structures
3251 * - see asm/thread_info.h for TIF_xxxx flags available
3252 */
3253static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3254{
a1261f54 3255 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3256}
3257
3258static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3259{
a1261f54 3260 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3261}
3262
3263static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3264{
a1261f54 3265 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3266}
3267
3268static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3269{
a1261f54 3270 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3271}
3272
3273static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3274{
a1261f54 3275 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3276}
3277
3278static inline void set_tsk_need_resched(struct task_struct *tsk)
3279{
3280 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3281}
3282
3283static inline void clear_tsk_need_resched(struct task_struct *tsk)
3284{
3285 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3286}
3287
8ae121ac
GH
3288static inline int test_tsk_need_resched(struct task_struct *tsk)
3289{
3290 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3291}
3292
690cc3ff
EB
3293static inline int restart_syscall(void)
3294{
3295 set_tsk_thread_flag(current, TIF_SIGPENDING);
3296 return -ERESTARTNOINTR;
3297}
3298
1da177e4
LT
3299static inline int signal_pending(struct task_struct *p)
3300{
3301 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3302}
f776d12d 3303
d9588725
RM
3304static inline int __fatal_signal_pending(struct task_struct *p)
3305{
3306 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3307}
f776d12d
MW
3308
3309static inline int fatal_signal_pending(struct task_struct *p)
3310{
3311 return signal_pending(p) && __fatal_signal_pending(p);
3312}
3313
16882c1e
ON
3314static inline int signal_pending_state(long state, struct task_struct *p)
3315{
3316 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3317 return 0;
3318 if (!signal_pending(p))
3319 return 0;
3320
16882c1e
ON
3321 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3322}
3323
1da177e4
LT
3324/*
3325 * cond_resched() and cond_resched_lock(): latency reduction via
3326 * explicit rescheduling in places that are safe. The return
3327 * value indicates whether a reschedule was done in fact.
3328 * cond_resched_lock() will drop the spinlock before scheduling,
3329 * cond_resched_softirq() will enable bhs before scheduling.
3330 */
35a773a0 3331#ifndef CONFIG_PREEMPT
c3921ab7 3332extern int _cond_resched(void);
35a773a0
PZ
3333#else
3334static inline int _cond_resched(void) { return 0; }
3335#endif
6f80bd98 3336
613afbf8 3337#define cond_resched() ({ \
3427445a 3338 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3339 _cond_resched(); \
3340})
6f80bd98 3341
613afbf8
FW
3342extern int __cond_resched_lock(spinlock_t *lock);
3343
3344#define cond_resched_lock(lock) ({ \
3427445a 3345 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3346 __cond_resched_lock(lock); \
3347})
3348
3349extern int __cond_resched_softirq(void);
3350
75e1056f 3351#define cond_resched_softirq() ({ \
3427445a 3352 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3353 __cond_resched_softirq(); \
613afbf8 3354})
1da177e4 3355
f6f3c437
SH
3356static inline void cond_resched_rcu(void)
3357{
3358#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3359 rcu_read_unlock();
3360 cond_resched();
3361 rcu_read_lock();
3362#endif
3363}
3364
d1c6d149
VN
3365static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3366{
3367#ifdef CONFIG_DEBUG_PREEMPT
3368 return p->preempt_disable_ip;
3369#else
3370 return 0;
3371#endif
3372}
3373
1da177e4
LT
3374/*
3375 * Does a critical section need to be broken due to another
95c354fe
NP
3376 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3377 * but a general need for low latency)
1da177e4 3378 */
95c354fe 3379static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3380{
95c354fe
NP
3381#ifdef CONFIG_PREEMPT
3382 return spin_is_contended(lock);
3383#else
1da177e4 3384 return 0;
95c354fe 3385#endif
1da177e4
LT
3386}
3387
ee761f62
TG
3388/*
3389 * Idle thread specific functions to determine the need_resched
69dd0f84 3390 * polling state.
ee761f62 3391 */
69dd0f84 3392#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3393static inline int tsk_is_polling(struct task_struct *p)
3394{
3395 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3396}
ea811747
PZ
3397
3398static inline void __current_set_polling(void)
3a98f871
TG
3399{
3400 set_thread_flag(TIF_POLLING_NRFLAG);
3401}
3402
ea811747
PZ
3403static inline bool __must_check current_set_polling_and_test(void)
3404{
3405 __current_set_polling();
3406
3407 /*
3408 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3409 * paired by resched_curr()
ea811747 3410 */
4e857c58 3411 smp_mb__after_atomic();
ea811747
PZ
3412
3413 return unlikely(tif_need_resched());
3414}
3415
3416static inline void __current_clr_polling(void)
3a98f871
TG
3417{
3418 clear_thread_flag(TIF_POLLING_NRFLAG);
3419}
ea811747
PZ
3420
3421static inline bool __must_check current_clr_polling_and_test(void)
3422{
3423 __current_clr_polling();
3424
3425 /*
3426 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3427 * paired by resched_curr()
ea811747 3428 */
4e857c58 3429 smp_mb__after_atomic();
ea811747
PZ
3430
3431 return unlikely(tif_need_resched());
3432}
3433
ee761f62
TG
3434#else
3435static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3436static inline void __current_set_polling(void) { }
3437static inline void __current_clr_polling(void) { }
3438
3439static inline bool __must_check current_set_polling_and_test(void)
3440{
3441 return unlikely(tif_need_resched());
3442}
3443static inline bool __must_check current_clr_polling_and_test(void)
3444{
3445 return unlikely(tif_need_resched());
3446}
ee761f62
TG
3447#endif
3448
8cb75e0c
PZ
3449static inline void current_clr_polling(void)
3450{
3451 __current_clr_polling();
3452
3453 /*
3454 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3455 * Once the bit is cleared, we'll get IPIs with every new
3456 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3457 * fold.
3458 */
8875125e 3459 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3460
3461 preempt_fold_need_resched();
3462}
3463
75f93fed
PZ
3464static __always_inline bool need_resched(void)
3465{
3466 return unlikely(tif_need_resched());
3467}
3468
f06febc9
FM
3469/*
3470 * Thread group CPU time accounting.
3471 */
4cd4c1b4 3472void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3473void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3474
7bb44ade
RM
3475/*
3476 * Reevaluate whether the task has signals pending delivery.
3477 * Wake the task if so.
3478 * This is required every time the blocked sigset_t changes.
3479 * callers must hold sighand->siglock.
3480 */
3481extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3482extern void recalc_sigpending(void);
3483
910ffdb1
ON
3484extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3485
3486static inline void signal_wake_up(struct task_struct *t, bool resume)
3487{
3488 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3489}
3490static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3491{
3492 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3493}
1da177e4
LT
3494
3495/*
3496 * Wrappers for p->thread_info->cpu access. No-op on UP.
3497 */
3498#ifdef CONFIG_SMP
3499
3500static inline unsigned int task_cpu(const struct task_struct *p)
3501{
c65eacbe
AL
3502#ifdef CONFIG_THREAD_INFO_IN_TASK
3503 return p->cpu;
3504#else
a1261f54 3505 return task_thread_info(p)->cpu;
c65eacbe 3506#endif
1da177e4
LT
3507}
3508
b32e86b4
IM
3509static inline int task_node(const struct task_struct *p)
3510{
3511 return cpu_to_node(task_cpu(p));
3512}
3513
c65cc870 3514extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3515
3516#else
3517
3518static inline unsigned int task_cpu(const struct task_struct *p)
3519{
3520 return 0;
3521}
3522
3523static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3524{
3525}
3526
3527#endif /* CONFIG_SMP */
3528
96f874e2
RR
3529extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3530extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3531
7c941438 3532#ifdef CONFIG_CGROUP_SCHED
07e06b01 3533extern struct task_group root_task_group;
8323f26c 3534#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3535
54e99124
DG
3536extern int task_can_switch_user(struct user_struct *up,
3537 struct task_struct *tsk);
3538
4b98d11b
AD
3539#ifdef CONFIG_TASK_XACCT
3540static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3541{
940389b8 3542 tsk->ioac.rchar += amt;
4b98d11b
AD
3543}
3544
3545static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3546{
940389b8 3547 tsk->ioac.wchar += amt;
4b98d11b
AD
3548}
3549
3550static inline void inc_syscr(struct task_struct *tsk)
3551{
940389b8 3552 tsk->ioac.syscr++;
4b98d11b
AD
3553}
3554
3555static inline void inc_syscw(struct task_struct *tsk)
3556{
940389b8 3557 tsk->ioac.syscw++;
4b98d11b
AD
3558}
3559#else
3560static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3561{
3562}
3563
3564static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3565{
3566}
3567
3568static inline void inc_syscr(struct task_struct *tsk)
3569{
3570}
3571
3572static inline void inc_syscw(struct task_struct *tsk)
3573{
3574}
3575#endif
3576
82455257
DH
3577#ifndef TASK_SIZE_OF
3578#define TASK_SIZE_OF(tsk) TASK_SIZE
3579#endif
3580
f98bafa0 3581#ifdef CONFIG_MEMCG
cf475ad2 3582extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3583#else
3584static inline void mm_update_next_owner(struct mm_struct *mm)
3585{
3586}
f98bafa0 3587#endif /* CONFIG_MEMCG */
cf475ad2 3588
3e10e716
JS
3589static inline unsigned long task_rlimit(const struct task_struct *tsk,
3590 unsigned int limit)
3591{
316c1608 3592 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3593}
3594
3595static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3596 unsigned int limit)
3597{
316c1608 3598 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3599}
3600
3601static inline unsigned long rlimit(unsigned int limit)
3602{
3603 return task_rlimit(current, limit);
3604}
3605
3606static inline unsigned long rlimit_max(unsigned int limit)
3607{
3608 return task_rlimit_max(current, limit);
3609}
3610
58919e83
RW
3611#define SCHED_CPUFREQ_RT (1U << 0)
3612#define SCHED_CPUFREQ_DL (1U << 1)
8c34ab19 3613#define SCHED_CPUFREQ_IOWAIT (1U << 2)
58919e83
RW
3614
3615#define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3616
adaf9fcd
RW
3617#ifdef CONFIG_CPU_FREQ
3618struct update_util_data {
58919e83 3619 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
adaf9fcd
RW
3620};
3621
0bed612b 3622void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
58919e83
RW
3623 void (*func)(struct update_util_data *data, u64 time,
3624 unsigned int flags));
0bed612b 3625void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3626#endif /* CONFIG_CPU_FREQ */
3627
1da177e4 3628#endif