]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/sched.h
sched/core: Rework TASK_DEAD preemption exception
[mirror_ubuntu-bionic-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
5aaa0b7a 180extern void update_cpu_load_nohz(void);
3289bdb4
PZ
181#else
182static inline void update_cpu_load_nohz(void) { }
183#endif
1da177e4 184
7e49fcce
SR
185extern unsigned long get_parent_ip(unsigned long addr);
186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8
PZ
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
f021a3c2 223
80ed87c8 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 264 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
b92b8b35 286 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
287 } while (0)
288
289#else
290
1da177e4
LT
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
b92b8b35 294 smp_store_mb((tsk)->state, (state_value))
1da177e4 295
498d0c57
AM
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
8eb23b9f 307#define __set_current_state(state_value) \
1da177e4 308 do { current->state = (state_value); } while (0)
8eb23b9f 309#define set_current_state(state_value) \
b92b8b35 310 smp_store_mb(current->state, (state_value))
1da177e4 311
8eb23b9f
PZ
312#endif
313
1da177e4
LT
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
1da177e4
LT
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
36c8b586 328struct task_struct;
1da177e4 329
db1466b3
PM
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
1da177e4
LT
334extern void sched_init(void);
335extern void sched_init_smp(void);
2d07b255 336extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 337extern void init_idle(struct task_struct *idle, int cpu);
1df21055 338extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 339
3fa0818b
RR
340extern cpumask_var_t cpu_isolated_map;
341
89f19f04 342extern int runqueue_is_locked(int cpu);
017730c1 343
3451d024 344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 345extern void nohz_balance_enter_idle(int cpu);
69e1e811 346extern void set_cpu_sd_state_idle(void);
bc7a34b8 347extern int get_nohz_timer_target(void);
46cb4b7c 348#else
c1cc017c 349static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 350static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
376
82a1fcb9
IM
377extern void sched_show_task(struct task_struct *p);
378
19cc36c0 379#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 380extern void touch_softlockup_watchdog(void);
d6ad3e28 381extern void touch_softlockup_watchdog_sync(void);
04c9167f 382extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
9c44bc03 386extern unsigned int softlockup_panic;
004417a6 387void lockup_detector_init(void);
8446f1d3 388#else
8446f1d3
IM
389static inline void touch_softlockup_watchdog(void)
390{
391}
d6ad3e28
JW
392static inline void touch_softlockup_watchdog_sync(void)
393{
394}
04c9167f
JF
395static inline void touch_all_softlockup_watchdogs(void)
396{
397}
004417a6
PZ
398static inline void lockup_detector_init(void)
399{
400}
8446f1d3
IM
401#endif
402
8b414521
MT
403#ifdef CONFIG_DETECT_HUNG_TASK
404void reset_hung_task_detector(void);
405#else
406static inline void reset_hung_task_detector(void)
407{
408}
409#endif
410
1da177e4
LT
411/* Attach to any functions which should be ignored in wchan output. */
412#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
413
414/* Linker adds these: start and end of __sched functions */
415extern char __sched_text_start[], __sched_text_end[];
416
1da177e4
LT
417/* Is this address in the __sched functions? */
418extern int in_sched_functions(unsigned long addr);
419
420#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 421extern signed long schedule_timeout(signed long timeout);
64ed93a2 422extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 423extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 424extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 425asmlinkage void schedule(void);
c5491ea7 426extern void schedule_preempt_disabled(void);
1da177e4 427
9cff8ade
N
428extern long io_schedule_timeout(long timeout);
429
430static inline void io_schedule(void)
431{
432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
433}
434
ab516013 435struct nsproxy;
acce292c 436struct user_namespace;
1da177e4 437
efc1a3b1
DH
438#ifdef CONFIG_MMU
439extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
440extern unsigned long
441arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
442 unsigned long, unsigned long);
443extern unsigned long
444arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
445 unsigned long len, unsigned long pgoff,
446 unsigned long flags);
efc1a3b1
DH
447#else
448static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
449#endif
1da177e4 450
d049f74f
KC
451#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
452#define SUID_DUMP_USER 1 /* Dump as user of process */
453#define SUID_DUMP_ROOT 2 /* Dump as root */
454
6c5d5238 455/* mm flags */
f8af4da3 456
7288e118 457/* for SUID_DUMP_* above */
3cb4a0bb 458#define MMF_DUMPABLE_BITS 2
f8af4da3 459#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 460
942be387
ON
461extern void set_dumpable(struct mm_struct *mm, int value);
462/*
463 * This returns the actual value of the suid_dumpable flag. For things
464 * that are using this for checking for privilege transitions, it must
465 * test against SUID_DUMP_USER rather than treating it as a boolean
466 * value.
467 */
468static inline int __get_dumpable(unsigned long mm_flags)
469{
470 return mm_flags & MMF_DUMPABLE_MASK;
471}
472
473static inline int get_dumpable(struct mm_struct *mm)
474{
475 return __get_dumpable(mm->flags);
476}
477
3cb4a0bb
KH
478/* coredump filter bits */
479#define MMF_DUMP_ANON_PRIVATE 2
480#define MMF_DUMP_ANON_SHARED 3
481#define MMF_DUMP_MAPPED_PRIVATE 4
482#define MMF_DUMP_MAPPED_SHARED 5
82df3973 483#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
484#define MMF_DUMP_HUGETLB_PRIVATE 7
485#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 486
3cb4a0bb 487#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 488#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
489#define MMF_DUMP_FILTER_MASK \
490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
491#define MMF_DUMP_FILTER_DEFAULT \
e575f111 492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494
495#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
496# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
497#else
498# define MMF_DUMP_MASK_DEFAULT_ELF 0
499#endif
f8af4da3
HD
500 /* leave room for more dump flags */
501#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 502#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 503#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 504
9f68f672
ON
505#define MMF_HAS_UPROBES 19 /* has uprobes */
506#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 507
f8af4da3 508#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 509
1da177e4
LT
510struct sighand_struct {
511 atomic_t count;
512 struct k_sigaction action[_NSIG];
513 spinlock_t siglock;
b8fceee1 514 wait_queue_head_t signalfd_wqh;
1da177e4
LT
515};
516
0e464814 517struct pacct_struct {
f6ec29a4
KK
518 int ac_flag;
519 long ac_exitcode;
0e464814 520 unsigned long ac_mem;
77787bfb
KK
521 cputime_t ac_utime, ac_stime;
522 unsigned long ac_minflt, ac_majflt;
0e464814
KK
523};
524
42c4ab41
SG
525struct cpu_itimer {
526 cputime_t expires;
527 cputime_t incr;
8356b5f9
SG
528 u32 error;
529 u32 incr_error;
42c4ab41
SG
530};
531
d37f761d 532/**
9d7fb042 533 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
534 * @utime: time spent in user mode
535 * @stime: time spent in system mode
9d7fb042 536 * @lock: protects the above two fields
d37f761d 537 *
9d7fb042
PZ
538 * Stores previous user/system time values such that we can guarantee
539 * monotonicity.
d37f761d 540 */
9d7fb042
PZ
541struct prev_cputime {
542#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
543 cputime_t utime;
544 cputime_t stime;
9d7fb042
PZ
545 raw_spinlock_t lock;
546#endif
d37f761d
FW
547};
548
9d7fb042
PZ
549static inline void prev_cputime_init(struct prev_cputime *prev)
550{
551#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
552 prev->utime = prev->stime = 0;
553 raw_spin_lock_init(&prev->lock);
554#endif
555}
556
f06febc9
FM
557/**
558 * struct task_cputime - collected CPU time counts
559 * @utime: time spent in user mode, in &cputime_t units
560 * @stime: time spent in kernel mode, in &cputime_t units
561 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 562 *
9d7fb042
PZ
563 * This structure groups together three kinds of CPU time that are tracked for
564 * threads and thread groups. Most things considering CPU time want to group
565 * these counts together and treat all three of them in parallel.
f06febc9
FM
566 */
567struct task_cputime {
568 cputime_t utime;
569 cputime_t stime;
570 unsigned long long sum_exec_runtime;
571};
9d7fb042 572
f06febc9 573/* Alternate field names when used to cache expirations. */
f06febc9 574#define virt_exp utime
9d7fb042 575#define prof_exp stime
f06febc9
FM
576#define sched_exp sum_exec_runtime
577
4cd4c1b4
PZ
578#define INIT_CPUTIME \
579 (struct task_cputime) { \
64861634
MS
580 .utime = 0, \
581 .stime = 0, \
4cd4c1b4
PZ
582 .sum_exec_runtime = 0, \
583 }
584
971e8a98
JL
585/*
586 * This is the atomic variant of task_cputime, which can be used for
587 * storing and updating task_cputime statistics without locking.
588 */
589struct task_cputime_atomic {
590 atomic64_t utime;
591 atomic64_t stime;
592 atomic64_t sum_exec_runtime;
593};
594
595#define INIT_CPUTIME_ATOMIC \
596 (struct task_cputime_atomic) { \
597 .utime = ATOMIC64_INIT(0), \
598 .stime = ATOMIC64_INIT(0), \
599 .sum_exec_runtime = ATOMIC64_INIT(0), \
600 }
601
a233f112
PZ
602#ifdef CONFIG_PREEMPT_COUNT
603#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
604#else
605#define PREEMPT_DISABLED PREEMPT_ENABLED
606#endif
607
c99e6efe 608/*
87dcbc06
PZ
609 * Disable preemption until the scheduler is running -- use an unconditional
610 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 611 *
87dcbc06 612 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 613 */
87dcbc06 614#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
c99e6efe 615
f06febc9 616/**
4cd4c1b4 617 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 618 * @cputime_atomic: atomic thread group interval timers.
4cd4c1b4 619 * @running: non-zero when there are timers running and
87dcbc06 620 * @cputime receives updates.
f06febc9
FM
621 *
622 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 623 * used for thread group CPU timer calculations.
f06febc9 624 */
4cd4c1b4 625struct thread_group_cputimer {
71107445 626 struct task_cputime_atomic cputime_atomic;
4cd4c1b4 627 int running;
f06febc9 628};
f06febc9 629
4714d1d3 630#include <linux/rwsem.h>
5091faa4
MG
631struct autogroup;
632
1da177e4 633/*
e815f0a8 634 * NOTE! "signal_struct" does not have its own
1da177e4
LT
635 * locking, because a shared signal_struct always
636 * implies a shared sighand_struct, so locking
637 * sighand_struct is always a proper superset of
638 * the locking of signal_struct.
639 */
640struct signal_struct {
ea6d290c 641 atomic_t sigcnt;
1da177e4 642 atomic_t live;
b3ac022c 643 int nr_threads;
0c740d0a 644 struct list_head thread_head;
1da177e4
LT
645
646 wait_queue_head_t wait_chldexit; /* for wait4() */
647
648 /* current thread group signal load-balancing target: */
36c8b586 649 struct task_struct *curr_target;
1da177e4
LT
650
651 /* shared signal handling: */
652 struct sigpending shared_pending;
653
654 /* thread group exit support */
655 int group_exit_code;
656 /* overloaded:
657 * - notify group_exit_task when ->count is equal to notify_count
658 * - everyone except group_exit_task is stopped during signal delivery
659 * of fatal signals, group_exit_task processes the signal.
660 */
1da177e4 661 int notify_count;
07dd20e0 662 struct task_struct *group_exit_task;
1da177e4
LT
663
664 /* thread group stop support, overloads group_exit_code too */
665 int group_stop_count;
666 unsigned int flags; /* see SIGNAL_* flags below */
667
ebec18a6
LP
668 /*
669 * PR_SET_CHILD_SUBREAPER marks a process, like a service
670 * manager, to re-parent orphan (double-forking) child processes
671 * to this process instead of 'init'. The service manager is
672 * able to receive SIGCHLD signals and is able to investigate
673 * the process until it calls wait(). All children of this
674 * process will inherit a flag if they should look for a
675 * child_subreaper process at exit.
676 */
677 unsigned int is_child_subreaper:1;
678 unsigned int has_child_subreaper:1;
679
1da177e4 680 /* POSIX.1b Interval Timers */
5ed67f05
PE
681 int posix_timer_id;
682 struct list_head posix_timers;
1da177e4
LT
683
684 /* ITIMER_REAL timer for the process */
2ff678b8 685 struct hrtimer real_timer;
fea9d175 686 struct pid *leader_pid;
2ff678b8 687 ktime_t it_real_incr;
1da177e4 688
42c4ab41
SG
689 /*
690 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
691 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
692 * values are defined to 0 and 1 respectively
693 */
694 struct cpu_itimer it[2];
1da177e4 695
f06febc9 696 /*
4cd4c1b4
PZ
697 * Thread group totals for process CPU timers.
698 * See thread_group_cputimer(), et al, for details.
f06febc9 699 */
4cd4c1b4 700 struct thread_group_cputimer cputimer;
f06febc9
FM
701
702 /* Earliest-expiration cache. */
703 struct task_cputime cputime_expires;
704
705 struct list_head cpu_timers[3];
706
ab521dc0 707 struct pid *tty_old_pgrp;
1ec320af 708
1da177e4
LT
709 /* boolean value for session group leader */
710 int leader;
711
712 struct tty_struct *tty; /* NULL if no tty */
713
5091faa4
MG
714#ifdef CONFIG_SCHED_AUTOGROUP
715 struct autogroup *autogroup;
716#endif
1da177e4
LT
717 /*
718 * Cumulative resource counters for dead threads in the group,
719 * and for reaped dead child processes forked by this group.
720 * Live threads maintain their own counters and add to these
721 * in __exit_signal, except for the group leader.
722 */
e78c3496 723 seqlock_t stats_lock;
32bd671d 724 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
725 cputime_t gtime;
726 cputime_t cgtime;
9d7fb042 727 struct prev_cputime prev_cputime;
1da177e4
LT
728 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
729 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 730 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 731 unsigned long maxrss, cmaxrss;
940389b8 732 struct task_io_accounting ioac;
1da177e4 733
32bd671d
PZ
734 /*
735 * Cumulative ns of schedule CPU time fo dead threads in the
736 * group, not including a zombie group leader, (This only differs
737 * from jiffies_to_ns(utime + stime) if sched_clock uses something
738 * other than jiffies.)
739 */
740 unsigned long long sum_sched_runtime;
741
1da177e4
LT
742 /*
743 * We don't bother to synchronize most readers of this at all,
744 * because there is no reader checking a limit that actually needs
745 * to get both rlim_cur and rlim_max atomically, and either one
746 * alone is a single word that can safely be read normally.
747 * getrlimit/setrlimit use task_lock(current->group_leader) to
748 * protect this instead of the siglock, because they really
749 * have no need to disable irqs.
750 */
751 struct rlimit rlim[RLIM_NLIMITS];
752
0e464814
KK
753#ifdef CONFIG_BSD_PROCESS_ACCT
754 struct pacct_struct pacct; /* per-process accounting information */
755#endif
ad4ecbcb 756#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
757 struct taskstats *stats;
758#endif
522ed776
MT
759#ifdef CONFIG_AUDIT
760 unsigned audit_tty;
46e959ea 761 unsigned audit_tty_log_passwd;
522ed776
MT
762 struct tty_audit_buf *tty_audit_buf;
763#endif
0c986253
TH
764#ifdef CONFIG_CGROUPS
765 /*
766 * group_rwsem prevents new tasks from entering the threadgroup and
767 * member tasks from exiting,a more specifically, setting of
768 * PF_EXITING. fork and exit paths are protected with this rwsem
769 * using threadgroup_change_begin/end(). Users which require
770 * threadgroup to remain stable should use threadgroup_[un]lock()
771 * which also takes care of exec path. Currently, cgroup is the
772 * only user.
773 */
774 struct rw_semaphore group_rwsem;
775#endif
28b83c51 776
e1e12d2f 777 oom_flags_t oom_flags;
a9c58b90
DR
778 short oom_score_adj; /* OOM kill score adjustment */
779 short oom_score_adj_min; /* OOM kill score adjustment min value.
780 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
781
782 struct mutex cred_guard_mutex; /* guard against foreign influences on
783 * credential calculations
784 * (notably. ptrace) */
1da177e4
LT
785};
786
787/*
788 * Bits in flags field of signal_struct.
789 */
790#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
791#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
792#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 793#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
794/*
795 * Pending notifications to parent.
796 */
797#define SIGNAL_CLD_STOPPED 0x00000010
798#define SIGNAL_CLD_CONTINUED 0x00000020
799#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 800
fae5fa44
ON
801#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
802
ed5d2cac
ON
803/* If true, all threads except ->group_exit_task have pending SIGKILL */
804static inline int signal_group_exit(const struct signal_struct *sig)
805{
806 return (sig->flags & SIGNAL_GROUP_EXIT) ||
807 (sig->group_exit_task != NULL);
808}
809
1da177e4
LT
810/*
811 * Some day this will be a full-fledged user tracking system..
812 */
813struct user_struct {
814 atomic_t __count; /* reference count */
815 atomic_t processes; /* How many processes does this user have? */
1da177e4 816 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 817#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
818 atomic_t inotify_watches; /* How many inotify watches does this user have? */
819 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
820#endif
4afeff85
EP
821#ifdef CONFIG_FANOTIFY
822 atomic_t fanotify_listeners;
823#endif
7ef9964e 824#ifdef CONFIG_EPOLL
52bd19f7 825 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 826#endif
970a8645 827#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
828 /* protected by mq_lock */
829 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 830#endif
1da177e4
LT
831 unsigned long locked_shm; /* How many pages of mlocked shm ? */
832
833#ifdef CONFIG_KEYS
834 struct key *uid_keyring; /* UID specific keyring */
835 struct key *session_keyring; /* UID's default session keyring */
836#endif
837
838 /* Hash table maintenance information */
735de223 839 struct hlist_node uidhash_node;
7b44ab97 840 kuid_t uid;
24e377a8 841
cdd6c482 842#ifdef CONFIG_PERF_EVENTS
789f90fc
PZ
843 atomic_long_t locked_vm;
844#endif
1da177e4
LT
845};
846
eb41d946 847extern int uids_sysfs_init(void);
5cb350ba 848
7b44ab97 849extern struct user_struct *find_user(kuid_t);
1da177e4
LT
850
851extern struct user_struct root_user;
852#define INIT_USER (&root_user)
853
b6dff3ec 854
1da177e4
LT
855struct backing_dev_info;
856struct reclaim_state;
857
f6db8347 858#ifdef CONFIG_SCHED_INFO
1da177e4
LT
859struct sched_info {
860 /* cumulative counters */
2d72376b 861 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 862 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
863
864 /* timestamps */
172ba844
BS
865 unsigned long long last_arrival,/* when we last ran on a cpu */
866 last_queued; /* when we were last queued to run */
1da177e4 867};
f6db8347 868#endif /* CONFIG_SCHED_INFO */
1da177e4 869
ca74e92b
SN
870#ifdef CONFIG_TASK_DELAY_ACCT
871struct task_delay_info {
872 spinlock_t lock;
873 unsigned int flags; /* Private per-task flags */
874
875 /* For each stat XXX, add following, aligned appropriately
876 *
877 * struct timespec XXX_start, XXX_end;
878 * u64 XXX_delay;
879 * u32 XXX_count;
880 *
881 * Atomicity of updates to XXX_delay, XXX_count protected by
882 * single lock above (split into XXX_lock if contention is an issue).
883 */
0ff92245
SN
884
885 /*
886 * XXX_count is incremented on every XXX operation, the delay
887 * associated with the operation is added to XXX_delay.
888 * XXX_delay contains the accumulated delay time in nanoseconds.
889 */
9667a23d 890 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
891 u64 blkio_delay; /* wait for sync block io completion */
892 u64 swapin_delay; /* wait for swapin block io completion */
893 u32 blkio_count; /* total count of the number of sync block */
894 /* io operations performed */
895 u32 swapin_count; /* total count of the number of swapin block */
896 /* io operations performed */
873b4771 897
9667a23d 898 u64 freepages_start;
873b4771
KK
899 u64 freepages_delay; /* wait for memory reclaim */
900 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 901};
52f17b6c
CS
902#endif /* CONFIG_TASK_DELAY_ACCT */
903
904static inline int sched_info_on(void)
905{
906#ifdef CONFIG_SCHEDSTATS
907 return 1;
908#elif defined(CONFIG_TASK_DELAY_ACCT)
909 extern int delayacct_on;
910 return delayacct_on;
911#else
912 return 0;
ca74e92b 913#endif
52f17b6c 914}
ca74e92b 915
d15bcfdb
IM
916enum cpu_idle_type {
917 CPU_IDLE,
918 CPU_NOT_IDLE,
919 CPU_NEWLY_IDLE,
920 CPU_MAX_IDLE_TYPES
1da177e4
LT
921};
922
1399fa78 923/*
ca8ce3d0 924 * Increase resolution of cpu_capacity calculations
1399fa78 925 */
ca8ce3d0
NP
926#define SCHED_CAPACITY_SHIFT 10
927#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 928
76751049
PZ
929/*
930 * Wake-queues are lists of tasks with a pending wakeup, whose
931 * callers have already marked the task as woken internally,
932 * and can thus carry on. A common use case is being able to
933 * do the wakeups once the corresponding user lock as been
934 * released.
935 *
936 * We hold reference to each task in the list across the wakeup,
937 * thus guaranteeing that the memory is still valid by the time
938 * the actual wakeups are performed in wake_up_q().
939 *
940 * One per task suffices, because there's never a need for a task to be
941 * in two wake queues simultaneously; it is forbidden to abandon a task
942 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
943 * already in a wake queue, the wakeup will happen soon and the second
944 * waker can just skip it.
945 *
946 * The WAKE_Q macro declares and initializes the list head.
947 * wake_up_q() does NOT reinitialize the list; it's expected to be
948 * called near the end of a function, where the fact that the queue is
949 * not used again will be easy to see by inspection.
950 *
951 * Note that this can cause spurious wakeups. schedule() callers
952 * must ensure the call is done inside a loop, confirming that the
953 * wakeup condition has in fact occurred.
954 */
955struct wake_q_node {
956 struct wake_q_node *next;
957};
958
959struct wake_q_head {
960 struct wake_q_node *first;
961 struct wake_q_node **lastp;
962};
963
964#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
965
966#define WAKE_Q(name) \
967 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
968
969extern void wake_q_add(struct wake_q_head *head,
970 struct task_struct *task);
971extern void wake_up_q(struct wake_q_head *head);
972
1399fa78
NR
973/*
974 * sched-domains (multiprocessor balancing) declarations:
975 */
2dd73a4f 976#ifdef CONFIG_SMP
b5d978e0
PZ
977#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
978#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
979#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
980#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 981#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 982#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 983#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 984#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
985#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
986#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 987#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 988#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 989#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 990#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 991
143e1e28 992#ifdef CONFIG_SCHED_SMT
b6220ad6 993static inline int cpu_smt_flags(void)
143e1e28 994{
5d4dfddd 995 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
996}
997#endif
998
999#ifdef CONFIG_SCHED_MC
b6220ad6 1000static inline int cpu_core_flags(void)
143e1e28
VG
1001{
1002 return SD_SHARE_PKG_RESOURCES;
1003}
1004#endif
1005
1006#ifdef CONFIG_NUMA
b6220ad6 1007static inline int cpu_numa_flags(void)
143e1e28
VG
1008{
1009 return SD_NUMA;
1010}
1011#endif
532cb4c4 1012
1d3504fc
HS
1013struct sched_domain_attr {
1014 int relax_domain_level;
1015};
1016
1017#define SD_ATTR_INIT (struct sched_domain_attr) { \
1018 .relax_domain_level = -1, \
1019}
1020
60495e77
PZ
1021extern int sched_domain_level_max;
1022
5e6521ea
LZ
1023struct sched_group;
1024
1da177e4
LT
1025struct sched_domain {
1026 /* These fields must be setup */
1027 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1028 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1029 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1030 unsigned long min_interval; /* Minimum balance interval ms */
1031 unsigned long max_interval; /* Maximum balance interval ms */
1032 unsigned int busy_factor; /* less balancing by factor if busy */
1033 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1034 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1035 unsigned int busy_idx;
1036 unsigned int idle_idx;
1037 unsigned int newidle_idx;
1038 unsigned int wake_idx;
147cbb4b 1039 unsigned int forkexec_idx;
a52bfd73 1040 unsigned int smt_gain;
25f55d9d
VG
1041
1042 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1043 int flags; /* See SD_* */
60495e77 1044 int level;
1da177e4
LT
1045
1046 /* Runtime fields. */
1047 unsigned long last_balance; /* init to jiffies. units in jiffies */
1048 unsigned int balance_interval; /* initialise to 1. units in ms. */
1049 unsigned int nr_balance_failed; /* initialise to 0 */
1050
f48627e6 1051 /* idle_balance() stats */
9bd721c5 1052 u64 max_newidle_lb_cost;
f48627e6 1053 unsigned long next_decay_max_lb_cost;
2398f2c6 1054
1da177e4
LT
1055#ifdef CONFIG_SCHEDSTATS
1056 /* load_balance() stats */
480b9434
KC
1057 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1058 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1059 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1060 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1061 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1062 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1063 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1064 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1065
1066 /* Active load balancing */
480b9434
KC
1067 unsigned int alb_count;
1068 unsigned int alb_failed;
1069 unsigned int alb_pushed;
1da177e4 1070
68767a0a 1071 /* SD_BALANCE_EXEC stats */
480b9434
KC
1072 unsigned int sbe_count;
1073 unsigned int sbe_balanced;
1074 unsigned int sbe_pushed;
1da177e4 1075
68767a0a 1076 /* SD_BALANCE_FORK stats */
480b9434
KC
1077 unsigned int sbf_count;
1078 unsigned int sbf_balanced;
1079 unsigned int sbf_pushed;
68767a0a 1080
1da177e4 1081 /* try_to_wake_up() stats */
480b9434
KC
1082 unsigned int ttwu_wake_remote;
1083 unsigned int ttwu_move_affine;
1084 unsigned int ttwu_move_balance;
1da177e4 1085#endif
a5d8c348
IM
1086#ifdef CONFIG_SCHED_DEBUG
1087 char *name;
1088#endif
dce840a0
PZ
1089 union {
1090 void *private; /* used during construction */
1091 struct rcu_head rcu; /* used during destruction */
1092 };
6c99e9ad 1093
669c55e9 1094 unsigned int span_weight;
4200efd9
IM
1095 /*
1096 * Span of all CPUs in this domain.
1097 *
1098 * NOTE: this field is variable length. (Allocated dynamically
1099 * by attaching extra space to the end of the structure,
1100 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1101 */
1102 unsigned long span[0];
1da177e4
LT
1103};
1104
758b2cdc
RR
1105static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1106{
6c99e9ad 1107 return to_cpumask(sd->span);
758b2cdc
RR
1108}
1109
acc3f5d7 1110extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1111 struct sched_domain_attr *dattr_new);
029190c5 1112
acc3f5d7
RR
1113/* Allocate an array of sched domains, for partition_sched_domains(). */
1114cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1115void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1116
39be3501
PZ
1117bool cpus_share_cache(int this_cpu, int that_cpu);
1118
143e1e28 1119typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1120typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1121
1122#define SDTL_OVERLAP 0x01
1123
1124struct sd_data {
1125 struct sched_domain **__percpu sd;
1126 struct sched_group **__percpu sg;
63b2ca30 1127 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1128};
1129
1130struct sched_domain_topology_level {
1131 sched_domain_mask_f mask;
1132 sched_domain_flags_f sd_flags;
1133 int flags;
1134 int numa_level;
1135 struct sd_data data;
1136#ifdef CONFIG_SCHED_DEBUG
1137 char *name;
1138#endif
1139};
1140
143e1e28 1141extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1142extern void wake_up_if_idle(int cpu);
143e1e28
VG
1143
1144#ifdef CONFIG_SCHED_DEBUG
1145# define SD_INIT_NAME(type) .name = #type
1146#else
1147# define SD_INIT_NAME(type)
1148#endif
1149
1b427c15 1150#else /* CONFIG_SMP */
1da177e4 1151
1b427c15 1152struct sched_domain_attr;
d02c7a8c 1153
1b427c15 1154static inline void
acc3f5d7 1155partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1156 struct sched_domain_attr *dattr_new)
1157{
d02c7a8c 1158}
39be3501
PZ
1159
1160static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1161{
1162 return true;
1163}
1164
1b427c15 1165#endif /* !CONFIG_SMP */
1da177e4 1166
47fe38fc 1167
1da177e4 1168struct io_context; /* See blkdev.h */
1da177e4 1169
1da177e4 1170
383f2835 1171#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1172extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1173#else
1174static inline void prefetch_stack(struct task_struct *t) { }
1175#endif
1da177e4
LT
1176
1177struct audit_context; /* See audit.c */
1178struct mempolicy;
b92ce558 1179struct pipe_inode_info;
4865ecf1 1180struct uts_namespace;
1da177e4 1181
20b8a59f 1182struct load_weight {
9dbdb155
PZ
1183 unsigned long weight;
1184 u32 inv_weight;
20b8a59f
IM
1185};
1186
9d89c257
YD
1187/*
1188 * The load_avg/util_avg accumulates an infinite geometric series.
e0f5f3af
DE
1189 * 1) load_avg factors frequency scaling into the amount of time that a
1190 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1191 * aggregated such weights of all runnable and blocked sched_entities.
e3279a2e 1192 * 2) util_avg factors frequency and cpu scaling into the amount of time
9d89c257
YD
1193 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1194 * For cfs_rq, it is the aggregated such times of all runnable and
1195 * blocked sched_entities.
1196 * The 64 bit load_sum can:
1197 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1198 * the highest weight (=88761) always runnable, we should not overflow
1199 * 2) for entity, support any load.weight always runnable
1200 */
9d85f21c 1201struct sched_avg {
9d89c257
YD
1202 u64 last_update_time, load_sum;
1203 u32 util_sum, period_contrib;
1204 unsigned long load_avg, util_avg;
9d85f21c
PT
1205};
1206
94c18227 1207#ifdef CONFIG_SCHEDSTATS
41acab88 1208struct sched_statistics {
20b8a59f 1209 u64 wait_start;
94c18227 1210 u64 wait_max;
6d082592
AV
1211 u64 wait_count;
1212 u64 wait_sum;
8f0dfc34
AV
1213 u64 iowait_count;
1214 u64 iowait_sum;
94c18227 1215
20b8a59f 1216 u64 sleep_start;
20b8a59f 1217 u64 sleep_max;
94c18227
IM
1218 s64 sum_sleep_runtime;
1219
1220 u64 block_start;
20b8a59f
IM
1221 u64 block_max;
1222 u64 exec_max;
eba1ed4b 1223 u64 slice_max;
cc367732 1224
cc367732
IM
1225 u64 nr_migrations_cold;
1226 u64 nr_failed_migrations_affine;
1227 u64 nr_failed_migrations_running;
1228 u64 nr_failed_migrations_hot;
1229 u64 nr_forced_migrations;
cc367732
IM
1230
1231 u64 nr_wakeups;
1232 u64 nr_wakeups_sync;
1233 u64 nr_wakeups_migrate;
1234 u64 nr_wakeups_local;
1235 u64 nr_wakeups_remote;
1236 u64 nr_wakeups_affine;
1237 u64 nr_wakeups_affine_attempts;
1238 u64 nr_wakeups_passive;
1239 u64 nr_wakeups_idle;
41acab88
LDM
1240};
1241#endif
1242
1243struct sched_entity {
1244 struct load_weight load; /* for load-balancing */
1245 struct rb_node run_node;
1246 struct list_head group_node;
1247 unsigned int on_rq;
1248
1249 u64 exec_start;
1250 u64 sum_exec_runtime;
1251 u64 vruntime;
1252 u64 prev_sum_exec_runtime;
1253
41acab88
LDM
1254 u64 nr_migrations;
1255
41acab88
LDM
1256#ifdef CONFIG_SCHEDSTATS
1257 struct sched_statistics statistics;
94c18227
IM
1258#endif
1259
20b8a59f 1260#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1261 int depth;
20b8a59f
IM
1262 struct sched_entity *parent;
1263 /* rq on which this entity is (to be) queued: */
1264 struct cfs_rq *cfs_rq;
1265 /* rq "owned" by this entity/group: */
1266 struct cfs_rq *my_q;
1267#endif
8bd75c77 1268
141965c7 1269#ifdef CONFIG_SMP
9d89c257 1270 /* Per entity load average tracking */
9d85f21c
PT
1271 struct sched_avg avg;
1272#endif
20b8a59f 1273};
70b97a7f 1274
fa717060
PZ
1275struct sched_rt_entity {
1276 struct list_head run_list;
78f2c7db 1277 unsigned long timeout;
57d2aa00 1278 unsigned long watchdog_stamp;
bee367ed 1279 unsigned int time_slice;
6f505b16 1280
58d6c2d7 1281 struct sched_rt_entity *back;
052f1dc7 1282#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1283 struct sched_rt_entity *parent;
1284 /* rq on which this entity is (to be) queued: */
1285 struct rt_rq *rt_rq;
1286 /* rq "owned" by this entity/group: */
1287 struct rt_rq *my_q;
1288#endif
fa717060
PZ
1289};
1290
aab03e05
DF
1291struct sched_dl_entity {
1292 struct rb_node rb_node;
1293
1294 /*
1295 * Original scheduling parameters. Copied here from sched_attr
4027d080 1296 * during sched_setattr(), they will remain the same until
1297 * the next sched_setattr().
aab03e05
DF
1298 */
1299 u64 dl_runtime; /* maximum runtime for each instance */
1300 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1301 u64 dl_period; /* separation of two instances (period) */
332ac17e 1302 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1303
1304 /*
1305 * Actual scheduling parameters. Initialized with the values above,
1306 * they are continously updated during task execution. Note that
1307 * the remaining runtime could be < 0 in case we are in overrun.
1308 */
1309 s64 runtime; /* remaining runtime for this instance */
1310 u64 deadline; /* absolute deadline for this instance */
1311 unsigned int flags; /* specifying the scheduler behaviour */
1312
1313 /*
1314 * Some bool flags:
1315 *
1316 * @dl_throttled tells if we exhausted the runtime. If so, the
1317 * task has to wait for a replenishment to be performed at the
1318 * next firing of dl_timer.
1319 *
1320 * @dl_new tells if a new instance arrived. If so we must
1321 * start executing it with full runtime and reset its absolute
1322 * deadline;
2d3d891d
DF
1323 *
1324 * @dl_boosted tells if we are boosted due to DI. If so we are
1325 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1326 * exit the critical section);
1327 *
1328 * @dl_yielded tells if task gave up the cpu before consuming
1329 * all its available runtime during the last job.
aab03e05 1330 */
5bfd126e 1331 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1332
1333 /*
1334 * Bandwidth enforcement timer. Each -deadline task has its
1335 * own bandwidth to be enforced, thus we need one timer per task.
1336 */
1337 struct hrtimer dl_timer;
1338};
8bd75c77 1339
1d082fd0
PM
1340union rcu_special {
1341 struct {
1342 bool blocked;
1343 bool need_qs;
1344 } b;
1345 short s;
1346};
86848966
PM
1347struct rcu_node;
1348
8dc85d54
PZ
1349enum perf_event_task_context {
1350 perf_invalid_context = -1,
1351 perf_hw_context = 0,
89a1e187 1352 perf_sw_context,
8dc85d54
PZ
1353 perf_nr_task_contexts,
1354};
1355
72b252ae
MG
1356/* Track pages that require TLB flushes */
1357struct tlbflush_unmap_batch {
1358 /*
1359 * Each bit set is a CPU that potentially has a TLB entry for one of
1360 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1361 */
1362 struct cpumask cpumask;
1363
1364 /* True if any bit in cpumask is set */
1365 bool flush_required;
d950c947
MG
1366
1367 /*
1368 * If true then the PTE was dirty when unmapped. The entry must be
1369 * flushed before IO is initiated or a stale TLB entry potentially
1370 * allows an update without redirtying the page.
1371 */
1372 bool writable;
72b252ae
MG
1373};
1374
1da177e4
LT
1375struct task_struct {
1376 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1377 void *stack;
1da177e4 1378 atomic_t usage;
97dc32cd
WC
1379 unsigned int flags; /* per process flags, defined below */
1380 unsigned int ptrace;
1da177e4 1381
2dd73a4f 1382#ifdef CONFIG_SMP
fa14ff4a 1383 struct llist_node wake_entry;
3ca7a440 1384 int on_cpu;
63b0e9ed 1385 unsigned int wakee_flips;
62470419 1386 unsigned long wakee_flip_decay_ts;
63b0e9ed 1387 struct task_struct *last_wakee;
ac66f547
PZ
1388
1389 int wake_cpu;
2dd73a4f 1390#endif
fd2f4419 1391 int on_rq;
50e645a8 1392
b29739f9 1393 int prio, static_prio, normal_prio;
c7aceaba 1394 unsigned int rt_priority;
5522d5d5 1395 const struct sched_class *sched_class;
20b8a59f 1396 struct sched_entity se;
fa717060 1397 struct sched_rt_entity rt;
8323f26c
PZ
1398#ifdef CONFIG_CGROUP_SCHED
1399 struct task_group *sched_task_group;
1400#endif
aab03e05 1401 struct sched_dl_entity dl;
1da177e4 1402
e107be36
AK
1403#ifdef CONFIG_PREEMPT_NOTIFIERS
1404 /* list of struct preempt_notifier: */
1405 struct hlist_head preempt_notifiers;
1406#endif
1407
6c5c9341 1408#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1409 unsigned int btrace_seq;
6c5c9341 1410#endif
1da177e4 1411
97dc32cd 1412 unsigned int policy;
29baa747 1413 int nr_cpus_allowed;
1da177e4 1414 cpumask_t cpus_allowed;
1da177e4 1415
a57eb940 1416#ifdef CONFIG_PREEMPT_RCU
e260be67 1417 int rcu_read_lock_nesting;
1d082fd0 1418 union rcu_special rcu_read_unlock_special;
f41d911f 1419 struct list_head rcu_node_entry;
a57eb940 1420 struct rcu_node *rcu_blocked_node;
28f6569a 1421#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1422#ifdef CONFIG_TASKS_RCU
1423 unsigned long rcu_tasks_nvcsw;
1424 bool rcu_tasks_holdout;
1425 struct list_head rcu_tasks_holdout_list;
176f8f7a 1426 int rcu_tasks_idle_cpu;
8315f422 1427#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1428
f6db8347 1429#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1430 struct sched_info sched_info;
1431#endif
1432
1433 struct list_head tasks;
806c09a7 1434#ifdef CONFIG_SMP
917b627d 1435 struct plist_node pushable_tasks;
1baca4ce 1436 struct rb_node pushable_dl_tasks;
806c09a7 1437#endif
1da177e4
LT
1438
1439 struct mm_struct *mm, *active_mm;
615d6e87
DB
1440 /* per-thread vma caching */
1441 u32 vmacache_seqnum;
1442 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1443#if defined(SPLIT_RSS_COUNTING)
1444 struct task_rss_stat rss_stat;
1445#endif
1da177e4 1446/* task state */
97dc32cd 1447 int exit_state;
1da177e4
LT
1448 int exit_code, exit_signal;
1449 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1450 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1451
1452 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1453 unsigned int personality;
9b89f6ba 1454
f9ce1f1c
KT
1455 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1456 * execve */
8f0dfc34
AV
1457 unsigned in_iowait:1;
1458
ca94c442
LP
1459 /* Revert to default priority/policy when forking */
1460 unsigned sched_reset_on_fork:1;
a8e4f2ea 1461 unsigned sched_contributes_to_load:1;
ff303e66 1462 unsigned sched_migrated:1;
ca94c442 1463
6f185c29
VD
1464#ifdef CONFIG_MEMCG_KMEM
1465 unsigned memcg_kmem_skip_account:1;
1466#endif
ff303e66
PZ
1467#ifdef CONFIG_COMPAT_BRK
1468 unsigned brk_randomized:1;
1469#endif
6f185c29 1470
1d4457f9
KC
1471 unsigned long atomic_flags; /* Flags needing atomic access. */
1472
f56141e3
AL
1473 struct restart_block restart_block;
1474
1da177e4
LT
1475 pid_t pid;
1476 pid_t tgid;
0a425405 1477
1314562a 1478#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1479 /* Canary value for the -fstack-protector gcc feature */
1480 unsigned long stack_canary;
1314562a 1481#endif
4d1d61a6 1482 /*
1da177e4 1483 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1484 * older sibling, respectively. (p->father can be replaced with
f470021a 1485 * p->real_parent->pid)
1da177e4 1486 */
abd63bc3
KC
1487 struct task_struct __rcu *real_parent; /* real parent process */
1488 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1489 /*
f470021a 1490 * children/sibling forms the list of my natural children
1da177e4
LT
1491 */
1492 struct list_head children; /* list of my children */
1493 struct list_head sibling; /* linkage in my parent's children list */
1494 struct task_struct *group_leader; /* threadgroup leader */
1495
f470021a
RM
1496 /*
1497 * ptraced is the list of tasks this task is using ptrace on.
1498 * This includes both natural children and PTRACE_ATTACH targets.
1499 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1500 */
1501 struct list_head ptraced;
1502 struct list_head ptrace_entry;
1503
1da177e4 1504 /* PID/PID hash table linkage. */
92476d7f 1505 struct pid_link pids[PIDTYPE_MAX];
47e65328 1506 struct list_head thread_group;
0c740d0a 1507 struct list_head thread_node;
1da177e4
LT
1508
1509 struct completion *vfork_done; /* for vfork() */
1510 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1511 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1512
c66f08be 1513 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1514 cputime_t gtime;
9d7fb042 1515 struct prev_cputime prev_cputime;
6a61671b
FW
1516#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1517 seqlock_t vtime_seqlock;
1518 unsigned long long vtime_snap;
1519 enum {
1520 VTIME_SLEEPING = 0,
1521 VTIME_USER,
1522 VTIME_SYS,
1523 } vtime_snap_whence;
d99ca3b9 1524#endif
1da177e4 1525 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1526 u64 start_time; /* monotonic time in nsec */
57e0be04 1527 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1528/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1529 unsigned long min_flt, maj_flt;
1530
f06febc9 1531 struct task_cputime cputime_expires;
1da177e4
LT
1532 struct list_head cpu_timers[3];
1533
1534/* process credentials */
1b0ba1c9 1535 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1536 * credentials (COW) */
1b0ba1c9 1537 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1538 * credentials (COW) */
36772092
PBG
1539 char comm[TASK_COMM_LEN]; /* executable name excluding path
1540 - access with [gs]et_task_comm (which lock
1541 it with task_lock())
221af7f8 1542 - initialized normally by setup_new_exec */
1da177e4 1543/* file system info */
756daf26 1544 struct nameidata *nameidata;
3d5b6fcc 1545#ifdef CONFIG_SYSVIPC
1da177e4
LT
1546/* ipc stuff */
1547 struct sysv_sem sysvsem;
ab602f79 1548 struct sysv_shm sysvshm;
3d5b6fcc 1549#endif
e162b39a 1550#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1551/* hung task detection */
82a1fcb9
IM
1552 unsigned long last_switch_count;
1553#endif
1da177e4
LT
1554/* filesystem information */
1555 struct fs_struct *fs;
1556/* open file information */
1557 struct files_struct *files;
1651e14e 1558/* namespaces */
ab516013 1559 struct nsproxy *nsproxy;
1da177e4
LT
1560/* signal handlers */
1561 struct signal_struct *signal;
1562 struct sighand_struct *sighand;
1563
1564 sigset_t blocked, real_blocked;
f3de272b 1565 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1566 struct sigpending pending;
1567
1568 unsigned long sas_ss_sp;
1569 size_t sas_ss_size;
1570 int (*notifier)(void *priv);
1571 void *notifier_data;
1572 sigset_t *notifier_mask;
67d12145 1573 struct callback_head *task_works;
e73f8959 1574
1da177e4 1575 struct audit_context *audit_context;
bfef93a5 1576#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1577 kuid_t loginuid;
4746ec5b 1578 unsigned int sessionid;
bfef93a5 1579#endif
932ecebb 1580 struct seccomp seccomp;
1da177e4
LT
1581
1582/* Thread group tracking */
1583 u32 parent_exec_id;
1584 u32 self_exec_id;
58568d2a
MX
1585/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1586 * mempolicy */
1da177e4 1587 spinlock_t alloc_lock;
1da177e4 1588
b29739f9 1589 /* Protection of the PI data structures: */
1d615482 1590 raw_spinlock_t pi_lock;
b29739f9 1591
76751049
PZ
1592 struct wake_q_node wake_q;
1593
23f78d4a
IM
1594#ifdef CONFIG_RT_MUTEXES
1595 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1596 struct rb_root pi_waiters;
1597 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1598 /* Deadlock detection and priority inheritance handling */
1599 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1600#endif
1601
408894ee
IM
1602#ifdef CONFIG_DEBUG_MUTEXES
1603 /* mutex deadlock detection */
1604 struct mutex_waiter *blocked_on;
1605#endif
de30a2b3
IM
1606#ifdef CONFIG_TRACE_IRQFLAGS
1607 unsigned int irq_events;
de30a2b3 1608 unsigned long hardirq_enable_ip;
de30a2b3 1609 unsigned long hardirq_disable_ip;
fa1452e8 1610 unsigned int hardirq_enable_event;
de30a2b3 1611 unsigned int hardirq_disable_event;
fa1452e8
HS
1612 int hardirqs_enabled;
1613 int hardirq_context;
de30a2b3 1614 unsigned long softirq_disable_ip;
de30a2b3 1615 unsigned long softirq_enable_ip;
fa1452e8 1616 unsigned int softirq_disable_event;
de30a2b3 1617 unsigned int softirq_enable_event;
fa1452e8 1618 int softirqs_enabled;
de30a2b3
IM
1619 int softirq_context;
1620#endif
fbb9ce95 1621#ifdef CONFIG_LOCKDEP
bdb9441e 1622# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1623 u64 curr_chain_key;
1624 int lockdep_depth;
fbb9ce95 1625 unsigned int lockdep_recursion;
c7aceaba 1626 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1627 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1628#endif
408894ee 1629
1da177e4
LT
1630/* journalling filesystem info */
1631 void *journal_info;
1632
d89d8796 1633/* stacked block device info */
bddd87c7 1634 struct bio_list *bio_list;
d89d8796 1635
73c10101
JA
1636#ifdef CONFIG_BLOCK
1637/* stack plugging */
1638 struct blk_plug *plug;
1639#endif
1640
1da177e4
LT
1641/* VM state */
1642 struct reclaim_state *reclaim_state;
1643
1da177e4
LT
1644 struct backing_dev_info *backing_dev_info;
1645
1646 struct io_context *io_context;
1647
1648 unsigned long ptrace_message;
1649 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1650 struct task_io_accounting ioac;
8f0ab514 1651#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1652 u64 acct_rss_mem1; /* accumulated rss usage */
1653 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1654 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1655#endif
1656#ifdef CONFIG_CPUSETS
58568d2a 1657 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1658 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1659 int cpuset_mem_spread_rotor;
6adef3eb 1660 int cpuset_slab_spread_rotor;
1da177e4 1661#endif
ddbcc7e8 1662#ifdef CONFIG_CGROUPS
817929ec 1663 /* Control Group info protected by css_set_lock */
2c392b8c 1664 struct css_set __rcu *cgroups;
817929ec
PM
1665 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1666 struct list_head cg_list;
ddbcc7e8 1667#endif
42b2dd0a 1668#ifdef CONFIG_FUTEX
0771dfef 1669 struct robust_list_head __user *robust_list;
34f192c6
IM
1670#ifdef CONFIG_COMPAT
1671 struct compat_robust_list_head __user *compat_robust_list;
1672#endif
c87e2837
IM
1673 struct list_head pi_state_list;
1674 struct futex_pi_state *pi_state_cache;
c7aceaba 1675#endif
cdd6c482 1676#ifdef CONFIG_PERF_EVENTS
8dc85d54 1677 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1678 struct mutex perf_event_mutex;
1679 struct list_head perf_event_list;
a63eaf34 1680#endif
8f47b187
TG
1681#ifdef CONFIG_DEBUG_PREEMPT
1682 unsigned long preempt_disable_ip;
1683#endif
c7aceaba 1684#ifdef CONFIG_NUMA
58568d2a 1685 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1686 short il_next;
207205a2 1687 short pref_node_fork;
42b2dd0a 1688#endif
cbee9f88
PZ
1689#ifdef CONFIG_NUMA_BALANCING
1690 int numa_scan_seq;
cbee9f88 1691 unsigned int numa_scan_period;
598f0ec0 1692 unsigned int numa_scan_period_max;
de1c9ce6 1693 int numa_preferred_nid;
6b9a7460 1694 unsigned long numa_migrate_retry;
cbee9f88 1695 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1696 u64 last_task_numa_placement;
1697 u64 last_sum_exec_runtime;
cbee9f88 1698 struct callback_head numa_work;
f809ca9a 1699
8c8a743c
PZ
1700 struct list_head numa_entry;
1701 struct numa_group *numa_group;
1702
745d6147 1703 /*
44dba3d5
IM
1704 * numa_faults is an array split into four regions:
1705 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1706 * in this precise order.
1707 *
1708 * faults_memory: Exponential decaying average of faults on a per-node
1709 * basis. Scheduling placement decisions are made based on these
1710 * counts. The values remain static for the duration of a PTE scan.
1711 * faults_cpu: Track the nodes the process was running on when a NUMA
1712 * hinting fault was incurred.
1713 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1714 * during the current scan window. When the scan completes, the counts
1715 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1716 */
44dba3d5 1717 unsigned long *numa_faults;
83e1d2cd 1718 unsigned long total_numa_faults;
745d6147 1719
04bb2f94
RR
1720 /*
1721 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1722 * scan window were remote/local or failed to migrate. The task scan
1723 * period is adapted based on the locality of the faults with different
1724 * weights depending on whether they were shared or private faults
04bb2f94 1725 */
074c2381 1726 unsigned long numa_faults_locality[3];
04bb2f94 1727
b32e86b4 1728 unsigned long numa_pages_migrated;
cbee9f88
PZ
1729#endif /* CONFIG_NUMA_BALANCING */
1730
72b252ae
MG
1731#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1732 struct tlbflush_unmap_batch tlb_ubc;
1733#endif
1734
e56d0903 1735 struct rcu_head rcu;
b92ce558
JA
1736
1737 /*
1738 * cache last used pipe for splice
1739 */
1740 struct pipe_inode_info *splice_pipe;
5640f768
ED
1741
1742 struct page_frag task_frag;
1743
ca74e92b
SN
1744#ifdef CONFIG_TASK_DELAY_ACCT
1745 struct task_delay_info *delays;
f4f154fd
AM
1746#endif
1747#ifdef CONFIG_FAULT_INJECTION
1748 int make_it_fail;
ca74e92b 1749#endif
9d823e8f
WF
1750 /*
1751 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1752 * balance_dirty_pages() for some dirty throttling pause
1753 */
1754 int nr_dirtied;
1755 int nr_dirtied_pause;
83712358 1756 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1757
9745512c
AV
1758#ifdef CONFIG_LATENCYTOP
1759 int latency_record_count;
1760 struct latency_record latency_record[LT_SAVECOUNT];
1761#endif
6976675d
AV
1762 /*
1763 * time slack values; these are used to round up poll() and
1764 * select() etc timeout values. These are in nanoseconds.
1765 */
1766 unsigned long timer_slack_ns;
1767 unsigned long default_timer_slack_ns;
f8d570a4 1768
0b24becc
AR
1769#ifdef CONFIG_KASAN
1770 unsigned int kasan_depth;
1771#endif
fb52607a 1772#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1773 /* Index of current stored address in ret_stack */
f201ae23
FW
1774 int curr_ret_stack;
1775 /* Stack of return addresses for return function tracing */
1776 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1777 /* time stamp for last schedule */
1778 unsigned long long ftrace_timestamp;
f201ae23
FW
1779 /*
1780 * Number of functions that haven't been traced
1781 * because of depth overrun.
1782 */
1783 atomic_t trace_overrun;
380c4b14
FW
1784 /* Pause for the tracing */
1785 atomic_t tracing_graph_pause;
f201ae23 1786#endif
ea4e2bc4
SR
1787#ifdef CONFIG_TRACING
1788 /* state flags for use by tracers */
1789 unsigned long trace;
b1cff0ad 1790 /* bitmask and counter of trace recursion */
261842b7
SR
1791 unsigned long trace_recursion;
1792#endif /* CONFIG_TRACING */
6f185c29 1793#ifdef CONFIG_MEMCG
519e5247 1794 struct memcg_oom_info {
49426420
JW
1795 struct mem_cgroup *memcg;
1796 gfp_t gfp_mask;
1797 int order;
519e5247
JW
1798 unsigned int may_oom:1;
1799 } memcg_oom;
569b846d 1800#endif
0326f5a9
SD
1801#ifdef CONFIG_UPROBES
1802 struct uprobe_task *utask;
0326f5a9 1803#endif
cafe5635
KO
1804#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1805 unsigned int sequential_io;
1806 unsigned int sequential_io_avg;
1807#endif
8eb23b9f
PZ
1808#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1809 unsigned long task_state_change;
1810#endif
8bcbde54 1811 int pagefault_disabled;
0c8c0f03
DH
1812/* CPU-specific state of this task */
1813 struct thread_struct thread;
1814/*
1815 * WARNING: on x86, 'thread_struct' contains a variable-sized
1816 * structure. It *MUST* be at the end of 'task_struct'.
1817 *
1818 * Do not put anything below here!
1819 */
1da177e4
LT
1820};
1821
5aaeb5c0
IM
1822#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1823extern int arch_task_struct_size __read_mostly;
1824#else
1825# define arch_task_struct_size (sizeof(struct task_struct))
1826#endif
0c8c0f03 1827
76e6eee0 1828/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1829#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1830
6688cc05
PZ
1831#define TNF_MIGRATED 0x01
1832#define TNF_NO_GROUP 0x02
dabe1d99 1833#define TNF_SHARED 0x04
04bb2f94 1834#define TNF_FAULT_LOCAL 0x08
074c2381 1835#define TNF_MIGRATE_FAIL 0x10
6688cc05 1836
cbee9f88 1837#ifdef CONFIG_NUMA_BALANCING
6688cc05 1838extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1839extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1840extern void set_numabalancing_state(bool enabled);
82727018 1841extern void task_numa_free(struct task_struct *p);
10f39042
RR
1842extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1843 int src_nid, int dst_cpu);
cbee9f88 1844#else
ac8e895b 1845static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1846 int flags)
cbee9f88
PZ
1847{
1848}
e29cf08b
MG
1849static inline pid_t task_numa_group_id(struct task_struct *p)
1850{
1851 return 0;
1852}
1a687c2e
MG
1853static inline void set_numabalancing_state(bool enabled)
1854{
1855}
82727018
RR
1856static inline void task_numa_free(struct task_struct *p)
1857{
1858}
10f39042
RR
1859static inline bool should_numa_migrate_memory(struct task_struct *p,
1860 struct page *page, int src_nid, int dst_cpu)
1861{
1862 return true;
1863}
cbee9f88
PZ
1864#endif
1865
e868171a 1866static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1867{
1868 return task->pids[PIDTYPE_PID].pid;
1869}
1870
e868171a 1871static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1872{
1873 return task->group_leader->pids[PIDTYPE_PID].pid;
1874}
1875
6dda81f4
ON
1876/*
1877 * Without tasklist or rcu lock it is not safe to dereference
1878 * the result of task_pgrp/task_session even if task == current,
1879 * we can race with another thread doing sys_setsid/sys_setpgid.
1880 */
e868171a 1881static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1882{
1883 return task->group_leader->pids[PIDTYPE_PGID].pid;
1884}
1885
e868171a 1886static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1887{
1888 return task->group_leader->pids[PIDTYPE_SID].pid;
1889}
1890
7af57294
PE
1891struct pid_namespace;
1892
1893/*
1894 * the helpers to get the task's different pids as they are seen
1895 * from various namespaces
1896 *
1897 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1898 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1899 * current.
7af57294
PE
1900 * task_xid_nr_ns() : id seen from the ns specified;
1901 *
1902 * set_task_vxid() : assigns a virtual id to a task;
1903 *
7af57294
PE
1904 * see also pid_nr() etc in include/linux/pid.h
1905 */
52ee2dfd
ON
1906pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1907 struct pid_namespace *ns);
7af57294 1908
e868171a 1909static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1910{
1911 return tsk->pid;
1912}
1913
52ee2dfd
ON
1914static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1915 struct pid_namespace *ns)
1916{
1917 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1918}
7af57294
PE
1919
1920static inline pid_t task_pid_vnr(struct task_struct *tsk)
1921{
52ee2dfd 1922 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1923}
1924
1925
e868171a 1926static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1927{
1928 return tsk->tgid;
1929}
1930
2f2a3a46 1931pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1932
1933static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1934{
1935 return pid_vnr(task_tgid(tsk));
1936}
1937
1938
80e0b6e8 1939static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1940static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1941{
1942 pid_t pid = 0;
1943
1944 rcu_read_lock();
1945 if (pid_alive(tsk))
1946 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1947 rcu_read_unlock();
1948
1949 return pid;
1950}
1951
1952static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1953{
1954 return task_ppid_nr_ns(tsk, &init_pid_ns);
1955}
1956
52ee2dfd
ON
1957static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1958 struct pid_namespace *ns)
7af57294 1959{
52ee2dfd 1960 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1961}
1962
7af57294
PE
1963static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1964{
52ee2dfd 1965 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1966}
1967
1968
52ee2dfd
ON
1969static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1970 struct pid_namespace *ns)
7af57294 1971{
52ee2dfd 1972 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1973}
1974
7af57294
PE
1975static inline pid_t task_session_vnr(struct task_struct *tsk)
1976{
52ee2dfd 1977 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1978}
1979
1b0f7ffd
ON
1980/* obsolete, do not use */
1981static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1982{
1983 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1984}
7af57294 1985
1da177e4
LT
1986/**
1987 * pid_alive - check that a task structure is not stale
1988 * @p: Task structure to be checked.
1989 *
1990 * Test if a process is not yet dead (at most zombie state)
1991 * If pid_alive fails, then pointers within the task structure
1992 * can be stale and must not be dereferenced.
e69f6186
YB
1993 *
1994 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 1995 */
ad36d282 1996static inline int pid_alive(const struct task_struct *p)
1da177e4 1997{
92476d7f 1998 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
1999}
2000
f400e198 2001/**
b460cbc5 2002 * is_global_init - check if a task structure is init
3260259f
HK
2003 * @tsk: Task structure to be checked.
2004 *
2005 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2006 *
2007 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2008 */
e868171a 2009static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
2010{
2011 return tsk->pid == 1;
2012}
b460cbc5 2013
9ec52099
CLG
2014extern struct pid *cad_pid;
2015
1da177e4 2016extern void free_task(struct task_struct *tsk);
1da177e4 2017#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2018
158d9ebd 2019extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2020
2021static inline void put_task_struct(struct task_struct *t)
2022{
2023 if (atomic_dec_and_test(&t->usage))
8c7904a0 2024 __put_task_struct(t);
e56d0903 2025}
1da177e4 2026
6a61671b
FW
2027#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2028extern void task_cputime(struct task_struct *t,
2029 cputime_t *utime, cputime_t *stime);
2030extern void task_cputime_scaled(struct task_struct *t,
2031 cputime_t *utimescaled, cputime_t *stimescaled);
2032extern cputime_t task_gtime(struct task_struct *t);
2033#else
6fac4829
FW
2034static inline void task_cputime(struct task_struct *t,
2035 cputime_t *utime, cputime_t *stime)
2036{
2037 if (utime)
2038 *utime = t->utime;
2039 if (stime)
2040 *stime = t->stime;
2041}
2042
2043static inline void task_cputime_scaled(struct task_struct *t,
2044 cputime_t *utimescaled,
2045 cputime_t *stimescaled)
2046{
2047 if (utimescaled)
2048 *utimescaled = t->utimescaled;
2049 if (stimescaled)
2050 *stimescaled = t->stimescaled;
2051}
6a61671b
FW
2052
2053static inline cputime_t task_gtime(struct task_struct *t)
2054{
2055 return t->gtime;
2056}
2057#endif
e80d0a1a
FW
2058extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2059extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2060
1da177e4
LT
2061/*
2062 * Per process flags
2063 */
1da177e4 2064#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2065#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2066#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2067#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2068#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2069#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2070#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2071#define PF_DUMPCORE 0x00000200 /* dumped core */
2072#define PF_SIGNALED 0x00000400 /* killed by a signal */
2073#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2074#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2075#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2076#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2077#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2078#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2079#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2080#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2081#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2082#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2083#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2084#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2085#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2086#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2087#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2088#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2089#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2090#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2091
2092/*
2093 * Only the _current_ task can read/write to tsk->flags, but other
2094 * tasks can access tsk->flags in readonly mode for example
2095 * with tsk_used_math (like during threaded core dumping).
2096 * There is however an exception to this rule during ptrace
2097 * or during fork: the ptracer task is allowed to write to the
2098 * child->flags of its traced child (same goes for fork, the parent
2099 * can write to the child->flags), because we're guaranteed the
2100 * child is not running and in turn not changing child->flags
2101 * at the same time the parent does it.
2102 */
2103#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2104#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2105#define clear_used_math() clear_stopped_child_used_math(current)
2106#define set_used_math() set_stopped_child_used_math(current)
2107#define conditional_stopped_child_used_math(condition, child) \
2108 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2109#define conditional_used_math(condition) \
2110 conditional_stopped_child_used_math(condition, current)
2111#define copy_to_stopped_child_used_math(child) \
2112 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2113/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2114#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2115#define used_math() tsk_used_math(current)
2116
934f3072
JB
2117/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2118 * __GFP_FS is also cleared as it implies __GFP_IO.
2119 */
21caf2fc
ML
2120static inline gfp_t memalloc_noio_flags(gfp_t flags)
2121{
2122 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2123 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2124 return flags;
2125}
2126
2127static inline unsigned int memalloc_noio_save(void)
2128{
2129 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2130 current->flags |= PF_MEMALLOC_NOIO;
2131 return flags;
2132}
2133
2134static inline void memalloc_noio_restore(unsigned int flags)
2135{
2136 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2137}
2138
1d4457f9 2139/* Per-process atomic flags. */
a2b86f77 2140#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2141#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2142#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2143
1d4457f9 2144
e0e5070b
ZL
2145#define TASK_PFA_TEST(name, func) \
2146 static inline bool task_##func(struct task_struct *p) \
2147 { return test_bit(PFA_##name, &p->atomic_flags); }
2148#define TASK_PFA_SET(name, func) \
2149 static inline void task_set_##func(struct task_struct *p) \
2150 { set_bit(PFA_##name, &p->atomic_flags); }
2151#define TASK_PFA_CLEAR(name, func) \
2152 static inline void task_clear_##func(struct task_struct *p) \
2153 { clear_bit(PFA_##name, &p->atomic_flags); }
2154
2155TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2156TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2157
2ad654bc
ZL
2158TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2159TASK_PFA_SET(SPREAD_PAGE, spread_page)
2160TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2161
2162TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2163TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2164TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2165
e5c1902e 2166/*
a8f072c1 2167 * task->jobctl flags
e5c1902e 2168 */
a8f072c1 2169#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2170
a8f072c1
TH
2171#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2172#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2173#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2174#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2175#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2176#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2177#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2178
b76808e6
PD
2179#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2180#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2181#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2182#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2183#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2184#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2185#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2186
fb1d910c 2187#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2188#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2189
7dd3db54 2190extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2191 unsigned long mask);
73ddff2b 2192extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2193extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2194 unsigned long mask);
39efa3ef 2195
f41d911f
PM
2196static inline void rcu_copy_process(struct task_struct *p)
2197{
8315f422 2198#ifdef CONFIG_PREEMPT_RCU
f41d911f 2199 p->rcu_read_lock_nesting = 0;
1d082fd0 2200 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2201 p->rcu_blocked_node = NULL;
f41d911f 2202 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2203#endif /* #ifdef CONFIG_PREEMPT_RCU */
2204#ifdef CONFIG_TASKS_RCU
2205 p->rcu_tasks_holdout = false;
2206 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2207 p->rcu_tasks_idle_cpu = -1;
8315f422 2208#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2209}
2210
907aed48
MG
2211static inline void tsk_restore_flags(struct task_struct *task,
2212 unsigned long orig_flags, unsigned long flags)
2213{
2214 task->flags &= ~flags;
2215 task->flags |= orig_flags & flags;
2216}
2217
f82f8042
JL
2218extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2219 const struct cpumask *trial);
7f51412a
JL
2220extern int task_can_attach(struct task_struct *p,
2221 const struct cpumask *cs_cpus_allowed);
1da177e4 2222#ifdef CONFIG_SMP
1e1b6c51
KM
2223extern void do_set_cpus_allowed(struct task_struct *p,
2224 const struct cpumask *new_mask);
2225
cd8ba7cd 2226extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2227 const struct cpumask *new_mask);
1da177e4 2228#else
1e1b6c51
KM
2229static inline void do_set_cpus_allowed(struct task_struct *p,
2230 const struct cpumask *new_mask)
2231{
2232}
cd8ba7cd 2233static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2234 const struct cpumask *new_mask)
1da177e4 2235{
96f874e2 2236 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2237 return -EINVAL;
2238 return 0;
2239}
2240#endif
e0ad9556 2241
3451d024 2242#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2243void calc_load_enter_idle(void);
2244void calc_load_exit_idle(void);
2245#else
2246static inline void calc_load_enter_idle(void) { }
2247static inline void calc_load_exit_idle(void) { }
3451d024 2248#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2249
b342501c 2250/*
c676329a
PZ
2251 * Do not use outside of architecture code which knows its limitations.
2252 *
2253 * sched_clock() has no promise of monotonicity or bounded drift between
2254 * CPUs, use (which you should not) requires disabling IRQs.
2255 *
2256 * Please use one of the three interfaces below.
b342501c 2257 */
1bbfa6f2 2258extern unsigned long long notrace sched_clock(void);
c676329a 2259/*
489a71b0 2260 * See the comment in kernel/sched/clock.c
c676329a
PZ
2261 */
2262extern u64 cpu_clock(int cpu);
2263extern u64 local_clock(void);
545a2bf7 2264extern u64 running_clock(void);
c676329a
PZ
2265extern u64 sched_clock_cpu(int cpu);
2266
e436d800 2267
c1955a3d 2268extern void sched_clock_init(void);
3e51f33f 2269
c1955a3d 2270#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2271static inline void sched_clock_tick(void)
2272{
2273}
2274
2275static inline void sched_clock_idle_sleep_event(void)
2276{
2277}
2278
2279static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2280{
2281}
2282#else
c676329a
PZ
2283/*
2284 * Architectures can set this to 1 if they have specified
2285 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2286 * but then during bootup it turns out that sched_clock()
2287 * is reliable after all:
2288 */
35af99e6
PZ
2289extern int sched_clock_stable(void);
2290extern void set_sched_clock_stable(void);
2291extern void clear_sched_clock_stable(void);
c676329a 2292
3e51f33f
PZ
2293extern void sched_clock_tick(void);
2294extern void sched_clock_idle_sleep_event(void);
2295extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2296#endif
2297
b52bfee4
VP
2298#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2299/*
2300 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2301 * The reason for this explicit opt-in is not to have perf penalty with
2302 * slow sched_clocks.
2303 */
2304extern void enable_sched_clock_irqtime(void);
2305extern void disable_sched_clock_irqtime(void);
2306#else
2307static inline void enable_sched_clock_irqtime(void) {}
2308static inline void disable_sched_clock_irqtime(void) {}
2309#endif
2310
36c8b586 2311extern unsigned long long
41b86e9c 2312task_sched_runtime(struct task_struct *task);
1da177e4
LT
2313
2314/* sched_exec is called by processes performing an exec */
2315#ifdef CONFIG_SMP
2316extern void sched_exec(void);
2317#else
2318#define sched_exec() {}
2319#endif
2320
2aa44d05
IM
2321extern void sched_clock_idle_sleep_event(void);
2322extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2323
1da177e4
LT
2324#ifdef CONFIG_HOTPLUG_CPU
2325extern void idle_task_exit(void);
2326#else
2327static inline void idle_task_exit(void) {}
2328#endif
2329
3451d024 2330#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2331extern void wake_up_nohz_cpu(int cpu);
06d8308c 2332#else
1c20091e 2333static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2334#endif
2335
ce831b38
FW
2336#ifdef CONFIG_NO_HZ_FULL
2337extern bool sched_can_stop_tick(void);
265f22a9 2338extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2339#else
2340static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2341#endif
2342
5091faa4 2343#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2344extern void sched_autogroup_create_attach(struct task_struct *p);
2345extern void sched_autogroup_detach(struct task_struct *p);
2346extern void sched_autogroup_fork(struct signal_struct *sig);
2347extern void sched_autogroup_exit(struct signal_struct *sig);
2348#ifdef CONFIG_PROC_FS
2349extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2350extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2351#endif
2352#else
2353static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2354static inline void sched_autogroup_detach(struct task_struct *p) { }
2355static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2356static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2357#endif
2358
fa93384f 2359extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2360extern void set_user_nice(struct task_struct *p, long nice);
2361extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2362/**
2363 * task_nice - return the nice value of a given task.
2364 * @p: the task in question.
2365 *
2366 * Return: The nice value [ -20 ... 0 ... 19 ].
2367 */
2368static inline int task_nice(const struct task_struct *p)
2369{
2370 return PRIO_TO_NICE((p)->static_prio);
2371}
36c8b586
IM
2372extern int can_nice(const struct task_struct *p, const int nice);
2373extern int task_curr(const struct task_struct *p);
1da177e4 2374extern int idle_cpu(int cpu);
fe7de49f
KM
2375extern int sched_setscheduler(struct task_struct *, int,
2376 const struct sched_param *);
961ccddd 2377extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2378 const struct sched_param *);
d50dde5a
DF
2379extern int sched_setattr(struct task_struct *,
2380 const struct sched_attr *);
36c8b586 2381extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2382/**
2383 * is_idle_task - is the specified task an idle task?
fa757281 2384 * @p: the task in question.
e69f6186
YB
2385 *
2386 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2387 */
7061ca3b 2388static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2389{
2390 return p->pid == 0;
2391}
36c8b586
IM
2392extern struct task_struct *curr_task(int cpu);
2393extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2394
2395void yield(void);
2396
1da177e4
LT
2397union thread_union {
2398 struct thread_info thread_info;
2399 unsigned long stack[THREAD_SIZE/sizeof(long)];
2400};
2401
2402#ifndef __HAVE_ARCH_KSTACK_END
2403static inline int kstack_end(void *addr)
2404{
2405 /* Reliable end of stack detection:
2406 * Some APM bios versions misalign the stack
2407 */
2408 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2409}
2410#endif
2411
2412extern union thread_union init_thread_union;
2413extern struct task_struct init_task;
2414
2415extern struct mm_struct init_mm;
2416
198fe21b
PE
2417extern struct pid_namespace init_pid_ns;
2418
2419/*
2420 * find a task by one of its numerical ids
2421 *
198fe21b
PE
2422 * find_task_by_pid_ns():
2423 * finds a task by its pid in the specified namespace
228ebcbe
PE
2424 * find_task_by_vpid():
2425 * finds a task by its virtual pid
198fe21b 2426 *
e49859e7 2427 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2428 */
2429
228ebcbe
PE
2430extern struct task_struct *find_task_by_vpid(pid_t nr);
2431extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2432 struct pid_namespace *ns);
198fe21b 2433
1da177e4 2434/* per-UID process charging. */
7b44ab97 2435extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2436static inline struct user_struct *get_uid(struct user_struct *u)
2437{
2438 atomic_inc(&u->__count);
2439 return u;
2440}
2441extern void free_uid(struct user_struct *);
1da177e4
LT
2442
2443#include <asm/current.h>
2444
f0af911a 2445extern void xtime_update(unsigned long ticks);
1da177e4 2446
b3c97528
HH
2447extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2448extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2449extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2450#ifdef CONFIG_SMP
2451 extern void kick_process(struct task_struct *tsk);
2452#else
2453 static inline void kick_process(struct task_struct *tsk) { }
2454#endif
aab03e05 2455extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2456extern void sched_dead(struct task_struct *p);
1da177e4 2457
1da177e4
LT
2458extern void proc_caches_init(void);
2459extern void flush_signals(struct task_struct *);
10ab825b 2460extern void ignore_signals(struct task_struct *);
1da177e4
LT
2461extern void flush_signal_handlers(struct task_struct *, int force_default);
2462extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2463
2464static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2465{
2466 unsigned long flags;
2467 int ret;
2468
2469 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2470 ret = dequeue_signal(tsk, mask, info);
2471 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2472
2473 return ret;
53c8f9f1 2474}
1da177e4
LT
2475
2476extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2477 sigset_t *mask);
2478extern void unblock_all_signals(void);
2479extern void release_task(struct task_struct * p);
2480extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2481extern int force_sigsegv(int, struct task_struct *);
2482extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2483extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2484extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2485extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2486 const struct cred *, u32);
c4b92fc1
EB
2487extern int kill_pgrp(struct pid *pid, int sig, int priv);
2488extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2489extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2490extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2491extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2492extern void force_sig(int, struct task_struct *);
1da177e4 2493extern int send_sig(int, struct task_struct *, int);
09faef11 2494extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2495extern struct sigqueue *sigqueue_alloc(void);
2496extern void sigqueue_free(struct sigqueue *);
ac5c2153 2497extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2498extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2499
51a7b448
AV
2500static inline void restore_saved_sigmask(void)
2501{
2502 if (test_and_clear_restore_sigmask())
77097ae5 2503 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2504}
2505
b7f9a11a
AV
2506static inline sigset_t *sigmask_to_save(void)
2507{
2508 sigset_t *res = &current->blocked;
2509 if (unlikely(test_restore_sigmask()))
2510 res = &current->saved_sigmask;
2511 return res;
2512}
2513
9ec52099
CLG
2514static inline int kill_cad_pid(int sig, int priv)
2515{
2516 return kill_pid(cad_pid, sig, priv);
2517}
2518
1da177e4
LT
2519/* These can be the second arg to send_sig_info/send_group_sig_info. */
2520#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2521#define SEND_SIG_PRIV ((struct siginfo *) 1)
2522#define SEND_SIG_FORCED ((struct siginfo *) 2)
2523
2a855dd0
SAS
2524/*
2525 * True if we are on the alternate signal stack.
2526 */
1da177e4
LT
2527static inline int on_sig_stack(unsigned long sp)
2528{
2a855dd0
SAS
2529#ifdef CONFIG_STACK_GROWSUP
2530 return sp >= current->sas_ss_sp &&
2531 sp - current->sas_ss_sp < current->sas_ss_size;
2532#else
2533 return sp > current->sas_ss_sp &&
2534 sp - current->sas_ss_sp <= current->sas_ss_size;
2535#endif
1da177e4
LT
2536}
2537
2538static inline int sas_ss_flags(unsigned long sp)
2539{
72f15c03
RW
2540 if (!current->sas_ss_size)
2541 return SS_DISABLE;
2542
2543 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2544}
2545
5a1b98d3
AV
2546static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2547{
2548 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2549#ifdef CONFIG_STACK_GROWSUP
2550 return current->sas_ss_sp;
2551#else
2552 return current->sas_ss_sp + current->sas_ss_size;
2553#endif
2554 return sp;
2555}
2556
1da177e4
LT
2557/*
2558 * Routines for handling mm_structs
2559 */
2560extern struct mm_struct * mm_alloc(void);
2561
2562/* mmdrop drops the mm and the page tables */
b3c97528 2563extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2564static inline void mmdrop(struct mm_struct * mm)
2565{
6fb43d7b 2566 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2567 __mmdrop(mm);
2568}
2569
2570/* mmput gets rid of the mappings and all user-space */
2571extern void mmput(struct mm_struct *);
2572/* Grab a reference to a task's mm, if it is not already going away */
2573extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2574/*
2575 * Grab a reference to a task's mm, if it is not already going away
2576 * and ptrace_may_access with the mode parameter passed to it
2577 * succeeds.
2578 */
2579extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2580/* Remove the current tasks stale references to the old mm_struct */
2581extern void mm_release(struct task_struct *, struct mm_struct *);
2582
3033f14a
JT
2583#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2584extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2585 struct task_struct *, unsigned long);
2586#else
6f2c55b8 2587extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2588 struct task_struct *);
3033f14a
JT
2589
2590/* Architectures that haven't opted into copy_thread_tls get the tls argument
2591 * via pt_regs, so ignore the tls argument passed via C. */
2592static inline int copy_thread_tls(
2593 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2594 struct task_struct *p, unsigned long tls)
2595{
2596 return copy_thread(clone_flags, sp, arg, p);
2597}
2598#endif
1da177e4
LT
2599extern void flush_thread(void);
2600extern void exit_thread(void);
2601
1da177e4 2602extern void exit_files(struct task_struct *);
a7e5328a 2603extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2604
1da177e4 2605extern void exit_itimers(struct signal_struct *);
cbaffba1 2606extern void flush_itimer_signals(void);
1da177e4 2607
9402c95f 2608extern void do_group_exit(int);
1da177e4 2609
c4ad8f98 2610extern int do_execve(struct filename *,
d7627467 2611 const char __user * const __user *,
da3d4c5f 2612 const char __user * const __user *);
51f39a1f
DD
2613extern int do_execveat(int, struct filename *,
2614 const char __user * const __user *,
2615 const char __user * const __user *,
2616 int);
3033f14a 2617extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2618extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2619struct task_struct *fork_idle(int);
2aa3a7f8 2620extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2621
82b89778
AH
2622extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2623static inline void set_task_comm(struct task_struct *tsk, const char *from)
2624{
2625 __set_task_comm(tsk, from, false);
2626}
59714d65 2627extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2628
2629#ifdef CONFIG_SMP
317f3941 2630void scheduler_ipi(void);
85ba2d86 2631extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2632#else
184748cc 2633static inline void scheduler_ipi(void) { }
85ba2d86
RM
2634static inline unsigned long wait_task_inactive(struct task_struct *p,
2635 long match_state)
2636{
2637 return 1;
2638}
1da177e4
LT
2639#endif
2640
fafe870f
FW
2641#define tasklist_empty() \
2642 list_empty(&init_task.tasks)
2643
05725f7e
JP
2644#define next_task(p) \
2645 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2646
2647#define for_each_process(p) \
2648 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2649
5bb459bb 2650extern bool current_is_single_threaded(void);
d84f4f99 2651
1da177e4
LT
2652/*
2653 * Careful: do_each_thread/while_each_thread is a double loop so
2654 * 'break' will not work as expected - use goto instead.
2655 */
2656#define do_each_thread(g, t) \
2657 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2658
2659#define while_each_thread(g, t) \
2660 while ((t = next_thread(t)) != g)
2661
0c740d0a
ON
2662#define __for_each_thread(signal, t) \
2663 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2664
2665#define for_each_thread(p, t) \
2666 __for_each_thread((p)->signal, t)
2667
2668/* Careful: this is a double loop, 'break' won't work as expected. */
2669#define for_each_process_thread(p, t) \
2670 for_each_process(p) for_each_thread(p, t)
2671
7e49827c
ON
2672static inline int get_nr_threads(struct task_struct *tsk)
2673{
b3ac022c 2674 return tsk->signal->nr_threads;
7e49827c
ON
2675}
2676
087806b1
ON
2677static inline bool thread_group_leader(struct task_struct *p)
2678{
2679 return p->exit_signal >= 0;
2680}
1da177e4 2681
0804ef4b
EB
2682/* Do to the insanities of de_thread it is possible for a process
2683 * to have the pid of the thread group leader without actually being
2684 * the thread group leader. For iteration through the pids in proc
2685 * all we care about is that we have a task with the appropriate
2686 * pid, we don't actually care if we have the right task.
2687 */
e1403b8e 2688static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2689{
e1403b8e 2690 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2691}
2692
bac0abd6 2693static inline
e1403b8e 2694bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2695{
e1403b8e 2696 return p1->signal == p2->signal;
bac0abd6
PE
2697}
2698
36c8b586 2699static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2700{
05725f7e
JP
2701 return list_entry_rcu(p->thread_group.next,
2702 struct task_struct, thread_group);
47e65328
ON
2703}
2704
e868171a 2705static inline int thread_group_empty(struct task_struct *p)
1da177e4 2706{
47e65328 2707 return list_empty(&p->thread_group);
1da177e4
LT
2708}
2709
2710#define delay_group_leader(p) \
2711 (thread_group_leader(p) && !thread_group_empty(p))
2712
1da177e4 2713/*
260ea101 2714 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2715 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2716 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2717 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2718 *
2719 * Nests both inside and outside of read_lock(&tasklist_lock).
2720 * It must not be nested with write_lock_irq(&tasklist_lock),
2721 * neither inside nor outside.
2722 */
2723static inline void task_lock(struct task_struct *p)
2724{
2725 spin_lock(&p->alloc_lock);
2726}
2727
2728static inline void task_unlock(struct task_struct *p)
2729{
2730 spin_unlock(&p->alloc_lock);
2731}
2732
b8ed374e 2733extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2734 unsigned long *flags);
2735
9388dc30
AV
2736static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2737 unsigned long *flags)
2738{
2739 struct sighand_struct *ret;
2740
2741 ret = __lock_task_sighand(tsk, flags);
2742 (void)__cond_lock(&tsk->sighand->siglock, ret);
2743 return ret;
2744}
b8ed374e 2745
f63ee72e
ON
2746static inline void unlock_task_sighand(struct task_struct *tsk,
2747 unsigned long *flags)
2748{
2749 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2750}
2751
77e4ef99 2752/**
7d7efec3
TH
2753 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2754 * @tsk: task causing the changes
77e4ef99 2755 *
7d7efec3
TH
2756 * All operations which modify a threadgroup - a new thread joining the
2757 * group, death of a member thread (the assertion of PF_EXITING) and
2758 * exec(2) dethreading the process and replacing the leader - are wrapped
2759 * by threadgroup_change_{begin|end}(). This is to provide a place which
2760 * subsystems needing threadgroup stability can hook into for
2761 * synchronization.
77e4ef99 2762 */
7d7efec3 2763static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2764{
7d7efec3
TH
2765 might_sleep();
2766 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2767}
77e4ef99
TH
2768
2769/**
7d7efec3
TH
2770 * threadgroup_change_end - mark the end of changes to a threadgroup
2771 * @tsk: task causing the changes
77e4ef99 2772 *
7d7efec3 2773 * See threadgroup_change_begin().
77e4ef99 2774 */
7d7efec3 2775static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2776{
7d7efec3 2777 cgroup_threadgroup_change_end(tsk);
4714d1d3 2778}
4714d1d3 2779
f037360f
AV
2780#ifndef __HAVE_THREAD_FUNCTIONS
2781
f7e4217b
RZ
2782#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2783#define task_stack_page(task) ((task)->stack)
a1261f54 2784
10ebffde
AV
2785static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2786{
2787 *task_thread_info(p) = *task_thread_info(org);
2788 task_thread_info(p)->task = p;
2789}
2790
6a40281a
CE
2791/*
2792 * Return the address of the last usable long on the stack.
2793 *
2794 * When the stack grows down, this is just above the thread
2795 * info struct. Going any lower will corrupt the threadinfo.
2796 *
2797 * When the stack grows up, this is the highest address.
2798 * Beyond that position, we corrupt data on the next page.
2799 */
10ebffde
AV
2800static inline unsigned long *end_of_stack(struct task_struct *p)
2801{
6a40281a
CE
2802#ifdef CONFIG_STACK_GROWSUP
2803 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2804#else
f7e4217b 2805 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2806#endif
10ebffde
AV
2807}
2808
f037360f 2809#endif
a70857e4
AT
2810#define task_stack_end_corrupted(task) \
2811 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2812
8b05c7e6
FT
2813static inline int object_is_on_stack(void *obj)
2814{
2815 void *stack = task_stack_page(current);
2816
2817 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2818}
2819
8c9843e5
BH
2820extern void thread_info_cache_init(void);
2821
7c9f8861
ES
2822#ifdef CONFIG_DEBUG_STACK_USAGE
2823static inline unsigned long stack_not_used(struct task_struct *p)
2824{
2825 unsigned long *n = end_of_stack(p);
2826
2827 do { /* Skip over canary */
2828 n++;
2829 } while (!*n);
2830
2831 return (unsigned long)n - (unsigned long)end_of_stack(p);
2832}
2833#endif
d4311ff1 2834extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2835
1da177e4
LT
2836/* set thread flags in other task's structures
2837 * - see asm/thread_info.h for TIF_xxxx flags available
2838 */
2839static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2840{
a1261f54 2841 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2842}
2843
2844static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2845{
a1261f54 2846 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2847}
2848
2849static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2850{
a1261f54 2851 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2852}
2853
2854static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2855{
a1261f54 2856 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2857}
2858
2859static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2860{
a1261f54 2861 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2862}
2863
2864static inline void set_tsk_need_resched(struct task_struct *tsk)
2865{
2866 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2867}
2868
2869static inline void clear_tsk_need_resched(struct task_struct *tsk)
2870{
2871 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2872}
2873
8ae121ac
GH
2874static inline int test_tsk_need_resched(struct task_struct *tsk)
2875{
2876 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2877}
2878
690cc3ff
EB
2879static inline int restart_syscall(void)
2880{
2881 set_tsk_thread_flag(current, TIF_SIGPENDING);
2882 return -ERESTARTNOINTR;
2883}
2884
1da177e4
LT
2885static inline int signal_pending(struct task_struct *p)
2886{
2887 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2888}
f776d12d 2889
d9588725
RM
2890static inline int __fatal_signal_pending(struct task_struct *p)
2891{
2892 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2893}
f776d12d
MW
2894
2895static inline int fatal_signal_pending(struct task_struct *p)
2896{
2897 return signal_pending(p) && __fatal_signal_pending(p);
2898}
2899
16882c1e
ON
2900static inline int signal_pending_state(long state, struct task_struct *p)
2901{
2902 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2903 return 0;
2904 if (!signal_pending(p))
2905 return 0;
2906
16882c1e
ON
2907 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2908}
2909
1da177e4
LT
2910/*
2911 * cond_resched() and cond_resched_lock(): latency reduction via
2912 * explicit rescheduling in places that are safe. The return
2913 * value indicates whether a reschedule was done in fact.
2914 * cond_resched_lock() will drop the spinlock before scheduling,
2915 * cond_resched_softirq() will enable bhs before scheduling.
2916 */
c3921ab7 2917extern int _cond_resched(void);
6f80bd98 2918
613afbf8 2919#define cond_resched() ({ \
3427445a 2920 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2921 _cond_resched(); \
2922})
6f80bd98 2923
613afbf8
FW
2924extern int __cond_resched_lock(spinlock_t *lock);
2925
2926#define cond_resched_lock(lock) ({ \
3427445a 2927 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2928 __cond_resched_lock(lock); \
2929})
2930
2931extern int __cond_resched_softirq(void);
2932
75e1056f 2933#define cond_resched_softirq() ({ \
3427445a 2934 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2935 __cond_resched_softirq(); \
613afbf8 2936})
1da177e4 2937
f6f3c437
SH
2938static inline void cond_resched_rcu(void)
2939{
2940#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2941 rcu_read_unlock();
2942 cond_resched();
2943 rcu_read_lock();
2944#endif
2945}
2946
1da177e4
LT
2947/*
2948 * Does a critical section need to be broken due to another
95c354fe
NP
2949 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2950 * but a general need for low latency)
1da177e4 2951 */
95c354fe 2952static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2953{
95c354fe
NP
2954#ifdef CONFIG_PREEMPT
2955 return spin_is_contended(lock);
2956#else
1da177e4 2957 return 0;
95c354fe 2958#endif
1da177e4
LT
2959}
2960
ee761f62
TG
2961/*
2962 * Idle thread specific functions to determine the need_resched
69dd0f84 2963 * polling state.
ee761f62 2964 */
69dd0f84 2965#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2966static inline int tsk_is_polling(struct task_struct *p)
2967{
2968 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2969}
ea811747
PZ
2970
2971static inline void __current_set_polling(void)
3a98f871
TG
2972{
2973 set_thread_flag(TIF_POLLING_NRFLAG);
2974}
2975
ea811747
PZ
2976static inline bool __must_check current_set_polling_and_test(void)
2977{
2978 __current_set_polling();
2979
2980 /*
2981 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2982 * paired by resched_curr()
ea811747 2983 */
4e857c58 2984 smp_mb__after_atomic();
ea811747
PZ
2985
2986 return unlikely(tif_need_resched());
2987}
2988
2989static inline void __current_clr_polling(void)
3a98f871
TG
2990{
2991 clear_thread_flag(TIF_POLLING_NRFLAG);
2992}
ea811747
PZ
2993
2994static inline bool __must_check current_clr_polling_and_test(void)
2995{
2996 __current_clr_polling();
2997
2998 /*
2999 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3000 * paired by resched_curr()
ea811747 3001 */
4e857c58 3002 smp_mb__after_atomic();
ea811747
PZ
3003
3004 return unlikely(tif_need_resched());
3005}
3006
ee761f62
TG
3007#else
3008static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3009static inline void __current_set_polling(void) { }
3010static inline void __current_clr_polling(void) { }
3011
3012static inline bool __must_check current_set_polling_and_test(void)
3013{
3014 return unlikely(tif_need_resched());
3015}
3016static inline bool __must_check current_clr_polling_and_test(void)
3017{
3018 return unlikely(tif_need_resched());
3019}
ee761f62
TG
3020#endif
3021
8cb75e0c
PZ
3022static inline void current_clr_polling(void)
3023{
3024 __current_clr_polling();
3025
3026 /*
3027 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3028 * Once the bit is cleared, we'll get IPIs with every new
3029 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3030 * fold.
3031 */
8875125e 3032 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3033
3034 preempt_fold_need_resched();
3035}
3036
75f93fed
PZ
3037static __always_inline bool need_resched(void)
3038{
3039 return unlikely(tif_need_resched());
3040}
3041
f06febc9
FM
3042/*
3043 * Thread group CPU time accounting.
3044 */
4cd4c1b4 3045void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3046void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3047
7bb44ade
RM
3048/*
3049 * Reevaluate whether the task has signals pending delivery.
3050 * Wake the task if so.
3051 * This is required every time the blocked sigset_t changes.
3052 * callers must hold sighand->siglock.
3053 */
3054extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3055extern void recalc_sigpending(void);
3056
910ffdb1
ON
3057extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3058
3059static inline void signal_wake_up(struct task_struct *t, bool resume)
3060{
3061 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3062}
3063static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3064{
3065 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3066}
1da177e4
LT
3067
3068/*
3069 * Wrappers for p->thread_info->cpu access. No-op on UP.
3070 */
3071#ifdef CONFIG_SMP
3072
3073static inline unsigned int task_cpu(const struct task_struct *p)
3074{
a1261f54 3075 return task_thread_info(p)->cpu;
1da177e4
LT
3076}
3077
b32e86b4
IM
3078static inline int task_node(const struct task_struct *p)
3079{
3080 return cpu_to_node(task_cpu(p));
3081}
3082
c65cc870 3083extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3084
3085#else
3086
3087static inline unsigned int task_cpu(const struct task_struct *p)
3088{
3089 return 0;
3090}
3091
3092static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3093{
3094}
3095
3096#endif /* CONFIG_SMP */
3097
96f874e2
RR
3098extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3099extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3100
7c941438 3101#ifdef CONFIG_CGROUP_SCHED
07e06b01 3102extern struct task_group root_task_group;
8323f26c 3103#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3104
54e99124
DG
3105extern int task_can_switch_user(struct user_struct *up,
3106 struct task_struct *tsk);
3107
4b98d11b
AD
3108#ifdef CONFIG_TASK_XACCT
3109static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3110{
940389b8 3111 tsk->ioac.rchar += amt;
4b98d11b
AD
3112}
3113
3114static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3115{
940389b8 3116 tsk->ioac.wchar += amt;
4b98d11b
AD
3117}
3118
3119static inline void inc_syscr(struct task_struct *tsk)
3120{
940389b8 3121 tsk->ioac.syscr++;
4b98d11b
AD
3122}
3123
3124static inline void inc_syscw(struct task_struct *tsk)
3125{
940389b8 3126 tsk->ioac.syscw++;
4b98d11b
AD
3127}
3128#else
3129static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3130{
3131}
3132
3133static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3134{
3135}
3136
3137static inline void inc_syscr(struct task_struct *tsk)
3138{
3139}
3140
3141static inline void inc_syscw(struct task_struct *tsk)
3142{
3143}
3144#endif
3145
82455257
DH
3146#ifndef TASK_SIZE_OF
3147#define TASK_SIZE_OF(tsk) TASK_SIZE
3148#endif
3149
f98bafa0 3150#ifdef CONFIG_MEMCG
cf475ad2 3151extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3152#else
3153static inline void mm_update_next_owner(struct mm_struct *mm)
3154{
3155}
f98bafa0 3156#endif /* CONFIG_MEMCG */
cf475ad2 3157
3e10e716
JS
3158static inline unsigned long task_rlimit(const struct task_struct *tsk,
3159 unsigned int limit)
3160{
316c1608 3161 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3162}
3163
3164static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3165 unsigned int limit)
3166{
316c1608 3167 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3168}
3169
3170static inline unsigned long rlimit(unsigned int limit)
3171{
3172 return task_rlimit(current, limit);
3173}
3174
3175static inline unsigned long rlimit_max(unsigned int limit)
3176{
3177 return task_rlimit_max(current, limit);
3178}
3179
1da177e4 3180#endif