]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/linux/sched.h
x86/entry: Get rid of ist_begin/end_non_atomic()
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10
IM
29#include <linux/signal_types.h>
30#include <linux/mm_types_task.h>
31#include <linux/task_io_accounting.h>
2b69942f 32#include <linux/posix-timers.h>
d7822b1e 33#include <linux/rseq.h>
a3b6714e 34
5eca1c10 35/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 36struct audit_context;
c7af7877 37struct backing_dev_info;
bddd87c7 38struct bio_list;
73c10101 39struct blk_plug;
3c93a0c0 40struct capture_control;
c7af7877 41struct cfs_rq;
c7af7877
IM
42struct fs_struct;
43struct futex_pi_state;
44struct io_context;
45struct mempolicy;
89076bc3 46struct nameidata;
c7af7877
IM
47struct nsproxy;
48struct perf_event_context;
49struct pid_namespace;
50struct pipe_inode_info;
51struct rcu_node;
52struct reclaim_state;
53struct robust_list_head;
3c93a0c0
QY
54struct root_domain;
55struct rq;
c7af7877
IM
56struct sched_attr;
57struct sched_param;
43ae34cb 58struct seq_file;
c7af7877
IM
59struct sighand_struct;
60struct signal_struct;
61struct task_delay_info;
4cf86d77 62struct task_group;
1da177e4 63
4a8342d2
LT
64/*
65 * Task state bitmask. NOTE! These bits are also
66 * encoded in fs/proc/array.c: get_task_state().
67 *
68 * We have two separate sets of flags: task->state
69 * is about runnability, while task->exit_state are
70 * about the task exiting. Confusing, but this way
71 * modifying one set can't modify the other one by
72 * mistake.
73 */
5eca1c10
IM
74
75/* Used in tsk->state: */
92c4bc9f
PZ
76#define TASK_RUNNING 0x0000
77#define TASK_INTERRUPTIBLE 0x0001
78#define TASK_UNINTERRUPTIBLE 0x0002
79#define __TASK_STOPPED 0x0004
80#define __TASK_TRACED 0x0008
5eca1c10 81/* Used in tsk->exit_state: */
92c4bc9f
PZ
82#define EXIT_DEAD 0x0010
83#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
84#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
85/* Used in tsk->state again: */
8ef9925b
PZ
86#define TASK_PARKED 0x0040
87#define TASK_DEAD 0x0080
88#define TASK_WAKEKILL 0x0100
89#define TASK_WAKING 0x0200
92c4bc9f
PZ
90#define TASK_NOLOAD 0x0400
91#define TASK_NEW 0x0800
92#define TASK_STATE_MAX 0x1000
5eca1c10 93
5eca1c10
IM
94/* Convenience macros for the sake of set_current_state: */
95#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
96#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
97#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
98
99#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
100
101/* Convenience macros for the sake of wake_up(): */
102#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
103
104/* get_task_state(): */
105#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
108 TASK_PARKED)
5eca1c10
IM
109
110#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
111
112#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
113
114#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
115
116#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
117 (task->flags & PF_FROZEN) == 0 && \
118 (task->state & TASK_NOLOAD) == 0)
1da177e4 119
8eb23b9f
PZ
120#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
121
b5bf9a90
PZ
122/*
123 * Special states are those that do not use the normal wait-loop pattern. See
124 * the comment with set_special_state().
125 */
126#define is_special_task_state(state) \
1cef1150 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 128
8eb23b9f
PZ
129#define __set_current_state(state_value) \
130 do { \
b5bf9a90 131 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
132 current->task_state_change = _THIS_IP_; \
133 current->state = (state_value); \
134 } while (0)
b5bf9a90 135
8eb23b9f
PZ
136#define set_current_state(state_value) \
137 do { \
b5bf9a90 138 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 139 current->task_state_change = _THIS_IP_; \
a2250238 140 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
141 } while (0)
142
b5bf9a90
PZ
143#define set_special_state(state_value) \
144 do { \
145 unsigned long flags; /* may shadow */ \
146 WARN_ON_ONCE(!is_special_task_state(state_value)); \
147 raw_spin_lock_irqsave(&current->pi_lock, flags); \
148 current->task_state_change = _THIS_IP_; \
149 current->state = (state_value); \
150 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
151 } while (0)
8eb23b9f 152#else
498d0c57
AM
153/*
154 * set_current_state() includes a barrier so that the write of current->state
155 * is correctly serialised wrt the caller's subsequent test of whether to
156 * actually sleep:
157 *
a2250238 158 * for (;;) {
498d0c57 159 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
160 * if (!need_sleep)
161 * break;
162 *
163 * schedule();
164 * }
165 * __set_current_state(TASK_RUNNING);
166 *
167 * If the caller does not need such serialisation (because, for instance, the
168 * condition test and condition change and wakeup are under the same lock) then
169 * use __set_current_state().
170 *
171 * The above is typically ordered against the wakeup, which does:
172 *
b5bf9a90
PZ
173 * need_sleep = false;
174 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 175 *
7696f991
AP
176 * where wake_up_state() executes a full memory barrier before accessing the
177 * task state.
a2250238
PZ
178 *
179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 182 *
b5bf9a90 183 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
185 * a problem either because that will result in one extra go around the loop
186 * and our @cond test will save the day.
498d0c57 187 *
a2250238 188 * Also see the comments of try_to_wake_up().
498d0c57 189 */
b5bf9a90
PZ
190#define __set_current_state(state_value) \
191 current->state = (state_value)
192
193#define set_current_state(state_value) \
194 smp_store_mb(current->state, (state_value))
195
196/*
197 * set_special_state() should be used for those states when the blocking task
198 * can not use the regular condition based wait-loop. In that case we must
199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
200 * will not collide with our state change.
201 */
202#define set_special_state(state_value) \
203 do { \
204 unsigned long flags; /* may shadow */ \
205 raw_spin_lock_irqsave(&current->pi_lock, flags); \
206 current->state = (state_value); \
207 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
208 } while (0)
209
8eb23b9f
PZ
210#endif
211
5eca1c10
IM
212/* Task command name length: */
213#define TASK_COMM_LEN 16
1da177e4 214
1da177e4
LT
215extern void scheduler_tick(void);
216
5eca1c10
IM
217#define MAX_SCHEDULE_TIMEOUT LONG_MAX
218
219extern long schedule_timeout(long timeout);
220extern long schedule_timeout_interruptible(long timeout);
221extern long schedule_timeout_killable(long timeout);
222extern long schedule_timeout_uninterruptible(long timeout);
223extern long schedule_timeout_idle(long timeout);
1da177e4 224asmlinkage void schedule(void);
c5491ea7 225extern void schedule_preempt_disabled(void);
19c95f26 226asmlinkage void preempt_schedule_irq(void);
1da177e4 227
10ab5643
TH
228extern int __must_check io_schedule_prepare(void);
229extern void io_schedule_finish(int token);
9cff8ade 230extern long io_schedule_timeout(long timeout);
10ab5643 231extern void io_schedule(void);
9cff8ade 232
d37f761d 233/**
0ba42a59 234 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
235 * @utime: time spent in user mode
236 * @stime: time spent in system mode
9d7fb042 237 * @lock: protects the above two fields
d37f761d 238 *
9d7fb042
PZ
239 * Stores previous user/system time values such that we can guarantee
240 * monotonicity.
d37f761d 241 */
9d7fb042
PZ
242struct prev_cputime {
243#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
244 u64 utime;
245 u64 stime;
246 raw_spinlock_t lock;
9d7fb042 247#endif
d37f761d
FW
248};
249
bac5b6b6
FW
250enum vtime_state {
251 /* Task is sleeping or running in a CPU with VTIME inactive: */
252 VTIME_INACTIVE = 0,
14faf6fc
FW
253 /* Task is idle */
254 VTIME_IDLE,
bac5b6b6
FW
255 /* Task runs in kernelspace in a CPU with VTIME active: */
256 VTIME_SYS,
14faf6fc
FW
257 /* Task runs in userspace in a CPU with VTIME active: */
258 VTIME_USER,
e6d5bf3e
FW
259 /* Task runs as guests in a CPU with VTIME active: */
260 VTIME_GUEST,
bac5b6b6
FW
261};
262
263struct vtime {
264 seqcount_t seqcount;
265 unsigned long long starttime;
266 enum vtime_state state;
802f4a82 267 unsigned int cpu;
2a42eb95
WL
268 u64 utime;
269 u64 stime;
270 u64 gtime;
bac5b6b6
FW
271};
272
69842cba
PB
273/*
274 * Utilization clamp constraints.
275 * @UCLAMP_MIN: Minimum utilization
276 * @UCLAMP_MAX: Maximum utilization
277 * @UCLAMP_CNT: Utilization clamp constraints count
278 */
279enum uclamp_id {
280 UCLAMP_MIN = 0,
281 UCLAMP_MAX,
282 UCLAMP_CNT
283};
284
f9a25f77
MP
285#ifdef CONFIG_SMP
286extern struct root_domain def_root_domain;
287extern struct mutex sched_domains_mutex;
288#endif
289
1da177e4 290struct sched_info {
7f5f8e8d 291#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
292 /* Cumulative counters: */
293
294 /* # of times we have run on this CPU: */
295 unsigned long pcount;
296
297 /* Time spent waiting on a runqueue: */
298 unsigned long long run_delay;
299
300 /* Timestamps: */
301
302 /* When did we last run on a CPU? */
303 unsigned long long last_arrival;
304
305 /* When were we last queued to run? */
306 unsigned long long last_queued;
1da177e4 307
f6db8347 308#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 309};
1da177e4 310
6ecdd749
YD
311/*
312 * Integer metrics need fixed point arithmetic, e.g., sched/fair
313 * has a few: load, load_avg, util_avg, freq, and capacity.
314 *
315 * We define a basic fixed point arithmetic range, and then formalize
316 * all these metrics based on that basic range.
317 */
5eca1c10
IM
318# define SCHED_FIXEDPOINT_SHIFT 10
319# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 320
69842cba
PB
321/* Increase resolution of cpu_capacity calculations */
322# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
323# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
324
20b8a59f 325struct load_weight {
5eca1c10
IM
326 unsigned long weight;
327 u32 inv_weight;
20b8a59f
IM
328};
329
7f65ea42
PB
330/**
331 * struct util_est - Estimation utilization of FAIR tasks
332 * @enqueued: instantaneous estimated utilization of a task/cpu
333 * @ewma: the Exponential Weighted Moving Average (EWMA)
334 * utilization of a task
335 *
336 * Support data structure to track an Exponential Weighted Moving Average
337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
338 * average each time a task completes an activation. Sample's weight is chosen
339 * so that the EWMA will be relatively insensitive to transient changes to the
340 * task's workload.
341 *
342 * The enqueued attribute has a slightly different meaning for tasks and cpus:
343 * - task: the task's util_avg at last task dequeue time
344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
345 * Thus, the util_est.enqueued of a task represents the contribution on the
346 * estimated utilization of the CPU where that task is currently enqueued.
347 *
348 * Only for tasks we track a moving average of the past instantaneous
349 * estimated utilization. This allows to absorb sporadic drops in utilization
350 * of an otherwise almost periodic task.
351 */
352struct util_est {
353 unsigned int enqueued;
354 unsigned int ewma;
355#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 356} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 357
9d89c257 358/*
9f683953 359 * The load/runnable/util_avg accumulates an infinite geometric series
0dacee1b 360 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
7b595334
YD
361 *
362 * [load_avg definition]
363 *
364 * load_avg = runnable% * scale_load_down(load)
365 *
9f683953
VG
366 * [runnable_avg definition]
367 *
368 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
7b595334 369 *
7b595334
YD
370 * [util_avg definition]
371 *
372 * util_avg = running% * SCHED_CAPACITY_SCALE
373 *
9f683953
VG
374 * where runnable% is the time ratio that a sched_entity is runnable and
375 * running% the time ratio that a sched_entity is running.
376 *
377 * For cfs_rq, they are the aggregated values of all runnable and blocked
378 * sched_entities.
7b595334 379 *
9f683953
VG
380 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU
381 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
382 * for computing those signals (see update_rq_clock_pelt())
7b595334 383 *
23127296
VG
384 * N.B., the above ratios (runnable% and running%) themselves are in the
385 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
386 * to as large a range as necessary. This is for example reflected by
387 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
388 *
389 * [Overflow issue]
390 *
391 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
392 * with the highest load (=88761), always runnable on a single cfs_rq,
393 * and should not overflow as the number already hits PID_MAX_LIMIT.
394 *
395 * For all other cases (including 32-bit kernels), struct load_weight's
396 * weight will overflow first before we do, because:
397 *
398 * Max(load_avg) <= Max(load.weight)
399 *
400 * Then it is the load_weight's responsibility to consider overflow
401 * issues.
9d89c257 402 */
9d85f21c 403struct sched_avg {
5eca1c10
IM
404 u64 last_update_time;
405 u64 load_sum;
9f683953 406 u64 runnable_sum;
5eca1c10
IM
407 u32 util_sum;
408 u32 period_contrib;
409 unsigned long load_avg;
9f683953 410 unsigned long runnable_avg;
5eca1c10 411 unsigned long util_avg;
7f65ea42 412 struct util_est util_est;
317d359d 413} ____cacheline_aligned;
9d85f21c 414
41acab88 415struct sched_statistics {
7f5f8e8d 416#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
417 u64 wait_start;
418 u64 wait_max;
419 u64 wait_count;
420 u64 wait_sum;
421 u64 iowait_count;
422 u64 iowait_sum;
423
424 u64 sleep_start;
425 u64 sleep_max;
426 s64 sum_sleep_runtime;
427
428 u64 block_start;
429 u64 block_max;
430 u64 exec_max;
431 u64 slice_max;
432
433 u64 nr_migrations_cold;
434 u64 nr_failed_migrations_affine;
435 u64 nr_failed_migrations_running;
436 u64 nr_failed_migrations_hot;
437 u64 nr_forced_migrations;
438
439 u64 nr_wakeups;
440 u64 nr_wakeups_sync;
441 u64 nr_wakeups_migrate;
442 u64 nr_wakeups_local;
443 u64 nr_wakeups_remote;
444 u64 nr_wakeups_affine;
445 u64 nr_wakeups_affine_attempts;
446 u64 nr_wakeups_passive;
447 u64 nr_wakeups_idle;
41acab88 448#endif
7f5f8e8d 449};
41acab88
LDM
450
451struct sched_entity {
5eca1c10
IM
452 /* For load-balancing: */
453 struct load_weight load;
454 struct rb_node run_node;
455 struct list_head group_node;
456 unsigned int on_rq;
41acab88 457
5eca1c10
IM
458 u64 exec_start;
459 u64 sum_exec_runtime;
460 u64 vruntime;
461 u64 prev_sum_exec_runtime;
41acab88 462
5eca1c10 463 u64 nr_migrations;
41acab88 464
5eca1c10 465 struct sched_statistics statistics;
94c18227 466
20b8a59f 467#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
468 int depth;
469 struct sched_entity *parent;
20b8a59f 470 /* rq on which this entity is (to be) queued: */
5eca1c10 471 struct cfs_rq *cfs_rq;
20b8a59f 472 /* rq "owned" by this entity/group: */
5eca1c10 473 struct cfs_rq *my_q;
9f683953
VG
474 /* cached value of my_q->h_nr_running */
475 unsigned long runnable_weight;
20b8a59f 476#endif
8bd75c77 477
141965c7 478#ifdef CONFIG_SMP
5a107804
JO
479 /*
480 * Per entity load average tracking.
481 *
482 * Put into separate cache line so it does not
483 * collide with read-mostly values above.
484 */
317d359d 485 struct sched_avg avg;
9d85f21c 486#endif
20b8a59f 487};
70b97a7f 488
fa717060 489struct sched_rt_entity {
5eca1c10
IM
490 struct list_head run_list;
491 unsigned long timeout;
492 unsigned long watchdog_stamp;
493 unsigned int time_slice;
494 unsigned short on_rq;
495 unsigned short on_list;
496
497 struct sched_rt_entity *back;
052f1dc7 498#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 499 struct sched_rt_entity *parent;
6f505b16 500 /* rq on which this entity is (to be) queued: */
5eca1c10 501 struct rt_rq *rt_rq;
6f505b16 502 /* rq "owned" by this entity/group: */
5eca1c10 503 struct rt_rq *my_q;
6f505b16 504#endif
3859a271 505} __randomize_layout;
fa717060 506
aab03e05 507struct sched_dl_entity {
5eca1c10 508 struct rb_node rb_node;
aab03e05
DF
509
510 /*
511 * Original scheduling parameters. Copied here from sched_attr
4027d080 512 * during sched_setattr(), they will remain the same until
513 * the next sched_setattr().
aab03e05 514 */
5eca1c10
IM
515 u64 dl_runtime; /* Maximum runtime for each instance */
516 u64 dl_deadline; /* Relative deadline of each instance */
517 u64 dl_period; /* Separation of two instances (period) */
54d6d303 518 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 519 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
520
521 /*
522 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 523 * they are continuously updated during task execution. Note that
aab03e05
DF
524 * the remaining runtime could be < 0 in case we are in overrun.
525 */
5eca1c10
IM
526 s64 runtime; /* Remaining runtime for this instance */
527 u64 deadline; /* Absolute deadline for this instance */
528 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
529
530 /*
531 * Some bool flags:
532 *
533 * @dl_throttled tells if we exhausted the runtime. If so, the
534 * task has to wait for a replenishment to be performed at the
535 * next firing of dl_timer.
536 *
2d3d891d
DF
537 * @dl_boosted tells if we are boosted due to DI. If so we are
538 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
539 * exit the critical section);
540 *
5eca1c10 541 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 542 * all its available runtime during the last job.
209a0cbd
LA
543 *
544 * @dl_non_contending tells if the task is inactive while still
545 * contributing to the active utilization. In other words, it
546 * indicates if the inactive timer has been armed and its handler
547 * has not been executed yet. This flag is useful to avoid race
548 * conditions between the inactive timer handler and the wakeup
549 * code.
34be3930
JL
550 *
551 * @dl_overrun tells if the task asked to be informed about runtime
552 * overruns.
aab03e05 553 */
aa5222e9
DC
554 unsigned int dl_throttled : 1;
555 unsigned int dl_boosted : 1;
556 unsigned int dl_yielded : 1;
557 unsigned int dl_non_contending : 1;
34be3930 558 unsigned int dl_overrun : 1;
aab03e05
DF
559
560 /*
561 * Bandwidth enforcement timer. Each -deadline task has its
562 * own bandwidth to be enforced, thus we need one timer per task.
563 */
5eca1c10 564 struct hrtimer dl_timer;
209a0cbd
LA
565
566 /*
567 * Inactive timer, responsible for decreasing the active utilization
568 * at the "0-lag time". When a -deadline task blocks, it contributes
569 * to GRUB's active utilization until the "0-lag time", hence a
570 * timer is needed to decrease the active utilization at the correct
571 * time.
572 */
573 struct hrtimer inactive_timer;
aab03e05 574};
8bd75c77 575
69842cba
PB
576#ifdef CONFIG_UCLAMP_TASK
577/* Number of utilization clamp buckets (shorter alias) */
578#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
579
580/*
581 * Utilization clamp for a scheduling entity
582 * @value: clamp value "assigned" to a se
583 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 584 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 585 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
586 *
587 * The bucket_id is the index of the clamp bucket matching the clamp value
588 * which is pre-computed and stored to avoid expensive integer divisions from
589 * the fast path.
e8f14172
PB
590 *
591 * The active bit is set whenever a task has got an "effective" value assigned,
592 * which can be different from the clamp value "requested" from user-space.
593 * This allows to know a task is refcounted in the rq's bucket corresponding
594 * to the "effective" bucket_id.
a509a7cd
PB
595 *
596 * The user_defined bit is set whenever a task has got a task-specific clamp
597 * value requested from userspace, i.e. the system defaults apply to this task
598 * just as a restriction. This allows to relax default clamps when a less
599 * restrictive task-specific value has been requested, thus allowing to
600 * implement a "nice" semantic. For example, a task running with a 20%
601 * default boost can still drop its own boosting to 0%.
69842cba
PB
602 */
603struct uclamp_se {
604 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
605 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 606 unsigned int active : 1;
a509a7cd 607 unsigned int user_defined : 1;
69842cba
PB
608};
609#endif /* CONFIG_UCLAMP_TASK */
610
1d082fd0
PM
611union rcu_special {
612 struct {
5eca1c10
IM
613 u8 blocked;
614 u8 need_qs;
05f41571 615 u8 exp_hint; /* Hint for performance. */
276c4104 616 u8 need_mb; /* Readers need smp_mb(). */
8203d6d0 617 } b; /* Bits. */
05f41571 618 u32 s; /* Set of bits. */
1d082fd0 619};
86848966 620
8dc85d54
PZ
621enum perf_event_task_context {
622 perf_invalid_context = -1,
623 perf_hw_context = 0,
89a1e187 624 perf_sw_context,
8dc85d54
PZ
625 perf_nr_task_contexts,
626};
627
eb61baf6
IM
628struct wake_q_node {
629 struct wake_q_node *next;
630};
631
1da177e4 632struct task_struct {
c65eacbe
AL
633#ifdef CONFIG_THREAD_INFO_IN_TASK
634 /*
635 * For reasons of header soup (see current_thread_info()), this
636 * must be the first element of task_struct.
637 */
5eca1c10 638 struct thread_info thread_info;
c65eacbe 639#endif
5eca1c10
IM
640 /* -1 unrunnable, 0 runnable, >0 stopped: */
641 volatile long state;
29e48ce8
KC
642
643 /*
644 * This begins the randomizable portion of task_struct. Only
645 * scheduling-critical items should be added above here.
646 */
647 randomized_struct_fields_start
648
5eca1c10 649 void *stack;
ec1d2819 650 refcount_t usage;
5eca1c10
IM
651 /* Per task flags (PF_*), defined further below: */
652 unsigned int flags;
653 unsigned int ptrace;
1da177e4 654
2dd73a4f 655#ifdef CONFIG_SMP
5eca1c10
IM
656 struct llist_node wake_entry;
657 int on_cpu;
c65eacbe 658#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
659 /* Current CPU: */
660 unsigned int cpu;
c65eacbe 661#endif
5eca1c10
IM
662 unsigned int wakee_flips;
663 unsigned long wakee_flip_decay_ts;
664 struct task_struct *last_wakee;
ac66f547 665
32e839dd
MG
666 /*
667 * recent_used_cpu is initially set as the last CPU used by a task
668 * that wakes affine another task. Waker/wakee relationships can
669 * push tasks around a CPU where each wakeup moves to the next one.
670 * Tracking a recently used CPU allows a quick search for a recently
671 * used CPU that may be idle.
672 */
673 int recent_used_cpu;
5eca1c10 674 int wake_cpu;
2dd73a4f 675#endif
5eca1c10
IM
676 int on_rq;
677
678 int prio;
679 int static_prio;
680 int normal_prio;
681 unsigned int rt_priority;
50e645a8 682
5eca1c10
IM
683 const struct sched_class *sched_class;
684 struct sched_entity se;
685 struct sched_rt_entity rt;
8323f26c 686#ifdef CONFIG_CGROUP_SCHED
5eca1c10 687 struct task_group *sched_task_group;
8323f26c 688#endif
5eca1c10 689 struct sched_dl_entity dl;
1da177e4 690
69842cba 691#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
692 /* Clamp values requested for a scheduling entity */
693 struct uclamp_se uclamp_req[UCLAMP_CNT];
694 /* Effective clamp values used for a scheduling entity */
69842cba
PB
695 struct uclamp_se uclamp[UCLAMP_CNT];
696#endif
697
e107be36 698#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
699 /* List of struct preempt_notifier: */
700 struct hlist_head preempt_notifiers;
e107be36
AK
701#endif
702
6c5c9341 703#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 704 unsigned int btrace_seq;
6c5c9341 705#endif
1da177e4 706
5eca1c10
IM
707 unsigned int policy;
708 int nr_cpus_allowed;
3bd37062
SAS
709 const cpumask_t *cpus_ptr;
710 cpumask_t cpus_mask;
1da177e4 711
a57eb940 712#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
713 int rcu_read_lock_nesting;
714 union rcu_special rcu_read_unlock_special;
715 struct list_head rcu_node_entry;
716 struct rcu_node *rcu_blocked_node;
28f6569a 717#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 718
8315f422 719#ifdef CONFIG_TASKS_RCU
5eca1c10 720 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
721 u8 rcu_tasks_holdout;
722 u8 rcu_tasks_idx;
5eca1c10 723 int rcu_tasks_idle_cpu;
ccdd29ff 724 struct list_head rcu_tasks_holdout_list;
8315f422 725#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 726
d5f177d3
PM
727#ifdef CONFIG_TASKS_TRACE_RCU
728 int trc_reader_nesting;
729 int trc_ipi_to_cpu;
276c4104 730 union rcu_special trc_reader_special;
d5f177d3
PM
731 bool trc_reader_checked;
732 struct list_head trc_holdout_list;
733#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
734
5eca1c10 735 struct sched_info sched_info;
1da177e4 736
5eca1c10 737 struct list_head tasks;
806c09a7 738#ifdef CONFIG_SMP
5eca1c10
IM
739 struct plist_node pushable_tasks;
740 struct rb_node pushable_dl_tasks;
806c09a7 741#endif
1da177e4 742
5eca1c10
IM
743 struct mm_struct *mm;
744 struct mm_struct *active_mm;
314ff785
IM
745
746 /* Per-thread vma caching: */
5eca1c10 747 struct vmacache vmacache;
314ff785 748
5eca1c10
IM
749#ifdef SPLIT_RSS_COUNTING
750 struct task_rss_stat rss_stat;
34e55232 751#endif
5eca1c10
IM
752 int exit_state;
753 int exit_code;
754 int exit_signal;
755 /* The signal sent when the parent dies: */
756 int pdeath_signal;
757 /* JOBCTL_*, siglock protected: */
758 unsigned long jobctl;
759
760 /* Used for emulating ABI behavior of previous Linux versions: */
761 unsigned int personality;
762
763 /* Scheduler bits, serialized by scheduler locks: */
764 unsigned sched_reset_on_fork:1;
765 unsigned sched_contributes_to_load:1;
766 unsigned sched_migrated:1;
767 unsigned sched_remote_wakeup:1;
eb414681
JW
768#ifdef CONFIG_PSI
769 unsigned sched_psi_wake_requeue:1;
770#endif
771
5eca1c10
IM
772 /* Force alignment to the next boundary: */
773 unsigned :0;
774
775 /* Unserialized, strictly 'current' */
776
777 /* Bit to tell LSMs we're in execve(): */
778 unsigned in_execve:1;
779 unsigned in_iowait:1;
780#ifndef TIF_RESTORE_SIGMASK
781 unsigned restore_sigmask:1;
7e781418 782#endif
626ebc41 783#ifdef CONFIG_MEMCG
29ef680a 784 unsigned in_user_fault:1;
127424c8 785#endif
ff303e66 786#ifdef CONFIG_COMPAT_BRK
5eca1c10 787 unsigned brk_randomized:1;
ff303e66 788#endif
77f88796
TH
789#ifdef CONFIG_CGROUPS
790 /* disallow userland-initiated cgroup migration */
791 unsigned no_cgroup_migration:1;
76f969e8
RG
792 /* task is frozen/stopped (used by the cgroup freezer) */
793 unsigned frozen:1;
77f88796 794#endif
d09d8df3 795#ifdef CONFIG_BLK_CGROUP
d09d8df3
JB
796 unsigned use_memdelay:1;
797#endif
1066d1b6
YS
798#ifdef CONFIG_PSI
799 /* Stalled due to lack of memory */
800 unsigned in_memstall:1;
801#endif
6f185c29 802
5eca1c10 803 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 804
5eca1c10 805 struct restart_block restart_block;
f56141e3 806
5eca1c10
IM
807 pid_t pid;
808 pid_t tgid;
0a425405 809
050e9baa 810#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
811 /* Canary value for the -fstack-protector GCC feature: */
812 unsigned long stack_canary;
1314562a 813#endif
4d1d61a6 814 /*
5eca1c10 815 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 816 * older sibling, respectively. (p->father can be replaced with
f470021a 817 * p->real_parent->pid)
1da177e4 818 */
5eca1c10
IM
819
820 /* Real parent process: */
821 struct task_struct __rcu *real_parent;
822
823 /* Recipient of SIGCHLD, wait4() reports: */
824 struct task_struct __rcu *parent;
825
1da177e4 826 /*
5eca1c10 827 * Children/sibling form the list of natural children:
1da177e4 828 */
5eca1c10
IM
829 struct list_head children;
830 struct list_head sibling;
831 struct task_struct *group_leader;
1da177e4 832
f470021a 833 /*
5eca1c10
IM
834 * 'ptraced' is the list of tasks this task is using ptrace() on.
835 *
f470021a 836 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 837 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 838 */
5eca1c10
IM
839 struct list_head ptraced;
840 struct list_head ptrace_entry;
f470021a 841
1da177e4 842 /* PID/PID hash table linkage. */
2c470475
EB
843 struct pid *thread_pid;
844 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
845 struct list_head thread_group;
846 struct list_head thread_node;
847
848 struct completion *vfork_done;
1da177e4 849
5eca1c10
IM
850 /* CLONE_CHILD_SETTID: */
851 int __user *set_child_tid;
1da177e4 852
5eca1c10
IM
853 /* CLONE_CHILD_CLEARTID: */
854 int __user *clear_child_tid;
855
856 u64 utime;
857 u64 stime;
40565b5a 858#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
859 u64 utimescaled;
860 u64 stimescaled;
40565b5a 861#endif
5eca1c10
IM
862 u64 gtime;
863 struct prev_cputime prev_cputime;
6a61671b 864#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 865 struct vtime vtime;
d99ca3b9 866#endif
d027d45d
FW
867
868#ifdef CONFIG_NO_HZ_FULL
5eca1c10 869 atomic_t tick_dep_mask;
d027d45d 870#endif
5eca1c10
IM
871 /* Context switch counts: */
872 unsigned long nvcsw;
873 unsigned long nivcsw;
874
875 /* Monotonic time in nsecs: */
876 u64 start_time;
877
878 /* Boot based time in nsecs: */
cf25e24d 879 u64 start_boottime;
5eca1c10
IM
880
881 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
882 unsigned long min_flt;
883 unsigned long maj_flt;
1da177e4 884
2b69942f
TG
885 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
886 struct posix_cputimers posix_cputimers;
1da177e4 887
5eca1c10
IM
888 /* Process credentials: */
889
890 /* Tracer's credentials at attach: */
891 const struct cred __rcu *ptracer_cred;
892
893 /* Objective and real subjective task credentials (COW): */
894 const struct cred __rcu *real_cred;
895
896 /* Effective (overridable) subjective task credentials (COW): */
897 const struct cred __rcu *cred;
898
7743c48e
DH
899#ifdef CONFIG_KEYS
900 /* Cached requested key. */
901 struct key *cached_requested_key;
902#endif
903
5eca1c10
IM
904 /*
905 * executable name, excluding path.
906 *
907 * - normally initialized setup_new_exec()
908 * - access it with [gs]et_task_comm()
909 * - lock it with task_lock()
910 */
911 char comm[TASK_COMM_LEN];
912
913 struct nameidata *nameidata;
914
3d5b6fcc 915#ifdef CONFIG_SYSVIPC
5eca1c10
IM
916 struct sysv_sem sysvsem;
917 struct sysv_shm sysvshm;
3d5b6fcc 918#endif
e162b39a 919#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 920 unsigned long last_switch_count;
a2e51445 921 unsigned long last_switch_time;
82a1fcb9 922#endif
5eca1c10
IM
923 /* Filesystem information: */
924 struct fs_struct *fs;
925
926 /* Open file information: */
927 struct files_struct *files;
928
929 /* Namespaces: */
930 struct nsproxy *nsproxy;
931
932 /* Signal handlers: */
933 struct signal_struct *signal;
913292c9 934 struct sighand_struct __rcu *sighand;
5eca1c10
IM
935 sigset_t blocked;
936 sigset_t real_blocked;
937 /* Restored if set_restore_sigmask() was used: */
938 sigset_t saved_sigmask;
939 struct sigpending pending;
940 unsigned long sas_ss_sp;
941 size_t sas_ss_size;
942 unsigned int sas_ss_flags;
943
944 struct callback_head *task_works;
945
4b7d248b 946#ifdef CONFIG_AUDIT
bfef93a5 947#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
948 struct audit_context *audit_context;
949#endif
5eca1c10
IM
950 kuid_t loginuid;
951 unsigned int sessionid;
bfef93a5 952#endif
5eca1c10
IM
953 struct seccomp seccomp;
954
955 /* Thread group tracking: */
d1e7fd64
EB
956 u64 parent_exec_id;
957 u64 self_exec_id;
1da177e4 958
5eca1c10
IM
959 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
960 spinlock_t alloc_lock;
1da177e4 961
b29739f9 962 /* Protection of the PI data structures: */
5eca1c10 963 raw_spinlock_t pi_lock;
b29739f9 964
5eca1c10 965 struct wake_q_node wake_q;
76751049 966
23f78d4a 967#ifdef CONFIG_RT_MUTEXES
5eca1c10 968 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 969 struct rb_root_cached pi_waiters;
e96a7705
XP
970 /* Updated under owner's pi_lock and rq lock */
971 struct task_struct *pi_top_task;
5eca1c10
IM
972 /* Deadlock detection and priority inheritance handling: */
973 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
974#endif
975
408894ee 976#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
977 /* Mutex deadlock detection: */
978 struct mutex_waiter *blocked_on;
408894ee 979#endif
5eca1c10 980
312364f3
DV
981#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
982 int non_block_count;
983#endif
984
de30a2b3 985#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10 986 unsigned int irq_events;
de8f5e4f 987 unsigned int hardirq_threaded;
5eca1c10
IM
988 unsigned long hardirq_enable_ip;
989 unsigned long hardirq_disable_ip;
990 unsigned int hardirq_enable_event;
991 unsigned int hardirq_disable_event;
992 int hardirqs_enabled;
993 int hardirq_context;
994 unsigned long softirq_disable_ip;
995 unsigned long softirq_enable_ip;
996 unsigned int softirq_disable_event;
997 unsigned int softirq_enable_event;
998 int softirqs_enabled;
999 int softirq_context;
40db1739 1000 int irq_config;
de30a2b3 1001#endif
5eca1c10 1002
fbb9ce95 1003#ifdef CONFIG_LOCKDEP
5eca1c10
IM
1004# define MAX_LOCK_DEPTH 48UL
1005 u64 curr_chain_key;
1006 int lockdep_depth;
1007 unsigned int lockdep_recursion;
1008 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1009#endif
5eca1c10 1010
c6d30853 1011#ifdef CONFIG_UBSAN
5eca1c10 1012 unsigned int in_ubsan;
c6d30853 1013#endif
408894ee 1014
5eca1c10
IM
1015 /* Journalling filesystem info: */
1016 void *journal_info;
1da177e4 1017
5eca1c10
IM
1018 /* Stacked block device info: */
1019 struct bio_list *bio_list;
d89d8796 1020
73c10101 1021#ifdef CONFIG_BLOCK
5eca1c10
IM
1022 /* Stack plugging: */
1023 struct blk_plug *plug;
73c10101
JA
1024#endif
1025
5eca1c10
IM
1026 /* VM state: */
1027 struct reclaim_state *reclaim_state;
1028
1029 struct backing_dev_info *backing_dev_info;
1da177e4 1030
5eca1c10 1031 struct io_context *io_context;
1da177e4 1032
5e1f0f09
MG
1033#ifdef CONFIG_COMPACTION
1034 struct capture_control *capture_control;
1035#endif
5eca1c10
IM
1036 /* Ptrace state: */
1037 unsigned long ptrace_message;
ae7795bc 1038 kernel_siginfo_t *last_siginfo;
1da177e4 1039
5eca1c10 1040 struct task_io_accounting ioac;
eb414681
JW
1041#ifdef CONFIG_PSI
1042 /* Pressure stall state */
1043 unsigned int psi_flags;
1044#endif
5eca1c10
IM
1045#ifdef CONFIG_TASK_XACCT
1046 /* Accumulated RSS usage: */
1047 u64 acct_rss_mem1;
1048 /* Accumulated virtual memory usage: */
1049 u64 acct_vm_mem1;
1050 /* stime + utime since last update: */
1051 u64 acct_timexpd;
1da177e4
LT
1052#endif
1053#ifdef CONFIG_CPUSETS
5eca1c10
IM
1054 /* Protected by ->alloc_lock: */
1055 nodemask_t mems_allowed;
1056 /* Seqence number to catch updates: */
1057 seqcount_t mems_allowed_seq;
1058 int cpuset_mem_spread_rotor;
1059 int cpuset_slab_spread_rotor;
1da177e4 1060#endif
ddbcc7e8 1061#ifdef CONFIG_CGROUPS
5eca1c10
IM
1062 /* Control Group info protected by css_set_lock: */
1063 struct css_set __rcu *cgroups;
1064 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1065 struct list_head cg_list;
ddbcc7e8 1066#endif
e6d42931 1067#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1068 u32 closid;
d6aaba61 1069 u32 rmid;
e02737d5 1070#endif
42b2dd0a 1071#ifdef CONFIG_FUTEX
5eca1c10 1072 struct robust_list_head __user *robust_list;
34f192c6
IM
1073#ifdef CONFIG_COMPAT
1074 struct compat_robust_list_head __user *compat_robust_list;
1075#endif
5eca1c10
IM
1076 struct list_head pi_state_list;
1077 struct futex_pi_state *pi_state_cache;
3f186d97 1078 struct mutex futex_exit_mutex;
3d4775df 1079 unsigned int futex_state;
c7aceaba 1080#endif
cdd6c482 1081#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1082 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1083 struct mutex perf_event_mutex;
1084 struct list_head perf_event_list;
a63eaf34 1085#endif
8f47b187 1086#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1087 unsigned long preempt_disable_ip;
8f47b187 1088#endif
c7aceaba 1089#ifdef CONFIG_NUMA
5eca1c10
IM
1090 /* Protected by alloc_lock: */
1091 struct mempolicy *mempolicy;
45816682 1092 short il_prev;
5eca1c10 1093 short pref_node_fork;
42b2dd0a 1094#endif
cbee9f88 1095#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1096 int numa_scan_seq;
1097 unsigned int numa_scan_period;
1098 unsigned int numa_scan_period_max;
1099 int numa_preferred_nid;
1100 unsigned long numa_migrate_retry;
1101 /* Migration stamp: */
1102 u64 node_stamp;
1103 u64 last_task_numa_placement;
1104 u64 last_sum_exec_runtime;
1105 struct callback_head numa_work;
1106
cb361d8c
JH
1107 /*
1108 * This pointer is only modified for current in syscall and
1109 * pagefault context (and for tasks being destroyed), so it can be read
1110 * from any of the following contexts:
1111 * - RCU read-side critical section
1112 * - current->numa_group from everywhere
1113 * - task's runqueue locked, task not running
1114 */
1115 struct numa_group __rcu *numa_group;
8c8a743c 1116
745d6147 1117 /*
44dba3d5
IM
1118 * numa_faults is an array split into four regions:
1119 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1120 * in this precise order.
1121 *
1122 * faults_memory: Exponential decaying average of faults on a per-node
1123 * basis. Scheduling placement decisions are made based on these
1124 * counts. The values remain static for the duration of a PTE scan.
1125 * faults_cpu: Track the nodes the process was running on when a NUMA
1126 * hinting fault was incurred.
1127 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1128 * during the current scan window. When the scan completes, the counts
1129 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1130 */
5eca1c10
IM
1131 unsigned long *numa_faults;
1132 unsigned long total_numa_faults;
745d6147 1133
04bb2f94
RR
1134 /*
1135 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1136 * scan window were remote/local or failed to migrate. The task scan
1137 * period is adapted based on the locality of the faults with different
1138 * weights depending on whether they were shared or private faults
04bb2f94 1139 */
5eca1c10 1140 unsigned long numa_faults_locality[3];
04bb2f94 1141
5eca1c10 1142 unsigned long numa_pages_migrated;
cbee9f88
PZ
1143#endif /* CONFIG_NUMA_BALANCING */
1144
d7822b1e
MD
1145#ifdef CONFIG_RSEQ
1146 struct rseq __user *rseq;
d7822b1e
MD
1147 u32 rseq_sig;
1148 /*
1149 * RmW on rseq_event_mask must be performed atomically
1150 * with respect to preemption.
1151 */
1152 unsigned long rseq_event_mask;
1153#endif
1154
5eca1c10 1155 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1156
3fbd7ee2
EB
1157 union {
1158 refcount_t rcu_users;
1159 struct rcu_head rcu;
1160 };
b92ce558 1161
5eca1c10
IM
1162 /* Cache last used pipe for splice(): */
1163 struct pipe_inode_info *splice_pipe;
5640f768 1164
5eca1c10 1165 struct page_frag task_frag;
5640f768 1166
47913d4e
IM
1167#ifdef CONFIG_TASK_DELAY_ACCT
1168 struct task_delay_info *delays;
f4f154fd 1169#endif
47913d4e 1170
f4f154fd 1171#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1172 int make_it_fail;
9049f2f6 1173 unsigned int fail_nth;
ca74e92b 1174#endif
9d823e8f 1175 /*
5eca1c10
IM
1176 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1177 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1178 */
5eca1c10
IM
1179 int nr_dirtied;
1180 int nr_dirtied_pause;
1181 /* Start of a write-and-pause period: */
1182 unsigned long dirty_paused_when;
9d823e8f 1183
9745512c 1184#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1185 int latency_record_count;
1186 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1187#endif
6976675d 1188 /*
5eca1c10 1189 * Time slack values; these are used to round up poll() and
6976675d
AV
1190 * select() etc timeout values. These are in nanoseconds.
1191 */
5eca1c10
IM
1192 u64 timer_slack_ns;
1193 u64 default_timer_slack_ns;
f8d570a4 1194
0b24becc 1195#ifdef CONFIG_KASAN
5eca1c10 1196 unsigned int kasan_depth;
0b24becc 1197#endif
5eca1c10 1198
fb52607a 1199#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1200 /* Index of current stored address in ret_stack: */
1201 int curr_ret_stack;
39eb456d 1202 int curr_ret_depth;
5eca1c10
IM
1203
1204 /* Stack of return addresses for return function tracing: */
1205 struct ftrace_ret_stack *ret_stack;
1206
1207 /* Timestamp for last schedule: */
1208 unsigned long long ftrace_timestamp;
1209
f201ae23
FW
1210 /*
1211 * Number of functions that haven't been traced
5eca1c10 1212 * because of depth overrun:
f201ae23 1213 */
5eca1c10
IM
1214 atomic_t trace_overrun;
1215
1216 /* Pause tracing: */
1217 atomic_t tracing_graph_pause;
f201ae23 1218#endif
5eca1c10 1219
ea4e2bc4 1220#ifdef CONFIG_TRACING
5eca1c10
IM
1221 /* State flags for use by tracers: */
1222 unsigned long trace;
1223
1224 /* Bitmask and counter of trace recursion: */
1225 unsigned long trace_recursion;
261842b7 1226#endif /* CONFIG_TRACING */
5eca1c10 1227
5c9a8750 1228#ifdef CONFIG_KCOV
eec028c9
AK
1229 /* See kernel/kcov.c for more details. */
1230
5eca1c10 1231 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1232 unsigned int kcov_mode;
5eca1c10
IM
1233
1234 /* Size of the kcov_area: */
1235 unsigned int kcov_size;
1236
1237 /* Buffer for coverage collection: */
1238 void *kcov_area;
1239
1240 /* KCOV descriptor wired with this task or NULL: */
1241 struct kcov *kcov;
eec028c9
AK
1242
1243 /* KCOV common handle for remote coverage collection: */
1244 u64 kcov_handle;
1245
1246 /* KCOV sequence number: */
1247 int kcov_sequence;
5c9a8750 1248#endif
5eca1c10 1249
6f185c29 1250#ifdef CONFIG_MEMCG
5eca1c10
IM
1251 struct mem_cgroup *memcg_in_oom;
1252 gfp_t memcg_oom_gfp_mask;
1253 int memcg_oom_order;
b23afb93 1254
5eca1c10
IM
1255 /* Number of pages to reclaim on returning to userland: */
1256 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1257
1258 /* Used by memcontrol for targeted memcg charge: */
1259 struct mem_cgroup *active_memcg;
569b846d 1260#endif
5eca1c10 1261
d09d8df3
JB
1262#ifdef CONFIG_BLK_CGROUP
1263 struct request_queue *throttle_queue;
1264#endif
1265
0326f5a9 1266#ifdef CONFIG_UPROBES
5eca1c10 1267 struct uprobe_task *utask;
0326f5a9 1268#endif
cafe5635 1269#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1270 unsigned int sequential_io;
1271 unsigned int sequential_io_avg;
cafe5635 1272#endif
8eb23b9f 1273#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1274 unsigned long task_state_change;
8eb23b9f 1275#endif
5eca1c10 1276 int pagefault_disabled;
03049269 1277#ifdef CONFIG_MMU
5eca1c10 1278 struct task_struct *oom_reaper_list;
03049269 1279#endif
ba14a194 1280#ifdef CONFIG_VMAP_STACK
5eca1c10 1281 struct vm_struct *stack_vm_area;
ba14a194 1282#endif
68f24b08 1283#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1284 /* A live task holds one reference: */
f0b89d39 1285 refcount_t stack_refcount;
d83a7cb3
JP
1286#endif
1287#ifdef CONFIG_LIVEPATCH
1288 int patch_state;
0302e28d 1289#endif
e4e55b47
TH
1290#ifdef CONFIG_SECURITY
1291 /* Used by LSM modules for access restriction: */
1292 void *security;
68f24b08 1293#endif
29e48ce8 1294
afaef01c
AP
1295#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1296 unsigned long lowest_stack;
c8d12627 1297 unsigned long prev_lowest_stack;
afaef01c
AP
1298#endif
1299
29e48ce8
KC
1300 /*
1301 * New fields for task_struct should be added above here, so that
1302 * they are included in the randomized portion of task_struct.
1303 */
1304 randomized_struct_fields_end
1305
5eca1c10
IM
1306 /* CPU-specific state of this task: */
1307 struct thread_struct thread;
1308
1309 /*
1310 * WARNING: on x86, 'thread_struct' contains a variable-sized
1311 * structure. It *MUST* be at the end of 'task_struct'.
1312 *
1313 * Do not put anything below here!
1314 */
1da177e4
LT
1315};
1316
e868171a 1317static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1318{
2c470475 1319 return task->thread_pid;
22c935f4
EB
1320}
1321
7af57294
PE
1322/*
1323 * the helpers to get the task's different pids as they are seen
1324 * from various namespaces
1325 *
1326 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1327 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1328 * current.
7af57294
PE
1329 * task_xid_nr_ns() : id seen from the ns specified;
1330 *
7af57294
PE
1331 * see also pid_nr() etc in include/linux/pid.h
1332 */
5eca1c10 1333pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1334
e868171a 1335static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1336{
1337 return tsk->pid;
1338}
1339
5eca1c10 1340static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1341{
1342 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1343}
7af57294
PE
1344
1345static inline pid_t task_pid_vnr(struct task_struct *tsk)
1346{
52ee2dfd 1347 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1348}
1349
1350
e868171a 1351static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1352{
1353 return tsk->tgid;
1354}
1355
5eca1c10
IM
1356/**
1357 * pid_alive - check that a task structure is not stale
1358 * @p: Task structure to be checked.
1359 *
1360 * Test if a process is not yet dead (at most zombie state)
1361 * If pid_alive fails, then pointers within the task structure
1362 * can be stale and must not be dereferenced.
1363 *
1364 * Return: 1 if the process is alive. 0 otherwise.
1365 */
1366static inline int pid_alive(const struct task_struct *p)
1367{
2c470475 1368 return p->thread_pid != NULL;
5eca1c10 1369}
7af57294 1370
5eca1c10 1371static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1372{
52ee2dfd 1373 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1374}
1375
7af57294
PE
1376static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1377{
52ee2dfd 1378 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1379}
1380
1381
5eca1c10 1382static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1383{
52ee2dfd 1384 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1385}
1386
7af57294
PE
1387static inline pid_t task_session_vnr(struct task_struct *tsk)
1388{
52ee2dfd 1389 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1390}
1391
dd1c1f2f
ON
1392static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1393{
6883f81a 1394 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1395}
1396
1397static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1398{
6883f81a 1399 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1400}
1401
1402static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1403{
1404 pid_t pid = 0;
1405
1406 rcu_read_lock();
1407 if (pid_alive(tsk))
1408 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1409 rcu_read_unlock();
1410
1411 return pid;
1412}
1413
1414static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1415{
1416 return task_ppid_nr_ns(tsk, &init_pid_ns);
1417}
1418
5eca1c10 1419/* Obsolete, do not use: */
1b0f7ffd
ON
1420static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1421{
1422 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1423}
7af57294 1424
06eb6184
PZ
1425#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1426#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1427
1d48b080 1428static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1429{
1593baab
PZ
1430 unsigned int tsk_state = READ_ONCE(tsk->state);
1431 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1432
06eb6184
PZ
1433 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1434
06eb6184
PZ
1435 if (tsk_state == TASK_IDLE)
1436 state = TASK_REPORT_IDLE;
1437
1593baab
PZ
1438 return fls(state);
1439}
1440
1d48b080 1441static inline char task_index_to_char(unsigned int state)
1593baab 1442{
8ef9925b 1443 static const char state_char[] = "RSDTtXZPI";
1593baab 1444
06eb6184 1445 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1446
1593baab
PZ
1447 return state_char[state];
1448}
1449
1450static inline char task_state_to_char(struct task_struct *tsk)
1451{
1d48b080 1452 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1453}
1454
f400e198 1455/**
570f5241
SS
1456 * is_global_init - check if a task structure is init. Since init
1457 * is free to have sub-threads we need to check tgid.
3260259f
HK
1458 * @tsk: Task structure to be checked.
1459 *
1460 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1461 *
1462 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1463 */
e868171a 1464static inline int is_global_init(struct task_struct *tsk)
b461cc03 1465{
570f5241 1466 return task_tgid_nr(tsk) == 1;
b461cc03 1467}
b460cbc5 1468
9ec52099
CLG
1469extern struct pid *cad_pid;
1470
1da177e4
LT
1471/*
1472 * Per process flags
1473 */
5eca1c10
IM
1474#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1475#define PF_EXITING 0x00000004 /* Getting shut down */
5eca1c10
IM
1476#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1477#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1478#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1479#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1480#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1481#define PF_DUMPCORE 0x00000200 /* Dumped core */
1482#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1483#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1484#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1485#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1486#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1487#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1488#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1489#define PF_KSWAPD 0x00020000 /* I am kswapd */
1490#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1491#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1492#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1493#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1494#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1495#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
73ab1cb2 1496#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
3bd37062 1497#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1498#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1499#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
771b53d0 1500#define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
5eca1c10
IM
1501#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1502#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1503
1504/*
1505 * Only the _current_ task can read/write to tsk->flags, but other
1506 * tasks can access tsk->flags in readonly mode for example
1507 * with tsk_used_math (like during threaded core dumping).
1508 * There is however an exception to this rule during ptrace
1509 * or during fork: the ptracer task is allowed to write to the
1510 * child->flags of its traced child (same goes for fork, the parent
1511 * can write to the child->flags), because we're guaranteed the
1512 * child is not running and in turn not changing child->flags
1513 * at the same time the parent does it.
1514 */
5eca1c10
IM
1515#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1516#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1517#define clear_used_math() clear_stopped_child_used_math(current)
1518#define set_used_math() set_stopped_child_used_math(current)
1519
1da177e4
LT
1520#define conditional_stopped_child_used_math(condition, child) \
1521 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1522
1523#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1524
1da177e4
LT
1525#define copy_to_stopped_child_used_math(child) \
1526 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1527
1da177e4 1528/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1529#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1530#define used_math() tsk_used_math(current)
1da177e4 1531
62ec05dd
TG
1532static inline bool is_percpu_thread(void)
1533{
1534#ifdef CONFIG_SMP
1535 return (current->flags & PF_NO_SETAFFINITY) &&
1536 (current->nr_cpus_allowed == 1);
1537#else
1538 return true;
1539#endif
1540}
1541
1d4457f9 1542/* Per-process atomic flags. */
5eca1c10
IM
1543#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1544#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1545#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1546#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1547#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1548#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1549#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1550#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1551
e0e5070b
ZL
1552#define TASK_PFA_TEST(name, func) \
1553 static inline bool task_##func(struct task_struct *p) \
1554 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1555
e0e5070b
ZL
1556#define TASK_PFA_SET(name, func) \
1557 static inline void task_set_##func(struct task_struct *p) \
1558 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1559
e0e5070b
ZL
1560#define TASK_PFA_CLEAR(name, func) \
1561 static inline void task_clear_##func(struct task_struct *p) \
1562 { clear_bit(PFA_##name, &p->atomic_flags); }
1563
1564TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1565TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1566
2ad654bc
ZL
1567TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1568TASK_PFA_SET(SPREAD_PAGE, spread_page)
1569TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1570
1571TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1572TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1573TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1574
356e4bff
TG
1575TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1576TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1577TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1578
71368af9
WL
1579TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1580TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1581TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1582
356e4bff
TG
1583TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1584TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1585
9137bb27
TG
1586TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1587TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1588TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1589
1590TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1591TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1592
5eca1c10 1593static inline void
717a94b5 1594current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1595{
717a94b5
N
1596 current->flags &= ~flags;
1597 current->flags |= orig_flags & flags;
907aed48
MG
1598}
1599
5eca1c10
IM
1600extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1601extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1602#ifdef CONFIG_SMP
5eca1c10
IM
1603extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1604extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1605#else
5eca1c10 1606static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1607{
1608}
5eca1c10 1609static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1610{
96f874e2 1611 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1612 return -EINVAL;
1613 return 0;
1614}
1615#endif
e0ad9556 1616
fa93384f 1617extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1618extern void set_user_nice(struct task_struct *p, long nice);
1619extern int task_prio(const struct task_struct *p);
5eca1c10 1620
d0ea0268
DY
1621/**
1622 * task_nice - return the nice value of a given task.
1623 * @p: the task in question.
1624 *
1625 * Return: The nice value [ -20 ... 0 ... 19 ].
1626 */
1627static inline int task_nice(const struct task_struct *p)
1628{
1629 return PRIO_TO_NICE((p)->static_prio);
1630}
5eca1c10 1631
36c8b586
IM
1632extern int can_nice(const struct task_struct *p, const int nice);
1633extern int task_curr(const struct task_struct *p);
1da177e4 1634extern int idle_cpu(int cpu);
943d355d 1635extern int available_idle_cpu(int cpu);
5eca1c10
IM
1636extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1637extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1638extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1639extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1640extern struct task_struct *idle_task(int cpu);
5eca1c10 1641
c4f30608
PM
1642/**
1643 * is_idle_task - is the specified task an idle task?
fa757281 1644 * @p: the task in question.
e69f6186
YB
1645 *
1646 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1647 */
7061ca3b 1648static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1649{
c1de45ca 1650 return !!(p->flags & PF_IDLE);
c4f30608 1651}
5eca1c10 1652
36c8b586 1653extern struct task_struct *curr_task(int cpu);
a458ae2e 1654extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1655
1656void yield(void);
1657
1da177e4 1658union thread_union {
0500871f
DH
1659#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1660 struct task_struct task;
1661#endif
c65eacbe 1662#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1663 struct thread_info thread_info;
c65eacbe 1664#endif
1da177e4
LT
1665 unsigned long stack[THREAD_SIZE/sizeof(long)];
1666};
1667
0500871f
DH
1668#ifndef CONFIG_THREAD_INFO_IN_TASK
1669extern struct thread_info init_thread_info;
1670#endif
1671
1672extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1673
f3ac6067
IM
1674#ifdef CONFIG_THREAD_INFO_IN_TASK
1675static inline struct thread_info *task_thread_info(struct task_struct *task)
1676{
1677 return &task->thread_info;
1678}
1679#elif !defined(__HAVE_THREAD_FUNCTIONS)
1680# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1681#endif
1682
198fe21b
PE
1683/*
1684 * find a task by one of its numerical ids
1685 *
198fe21b
PE
1686 * find_task_by_pid_ns():
1687 * finds a task by its pid in the specified namespace
228ebcbe
PE
1688 * find_task_by_vpid():
1689 * finds a task by its virtual pid
198fe21b 1690 *
e49859e7 1691 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1692 */
1693
228ebcbe 1694extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1695extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1696
2ee08260
MR
1697/*
1698 * find a task by its virtual pid and get the task struct
1699 */
1700extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1701
b3c97528
HH
1702extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1703extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1704extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1705
1da177e4 1706#ifdef CONFIG_SMP
5eca1c10 1707extern void kick_process(struct task_struct *tsk);
1da177e4 1708#else
5eca1c10 1709static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1710#endif
1da177e4 1711
82b89778 1712extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1713
82b89778
AH
1714static inline void set_task_comm(struct task_struct *tsk, const char *from)
1715{
1716 __set_task_comm(tsk, from, false);
1717}
5eca1c10 1718
3756f640
AB
1719extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1720#define get_task_comm(buf, tsk) ({ \
1721 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1722 __get_task_comm(buf, sizeof(buf), tsk); \
1723})
1da177e4
LT
1724
1725#ifdef CONFIG_SMP
317f3941 1726void scheduler_ipi(void);
85ba2d86 1727extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1728#else
184748cc 1729static inline void scheduler_ipi(void) { }
5eca1c10 1730static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1731{
1732 return 1;
1733}
1da177e4
LT
1734#endif
1735
5eca1c10
IM
1736/*
1737 * Set thread flags in other task's structures.
1738 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1739 */
1740static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1741{
a1261f54 1742 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1743}
1744
1745static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1746{
a1261f54 1747 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1748}
1749
93ee37c2
DM
1750static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1751 bool value)
1752{
1753 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1754}
1755
1da177e4
LT
1756static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1757{
a1261f54 1758 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1759}
1760
1761static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1762{
a1261f54 1763 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1764}
1765
1766static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1767{
a1261f54 1768 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1769}
1770
1771static inline void set_tsk_need_resched(struct task_struct *tsk)
1772{
1773 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1774}
1775
1776static inline void clear_tsk_need_resched(struct task_struct *tsk)
1777{
1778 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1779}
1780
8ae121ac
GH
1781static inline int test_tsk_need_resched(struct task_struct *tsk)
1782{
1783 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1784}
1785
1da177e4
LT
1786/*
1787 * cond_resched() and cond_resched_lock(): latency reduction via
1788 * explicit rescheduling in places that are safe. The return
1789 * value indicates whether a reschedule was done in fact.
1790 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1791 */
c1a280b6 1792#ifndef CONFIG_PREEMPTION
c3921ab7 1793extern int _cond_resched(void);
35a773a0
PZ
1794#else
1795static inline int _cond_resched(void) { return 0; }
1796#endif
6f80bd98 1797
613afbf8 1798#define cond_resched() ({ \
3427445a 1799 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1800 _cond_resched(); \
1801})
6f80bd98 1802
613afbf8
FW
1803extern int __cond_resched_lock(spinlock_t *lock);
1804
1805#define cond_resched_lock(lock) ({ \
3427445a 1806 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1807 __cond_resched_lock(lock); \
1808})
1809
f6f3c437
SH
1810static inline void cond_resched_rcu(void)
1811{
1812#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1813 rcu_read_unlock();
1814 cond_resched();
1815 rcu_read_lock();
1816#endif
1817}
1818
1da177e4
LT
1819/*
1820 * Does a critical section need to be broken due to another
c1a280b6 1821 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 1822 * but a general need for low latency)
1da177e4 1823 */
95c354fe 1824static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1825{
c1a280b6 1826#ifdef CONFIG_PREEMPTION
95c354fe
NP
1827 return spin_is_contended(lock);
1828#else
1da177e4 1829 return 0;
95c354fe 1830#endif
1da177e4
LT
1831}
1832
75f93fed
PZ
1833static __always_inline bool need_resched(void)
1834{
1835 return unlikely(tif_need_resched());
1836}
1837
1da177e4
LT
1838/*
1839 * Wrappers for p->thread_info->cpu access. No-op on UP.
1840 */
1841#ifdef CONFIG_SMP
1842
1843static inline unsigned int task_cpu(const struct task_struct *p)
1844{
c65eacbe 1845#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1846 return READ_ONCE(p->cpu);
c65eacbe 1847#else
c546951d 1848 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1849#endif
1da177e4
LT
1850}
1851
c65cc870 1852extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1853
1854#else
1855
1856static inline unsigned int task_cpu(const struct task_struct *p)
1857{
1858 return 0;
1859}
1860
1861static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1862{
1863}
1864
1865#endif /* CONFIG_SMP */
1866
d9345c65
PX
1867/*
1868 * In order to reduce various lock holder preemption latencies provide an
1869 * interface to see if a vCPU is currently running or not.
1870 *
1871 * This allows us to terminate optimistic spin loops and block, analogous to
1872 * the native optimistic spin heuristic of testing if the lock owner task is
1873 * running or not.
1874 */
1875#ifndef vcpu_is_preempted
42fd8baa
QC
1876static inline bool vcpu_is_preempted(int cpu)
1877{
1878 return false;
1879}
d9345c65
PX
1880#endif
1881
96f874e2
RR
1882extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1883extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1884
82455257
DH
1885#ifndef TASK_SIZE_OF
1886#define TASK_SIZE_OF(tsk) TASK_SIZE
1887#endif
1888
d7822b1e
MD
1889#ifdef CONFIG_RSEQ
1890
1891/*
1892 * Map the event mask on the user-space ABI enum rseq_cs_flags
1893 * for direct mask checks.
1894 */
1895enum rseq_event_mask_bits {
1896 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1897 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1898 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1899};
1900
1901enum rseq_event_mask {
1902 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1903 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1904 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1905};
1906
1907static inline void rseq_set_notify_resume(struct task_struct *t)
1908{
1909 if (t->rseq)
1910 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1911}
1912
784e0300 1913void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1914
784e0300
WD
1915static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1916 struct pt_regs *regs)
d7822b1e
MD
1917{
1918 if (current->rseq)
784e0300 1919 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1920}
1921
784e0300
WD
1922static inline void rseq_signal_deliver(struct ksignal *ksig,
1923 struct pt_regs *regs)
d7822b1e
MD
1924{
1925 preempt_disable();
1926 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1927 preempt_enable();
784e0300 1928 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1929}
1930
1931/* rseq_preempt() requires preemption to be disabled. */
1932static inline void rseq_preempt(struct task_struct *t)
1933{
1934 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1935 rseq_set_notify_resume(t);
1936}
1937
1938/* rseq_migrate() requires preemption to be disabled. */
1939static inline void rseq_migrate(struct task_struct *t)
1940{
1941 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1942 rseq_set_notify_resume(t);
1943}
1944
1945/*
1946 * If parent process has a registered restartable sequences area, the
463f550f 1947 * child inherits. Unregister rseq for a clone with CLONE_VM set.
d7822b1e
MD
1948 */
1949static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1950{
463f550f 1951 if (clone_flags & CLONE_VM) {
d7822b1e 1952 t->rseq = NULL;
d7822b1e
MD
1953 t->rseq_sig = 0;
1954 t->rseq_event_mask = 0;
1955 } else {
1956 t->rseq = current->rseq;
d7822b1e
MD
1957 t->rseq_sig = current->rseq_sig;
1958 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1959 }
1960}
1961
1962static inline void rseq_execve(struct task_struct *t)
1963{
1964 t->rseq = NULL;
d7822b1e
MD
1965 t->rseq_sig = 0;
1966 t->rseq_event_mask = 0;
1967}
1968
1969#else
1970
1971static inline void rseq_set_notify_resume(struct task_struct *t)
1972{
1973}
784e0300
WD
1974static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1975 struct pt_regs *regs)
d7822b1e
MD
1976{
1977}
784e0300
WD
1978static inline void rseq_signal_deliver(struct ksignal *ksig,
1979 struct pt_regs *regs)
d7822b1e
MD
1980{
1981}
1982static inline void rseq_preempt(struct task_struct *t)
1983{
1984}
1985static inline void rseq_migrate(struct task_struct *t)
1986{
1987}
1988static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1989{
1990}
1991static inline void rseq_execve(struct task_struct *t)
1992{
1993}
1994
1995#endif
1996
73ab1cb2
TY
1997void __exit_umh(struct task_struct *tsk);
1998
1999static inline void exit_umh(struct task_struct *tsk)
2000{
2001 if (unlikely(tsk->flags & PF_UMH))
2002 __exit_umh(tsk);
2003}
2004
d7822b1e
MD
2005#ifdef CONFIG_DEBUG_RSEQ
2006
2007void rseq_syscall(struct pt_regs *regs);
2008
2009#else
2010
2011static inline void rseq_syscall(struct pt_regs *regs)
2012{
2013}
2014
2015#endif
2016
3c93a0c0
QY
2017const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2018char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2019int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2020
2021const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2022const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2023const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2024
2025int sched_trace_rq_cpu(struct rq *rq);
2026
2027const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2028
1da177e4 2029#endif