]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/sched.h
sched/deadline: Zero out positive runtime after throttling constrained tasks
[mirror_ubuntu-eoan-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
5eca1c10
IM
4/*
5 * Define 'struct task_struct' and provide the main scheduler
6 * APIs (schedule(), wakeup variants, etc.)
7 */
b7b3c76a 8
5eca1c10 9#include <uapi/linux/sched.h>
5c228079 10
5eca1c10 11#include <asm/current.h>
1da177e4 12
5eca1c10 13#include <linux/pid.h>
1da177e4 14#include <linux/sem.h>
ab602f79 15#include <linux/shm.h>
5eca1c10
IM
16#include <linux/kcov.h>
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
1da177e4 20#include <linux/seccomp.h>
5eca1c10 21#include <linux/nodemask.h>
b68070e1 22#include <linux/rcupdate.h>
a3b6714e 23#include <linux/resource.h>
9745512c 24#include <linux/latencytop.h>
5eca1c10
IM
25#include <linux/sched/prio.h>
26#include <linux/signal_types.h>
27#include <linux/mm_types_task.h>
28#include <linux/task_io_accounting.h>
a3b6714e 29
5eca1c10 30/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 31struct audit_context;
c7af7877 32struct backing_dev_info;
bddd87c7 33struct bio_list;
73c10101 34struct blk_plug;
c7af7877 35struct cfs_rq;
c7af7877
IM
36struct fs_struct;
37struct futex_pi_state;
38struct io_context;
39struct mempolicy;
89076bc3 40struct nameidata;
c7af7877
IM
41struct nsproxy;
42struct perf_event_context;
43struct pid_namespace;
44struct pipe_inode_info;
45struct rcu_node;
46struct reclaim_state;
47struct robust_list_head;
48struct sched_attr;
49struct sched_param;
43ae34cb 50struct seq_file;
c7af7877
IM
51struct sighand_struct;
52struct signal_struct;
53struct task_delay_info;
4cf86d77 54struct task_group;
1da177e4 55
4a8342d2
LT
56/*
57 * Task state bitmask. NOTE! These bits are also
58 * encoded in fs/proc/array.c: get_task_state().
59 *
60 * We have two separate sets of flags: task->state
61 * is about runnability, while task->exit_state are
62 * about the task exiting. Confusing, but this way
63 * modifying one set can't modify the other one by
64 * mistake.
65 */
5eca1c10
IM
66
67/* Used in tsk->state: */
68#define TASK_RUNNING 0
69#define TASK_INTERRUPTIBLE 1
70#define TASK_UNINTERRUPTIBLE 2
71#define __TASK_STOPPED 4
72#define __TASK_TRACED 8
73/* Used in tsk->exit_state: */
74#define EXIT_DEAD 16
75#define EXIT_ZOMBIE 32
76#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
77/* Used in tsk->state again: */
78#define TASK_DEAD 64
79#define TASK_WAKEKILL 128
80#define TASK_WAKING 256
81#define TASK_PARKED 512
82#define TASK_NOLOAD 1024
83#define TASK_NEW 2048
84#define TASK_STATE_MAX 4096
85
86#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
87
88/* Convenience macros for the sake of set_current_state: */
89#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
91#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
92
93#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94
95/* Convenience macros for the sake of wake_up(): */
96#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
98
99/* get_task_state(): */
100#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
103
104#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
1da177e4 113
8eb23b9f
PZ
114#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
8eb23b9f
PZ
116#define __set_current_state(state_value) \
117 do { \
118 current->task_state_change = _THIS_IP_; \
119 current->state = (state_value); \
120 } while (0)
121#define set_current_state(state_value) \
122 do { \
123 current->task_state_change = _THIS_IP_; \
a2250238 124 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
125 } while (0)
126
127#else
498d0c57
AM
128/*
129 * set_current_state() includes a barrier so that the write of current->state
130 * is correctly serialised wrt the caller's subsequent test of whether to
131 * actually sleep:
132 *
a2250238 133 * for (;;) {
498d0c57 134 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
135 * if (!need_sleep)
136 * break;
137 *
138 * schedule();
139 * }
140 * __set_current_state(TASK_RUNNING);
141 *
142 * If the caller does not need such serialisation (because, for instance, the
143 * condition test and condition change and wakeup are under the same lock) then
144 * use __set_current_state().
145 *
146 * The above is typically ordered against the wakeup, which does:
147 *
148 * need_sleep = false;
149 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
150 *
151 * Where wake_up_state() (and all other wakeup primitives) imply enough
152 * barriers to order the store of the variable against wakeup.
153 *
154 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 157 *
a2250238 158 * This is obviously fine, since they both store the exact same value.
498d0c57 159 *
a2250238 160 * Also see the comments of try_to_wake_up().
498d0c57 161 */
5eca1c10
IM
162#define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163#define set_current_state(state_value) smp_store_mb(current->state, (state_value))
8eb23b9f
PZ
164#endif
165
5eca1c10
IM
166/* Task command name length: */
167#define TASK_COMM_LEN 16
1da177e4 168
5eca1c10 169extern cpumask_var_t cpu_isolated_map;
3fa0818b 170
1da177e4
LT
171extern void scheduler_tick(void);
172
5eca1c10
IM
173#define MAX_SCHEDULE_TIMEOUT LONG_MAX
174
175extern long schedule_timeout(long timeout);
176extern long schedule_timeout_interruptible(long timeout);
177extern long schedule_timeout_killable(long timeout);
178extern long schedule_timeout_uninterruptible(long timeout);
179extern long schedule_timeout_idle(long timeout);
1da177e4 180asmlinkage void schedule(void);
c5491ea7 181extern void schedule_preempt_disabled(void);
1da177e4 182
10ab5643
TH
183extern int __must_check io_schedule_prepare(void);
184extern void io_schedule_finish(int token);
9cff8ade 185extern long io_schedule_timeout(long timeout);
10ab5643 186extern void io_schedule(void);
9cff8ade 187
d37f761d 188/**
0ba42a59 189 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
190 * @utime: time spent in user mode
191 * @stime: time spent in system mode
9d7fb042 192 * @lock: protects the above two fields
d37f761d 193 *
9d7fb042
PZ
194 * Stores previous user/system time values such that we can guarantee
195 * monotonicity.
d37f761d 196 */
9d7fb042
PZ
197struct prev_cputime {
198#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
199 u64 utime;
200 u64 stime;
201 raw_spinlock_t lock;
9d7fb042 202#endif
d37f761d
FW
203};
204
f06febc9
FM
205/**
206 * struct task_cputime - collected CPU time counts
5613fda9
FW
207 * @utime: time spent in user mode, in nanoseconds
208 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 209 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 210 *
9d7fb042
PZ
211 * This structure groups together three kinds of CPU time that are tracked for
212 * threads and thread groups. Most things considering CPU time want to group
213 * these counts together and treat all three of them in parallel.
f06febc9
FM
214 */
215struct task_cputime {
5eca1c10
IM
216 u64 utime;
217 u64 stime;
218 unsigned long long sum_exec_runtime;
f06febc9 219};
9d7fb042 220
5eca1c10
IM
221/* Alternate field names when used on cache expirations: */
222#define virt_exp utime
223#define prof_exp stime
224#define sched_exp sum_exec_runtime
f06febc9 225
1da177e4 226struct sched_info {
7f5f8e8d 227#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
228 /* Cumulative counters: */
229
230 /* # of times we have run on this CPU: */
231 unsigned long pcount;
232
233 /* Time spent waiting on a runqueue: */
234 unsigned long long run_delay;
235
236 /* Timestamps: */
237
238 /* When did we last run on a CPU? */
239 unsigned long long last_arrival;
240
241 /* When were we last queued to run? */
242 unsigned long long last_queued;
1da177e4 243
f6db8347 244#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 245};
1da177e4 246
6ecdd749
YD
247/*
248 * Integer metrics need fixed point arithmetic, e.g., sched/fair
249 * has a few: load, load_avg, util_avg, freq, and capacity.
250 *
251 * We define a basic fixed point arithmetic range, and then formalize
252 * all these metrics based on that basic range.
253 */
5eca1c10
IM
254# define SCHED_FIXEDPOINT_SHIFT 10
255# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 256
20b8a59f 257struct load_weight {
5eca1c10
IM
258 unsigned long weight;
259 u32 inv_weight;
20b8a59f
IM
260};
261
9d89c257 262/*
7b595334
YD
263 * The load_avg/util_avg accumulates an infinite geometric series
264 * (see __update_load_avg() in kernel/sched/fair.c).
265 *
266 * [load_avg definition]
267 *
268 * load_avg = runnable% * scale_load_down(load)
269 *
270 * where runnable% is the time ratio that a sched_entity is runnable.
271 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 272 * blocked sched_entities.
7b595334
YD
273 *
274 * load_avg may also take frequency scaling into account:
275 *
276 * load_avg = runnable% * scale_load_down(load) * freq%
277 *
278 * where freq% is the CPU frequency normalized to the highest frequency.
279 *
280 * [util_avg definition]
281 *
282 * util_avg = running% * SCHED_CAPACITY_SCALE
283 *
284 * where running% is the time ratio that a sched_entity is running on
285 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
286 * and blocked sched_entities.
287 *
288 * util_avg may also factor frequency scaling and CPU capacity scaling:
289 *
290 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
291 *
292 * where freq% is the same as above, and capacity% is the CPU capacity
293 * normalized to the greatest capacity (due to uarch differences, etc).
294 *
295 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
296 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
297 * we therefore scale them to as large a range as necessary. This is for
298 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
299 *
300 * [Overflow issue]
301 *
302 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
303 * with the highest load (=88761), always runnable on a single cfs_rq,
304 * and should not overflow as the number already hits PID_MAX_LIMIT.
305 *
306 * For all other cases (including 32-bit kernels), struct load_weight's
307 * weight will overflow first before we do, because:
308 *
309 * Max(load_avg) <= Max(load.weight)
310 *
311 * Then it is the load_weight's responsibility to consider overflow
312 * issues.
9d89c257 313 */
9d85f21c 314struct sched_avg {
5eca1c10
IM
315 u64 last_update_time;
316 u64 load_sum;
317 u32 util_sum;
318 u32 period_contrib;
319 unsigned long load_avg;
320 unsigned long util_avg;
9d85f21c
PT
321};
322
41acab88 323struct sched_statistics {
7f5f8e8d 324#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
325 u64 wait_start;
326 u64 wait_max;
327 u64 wait_count;
328 u64 wait_sum;
329 u64 iowait_count;
330 u64 iowait_sum;
331
332 u64 sleep_start;
333 u64 sleep_max;
334 s64 sum_sleep_runtime;
335
336 u64 block_start;
337 u64 block_max;
338 u64 exec_max;
339 u64 slice_max;
340
341 u64 nr_migrations_cold;
342 u64 nr_failed_migrations_affine;
343 u64 nr_failed_migrations_running;
344 u64 nr_failed_migrations_hot;
345 u64 nr_forced_migrations;
346
347 u64 nr_wakeups;
348 u64 nr_wakeups_sync;
349 u64 nr_wakeups_migrate;
350 u64 nr_wakeups_local;
351 u64 nr_wakeups_remote;
352 u64 nr_wakeups_affine;
353 u64 nr_wakeups_affine_attempts;
354 u64 nr_wakeups_passive;
355 u64 nr_wakeups_idle;
41acab88 356#endif
7f5f8e8d 357};
41acab88
LDM
358
359struct sched_entity {
5eca1c10
IM
360 /* For load-balancing: */
361 struct load_weight load;
362 struct rb_node run_node;
363 struct list_head group_node;
364 unsigned int on_rq;
41acab88 365
5eca1c10
IM
366 u64 exec_start;
367 u64 sum_exec_runtime;
368 u64 vruntime;
369 u64 prev_sum_exec_runtime;
41acab88 370
5eca1c10 371 u64 nr_migrations;
41acab88 372
5eca1c10 373 struct sched_statistics statistics;
94c18227 374
20b8a59f 375#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
376 int depth;
377 struct sched_entity *parent;
20b8a59f 378 /* rq on which this entity is (to be) queued: */
5eca1c10 379 struct cfs_rq *cfs_rq;
20b8a59f 380 /* rq "owned" by this entity/group: */
5eca1c10 381 struct cfs_rq *my_q;
20b8a59f 382#endif
8bd75c77 383
141965c7 384#ifdef CONFIG_SMP
5a107804
JO
385 /*
386 * Per entity load average tracking.
387 *
388 * Put into separate cache line so it does not
389 * collide with read-mostly values above.
390 */
5eca1c10 391 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 392#endif
20b8a59f 393};
70b97a7f 394
fa717060 395struct sched_rt_entity {
5eca1c10
IM
396 struct list_head run_list;
397 unsigned long timeout;
398 unsigned long watchdog_stamp;
399 unsigned int time_slice;
400 unsigned short on_rq;
401 unsigned short on_list;
402
403 struct sched_rt_entity *back;
052f1dc7 404#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 405 struct sched_rt_entity *parent;
6f505b16 406 /* rq on which this entity is (to be) queued: */
5eca1c10 407 struct rt_rq *rt_rq;
6f505b16 408 /* rq "owned" by this entity/group: */
5eca1c10 409 struct rt_rq *my_q;
6f505b16 410#endif
fa717060
PZ
411};
412
aab03e05 413struct sched_dl_entity {
5eca1c10 414 struct rb_node rb_node;
aab03e05
DF
415
416 /*
417 * Original scheduling parameters. Copied here from sched_attr
4027d080 418 * during sched_setattr(), they will remain the same until
419 * the next sched_setattr().
aab03e05 420 */
5eca1c10
IM
421 u64 dl_runtime; /* Maximum runtime for each instance */
422 u64 dl_deadline; /* Relative deadline of each instance */
423 u64 dl_period; /* Separation of two instances (period) */
424 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
425
426 /*
427 * Actual scheduling parameters. Initialized with the values above,
428 * they are continously updated during task execution. Note that
429 * the remaining runtime could be < 0 in case we are in overrun.
430 */
5eca1c10
IM
431 s64 runtime; /* Remaining runtime for this instance */
432 u64 deadline; /* Absolute deadline for this instance */
433 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
434
435 /*
436 * Some bool flags:
437 *
438 * @dl_throttled tells if we exhausted the runtime. If so, the
439 * task has to wait for a replenishment to be performed at the
440 * next firing of dl_timer.
441 *
2d3d891d
DF
442 * @dl_boosted tells if we are boosted due to DI. If so we are
443 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
444 * exit the critical section);
445 *
5eca1c10 446 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 447 * all its available runtime during the last job.
209a0cbd
LA
448 *
449 * @dl_non_contending tells if the task is inactive while still
450 * contributing to the active utilization. In other words, it
451 * indicates if the inactive timer has been armed and its handler
452 * has not been executed yet. This flag is useful to avoid race
453 * conditions between the inactive timer handler and the wakeup
454 * code.
aab03e05 455 */
5eca1c10
IM
456 int dl_throttled;
457 int dl_boosted;
458 int dl_yielded;
209a0cbd 459 int dl_non_contending;
aab03e05
DF
460
461 /*
462 * Bandwidth enforcement timer. Each -deadline task has its
463 * own bandwidth to be enforced, thus we need one timer per task.
464 */
5eca1c10 465 struct hrtimer dl_timer;
209a0cbd
LA
466
467 /*
468 * Inactive timer, responsible for decreasing the active utilization
469 * at the "0-lag time". When a -deadline task blocks, it contributes
470 * to GRUB's active utilization until the "0-lag time", hence a
471 * timer is needed to decrease the active utilization at the correct
472 * time.
473 */
474 struct hrtimer inactive_timer;
aab03e05 475};
8bd75c77 476
1d082fd0
PM
477union rcu_special {
478 struct {
5eca1c10
IM
479 u8 blocked;
480 u8 need_qs;
481 u8 exp_need_qs;
482
483 /* Otherwise the compiler can store garbage here: */
484 u8 pad;
8203d6d0
PM
485 } b; /* Bits. */
486 u32 s; /* Set of bits. */
1d082fd0 487};
86848966 488
8dc85d54
PZ
489enum perf_event_task_context {
490 perf_invalid_context = -1,
491 perf_hw_context = 0,
89a1e187 492 perf_sw_context,
8dc85d54
PZ
493 perf_nr_task_contexts,
494};
495
eb61baf6
IM
496struct wake_q_node {
497 struct wake_q_node *next;
498};
499
1da177e4 500struct task_struct {
c65eacbe
AL
501#ifdef CONFIG_THREAD_INFO_IN_TASK
502 /*
503 * For reasons of header soup (see current_thread_info()), this
504 * must be the first element of task_struct.
505 */
5eca1c10 506 struct thread_info thread_info;
c65eacbe 507#endif
5eca1c10
IM
508 /* -1 unrunnable, 0 runnable, >0 stopped: */
509 volatile long state;
510 void *stack;
511 atomic_t usage;
512 /* Per task flags (PF_*), defined further below: */
513 unsigned int flags;
514 unsigned int ptrace;
1da177e4 515
2dd73a4f 516#ifdef CONFIG_SMP
5eca1c10
IM
517 struct llist_node wake_entry;
518 int on_cpu;
c65eacbe 519#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
520 /* Current CPU: */
521 unsigned int cpu;
c65eacbe 522#endif
5eca1c10
IM
523 unsigned int wakee_flips;
524 unsigned long wakee_flip_decay_ts;
525 struct task_struct *last_wakee;
ac66f547 526
5eca1c10 527 int wake_cpu;
2dd73a4f 528#endif
5eca1c10
IM
529 int on_rq;
530
531 int prio;
532 int static_prio;
533 int normal_prio;
534 unsigned int rt_priority;
50e645a8 535
5eca1c10
IM
536 const struct sched_class *sched_class;
537 struct sched_entity se;
538 struct sched_rt_entity rt;
8323f26c 539#ifdef CONFIG_CGROUP_SCHED
5eca1c10 540 struct task_group *sched_task_group;
8323f26c 541#endif
5eca1c10 542 struct sched_dl_entity dl;
1da177e4 543
e107be36 544#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
545 /* List of struct preempt_notifier: */
546 struct hlist_head preempt_notifiers;
e107be36
AK
547#endif
548
6c5c9341 549#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 550 unsigned int btrace_seq;
6c5c9341 551#endif
1da177e4 552
5eca1c10
IM
553 unsigned int policy;
554 int nr_cpus_allowed;
555 cpumask_t cpus_allowed;
1da177e4 556
a57eb940 557#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
558 int rcu_read_lock_nesting;
559 union rcu_special rcu_read_unlock_special;
560 struct list_head rcu_node_entry;
561 struct rcu_node *rcu_blocked_node;
28f6569a 562#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 563
8315f422 564#ifdef CONFIG_TASKS_RCU
5eca1c10
IM
565 unsigned long rcu_tasks_nvcsw;
566 bool rcu_tasks_holdout;
567 struct list_head rcu_tasks_holdout_list;
568 int rcu_tasks_idle_cpu;
8315f422 569#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 570
5eca1c10 571 struct sched_info sched_info;
1da177e4 572
5eca1c10 573 struct list_head tasks;
806c09a7 574#ifdef CONFIG_SMP
5eca1c10
IM
575 struct plist_node pushable_tasks;
576 struct rb_node pushable_dl_tasks;
806c09a7 577#endif
1da177e4 578
5eca1c10
IM
579 struct mm_struct *mm;
580 struct mm_struct *active_mm;
314ff785
IM
581
582 /* Per-thread vma caching: */
5eca1c10 583 struct vmacache vmacache;
314ff785 584
5eca1c10
IM
585#ifdef SPLIT_RSS_COUNTING
586 struct task_rss_stat rss_stat;
34e55232 587#endif
5eca1c10
IM
588 int exit_state;
589 int exit_code;
590 int exit_signal;
591 /* The signal sent when the parent dies: */
592 int pdeath_signal;
593 /* JOBCTL_*, siglock protected: */
594 unsigned long jobctl;
595
596 /* Used for emulating ABI behavior of previous Linux versions: */
597 unsigned int personality;
598
599 /* Scheduler bits, serialized by scheduler locks: */
600 unsigned sched_reset_on_fork:1;
601 unsigned sched_contributes_to_load:1;
602 unsigned sched_migrated:1;
603 unsigned sched_remote_wakeup:1;
604 /* Force alignment to the next boundary: */
605 unsigned :0;
606
607 /* Unserialized, strictly 'current' */
608
609 /* Bit to tell LSMs we're in execve(): */
610 unsigned in_execve:1;
611 unsigned in_iowait:1;
612#ifndef TIF_RESTORE_SIGMASK
613 unsigned restore_sigmask:1;
7e781418 614#endif
626ebc41 615#ifdef CONFIG_MEMCG
5eca1c10 616 unsigned memcg_may_oom:1;
127424c8 617#ifndef CONFIG_SLOB
5eca1c10 618 unsigned memcg_kmem_skip_account:1;
6f185c29 619#endif
127424c8 620#endif
ff303e66 621#ifdef CONFIG_COMPAT_BRK
5eca1c10 622 unsigned brk_randomized:1;
ff303e66 623#endif
77f88796
TH
624#ifdef CONFIG_CGROUPS
625 /* disallow userland-initiated cgroup migration */
626 unsigned no_cgroup_migration:1;
627#endif
6f185c29 628
5eca1c10 629 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 630
5eca1c10 631 struct restart_block restart_block;
f56141e3 632
5eca1c10
IM
633 pid_t pid;
634 pid_t tgid;
0a425405 635
1314562a 636#ifdef CONFIG_CC_STACKPROTECTOR
5eca1c10
IM
637 /* Canary value for the -fstack-protector GCC feature: */
638 unsigned long stack_canary;
1314562a 639#endif
4d1d61a6 640 /*
5eca1c10 641 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 642 * older sibling, respectively. (p->father can be replaced with
f470021a 643 * p->real_parent->pid)
1da177e4 644 */
5eca1c10
IM
645
646 /* Real parent process: */
647 struct task_struct __rcu *real_parent;
648
649 /* Recipient of SIGCHLD, wait4() reports: */
650 struct task_struct __rcu *parent;
651
1da177e4 652 /*
5eca1c10 653 * Children/sibling form the list of natural children:
1da177e4 654 */
5eca1c10
IM
655 struct list_head children;
656 struct list_head sibling;
657 struct task_struct *group_leader;
1da177e4 658
f470021a 659 /*
5eca1c10
IM
660 * 'ptraced' is the list of tasks this task is using ptrace() on.
661 *
f470021a 662 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 663 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 664 */
5eca1c10
IM
665 struct list_head ptraced;
666 struct list_head ptrace_entry;
f470021a 667
1da177e4 668 /* PID/PID hash table linkage. */
5eca1c10
IM
669 struct pid_link pids[PIDTYPE_MAX];
670 struct list_head thread_group;
671 struct list_head thread_node;
672
673 struct completion *vfork_done;
1da177e4 674
5eca1c10
IM
675 /* CLONE_CHILD_SETTID: */
676 int __user *set_child_tid;
1da177e4 677
5eca1c10
IM
678 /* CLONE_CHILD_CLEARTID: */
679 int __user *clear_child_tid;
680
681 u64 utime;
682 u64 stime;
40565b5a 683#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
684 u64 utimescaled;
685 u64 stimescaled;
40565b5a 686#endif
5eca1c10
IM
687 u64 gtime;
688 struct prev_cputime prev_cputime;
6a61671b 689#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
5eca1c10
IM
690 seqcount_t vtime_seqcount;
691 unsigned long long vtime_snap;
6a61671b 692 enum {
5eca1c10 693 /* Task is sleeping or running in a CPU with VTIME inactive: */
7098c1ea 694 VTIME_INACTIVE = 0,
5eca1c10 695 /* Task runs in userspace in a CPU with VTIME active: */
6a61671b 696 VTIME_USER,
5eca1c10 697 /* Task runs in kernelspace in a CPU with VTIME active: */
6a61671b
FW
698 VTIME_SYS,
699 } vtime_snap_whence;
d99ca3b9 700#endif
d027d45d
FW
701
702#ifdef CONFIG_NO_HZ_FULL
5eca1c10 703 atomic_t tick_dep_mask;
d027d45d 704#endif
5eca1c10
IM
705 /* Context switch counts: */
706 unsigned long nvcsw;
707 unsigned long nivcsw;
708
709 /* Monotonic time in nsecs: */
710 u64 start_time;
711
712 /* Boot based time in nsecs: */
713 u64 real_start_time;
714
715 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
716 unsigned long min_flt;
717 unsigned long maj_flt;
1da177e4 718
b18b6a9c 719#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
720 struct task_cputime cputime_expires;
721 struct list_head cpu_timers[3];
b18b6a9c 722#endif
1da177e4 723
5eca1c10
IM
724 /* Process credentials: */
725
726 /* Tracer's credentials at attach: */
727 const struct cred __rcu *ptracer_cred;
728
729 /* Objective and real subjective task credentials (COW): */
730 const struct cred __rcu *real_cred;
731
732 /* Effective (overridable) subjective task credentials (COW): */
733 const struct cred __rcu *cred;
734
735 /*
736 * executable name, excluding path.
737 *
738 * - normally initialized setup_new_exec()
739 * - access it with [gs]et_task_comm()
740 * - lock it with task_lock()
741 */
742 char comm[TASK_COMM_LEN];
743
744 struct nameidata *nameidata;
745
3d5b6fcc 746#ifdef CONFIG_SYSVIPC
5eca1c10
IM
747 struct sysv_sem sysvsem;
748 struct sysv_shm sysvshm;
3d5b6fcc 749#endif
e162b39a 750#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 751 unsigned long last_switch_count;
82a1fcb9 752#endif
5eca1c10
IM
753 /* Filesystem information: */
754 struct fs_struct *fs;
755
756 /* Open file information: */
757 struct files_struct *files;
758
759 /* Namespaces: */
760 struct nsproxy *nsproxy;
761
762 /* Signal handlers: */
763 struct signal_struct *signal;
764 struct sighand_struct *sighand;
765 sigset_t blocked;
766 sigset_t real_blocked;
767 /* Restored if set_restore_sigmask() was used: */
768 sigset_t saved_sigmask;
769 struct sigpending pending;
770 unsigned long sas_ss_sp;
771 size_t sas_ss_size;
772 unsigned int sas_ss_flags;
773
774 struct callback_head *task_works;
775
776 struct audit_context *audit_context;
bfef93a5 777#ifdef CONFIG_AUDITSYSCALL
5eca1c10
IM
778 kuid_t loginuid;
779 unsigned int sessionid;
bfef93a5 780#endif
5eca1c10
IM
781 struct seccomp seccomp;
782
783 /* Thread group tracking: */
784 u32 parent_exec_id;
785 u32 self_exec_id;
1da177e4 786
5eca1c10
IM
787 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
788 spinlock_t alloc_lock;
1da177e4 789
b29739f9 790 /* Protection of the PI data structures: */
5eca1c10 791 raw_spinlock_t pi_lock;
b29739f9 792
5eca1c10 793 struct wake_q_node wake_q;
76751049 794
23f78d4a 795#ifdef CONFIG_RT_MUTEXES
5eca1c10
IM
796 /* PI waiters blocked on a rt_mutex held by this task: */
797 struct rb_root pi_waiters;
798 struct rb_node *pi_waiters_leftmost;
e96a7705
XP
799 /* Updated under owner's pi_lock and rq lock */
800 struct task_struct *pi_top_task;
5eca1c10
IM
801 /* Deadlock detection and priority inheritance handling: */
802 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
803#endif
804
408894ee 805#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
806 /* Mutex deadlock detection: */
807 struct mutex_waiter *blocked_on;
408894ee 808#endif
5eca1c10 809
de30a2b3 810#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
811 unsigned int irq_events;
812 unsigned long hardirq_enable_ip;
813 unsigned long hardirq_disable_ip;
814 unsigned int hardirq_enable_event;
815 unsigned int hardirq_disable_event;
816 int hardirqs_enabled;
817 int hardirq_context;
818 unsigned long softirq_disable_ip;
819 unsigned long softirq_enable_ip;
820 unsigned int softirq_disable_event;
821 unsigned int softirq_enable_event;
822 int softirqs_enabled;
823 int softirq_context;
de30a2b3 824#endif
5eca1c10 825
fbb9ce95 826#ifdef CONFIG_LOCKDEP
5eca1c10
IM
827# define MAX_LOCK_DEPTH 48UL
828 u64 curr_chain_key;
829 int lockdep_depth;
830 unsigned int lockdep_recursion;
831 struct held_lock held_locks[MAX_LOCK_DEPTH];
832 gfp_t lockdep_reclaim_gfp;
fbb9ce95 833#endif
5eca1c10 834
c6d30853 835#ifdef CONFIG_UBSAN
5eca1c10 836 unsigned int in_ubsan;
c6d30853 837#endif
408894ee 838
5eca1c10
IM
839 /* Journalling filesystem info: */
840 void *journal_info;
1da177e4 841
5eca1c10
IM
842 /* Stacked block device info: */
843 struct bio_list *bio_list;
d89d8796 844
73c10101 845#ifdef CONFIG_BLOCK
5eca1c10
IM
846 /* Stack plugging: */
847 struct blk_plug *plug;
73c10101
JA
848#endif
849
5eca1c10
IM
850 /* VM state: */
851 struct reclaim_state *reclaim_state;
852
853 struct backing_dev_info *backing_dev_info;
1da177e4 854
5eca1c10 855 struct io_context *io_context;
1da177e4 856
5eca1c10
IM
857 /* Ptrace state: */
858 unsigned long ptrace_message;
859 siginfo_t *last_siginfo;
1da177e4 860
5eca1c10
IM
861 struct task_io_accounting ioac;
862#ifdef CONFIG_TASK_XACCT
863 /* Accumulated RSS usage: */
864 u64 acct_rss_mem1;
865 /* Accumulated virtual memory usage: */
866 u64 acct_vm_mem1;
867 /* stime + utime since last update: */
868 u64 acct_timexpd;
1da177e4
LT
869#endif
870#ifdef CONFIG_CPUSETS
5eca1c10
IM
871 /* Protected by ->alloc_lock: */
872 nodemask_t mems_allowed;
873 /* Seqence number to catch updates: */
874 seqcount_t mems_allowed_seq;
875 int cpuset_mem_spread_rotor;
876 int cpuset_slab_spread_rotor;
1da177e4 877#endif
ddbcc7e8 878#ifdef CONFIG_CGROUPS
5eca1c10
IM
879 /* Control Group info protected by css_set_lock: */
880 struct css_set __rcu *cgroups;
881 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
882 struct list_head cg_list;
ddbcc7e8 883#endif
e02737d5 884#ifdef CONFIG_INTEL_RDT_A
5eca1c10 885 int closid;
e02737d5 886#endif
42b2dd0a 887#ifdef CONFIG_FUTEX
5eca1c10 888 struct robust_list_head __user *robust_list;
34f192c6
IM
889#ifdef CONFIG_COMPAT
890 struct compat_robust_list_head __user *compat_robust_list;
891#endif
5eca1c10
IM
892 struct list_head pi_state_list;
893 struct futex_pi_state *pi_state_cache;
c7aceaba 894#endif
cdd6c482 895#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
896 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
897 struct mutex perf_event_mutex;
898 struct list_head perf_event_list;
a63eaf34 899#endif
8f47b187 900#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 901 unsigned long preempt_disable_ip;
8f47b187 902#endif
c7aceaba 903#ifdef CONFIG_NUMA
5eca1c10
IM
904 /* Protected by alloc_lock: */
905 struct mempolicy *mempolicy;
906 short il_next;
907 short pref_node_fork;
42b2dd0a 908#endif
cbee9f88 909#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
910 int numa_scan_seq;
911 unsigned int numa_scan_period;
912 unsigned int numa_scan_period_max;
913 int numa_preferred_nid;
914 unsigned long numa_migrate_retry;
915 /* Migration stamp: */
916 u64 node_stamp;
917 u64 last_task_numa_placement;
918 u64 last_sum_exec_runtime;
919 struct callback_head numa_work;
920
921 struct list_head numa_entry;
922 struct numa_group *numa_group;
8c8a743c 923
745d6147 924 /*
44dba3d5
IM
925 * numa_faults is an array split into four regions:
926 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
927 * in this precise order.
928 *
929 * faults_memory: Exponential decaying average of faults on a per-node
930 * basis. Scheduling placement decisions are made based on these
931 * counts. The values remain static for the duration of a PTE scan.
932 * faults_cpu: Track the nodes the process was running on when a NUMA
933 * hinting fault was incurred.
934 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
935 * during the current scan window. When the scan completes, the counts
936 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 937 */
5eca1c10
IM
938 unsigned long *numa_faults;
939 unsigned long total_numa_faults;
745d6147 940
04bb2f94
RR
941 /*
942 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
943 * scan window were remote/local or failed to migrate. The task scan
944 * period is adapted based on the locality of the faults with different
945 * weights depending on whether they were shared or private faults
04bb2f94 946 */
5eca1c10 947 unsigned long numa_faults_locality[3];
04bb2f94 948
5eca1c10 949 unsigned long numa_pages_migrated;
cbee9f88
PZ
950#endif /* CONFIG_NUMA_BALANCING */
951
5eca1c10 952 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 953
5eca1c10 954 struct rcu_head rcu;
b92ce558 955
5eca1c10
IM
956 /* Cache last used pipe for splice(): */
957 struct pipe_inode_info *splice_pipe;
5640f768 958
5eca1c10 959 struct page_frag task_frag;
5640f768 960
47913d4e
IM
961#ifdef CONFIG_TASK_DELAY_ACCT
962 struct task_delay_info *delays;
f4f154fd 963#endif
47913d4e 964
f4f154fd 965#ifdef CONFIG_FAULT_INJECTION
5eca1c10 966 int make_it_fail;
ca74e92b 967#endif
9d823e8f 968 /*
5eca1c10
IM
969 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
970 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 971 */
5eca1c10
IM
972 int nr_dirtied;
973 int nr_dirtied_pause;
974 /* Start of a write-and-pause period: */
975 unsigned long dirty_paused_when;
9d823e8f 976
9745512c 977#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
978 int latency_record_count;
979 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 980#endif
6976675d 981 /*
5eca1c10 982 * Time slack values; these are used to round up poll() and
6976675d
AV
983 * select() etc timeout values. These are in nanoseconds.
984 */
5eca1c10
IM
985 u64 timer_slack_ns;
986 u64 default_timer_slack_ns;
f8d570a4 987
0b24becc 988#ifdef CONFIG_KASAN
5eca1c10 989 unsigned int kasan_depth;
0b24becc 990#endif
5eca1c10 991
fb52607a 992#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
993 /* Index of current stored address in ret_stack: */
994 int curr_ret_stack;
995
996 /* Stack of return addresses for return function tracing: */
997 struct ftrace_ret_stack *ret_stack;
998
999 /* Timestamp for last schedule: */
1000 unsigned long long ftrace_timestamp;
1001
f201ae23
FW
1002 /*
1003 * Number of functions that haven't been traced
5eca1c10 1004 * because of depth overrun:
f201ae23 1005 */
5eca1c10
IM
1006 atomic_t trace_overrun;
1007
1008 /* Pause tracing: */
1009 atomic_t tracing_graph_pause;
f201ae23 1010#endif
5eca1c10 1011
ea4e2bc4 1012#ifdef CONFIG_TRACING
5eca1c10
IM
1013 /* State flags for use by tracers: */
1014 unsigned long trace;
1015
1016 /* Bitmask and counter of trace recursion: */
1017 unsigned long trace_recursion;
261842b7 1018#endif /* CONFIG_TRACING */
5eca1c10 1019
5c9a8750 1020#ifdef CONFIG_KCOV
5eca1c10
IM
1021 /* Coverage collection mode enabled for this task (0 if disabled): */
1022 enum kcov_mode kcov_mode;
1023
1024 /* Size of the kcov_area: */
1025 unsigned int kcov_size;
1026
1027 /* Buffer for coverage collection: */
1028 void *kcov_area;
1029
1030 /* KCOV descriptor wired with this task or NULL: */
1031 struct kcov *kcov;
5c9a8750 1032#endif
5eca1c10 1033
6f185c29 1034#ifdef CONFIG_MEMCG
5eca1c10
IM
1035 struct mem_cgroup *memcg_in_oom;
1036 gfp_t memcg_oom_gfp_mask;
1037 int memcg_oom_order;
b23afb93 1038
5eca1c10
IM
1039 /* Number of pages to reclaim on returning to userland: */
1040 unsigned int memcg_nr_pages_over_high;
569b846d 1041#endif
5eca1c10 1042
0326f5a9 1043#ifdef CONFIG_UPROBES
5eca1c10 1044 struct uprobe_task *utask;
0326f5a9 1045#endif
cafe5635 1046#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1047 unsigned int sequential_io;
1048 unsigned int sequential_io_avg;
cafe5635 1049#endif
8eb23b9f 1050#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1051 unsigned long task_state_change;
8eb23b9f 1052#endif
5eca1c10 1053 int pagefault_disabled;
03049269 1054#ifdef CONFIG_MMU
5eca1c10 1055 struct task_struct *oom_reaper_list;
03049269 1056#endif
ba14a194 1057#ifdef CONFIG_VMAP_STACK
5eca1c10 1058 struct vm_struct *stack_vm_area;
ba14a194 1059#endif
68f24b08 1060#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
1061 /* A live task holds one reference: */
1062 atomic_t stack_refcount;
d83a7cb3
JP
1063#endif
1064#ifdef CONFIG_LIVEPATCH
1065 int patch_state;
0302e28d 1066#endif
e4e55b47
TH
1067#ifdef CONFIG_SECURITY
1068 /* Used by LSM modules for access restriction: */
1069 void *security;
68f24b08 1070#endif
5eca1c10
IM
1071 /* CPU-specific state of this task: */
1072 struct thread_struct thread;
1073
1074 /*
1075 * WARNING: on x86, 'thread_struct' contains a variable-sized
1076 * structure. It *MUST* be at the end of 'task_struct'.
1077 *
1078 * Do not put anything below here!
1079 */
1da177e4
LT
1080};
1081
e868171a 1082static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1083{
1084 return task->pids[PIDTYPE_PID].pid;
1085}
1086
e868171a 1087static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1088{
1089 return task->group_leader->pids[PIDTYPE_PID].pid;
1090}
1091
6dda81f4 1092/*
5eca1c10 1093 * Without tasklist or RCU lock it is not safe to dereference
6dda81f4
ON
1094 * the result of task_pgrp/task_session even if task == current,
1095 * we can race with another thread doing sys_setsid/sys_setpgid.
1096 */
e868171a 1097static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1098{
1099 return task->group_leader->pids[PIDTYPE_PGID].pid;
1100}
1101
e868171a 1102static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1103{
1104 return task->group_leader->pids[PIDTYPE_SID].pid;
1105}
1106
7af57294
PE
1107/*
1108 * the helpers to get the task's different pids as they are seen
1109 * from various namespaces
1110 *
1111 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1112 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1113 * current.
7af57294
PE
1114 * task_xid_nr_ns() : id seen from the ns specified;
1115 *
7af57294
PE
1116 * see also pid_nr() etc in include/linux/pid.h
1117 */
5eca1c10 1118pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1119
e868171a 1120static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1121{
1122 return tsk->pid;
1123}
1124
5eca1c10 1125static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1126{
1127 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1128}
7af57294
PE
1129
1130static inline pid_t task_pid_vnr(struct task_struct *tsk)
1131{
52ee2dfd 1132 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1133}
1134
1135
e868171a 1136static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1137{
1138 return tsk->tgid;
1139}
1140
5eca1c10 1141extern pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1142
1143static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1144{
1145 return pid_vnr(task_tgid(tsk));
1146}
1147
5eca1c10
IM
1148/**
1149 * pid_alive - check that a task structure is not stale
1150 * @p: Task structure to be checked.
1151 *
1152 * Test if a process is not yet dead (at most zombie state)
1153 * If pid_alive fails, then pointers within the task structure
1154 * can be stale and must not be dereferenced.
1155 *
1156 * Return: 1 if the process is alive. 0 otherwise.
1157 */
1158static inline int pid_alive(const struct task_struct *p)
1159{
1160 return p->pids[PIDTYPE_PID].pid != NULL;
1161}
7af57294 1162
ad36d282
RGB
1163static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1164{
1165 pid_t pid = 0;
1166
1167 rcu_read_lock();
1168 if (pid_alive(tsk))
1169 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1170 rcu_read_unlock();
1171
1172 return pid;
1173}
1174
1175static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1176{
1177 return task_ppid_nr_ns(tsk, &init_pid_ns);
1178}
1179
5eca1c10 1180static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1181{
52ee2dfd 1182 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1183}
1184
7af57294
PE
1185static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1186{
52ee2dfd 1187 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1188}
1189
1190
5eca1c10 1191static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1192{
52ee2dfd 1193 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1194}
1195
7af57294
PE
1196static inline pid_t task_session_vnr(struct task_struct *tsk)
1197{
52ee2dfd 1198 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1199}
1200
5eca1c10 1201/* Obsolete, do not use: */
1b0f7ffd
ON
1202static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1203{
1204 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1205}
7af57294 1206
f400e198 1207/**
570f5241
SS
1208 * is_global_init - check if a task structure is init. Since init
1209 * is free to have sub-threads we need to check tgid.
3260259f
HK
1210 * @tsk: Task structure to be checked.
1211 *
1212 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1213 *
1214 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1215 */
e868171a 1216static inline int is_global_init(struct task_struct *tsk)
b461cc03 1217{
570f5241 1218 return task_tgid_nr(tsk) == 1;
b461cc03 1219}
b460cbc5 1220
9ec52099
CLG
1221extern struct pid *cad_pid;
1222
1da177e4
LT
1223/*
1224 * Per process flags
1225 */
5eca1c10
IM
1226#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1227#define PF_EXITING 0x00000004 /* Getting shut down */
1228#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1229#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1230#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1231#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1232#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1233#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1234#define PF_DUMPCORE 0x00000200 /* Dumped core */
1235#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1236#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1237#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1238#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1239#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1240#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1241#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1242#define PF_KSWAPD 0x00020000 /* I am kswapd */
1243#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1244#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1245#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1246#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1247#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1248#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1249#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1250#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1251#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1252#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1253#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1254
1255/*
1256 * Only the _current_ task can read/write to tsk->flags, but other
1257 * tasks can access tsk->flags in readonly mode for example
1258 * with tsk_used_math (like during threaded core dumping).
1259 * There is however an exception to this rule during ptrace
1260 * or during fork: the ptracer task is allowed to write to the
1261 * child->flags of its traced child (same goes for fork, the parent
1262 * can write to the child->flags), because we're guaranteed the
1263 * child is not running and in turn not changing child->flags
1264 * at the same time the parent does it.
1265 */
5eca1c10
IM
1266#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1267#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1268#define clear_used_math() clear_stopped_child_used_math(current)
1269#define set_used_math() set_stopped_child_used_math(current)
1270
1da177e4
LT
1271#define conditional_stopped_child_used_math(condition, child) \
1272 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1273
1274#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1275
1da177e4
LT
1276#define copy_to_stopped_child_used_math(child) \
1277 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1278
1da177e4 1279/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1280#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1281#define used_math() tsk_used_math(current)
1da177e4 1282
1d4457f9 1283/* Per-process atomic flags. */
5eca1c10
IM
1284#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1285#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1286#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2ad654bc 1287
1d4457f9 1288
e0e5070b
ZL
1289#define TASK_PFA_TEST(name, func) \
1290 static inline bool task_##func(struct task_struct *p) \
1291 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1292
e0e5070b
ZL
1293#define TASK_PFA_SET(name, func) \
1294 static inline void task_set_##func(struct task_struct *p) \
1295 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1296
e0e5070b
ZL
1297#define TASK_PFA_CLEAR(name, func) \
1298 static inline void task_clear_##func(struct task_struct *p) \
1299 { clear_bit(PFA_##name, &p->atomic_flags); }
1300
1301TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1302TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1303
2ad654bc
ZL
1304TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1305TASK_PFA_SET(SPREAD_PAGE, spread_page)
1306TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1307
1308TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1309TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1310TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1311
5eca1c10 1312static inline void
717a94b5 1313current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1314{
717a94b5
N
1315 current->flags &= ~flags;
1316 current->flags |= orig_flags & flags;
907aed48
MG
1317}
1318
5eca1c10
IM
1319extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1320extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1321#ifdef CONFIG_SMP
5eca1c10
IM
1322extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1323extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1324#else
5eca1c10 1325static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1326{
1327}
5eca1c10 1328static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1329{
96f874e2 1330 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1331 return -EINVAL;
1332 return 0;
1333}
1334#endif
e0ad9556 1335
6d0d2878
CB
1336#ifndef cpu_relax_yield
1337#define cpu_relax_yield() cpu_relax()
1338#endif
1339
fa93384f 1340extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1341extern void set_user_nice(struct task_struct *p, long nice);
1342extern int task_prio(const struct task_struct *p);
5eca1c10 1343
d0ea0268
DY
1344/**
1345 * task_nice - return the nice value of a given task.
1346 * @p: the task in question.
1347 *
1348 * Return: The nice value [ -20 ... 0 ... 19 ].
1349 */
1350static inline int task_nice(const struct task_struct *p)
1351{
1352 return PRIO_TO_NICE((p)->static_prio);
1353}
5eca1c10 1354
36c8b586
IM
1355extern int can_nice(const struct task_struct *p, const int nice);
1356extern int task_curr(const struct task_struct *p);
1da177e4 1357extern int idle_cpu(int cpu);
5eca1c10
IM
1358extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1359extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1360extern int sched_setattr(struct task_struct *, const struct sched_attr *);
36c8b586 1361extern struct task_struct *idle_task(int cpu);
5eca1c10 1362
c4f30608
PM
1363/**
1364 * is_idle_task - is the specified task an idle task?
fa757281 1365 * @p: the task in question.
e69f6186
YB
1366 *
1367 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1368 */
7061ca3b 1369static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1370{
c1de45ca 1371 return !!(p->flags & PF_IDLE);
c4f30608 1372}
5eca1c10 1373
36c8b586 1374extern struct task_struct *curr_task(int cpu);
a458ae2e 1375extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1376
1377void yield(void);
1378
1da177e4 1379union thread_union {
c65eacbe 1380#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1381 struct thread_info thread_info;
c65eacbe 1382#endif
1da177e4
LT
1383 unsigned long stack[THREAD_SIZE/sizeof(long)];
1384};
1385
f3ac6067
IM
1386#ifdef CONFIG_THREAD_INFO_IN_TASK
1387static inline struct thread_info *task_thread_info(struct task_struct *task)
1388{
1389 return &task->thread_info;
1390}
1391#elif !defined(__HAVE_THREAD_FUNCTIONS)
1392# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1393#endif
1394
198fe21b
PE
1395/*
1396 * find a task by one of its numerical ids
1397 *
198fe21b
PE
1398 * find_task_by_pid_ns():
1399 * finds a task by its pid in the specified namespace
228ebcbe
PE
1400 * find_task_by_vpid():
1401 * finds a task by its virtual pid
198fe21b 1402 *
e49859e7 1403 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1404 */
1405
228ebcbe 1406extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1407extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1408
b3c97528
HH
1409extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1410extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1411extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1412
1da177e4 1413#ifdef CONFIG_SMP
5eca1c10 1414extern void kick_process(struct task_struct *tsk);
1da177e4 1415#else
5eca1c10 1416static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1417#endif
1da177e4 1418
82b89778 1419extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1420
82b89778
AH
1421static inline void set_task_comm(struct task_struct *tsk, const char *from)
1422{
1423 __set_task_comm(tsk, from, false);
1424}
5eca1c10 1425
59714d65 1426extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
1427
1428#ifdef CONFIG_SMP
317f3941 1429void scheduler_ipi(void);
85ba2d86 1430extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1431#else
184748cc 1432static inline void scheduler_ipi(void) { }
5eca1c10 1433static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1434{
1435 return 1;
1436}
1da177e4
LT
1437#endif
1438
5eca1c10
IM
1439/*
1440 * Set thread flags in other task's structures.
1441 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1442 */
1443static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1444{
a1261f54 1445 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1446}
1447
1448static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1449{
a1261f54 1450 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1451}
1452
1453static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1454{
a1261f54 1455 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1456}
1457
1458static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1459{
a1261f54 1460 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1461}
1462
1463static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1464{
a1261f54 1465 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1466}
1467
1468static inline void set_tsk_need_resched(struct task_struct *tsk)
1469{
1470 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1471}
1472
1473static inline void clear_tsk_need_resched(struct task_struct *tsk)
1474{
1475 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1476}
1477
8ae121ac
GH
1478static inline int test_tsk_need_resched(struct task_struct *tsk)
1479{
1480 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1481}
1482
1da177e4
LT
1483/*
1484 * cond_resched() and cond_resched_lock(): latency reduction via
1485 * explicit rescheduling in places that are safe. The return
1486 * value indicates whether a reschedule was done in fact.
1487 * cond_resched_lock() will drop the spinlock before scheduling,
1488 * cond_resched_softirq() will enable bhs before scheduling.
1489 */
35a773a0 1490#ifndef CONFIG_PREEMPT
c3921ab7 1491extern int _cond_resched(void);
35a773a0
PZ
1492#else
1493static inline int _cond_resched(void) { return 0; }
1494#endif
6f80bd98 1495
613afbf8 1496#define cond_resched() ({ \
3427445a 1497 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1498 _cond_resched(); \
1499})
6f80bd98 1500
613afbf8
FW
1501extern int __cond_resched_lock(spinlock_t *lock);
1502
1503#define cond_resched_lock(lock) ({ \
3427445a 1504 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1505 __cond_resched_lock(lock); \
1506})
1507
1508extern int __cond_resched_softirq(void);
1509
75e1056f 1510#define cond_resched_softirq() ({ \
3427445a 1511 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 1512 __cond_resched_softirq(); \
613afbf8 1513})
1da177e4 1514
f6f3c437
SH
1515static inline void cond_resched_rcu(void)
1516{
1517#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1518 rcu_read_unlock();
1519 cond_resched();
1520 rcu_read_lock();
1521#endif
1522}
1523
1da177e4
LT
1524/*
1525 * Does a critical section need to be broken due to another
95c354fe
NP
1526 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1527 * but a general need for low latency)
1da177e4 1528 */
95c354fe 1529static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1530{
95c354fe
NP
1531#ifdef CONFIG_PREEMPT
1532 return spin_is_contended(lock);
1533#else
1da177e4 1534 return 0;
95c354fe 1535#endif
1da177e4
LT
1536}
1537
75f93fed
PZ
1538static __always_inline bool need_resched(void)
1539{
1540 return unlikely(tif_need_resched());
1541}
1542
1da177e4
LT
1543/*
1544 * Wrappers for p->thread_info->cpu access. No-op on UP.
1545 */
1546#ifdef CONFIG_SMP
1547
1548static inline unsigned int task_cpu(const struct task_struct *p)
1549{
c65eacbe
AL
1550#ifdef CONFIG_THREAD_INFO_IN_TASK
1551 return p->cpu;
1552#else
a1261f54 1553 return task_thread_info(p)->cpu;
c65eacbe 1554#endif
1da177e4
LT
1555}
1556
c65cc870 1557extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1558
1559#else
1560
1561static inline unsigned int task_cpu(const struct task_struct *p)
1562{
1563 return 0;
1564}
1565
1566static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1567{
1568}
1569
1570#endif /* CONFIG_SMP */
1571
d9345c65
PX
1572/*
1573 * In order to reduce various lock holder preemption latencies provide an
1574 * interface to see if a vCPU is currently running or not.
1575 *
1576 * This allows us to terminate optimistic spin loops and block, analogous to
1577 * the native optimistic spin heuristic of testing if the lock owner task is
1578 * running or not.
1579 */
1580#ifndef vcpu_is_preempted
1581# define vcpu_is_preempted(cpu) false
1582#endif
1583
96f874e2
RR
1584extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1585extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1586
82455257
DH
1587#ifndef TASK_SIZE_OF
1588#define TASK_SIZE_OF(tsk) TASK_SIZE
1589#endif
1590
1da177e4 1591#endif