]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/sched.h
sched/core: Remove unnecessary down/up conversion
[mirror_ubuntu-bionic-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
00d1a39e 28#include <linux/preempt_mask.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
a3b6714e
DW
61
62#include <asm/processor.h>
36d57ac4 63
d50dde5a
DF
64#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
65
66/*
67 * Extended scheduling parameters data structure.
68 *
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
72 *
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
76 *
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
83 * instance.
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
89 *
90 * This is reflected by the actual fields of the sched_attr structure:
91 *
92 * @size size of the structure, for fwd/bwd compat.
93 *
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
101 *
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
aab03e05
DF
105 *
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
109 */
110struct sched_attr {
111 u32 size;
112
113 u32 sched_policy;
114 u64 sched_flags;
115
116 /* SCHED_NORMAL, SCHED_BATCH */
117 s32 sched_nice;
118
119 /* SCHED_FIFO, SCHED_RR */
120 u32 sched_priority;
121
122 /* SCHED_DEADLINE */
123 u64 sched_runtime;
124 u64 sched_deadline;
125 u64 sched_period;
126};
127
c87e2837 128struct futex_pi_state;
286100a6 129struct robust_list_head;
bddd87c7 130struct bio_list;
5ad4e53b 131struct fs_struct;
cdd6c482 132struct perf_event_context;
73c10101 133struct blk_plug;
c4ad8f98 134struct filename;
1da177e4 135
615d6e87
DB
136#define VMACACHE_BITS 2
137#define VMACACHE_SIZE (1U << VMACACHE_BITS)
138#define VMACACHE_MASK (VMACACHE_SIZE - 1)
139
1da177e4
LT
140/*
141 * These are the constant used to fake the fixed-point load-average
142 * counting. Some notes:
143 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
144 * a load-average precision of 10 bits integer + 11 bits fractional
145 * - if you want to count load-averages more often, you need more
146 * precision, or rounding will get you. With 2-second counting freq,
147 * the EXP_n values would be 1981, 2034 and 2043 if still using only
148 * 11 bit fractions.
149 */
150extern unsigned long avenrun[]; /* Load averages */
2d02494f 151extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
152
153#define FSHIFT 11 /* nr of bits of precision */
154#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 155#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
156#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
157#define EXP_5 2014 /* 1/exp(5sec/5min) */
158#define EXP_15 2037 /* 1/exp(5sec/15min) */
159
160#define CALC_LOAD(load,exp,n) \
161 load *= exp; \
162 load += n*(FIXED_1-exp); \
163 load >>= FSHIFT;
164
165extern unsigned long total_forks;
166extern int nr_threads;
1da177e4
LT
167DECLARE_PER_CPU(unsigned long, process_counts);
168extern int nr_processes(void);
169extern unsigned long nr_running(void);
2ee507c4 170extern bool single_task_running(void);
1da177e4 171extern unsigned long nr_iowait(void);
8c215bd3 172extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 173extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 174
0f004f5a 175extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
176
177#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
5aaa0b7a 178extern void update_cpu_load_nohz(void);
3289bdb4
PZ
179#else
180static inline void update_cpu_load_nohz(void) { }
181#endif
1da177e4 182
7e49fcce
SR
183extern unsigned long get_parent_ip(unsigned long addr);
184
b637a328
PM
185extern void dump_cpu_task(int cpu);
186
43ae34cb
IM
187struct seq_file;
188struct cfs_rq;
4cf86d77 189struct task_group;
43ae34cb
IM
190#ifdef CONFIG_SCHED_DEBUG
191extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
192extern void proc_sched_set_task(struct task_struct *p);
193extern void
5cef9eca 194print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7
TG
220#define TASK_PARKED 512
221#define TASK_STATE_MAX 1024
f021a3c2 222
ad0f614e 223#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
73342151 224
e1781538
PZ
225extern char ___assert_task_state[1 - 2*!!(
226 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
227
228/* Convenience macros for the sake of set_task_state */
229#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
230#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
231#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 232
92a1f4bc
MW
233/* Convenience macros for the sake of wake_up */
234#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 235#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
236
237/* get_task_state() */
238#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 239 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 240 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 241
f021a3c2
MW
242#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
243#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 244#define task_is_stopped_or_traced(task) \
f021a3c2 245 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 246#define task_contributes_to_load(task) \
e3c8ca83 247 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
376fede8 248 (task->flags & PF_FROZEN) == 0)
1da177e4 249
8eb23b9f
PZ
250#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
251
252#define __set_task_state(tsk, state_value) \
253 do { \
254 (tsk)->task_state_change = _THIS_IP_; \
255 (tsk)->state = (state_value); \
256 } while (0)
257#define set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 set_mb((tsk)->state, (state_value)); \
261 } while (0)
262
263/*
264 * set_current_state() includes a barrier so that the write of current->state
265 * is correctly serialised wrt the caller's subsequent test of whether to
266 * actually sleep:
267 *
268 * set_current_state(TASK_UNINTERRUPTIBLE);
269 * if (do_i_need_to_sleep())
270 * schedule();
271 *
272 * If the caller does not need such serialisation then use __set_current_state()
273 */
274#define __set_current_state(state_value) \
275 do { \
276 current->task_state_change = _THIS_IP_; \
277 current->state = (state_value); \
278 } while (0)
279#define set_current_state(state_value) \
280 do { \
281 current->task_state_change = _THIS_IP_; \
282 set_mb(current->state, (state_value)); \
283 } while (0)
284
285#else
286
1da177e4
LT
287#define __set_task_state(tsk, state_value) \
288 do { (tsk)->state = (state_value); } while (0)
289#define set_task_state(tsk, state_value) \
290 set_mb((tsk)->state, (state_value))
291
498d0c57
AM
292/*
293 * set_current_state() includes a barrier so that the write of current->state
294 * is correctly serialised wrt the caller's subsequent test of whether to
295 * actually sleep:
296 *
297 * set_current_state(TASK_UNINTERRUPTIBLE);
298 * if (do_i_need_to_sleep())
299 * schedule();
300 *
301 * If the caller does not need such serialisation then use __set_current_state()
302 */
8eb23b9f 303#define __set_current_state(state_value) \
1da177e4 304 do { current->state = (state_value); } while (0)
8eb23b9f 305#define set_current_state(state_value) \
1da177e4
LT
306 set_mb(current->state, (state_value))
307
8eb23b9f
PZ
308#endif
309
1da177e4
LT
310/* Task command name length */
311#define TASK_COMM_LEN 16
312
1da177e4
LT
313#include <linux/spinlock.h>
314
315/*
316 * This serializes "schedule()" and also protects
317 * the run-queue from deletions/modifications (but
318 * _adding_ to the beginning of the run-queue has
319 * a separate lock).
320 */
321extern rwlock_t tasklist_lock;
322extern spinlock_t mmlist_lock;
323
36c8b586 324struct task_struct;
1da177e4 325
db1466b3
PM
326#ifdef CONFIG_PROVE_RCU
327extern int lockdep_tasklist_lock_is_held(void);
328#endif /* #ifdef CONFIG_PROVE_RCU */
329
1da177e4
LT
330extern void sched_init(void);
331extern void sched_init_smp(void);
2d07b255 332extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 333extern void init_idle(struct task_struct *idle, int cpu);
1df21055 334extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 335
3fa0818b
RR
336extern cpumask_var_t cpu_isolated_map;
337
89f19f04 338extern int runqueue_is_locked(int cpu);
017730c1 339
3451d024 340#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 341extern void nohz_balance_enter_idle(int cpu);
69e1e811 342extern void set_cpu_sd_state_idle(void);
6201b4d6 343extern int get_nohz_timer_target(int pinned);
46cb4b7c 344#else
c1cc017c 345static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 346static inline void set_cpu_sd_state_idle(void) { }
6201b4d6
VK
347static inline int get_nohz_timer_target(int pinned)
348{
349 return smp_processor_id();
350}
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
376
82a1fcb9
IM
377extern void sched_show_task(struct task_struct *p);
378
19cc36c0 379#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 380extern void touch_softlockup_watchdog(void);
d6ad3e28 381extern void touch_softlockup_watchdog_sync(void);
04c9167f 382extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
9c44bc03 386extern unsigned int softlockup_panic;
004417a6 387void lockup_detector_init(void);
8446f1d3 388#else
8446f1d3
IM
389static inline void touch_softlockup_watchdog(void)
390{
391}
d6ad3e28
JW
392static inline void touch_softlockup_watchdog_sync(void)
393{
394}
04c9167f
JF
395static inline void touch_all_softlockup_watchdogs(void)
396{
397}
004417a6
PZ
398static inline void lockup_detector_init(void)
399{
400}
8446f1d3
IM
401#endif
402
8b414521
MT
403#ifdef CONFIG_DETECT_HUNG_TASK
404void reset_hung_task_detector(void);
405#else
406static inline void reset_hung_task_detector(void)
407{
408}
409#endif
410
1da177e4
LT
411/* Attach to any functions which should be ignored in wchan output. */
412#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
413
414/* Linker adds these: start and end of __sched functions */
415extern char __sched_text_start[], __sched_text_end[];
416
1da177e4
LT
417/* Is this address in the __sched functions? */
418extern int in_sched_functions(unsigned long addr);
419
420#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 421extern signed long schedule_timeout(signed long timeout);
64ed93a2 422extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 423extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 424extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 425asmlinkage void schedule(void);
c5491ea7 426extern void schedule_preempt_disabled(void);
1da177e4 427
9cff8ade
N
428extern long io_schedule_timeout(long timeout);
429
430static inline void io_schedule(void)
431{
432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
433}
434
ab516013 435struct nsproxy;
acce292c 436struct user_namespace;
1da177e4 437
efc1a3b1
DH
438#ifdef CONFIG_MMU
439extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
440extern unsigned long
441arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
442 unsigned long, unsigned long);
443extern unsigned long
444arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
445 unsigned long len, unsigned long pgoff,
446 unsigned long flags);
efc1a3b1
DH
447#else
448static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
449#endif
1da177e4 450
d049f74f
KC
451#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
452#define SUID_DUMP_USER 1 /* Dump as user of process */
453#define SUID_DUMP_ROOT 2 /* Dump as root */
454
6c5d5238 455/* mm flags */
f8af4da3 456
7288e118 457/* for SUID_DUMP_* above */
3cb4a0bb 458#define MMF_DUMPABLE_BITS 2
f8af4da3 459#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 460
942be387
ON
461extern void set_dumpable(struct mm_struct *mm, int value);
462/*
463 * This returns the actual value of the suid_dumpable flag. For things
464 * that are using this for checking for privilege transitions, it must
465 * test against SUID_DUMP_USER rather than treating it as a boolean
466 * value.
467 */
468static inline int __get_dumpable(unsigned long mm_flags)
469{
470 return mm_flags & MMF_DUMPABLE_MASK;
471}
472
473static inline int get_dumpable(struct mm_struct *mm)
474{
475 return __get_dumpable(mm->flags);
476}
477
3cb4a0bb
KH
478/* coredump filter bits */
479#define MMF_DUMP_ANON_PRIVATE 2
480#define MMF_DUMP_ANON_SHARED 3
481#define MMF_DUMP_MAPPED_PRIVATE 4
482#define MMF_DUMP_MAPPED_SHARED 5
82df3973 483#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
484#define MMF_DUMP_HUGETLB_PRIVATE 7
485#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 486
3cb4a0bb 487#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 488#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
489#define MMF_DUMP_FILTER_MASK \
490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
491#define MMF_DUMP_FILTER_DEFAULT \
e575f111 492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494
495#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
496# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
497#else
498# define MMF_DUMP_MASK_DEFAULT_ELF 0
499#endif
f8af4da3
HD
500 /* leave room for more dump flags */
501#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 502#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 503#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 504
9f68f672
ON
505#define MMF_HAS_UPROBES 19 /* has uprobes */
506#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 507
f8af4da3 508#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 509
1da177e4
LT
510struct sighand_struct {
511 atomic_t count;
512 struct k_sigaction action[_NSIG];
513 spinlock_t siglock;
b8fceee1 514 wait_queue_head_t signalfd_wqh;
1da177e4
LT
515};
516
0e464814 517struct pacct_struct {
f6ec29a4
KK
518 int ac_flag;
519 long ac_exitcode;
0e464814 520 unsigned long ac_mem;
77787bfb
KK
521 cputime_t ac_utime, ac_stime;
522 unsigned long ac_minflt, ac_majflt;
0e464814
KK
523};
524
42c4ab41
SG
525struct cpu_itimer {
526 cputime_t expires;
527 cputime_t incr;
8356b5f9
SG
528 u32 error;
529 u32 incr_error;
42c4ab41
SG
530};
531
d37f761d
FW
532/**
533 * struct cputime - snaphsot of system and user cputime
534 * @utime: time spent in user mode
535 * @stime: time spent in system mode
536 *
537 * Gathers a generic snapshot of user and system time.
538 */
539struct cputime {
540 cputime_t utime;
541 cputime_t stime;
542};
543
f06febc9
FM
544/**
545 * struct task_cputime - collected CPU time counts
546 * @utime: time spent in user mode, in &cputime_t units
547 * @stime: time spent in kernel mode, in &cputime_t units
548 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 549 *
d37f761d
FW
550 * This is an extension of struct cputime that includes the total runtime
551 * spent by the task from the scheduler point of view.
552 *
553 * As a result, this structure groups together three kinds of CPU time
554 * that are tracked for threads and thread groups. Most things considering
f06febc9
FM
555 * CPU time want to group these counts together and treat all three
556 * of them in parallel.
557 */
558struct task_cputime {
559 cputime_t utime;
560 cputime_t stime;
561 unsigned long long sum_exec_runtime;
562};
563/* Alternate field names when used to cache expirations. */
564#define prof_exp stime
565#define virt_exp utime
566#define sched_exp sum_exec_runtime
567
4cd4c1b4
PZ
568#define INIT_CPUTIME \
569 (struct task_cputime) { \
64861634
MS
570 .utime = 0, \
571 .stime = 0, \
4cd4c1b4
PZ
572 .sum_exec_runtime = 0, \
573 }
574
a233f112
PZ
575#ifdef CONFIG_PREEMPT_COUNT
576#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
577#else
578#define PREEMPT_DISABLED PREEMPT_ENABLED
579#endif
580
c99e6efe
PZ
581/*
582 * Disable preemption until the scheduler is running.
583 * Reset by start_kernel()->sched_init()->init_idle().
d86ee480
PZ
584 *
585 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
586 * before the scheduler is active -- see should_resched().
c99e6efe 587 */
a233f112 588#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
c99e6efe 589
f06febc9 590/**
4cd4c1b4
PZ
591 * struct thread_group_cputimer - thread group interval timer counts
592 * @cputime: thread group interval timers.
593 * @running: non-zero when there are timers running and
594 * @cputime receives updates.
595 * @lock: lock for fields in this struct.
f06febc9
FM
596 *
597 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 598 * used for thread group CPU timer calculations.
f06febc9 599 */
4cd4c1b4
PZ
600struct thread_group_cputimer {
601 struct task_cputime cputime;
602 int running;
ee30a7b2 603 raw_spinlock_t lock;
f06febc9 604};
f06febc9 605
4714d1d3 606#include <linux/rwsem.h>
5091faa4
MG
607struct autogroup;
608
1da177e4 609/*
e815f0a8 610 * NOTE! "signal_struct" does not have its own
1da177e4
LT
611 * locking, because a shared signal_struct always
612 * implies a shared sighand_struct, so locking
613 * sighand_struct is always a proper superset of
614 * the locking of signal_struct.
615 */
616struct signal_struct {
ea6d290c 617 atomic_t sigcnt;
1da177e4 618 atomic_t live;
b3ac022c 619 int nr_threads;
0c740d0a 620 struct list_head thread_head;
1da177e4
LT
621
622 wait_queue_head_t wait_chldexit; /* for wait4() */
623
624 /* current thread group signal load-balancing target: */
36c8b586 625 struct task_struct *curr_target;
1da177e4
LT
626
627 /* shared signal handling: */
628 struct sigpending shared_pending;
629
630 /* thread group exit support */
631 int group_exit_code;
632 /* overloaded:
633 * - notify group_exit_task when ->count is equal to notify_count
634 * - everyone except group_exit_task is stopped during signal delivery
635 * of fatal signals, group_exit_task processes the signal.
636 */
1da177e4 637 int notify_count;
07dd20e0 638 struct task_struct *group_exit_task;
1da177e4
LT
639
640 /* thread group stop support, overloads group_exit_code too */
641 int group_stop_count;
642 unsigned int flags; /* see SIGNAL_* flags below */
643
ebec18a6
LP
644 /*
645 * PR_SET_CHILD_SUBREAPER marks a process, like a service
646 * manager, to re-parent orphan (double-forking) child processes
647 * to this process instead of 'init'. The service manager is
648 * able to receive SIGCHLD signals and is able to investigate
649 * the process until it calls wait(). All children of this
650 * process will inherit a flag if they should look for a
651 * child_subreaper process at exit.
652 */
653 unsigned int is_child_subreaper:1;
654 unsigned int has_child_subreaper:1;
655
1da177e4 656 /* POSIX.1b Interval Timers */
5ed67f05
PE
657 int posix_timer_id;
658 struct list_head posix_timers;
1da177e4
LT
659
660 /* ITIMER_REAL timer for the process */
2ff678b8 661 struct hrtimer real_timer;
fea9d175 662 struct pid *leader_pid;
2ff678b8 663 ktime_t it_real_incr;
1da177e4 664
42c4ab41
SG
665 /*
666 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
667 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
668 * values are defined to 0 and 1 respectively
669 */
670 struct cpu_itimer it[2];
1da177e4 671
f06febc9 672 /*
4cd4c1b4
PZ
673 * Thread group totals for process CPU timers.
674 * See thread_group_cputimer(), et al, for details.
f06febc9 675 */
4cd4c1b4 676 struct thread_group_cputimer cputimer;
f06febc9
FM
677
678 /* Earliest-expiration cache. */
679 struct task_cputime cputime_expires;
680
681 struct list_head cpu_timers[3];
682
ab521dc0 683 struct pid *tty_old_pgrp;
1ec320af 684
1da177e4
LT
685 /* boolean value for session group leader */
686 int leader;
687
688 struct tty_struct *tty; /* NULL if no tty */
689
5091faa4
MG
690#ifdef CONFIG_SCHED_AUTOGROUP
691 struct autogroup *autogroup;
692#endif
1da177e4
LT
693 /*
694 * Cumulative resource counters for dead threads in the group,
695 * and for reaped dead child processes forked by this group.
696 * Live threads maintain their own counters and add to these
697 * in __exit_signal, except for the group leader.
698 */
e78c3496 699 seqlock_t stats_lock;
32bd671d 700 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
701 cputime_t gtime;
702 cputime_t cgtime;
9fbc42ea 703#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 704 struct cputime prev_cputime;
0cf55e1e 705#endif
1da177e4
LT
706 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
707 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 708 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 709 unsigned long maxrss, cmaxrss;
940389b8 710 struct task_io_accounting ioac;
1da177e4 711
32bd671d
PZ
712 /*
713 * Cumulative ns of schedule CPU time fo dead threads in the
714 * group, not including a zombie group leader, (This only differs
715 * from jiffies_to_ns(utime + stime) if sched_clock uses something
716 * other than jiffies.)
717 */
718 unsigned long long sum_sched_runtime;
719
1da177e4
LT
720 /*
721 * We don't bother to synchronize most readers of this at all,
722 * because there is no reader checking a limit that actually needs
723 * to get both rlim_cur and rlim_max atomically, and either one
724 * alone is a single word that can safely be read normally.
725 * getrlimit/setrlimit use task_lock(current->group_leader) to
726 * protect this instead of the siglock, because they really
727 * have no need to disable irqs.
728 */
729 struct rlimit rlim[RLIM_NLIMITS];
730
0e464814
KK
731#ifdef CONFIG_BSD_PROCESS_ACCT
732 struct pacct_struct pacct; /* per-process accounting information */
733#endif
ad4ecbcb 734#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
735 struct taskstats *stats;
736#endif
522ed776
MT
737#ifdef CONFIG_AUDIT
738 unsigned audit_tty;
46e959ea 739 unsigned audit_tty_log_passwd;
522ed776
MT
740 struct tty_audit_buf *tty_audit_buf;
741#endif
4714d1d3
BB
742#ifdef CONFIG_CGROUPS
743 /*
77e4ef99
TH
744 * group_rwsem prevents new tasks from entering the threadgroup and
745 * member tasks from exiting,a more specifically, setting of
746 * PF_EXITING. fork and exit paths are protected with this rwsem
747 * using threadgroup_change_begin/end(). Users which require
748 * threadgroup to remain stable should use threadgroup_[un]lock()
749 * which also takes care of exec path. Currently, cgroup is the
750 * only user.
4714d1d3 751 */
257058ae 752 struct rw_semaphore group_rwsem;
4714d1d3 753#endif
28b83c51 754
e1e12d2f 755 oom_flags_t oom_flags;
a9c58b90
DR
756 short oom_score_adj; /* OOM kill score adjustment */
757 short oom_score_adj_min; /* OOM kill score adjustment min value.
758 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
759
760 struct mutex cred_guard_mutex; /* guard against foreign influences on
761 * credential calculations
762 * (notably. ptrace) */
1da177e4
LT
763};
764
765/*
766 * Bits in flags field of signal_struct.
767 */
768#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
769#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
770#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 771#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
772/*
773 * Pending notifications to parent.
774 */
775#define SIGNAL_CLD_STOPPED 0x00000010
776#define SIGNAL_CLD_CONTINUED 0x00000020
777#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 778
fae5fa44
ON
779#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
780
ed5d2cac
ON
781/* If true, all threads except ->group_exit_task have pending SIGKILL */
782static inline int signal_group_exit(const struct signal_struct *sig)
783{
784 return (sig->flags & SIGNAL_GROUP_EXIT) ||
785 (sig->group_exit_task != NULL);
786}
787
1da177e4
LT
788/*
789 * Some day this will be a full-fledged user tracking system..
790 */
791struct user_struct {
792 atomic_t __count; /* reference count */
793 atomic_t processes; /* How many processes does this user have? */
1da177e4 794 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 795#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
796 atomic_t inotify_watches; /* How many inotify watches does this user have? */
797 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
798#endif
4afeff85
EP
799#ifdef CONFIG_FANOTIFY
800 atomic_t fanotify_listeners;
801#endif
7ef9964e 802#ifdef CONFIG_EPOLL
52bd19f7 803 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 804#endif
970a8645 805#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
806 /* protected by mq_lock */
807 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 808#endif
1da177e4
LT
809 unsigned long locked_shm; /* How many pages of mlocked shm ? */
810
811#ifdef CONFIG_KEYS
812 struct key *uid_keyring; /* UID specific keyring */
813 struct key *session_keyring; /* UID's default session keyring */
814#endif
815
816 /* Hash table maintenance information */
735de223 817 struct hlist_node uidhash_node;
7b44ab97 818 kuid_t uid;
24e377a8 819
cdd6c482 820#ifdef CONFIG_PERF_EVENTS
789f90fc
PZ
821 atomic_long_t locked_vm;
822#endif
1da177e4
LT
823};
824
eb41d946 825extern int uids_sysfs_init(void);
5cb350ba 826
7b44ab97 827extern struct user_struct *find_user(kuid_t);
1da177e4
LT
828
829extern struct user_struct root_user;
830#define INIT_USER (&root_user)
831
b6dff3ec 832
1da177e4
LT
833struct backing_dev_info;
834struct reclaim_state;
835
52f17b6c 836#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
837struct sched_info {
838 /* cumulative counters */
2d72376b 839 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 840 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
841
842 /* timestamps */
172ba844
BS
843 unsigned long long last_arrival,/* when we last ran on a cpu */
844 last_queued; /* when we were last queued to run */
1da177e4 845};
52f17b6c 846#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
1da177e4 847
ca74e92b
SN
848#ifdef CONFIG_TASK_DELAY_ACCT
849struct task_delay_info {
850 spinlock_t lock;
851 unsigned int flags; /* Private per-task flags */
852
853 /* For each stat XXX, add following, aligned appropriately
854 *
855 * struct timespec XXX_start, XXX_end;
856 * u64 XXX_delay;
857 * u32 XXX_count;
858 *
859 * Atomicity of updates to XXX_delay, XXX_count protected by
860 * single lock above (split into XXX_lock if contention is an issue).
861 */
0ff92245
SN
862
863 /*
864 * XXX_count is incremented on every XXX operation, the delay
865 * associated with the operation is added to XXX_delay.
866 * XXX_delay contains the accumulated delay time in nanoseconds.
867 */
9667a23d 868 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
869 u64 blkio_delay; /* wait for sync block io completion */
870 u64 swapin_delay; /* wait for swapin block io completion */
871 u32 blkio_count; /* total count of the number of sync block */
872 /* io operations performed */
873 u32 swapin_count; /* total count of the number of swapin block */
874 /* io operations performed */
873b4771 875
9667a23d 876 u64 freepages_start;
873b4771
KK
877 u64 freepages_delay; /* wait for memory reclaim */
878 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 879};
52f17b6c
CS
880#endif /* CONFIG_TASK_DELAY_ACCT */
881
882static inline int sched_info_on(void)
883{
884#ifdef CONFIG_SCHEDSTATS
885 return 1;
886#elif defined(CONFIG_TASK_DELAY_ACCT)
887 extern int delayacct_on;
888 return delayacct_on;
889#else
890 return 0;
ca74e92b 891#endif
52f17b6c 892}
ca74e92b 893
d15bcfdb
IM
894enum cpu_idle_type {
895 CPU_IDLE,
896 CPU_NOT_IDLE,
897 CPU_NEWLY_IDLE,
898 CPU_MAX_IDLE_TYPES
1da177e4
LT
899};
900
1399fa78 901/*
ca8ce3d0 902 * Increase resolution of cpu_capacity calculations
1399fa78 903 */
ca8ce3d0
NP
904#define SCHED_CAPACITY_SHIFT 10
905#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 906
1399fa78
NR
907/*
908 * sched-domains (multiprocessor balancing) declarations:
909 */
2dd73a4f 910#ifdef CONFIG_SMP
b5d978e0
PZ
911#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
912#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
913#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
914#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 915#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 916#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 917#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 918#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
919#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
920#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 921#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 922#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 923#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 924#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 925
143e1e28 926#ifdef CONFIG_SCHED_SMT
b6220ad6 927static inline int cpu_smt_flags(void)
143e1e28 928{
5d4dfddd 929 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
930}
931#endif
932
933#ifdef CONFIG_SCHED_MC
b6220ad6 934static inline int cpu_core_flags(void)
143e1e28
VG
935{
936 return SD_SHARE_PKG_RESOURCES;
937}
938#endif
939
940#ifdef CONFIG_NUMA
b6220ad6 941static inline int cpu_numa_flags(void)
143e1e28
VG
942{
943 return SD_NUMA;
944}
945#endif
532cb4c4 946
1d3504fc
HS
947struct sched_domain_attr {
948 int relax_domain_level;
949};
950
951#define SD_ATTR_INIT (struct sched_domain_attr) { \
952 .relax_domain_level = -1, \
953}
954
60495e77
PZ
955extern int sched_domain_level_max;
956
5e6521ea
LZ
957struct sched_group;
958
1da177e4
LT
959struct sched_domain {
960 /* These fields must be setup */
961 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 962 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 963 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
964 unsigned long min_interval; /* Minimum balance interval ms */
965 unsigned long max_interval; /* Maximum balance interval ms */
966 unsigned int busy_factor; /* less balancing by factor if busy */
967 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 968 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
969 unsigned int busy_idx;
970 unsigned int idle_idx;
971 unsigned int newidle_idx;
972 unsigned int wake_idx;
147cbb4b 973 unsigned int forkexec_idx;
a52bfd73 974 unsigned int smt_gain;
25f55d9d
VG
975
976 int nohz_idle; /* NOHZ IDLE status */
1da177e4 977 int flags; /* See SD_* */
60495e77 978 int level;
1da177e4
LT
979
980 /* Runtime fields. */
981 unsigned long last_balance; /* init to jiffies. units in jiffies */
982 unsigned int balance_interval; /* initialise to 1. units in ms. */
983 unsigned int nr_balance_failed; /* initialise to 0 */
984
f48627e6 985 /* idle_balance() stats */
9bd721c5 986 u64 max_newidle_lb_cost;
f48627e6 987 unsigned long next_decay_max_lb_cost;
2398f2c6 988
1da177e4
LT
989#ifdef CONFIG_SCHEDSTATS
990 /* load_balance() stats */
480b9434
KC
991 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
992 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
993 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
994 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
995 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
996 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
997 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
998 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
999
1000 /* Active load balancing */
480b9434
KC
1001 unsigned int alb_count;
1002 unsigned int alb_failed;
1003 unsigned int alb_pushed;
1da177e4 1004
68767a0a 1005 /* SD_BALANCE_EXEC stats */
480b9434
KC
1006 unsigned int sbe_count;
1007 unsigned int sbe_balanced;
1008 unsigned int sbe_pushed;
1da177e4 1009
68767a0a 1010 /* SD_BALANCE_FORK stats */
480b9434
KC
1011 unsigned int sbf_count;
1012 unsigned int sbf_balanced;
1013 unsigned int sbf_pushed;
68767a0a 1014
1da177e4 1015 /* try_to_wake_up() stats */
480b9434
KC
1016 unsigned int ttwu_wake_remote;
1017 unsigned int ttwu_move_affine;
1018 unsigned int ttwu_move_balance;
1da177e4 1019#endif
a5d8c348
IM
1020#ifdef CONFIG_SCHED_DEBUG
1021 char *name;
1022#endif
dce840a0
PZ
1023 union {
1024 void *private; /* used during construction */
1025 struct rcu_head rcu; /* used during destruction */
1026 };
6c99e9ad 1027
669c55e9 1028 unsigned int span_weight;
4200efd9
IM
1029 /*
1030 * Span of all CPUs in this domain.
1031 *
1032 * NOTE: this field is variable length. (Allocated dynamically
1033 * by attaching extra space to the end of the structure,
1034 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1035 */
1036 unsigned long span[0];
1da177e4
LT
1037};
1038
758b2cdc
RR
1039static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1040{
6c99e9ad 1041 return to_cpumask(sd->span);
758b2cdc
RR
1042}
1043
acc3f5d7 1044extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1045 struct sched_domain_attr *dattr_new);
029190c5 1046
acc3f5d7
RR
1047/* Allocate an array of sched domains, for partition_sched_domains(). */
1048cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1049void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1050
39be3501
PZ
1051bool cpus_share_cache(int this_cpu, int that_cpu);
1052
143e1e28 1053typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1054typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1055
1056#define SDTL_OVERLAP 0x01
1057
1058struct sd_data {
1059 struct sched_domain **__percpu sd;
1060 struct sched_group **__percpu sg;
63b2ca30 1061 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1062};
1063
1064struct sched_domain_topology_level {
1065 sched_domain_mask_f mask;
1066 sched_domain_flags_f sd_flags;
1067 int flags;
1068 int numa_level;
1069 struct sd_data data;
1070#ifdef CONFIG_SCHED_DEBUG
1071 char *name;
1072#endif
1073};
1074
1075extern struct sched_domain_topology_level *sched_domain_topology;
1076
1077extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1078extern void wake_up_if_idle(int cpu);
143e1e28
VG
1079
1080#ifdef CONFIG_SCHED_DEBUG
1081# define SD_INIT_NAME(type) .name = #type
1082#else
1083# define SD_INIT_NAME(type)
1084#endif
1085
1b427c15 1086#else /* CONFIG_SMP */
1da177e4 1087
1b427c15 1088struct sched_domain_attr;
d02c7a8c 1089
1b427c15 1090static inline void
acc3f5d7 1091partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1092 struct sched_domain_attr *dattr_new)
1093{
d02c7a8c 1094}
39be3501
PZ
1095
1096static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1097{
1098 return true;
1099}
1100
1b427c15 1101#endif /* !CONFIG_SMP */
1da177e4 1102
47fe38fc 1103
1da177e4 1104struct io_context; /* See blkdev.h */
1da177e4 1105
1da177e4 1106
383f2835 1107#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1108extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1109#else
1110static inline void prefetch_stack(struct task_struct *t) { }
1111#endif
1da177e4
LT
1112
1113struct audit_context; /* See audit.c */
1114struct mempolicy;
b92ce558 1115struct pipe_inode_info;
4865ecf1 1116struct uts_namespace;
1da177e4 1117
20b8a59f 1118struct load_weight {
9dbdb155
PZ
1119 unsigned long weight;
1120 u32 inv_weight;
20b8a59f
IM
1121};
1122
9d85f21c 1123struct sched_avg {
36ee28e4
VG
1124 u64 last_runnable_update;
1125 s64 decay_count;
1126 /*
1127 * utilization_avg_contrib describes the amount of time that a
1128 * sched_entity is running on a CPU. It is based on running_avg_sum
1129 * and is scaled in the range [0..SCHED_LOAD_SCALE].
1130 * load_avg_contrib described the amount of time that a sched_entity
1131 * is runnable on a rq. It is based on both runnable_avg_sum and the
1132 * weight of the task.
1133 */
1134 unsigned long load_avg_contrib, utilization_avg_contrib;
9d85f21c
PT
1135 /*
1136 * These sums represent an infinite geometric series and so are bound
239003ea 1137 * above by 1024/(1-y). Thus we only need a u32 to store them for all
9d85f21c 1138 * choices of y < 1-2^(-32)*1024.
36ee28e4
VG
1139 * running_avg_sum reflects the time that the sched_entity is
1140 * effectively running on the CPU.
1141 * runnable_avg_sum represents the amount of time a sched_entity is on
1142 * a runqueue which includes the running time that is monitored by
1143 * running_avg_sum.
9d85f21c 1144 */
36ee28e4 1145 u32 runnable_avg_sum, avg_period, running_avg_sum;
9d85f21c
PT
1146};
1147
94c18227 1148#ifdef CONFIG_SCHEDSTATS
41acab88 1149struct sched_statistics {
20b8a59f 1150 u64 wait_start;
94c18227 1151 u64 wait_max;
6d082592
AV
1152 u64 wait_count;
1153 u64 wait_sum;
8f0dfc34
AV
1154 u64 iowait_count;
1155 u64 iowait_sum;
94c18227 1156
20b8a59f 1157 u64 sleep_start;
20b8a59f 1158 u64 sleep_max;
94c18227
IM
1159 s64 sum_sleep_runtime;
1160
1161 u64 block_start;
20b8a59f
IM
1162 u64 block_max;
1163 u64 exec_max;
eba1ed4b 1164 u64 slice_max;
cc367732 1165
cc367732
IM
1166 u64 nr_migrations_cold;
1167 u64 nr_failed_migrations_affine;
1168 u64 nr_failed_migrations_running;
1169 u64 nr_failed_migrations_hot;
1170 u64 nr_forced_migrations;
cc367732
IM
1171
1172 u64 nr_wakeups;
1173 u64 nr_wakeups_sync;
1174 u64 nr_wakeups_migrate;
1175 u64 nr_wakeups_local;
1176 u64 nr_wakeups_remote;
1177 u64 nr_wakeups_affine;
1178 u64 nr_wakeups_affine_attempts;
1179 u64 nr_wakeups_passive;
1180 u64 nr_wakeups_idle;
41acab88
LDM
1181};
1182#endif
1183
1184struct sched_entity {
1185 struct load_weight load; /* for load-balancing */
1186 struct rb_node run_node;
1187 struct list_head group_node;
1188 unsigned int on_rq;
1189
1190 u64 exec_start;
1191 u64 sum_exec_runtime;
1192 u64 vruntime;
1193 u64 prev_sum_exec_runtime;
1194
41acab88
LDM
1195 u64 nr_migrations;
1196
41acab88
LDM
1197#ifdef CONFIG_SCHEDSTATS
1198 struct sched_statistics statistics;
94c18227
IM
1199#endif
1200
20b8a59f 1201#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1202 int depth;
20b8a59f
IM
1203 struct sched_entity *parent;
1204 /* rq on which this entity is (to be) queued: */
1205 struct cfs_rq *cfs_rq;
1206 /* rq "owned" by this entity/group: */
1207 struct cfs_rq *my_q;
1208#endif
8bd75c77 1209
141965c7 1210#ifdef CONFIG_SMP
f4e26b12 1211 /* Per-entity load-tracking */
9d85f21c
PT
1212 struct sched_avg avg;
1213#endif
20b8a59f 1214};
70b97a7f 1215
fa717060
PZ
1216struct sched_rt_entity {
1217 struct list_head run_list;
78f2c7db 1218 unsigned long timeout;
57d2aa00 1219 unsigned long watchdog_stamp;
bee367ed 1220 unsigned int time_slice;
6f505b16 1221
58d6c2d7 1222 struct sched_rt_entity *back;
052f1dc7 1223#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1224 struct sched_rt_entity *parent;
1225 /* rq on which this entity is (to be) queued: */
1226 struct rt_rq *rt_rq;
1227 /* rq "owned" by this entity/group: */
1228 struct rt_rq *my_q;
1229#endif
fa717060
PZ
1230};
1231
aab03e05
DF
1232struct sched_dl_entity {
1233 struct rb_node rb_node;
1234
1235 /*
1236 * Original scheduling parameters. Copied here from sched_attr
4027d080 1237 * during sched_setattr(), they will remain the same until
1238 * the next sched_setattr().
aab03e05
DF
1239 */
1240 u64 dl_runtime; /* maximum runtime for each instance */
1241 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1242 u64 dl_period; /* separation of two instances (period) */
332ac17e 1243 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1244
1245 /*
1246 * Actual scheduling parameters. Initialized with the values above,
1247 * they are continously updated during task execution. Note that
1248 * the remaining runtime could be < 0 in case we are in overrun.
1249 */
1250 s64 runtime; /* remaining runtime for this instance */
1251 u64 deadline; /* absolute deadline for this instance */
1252 unsigned int flags; /* specifying the scheduler behaviour */
1253
1254 /*
1255 * Some bool flags:
1256 *
1257 * @dl_throttled tells if we exhausted the runtime. If so, the
1258 * task has to wait for a replenishment to be performed at the
1259 * next firing of dl_timer.
1260 *
1261 * @dl_new tells if a new instance arrived. If so we must
1262 * start executing it with full runtime and reset its absolute
1263 * deadline;
2d3d891d
DF
1264 *
1265 * @dl_boosted tells if we are boosted due to DI. If so we are
1266 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1267 * exit the critical section);
1268 *
1269 * @dl_yielded tells if task gave up the cpu before consuming
1270 * all its available runtime during the last job.
aab03e05 1271 */
5bfd126e 1272 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1273
1274 /*
1275 * Bandwidth enforcement timer. Each -deadline task has its
1276 * own bandwidth to be enforced, thus we need one timer per task.
1277 */
1278 struct hrtimer dl_timer;
1279};
8bd75c77 1280
1d082fd0
PM
1281union rcu_special {
1282 struct {
1283 bool blocked;
1284 bool need_qs;
1285 } b;
1286 short s;
1287};
86848966
PM
1288struct rcu_node;
1289
8dc85d54
PZ
1290enum perf_event_task_context {
1291 perf_invalid_context = -1,
1292 perf_hw_context = 0,
89a1e187 1293 perf_sw_context,
8dc85d54
PZ
1294 perf_nr_task_contexts,
1295};
1296
1da177e4
LT
1297struct task_struct {
1298 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1299 void *stack;
1da177e4 1300 atomic_t usage;
97dc32cd
WC
1301 unsigned int flags; /* per process flags, defined below */
1302 unsigned int ptrace;
1da177e4 1303
2dd73a4f 1304#ifdef CONFIG_SMP
fa14ff4a 1305 struct llist_node wake_entry;
3ca7a440 1306 int on_cpu;
62470419
MW
1307 struct task_struct *last_wakee;
1308 unsigned long wakee_flips;
1309 unsigned long wakee_flip_decay_ts;
ac66f547
PZ
1310
1311 int wake_cpu;
2dd73a4f 1312#endif
fd2f4419 1313 int on_rq;
50e645a8 1314
b29739f9 1315 int prio, static_prio, normal_prio;
c7aceaba 1316 unsigned int rt_priority;
5522d5d5 1317 const struct sched_class *sched_class;
20b8a59f 1318 struct sched_entity se;
fa717060 1319 struct sched_rt_entity rt;
8323f26c
PZ
1320#ifdef CONFIG_CGROUP_SCHED
1321 struct task_group *sched_task_group;
1322#endif
aab03e05 1323 struct sched_dl_entity dl;
1da177e4 1324
e107be36
AK
1325#ifdef CONFIG_PREEMPT_NOTIFIERS
1326 /* list of struct preempt_notifier: */
1327 struct hlist_head preempt_notifiers;
1328#endif
1329
6c5c9341 1330#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1331 unsigned int btrace_seq;
6c5c9341 1332#endif
1da177e4 1333
97dc32cd 1334 unsigned int policy;
29baa747 1335 int nr_cpus_allowed;
1da177e4 1336 cpumask_t cpus_allowed;
1da177e4 1337
a57eb940 1338#ifdef CONFIG_PREEMPT_RCU
e260be67 1339 int rcu_read_lock_nesting;
1d082fd0 1340 union rcu_special rcu_read_unlock_special;
f41d911f 1341 struct list_head rcu_node_entry;
a57eb940 1342#endif /* #ifdef CONFIG_PREEMPT_RCU */
28f6569a 1343#ifdef CONFIG_PREEMPT_RCU
a57eb940 1344 struct rcu_node *rcu_blocked_node;
28f6569a 1345#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1346#ifdef CONFIG_TASKS_RCU
1347 unsigned long rcu_tasks_nvcsw;
1348 bool rcu_tasks_holdout;
1349 struct list_head rcu_tasks_holdout_list;
176f8f7a 1350 int rcu_tasks_idle_cpu;
8315f422 1351#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1352
52f17b6c 1353#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
1354 struct sched_info sched_info;
1355#endif
1356
1357 struct list_head tasks;
806c09a7 1358#ifdef CONFIG_SMP
917b627d 1359 struct plist_node pushable_tasks;
1baca4ce 1360 struct rb_node pushable_dl_tasks;
806c09a7 1361#endif
1da177e4
LT
1362
1363 struct mm_struct *mm, *active_mm;
4471a675
JK
1364#ifdef CONFIG_COMPAT_BRK
1365 unsigned brk_randomized:1;
1366#endif
615d6e87
DB
1367 /* per-thread vma caching */
1368 u32 vmacache_seqnum;
1369 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1370#if defined(SPLIT_RSS_COUNTING)
1371 struct task_rss_stat rss_stat;
1372#endif
1da177e4 1373/* task state */
97dc32cd 1374 int exit_state;
1da177e4
LT
1375 int exit_code, exit_signal;
1376 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1377 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1378
1379 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1380 unsigned int personality;
9b89f6ba 1381
f9ce1f1c
KT
1382 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1383 * execve */
8f0dfc34
AV
1384 unsigned in_iowait:1;
1385
ca94c442
LP
1386 /* Revert to default priority/policy when forking */
1387 unsigned sched_reset_on_fork:1;
a8e4f2ea 1388 unsigned sched_contributes_to_load:1;
ca94c442 1389
6f185c29
VD
1390#ifdef CONFIG_MEMCG_KMEM
1391 unsigned memcg_kmem_skip_account:1;
1392#endif
1393
1d4457f9
KC
1394 unsigned long atomic_flags; /* Flags needing atomic access. */
1395
f56141e3
AL
1396 struct restart_block restart_block;
1397
1da177e4
LT
1398 pid_t pid;
1399 pid_t tgid;
0a425405 1400
1314562a 1401#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1402 /* Canary value for the -fstack-protector gcc feature */
1403 unsigned long stack_canary;
1314562a 1404#endif
4d1d61a6 1405 /*
1da177e4 1406 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1407 * older sibling, respectively. (p->father can be replaced with
f470021a 1408 * p->real_parent->pid)
1da177e4 1409 */
abd63bc3
KC
1410 struct task_struct __rcu *real_parent; /* real parent process */
1411 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1412 /*
f470021a 1413 * children/sibling forms the list of my natural children
1da177e4
LT
1414 */
1415 struct list_head children; /* list of my children */
1416 struct list_head sibling; /* linkage in my parent's children list */
1417 struct task_struct *group_leader; /* threadgroup leader */
1418
f470021a
RM
1419 /*
1420 * ptraced is the list of tasks this task is using ptrace on.
1421 * This includes both natural children and PTRACE_ATTACH targets.
1422 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1423 */
1424 struct list_head ptraced;
1425 struct list_head ptrace_entry;
1426
1da177e4 1427 /* PID/PID hash table linkage. */
92476d7f 1428 struct pid_link pids[PIDTYPE_MAX];
47e65328 1429 struct list_head thread_group;
0c740d0a 1430 struct list_head thread_node;
1da177e4
LT
1431
1432 struct completion *vfork_done; /* for vfork() */
1433 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1434 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1435
c66f08be 1436 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1437 cputime_t gtime;
9fbc42ea 1438#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 1439 struct cputime prev_cputime;
6a61671b
FW
1440#endif
1441#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1442 seqlock_t vtime_seqlock;
1443 unsigned long long vtime_snap;
1444 enum {
1445 VTIME_SLEEPING = 0,
1446 VTIME_USER,
1447 VTIME_SYS,
1448 } vtime_snap_whence;
d99ca3b9 1449#endif
1da177e4 1450 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1451 u64 start_time; /* monotonic time in nsec */
57e0be04 1452 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1453/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1454 unsigned long min_flt, maj_flt;
1455
f06febc9 1456 struct task_cputime cputime_expires;
1da177e4
LT
1457 struct list_head cpu_timers[3];
1458
1459/* process credentials */
1b0ba1c9 1460 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1461 * credentials (COW) */
1b0ba1c9 1462 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1463 * credentials (COW) */
36772092
PBG
1464 char comm[TASK_COMM_LEN]; /* executable name excluding path
1465 - access with [gs]et_task_comm (which lock
1466 it with task_lock())
221af7f8 1467 - initialized normally by setup_new_exec */
1da177e4
LT
1468/* file system info */
1469 int link_count, total_link_count;
3d5b6fcc 1470#ifdef CONFIG_SYSVIPC
1da177e4
LT
1471/* ipc stuff */
1472 struct sysv_sem sysvsem;
ab602f79 1473 struct sysv_shm sysvshm;
3d5b6fcc 1474#endif
e162b39a 1475#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1476/* hung task detection */
82a1fcb9
IM
1477 unsigned long last_switch_count;
1478#endif
1da177e4
LT
1479/* CPU-specific state of this task */
1480 struct thread_struct thread;
1481/* filesystem information */
1482 struct fs_struct *fs;
1483/* open file information */
1484 struct files_struct *files;
1651e14e 1485/* namespaces */
ab516013 1486 struct nsproxy *nsproxy;
1da177e4
LT
1487/* signal handlers */
1488 struct signal_struct *signal;
1489 struct sighand_struct *sighand;
1490
1491 sigset_t blocked, real_blocked;
f3de272b 1492 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1493 struct sigpending pending;
1494
1495 unsigned long sas_ss_sp;
1496 size_t sas_ss_size;
1497 int (*notifier)(void *priv);
1498 void *notifier_data;
1499 sigset_t *notifier_mask;
67d12145 1500 struct callback_head *task_works;
e73f8959 1501
1da177e4 1502 struct audit_context *audit_context;
bfef93a5 1503#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1504 kuid_t loginuid;
4746ec5b 1505 unsigned int sessionid;
bfef93a5 1506#endif
932ecebb 1507 struct seccomp seccomp;
1da177e4
LT
1508
1509/* Thread group tracking */
1510 u32 parent_exec_id;
1511 u32 self_exec_id;
58568d2a
MX
1512/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1513 * mempolicy */
1da177e4 1514 spinlock_t alloc_lock;
1da177e4 1515
b29739f9 1516 /* Protection of the PI data structures: */
1d615482 1517 raw_spinlock_t pi_lock;
b29739f9 1518
23f78d4a
IM
1519#ifdef CONFIG_RT_MUTEXES
1520 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1521 struct rb_root pi_waiters;
1522 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1523 /* Deadlock detection and priority inheritance handling */
1524 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1525#endif
1526
408894ee
IM
1527#ifdef CONFIG_DEBUG_MUTEXES
1528 /* mutex deadlock detection */
1529 struct mutex_waiter *blocked_on;
1530#endif
de30a2b3
IM
1531#ifdef CONFIG_TRACE_IRQFLAGS
1532 unsigned int irq_events;
de30a2b3 1533 unsigned long hardirq_enable_ip;
de30a2b3 1534 unsigned long hardirq_disable_ip;
fa1452e8 1535 unsigned int hardirq_enable_event;
de30a2b3 1536 unsigned int hardirq_disable_event;
fa1452e8
HS
1537 int hardirqs_enabled;
1538 int hardirq_context;
de30a2b3 1539 unsigned long softirq_disable_ip;
de30a2b3 1540 unsigned long softirq_enable_ip;
fa1452e8 1541 unsigned int softirq_disable_event;
de30a2b3 1542 unsigned int softirq_enable_event;
fa1452e8 1543 int softirqs_enabled;
de30a2b3
IM
1544 int softirq_context;
1545#endif
fbb9ce95 1546#ifdef CONFIG_LOCKDEP
bdb9441e 1547# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1548 u64 curr_chain_key;
1549 int lockdep_depth;
fbb9ce95 1550 unsigned int lockdep_recursion;
c7aceaba 1551 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1552 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1553#endif
408894ee 1554
1da177e4
LT
1555/* journalling filesystem info */
1556 void *journal_info;
1557
d89d8796 1558/* stacked block device info */
bddd87c7 1559 struct bio_list *bio_list;
d89d8796 1560
73c10101
JA
1561#ifdef CONFIG_BLOCK
1562/* stack plugging */
1563 struct blk_plug *plug;
1564#endif
1565
1da177e4
LT
1566/* VM state */
1567 struct reclaim_state *reclaim_state;
1568
1da177e4
LT
1569 struct backing_dev_info *backing_dev_info;
1570
1571 struct io_context *io_context;
1572
1573 unsigned long ptrace_message;
1574 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1575 struct task_io_accounting ioac;
8f0ab514 1576#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1577 u64 acct_rss_mem1; /* accumulated rss usage */
1578 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1579 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1580#endif
1581#ifdef CONFIG_CPUSETS
58568d2a 1582 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1583 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1584 int cpuset_mem_spread_rotor;
6adef3eb 1585 int cpuset_slab_spread_rotor;
1da177e4 1586#endif
ddbcc7e8 1587#ifdef CONFIG_CGROUPS
817929ec 1588 /* Control Group info protected by css_set_lock */
2c392b8c 1589 struct css_set __rcu *cgroups;
817929ec
PM
1590 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1591 struct list_head cg_list;
ddbcc7e8 1592#endif
42b2dd0a 1593#ifdef CONFIG_FUTEX
0771dfef 1594 struct robust_list_head __user *robust_list;
34f192c6
IM
1595#ifdef CONFIG_COMPAT
1596 struct compat_robust_list_head __user *compat_robust_list;
1597#endif
c87e2837
IM
1598 struct list_head pi_state_list;
1599 struct futex_pi_state *pi_state_cache;
c7aceaba 1600#endif
cdd6c482 1601#ifdef CONFIG_PERF_EVENTS
8dc85d54 1602 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1603 struct mutex perf_event_mutex;
1604 struct list_head perf_event_list;
a63eaf34 1605#endif
8f47b187
TG
1606#ifdef CONFIG_DEBUG_PREEMPT
1607 unsigned long preempt_disable_ip;
1608#endif
c7aceaba 1609#ifdef CONFIG_NUMA
58568d2a 1610 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1611 short il_next;
207205a2 1612 short pref_node_fork;
42b2dd0a 1613#endif
cbee9f88
PZ
1614#ifdef CONFIG_NUMA_BALANCING
1615 int numa_scan_seq;
cbee9f88 1616 unsigned int numa_scan_period;
598f0ec0 1617 unsigned int numa_scan_period_max;
de1c9ce6 1618 int numa_preferred_nid;
6b9a7460 1619 unsigned long numa_migrate_retry;
cbee9f88 1620 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1621 u64 last_task_numa_placement;
1622 u64 last_sum_exec_runtime;
cbee9f88 1623 struct callback_head numa_work;
f809ca9a 1624
8c8a743c
PZ
1625 struct list_head numa_entry;
1626 struct numa_group *numa_group;
1627
745d6147 1628 /*
44dba3d5
IM
1629 * numa_faults is an array split into four regions:
1630 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1631 * in this precise order.
1632 *
1633 * faults_memory: Exponential decaying average of faults on a per-node
1634 * basis. Scheduling placement decisions are made based on these
1635 * counts. The values remain static for the duration of a PTE scan.
1636 * faults_cpu: Track the nodes the process was running on when a NUMA
1637 * hinting fault was incurred.
1638 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1639 * during the current scan window. When the scan completes, the counts
1640 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1641 */
44dba3d5 1642 unsigned long *numa_faults;
83e1d2cd 1643 unsigned long total_numa_faults;
745d6147 1644
04bb2f94
RR
1645 /*
1646 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1647 * scan window were remote/local or failed to migrate. The task scan
1648 * period is adapted based on the locality of the faults with different
1649 * weights depending on whether they were shared or private faults
04bb2f94 1650 */
074c2381 1651 unsigned long numa_faults_locality[3];
04bb2f94 1652
b32e86b4 1653 unsigned long numa_pages_migrated;
cbee9f88
PZ
1654#endif /* CONFIG_NUMA_BALANCING */
1655
e56d0903 1656 struct rcu_head rcu;
b92ce558
JA
1657
1658 /*
1659 * cache last used pipe for splice
1660 */
1661 struct pipe_inode_info *splice_pipe;
5640f768
ED
1662
1663 struct page_frag task_frag;
1664
ca74e92b
SN
1665#ifdef CONFIG_TASK_DELAY_ACCT
1666 struct task_delay_info *delays;
f4f154fd
AM
1667#endif
1668#ifdef CONFIG_FAULT_INJECTION
1669 int make_it_fail;
ca74e92b 1670#endif
9d823e8f
WF
1671 /*
1672 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1673 * balance_dirty_pages() for some dirty throttling pause
1674 */
1675 int nr_dirtied;
1676 int nr_dirtied_pause;
83712358 1677 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1678
9745512c
AV
1679#ifdef CONFIG_LATENCYTOP
1680 int latency_record_count;
1681 struct latency_record latency_record[LT_SAVECOUNT];
1682#endif
6976675d
AV
1683 /*
1684 * time slack values; these are used to round up poll() and
1685 * select() etc timeout values. These are in nanoseconds.
1686 */
1687 unsigned long timer_slack_ns;
1688 unsigned long default_timer_slack_ns;
f8d570a4 1689
0b24becc
AR
1690#ifdef CONFIG_KASAN
1691 unsigned int kasan_depth;
1692#endif
fb52607a 1693#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1694 /* Index of current stored address in ret_stack */
f201ae23
FW
1695 int curr_ret_stack;
1696 /* Stack of return addresses for return function tracing */
1697 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1698 /* time stamp for last schedule */
1699 unsigned long long ftrace_timestamp;
f201ae23
FW
1700 /*
1701 * Number of functions that haven't been traced
1702 * because of depth overrun.
1703 */
1704 atomic_t trace_overrun;
380c4b14
FW
1705 /* Pause for the tracing */
1706 atomic_t tracing_graph_pause;
f201ae23 1707#endif
ea4e2bc4
SR
1708#ifdef CONFIG_TRACING
1709 /* state flags for use by tracers */
1710 unsigned long trace;
b1cff0ad 1711 /* bitmask and counter of trace recursion */
261842b7
SR
1712 unsigned long trace_recursion;
1713#endif /* CONFIG_TRACING */
6f185c29 1714#ifdef CONFIG_MEMCG
519e5247 1715 struct memcg_oom_info {
49426420
JW
1716 struct mem_cgroup *memcg;
1717 gfp_t gfp_mask;
1718 int order;
519e5247
JW
1719 unsigned int may_oom:1;
1720 } memcg_oom;
569b846d 1721#endif
0326f5a9
SD
1722#ifdef CONFIG_UPROBES
1723 struct uprobe_task *utask;
0326f5a9 1724#endif
cafe5635
KO
1725#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1726 unsigned int sequential_io;
1727 unsigned int sequential_io_avg;
1728#endif
8eb23b9f
PZ
1729#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1730 unsigned long task_state_change;
1731#endif
1da177e4
LT
1732};
1733
76e6eee0 1734/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1735#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1736
6688cc05
PZ
1737#define TNF_MIGRATED 0x01
1738#define TNF_NO_GROUP 0x02
dabe1d99 1739#define TNF_SHARED 0x04
04bb2f94 1740#define TNF_FAULT_LOCAL 0x08
074c2381 1741#define TNF_MIGRATE_FAIL 0x10
6688cc05 1742
cbee9f88 1743#ifdef CONFIG_NUMA_BALANCING
6688cc05 1744extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1745extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1746extern void set_numabalancing_state(bool enabled);
82727018 1747extern void task_numa_free(struct task_struct *p);
10f39042
RR
1748extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1749 int src_nid, int dst_cpu);
cbee9f88 1750#else
ac8e895b 1751static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1752 int flags)
cbee9f88
PZ
1753{
1754}
e29cf08b
MG
1755static inline pid_t task_numa_group_id(struct task_struct *p)
1756{
1757 return 0;
1758}
1a687c2e
MG
1759static inline void set_numabalancing_state(bool enabled)
1760{
1761}
82727018
RR
1762static inline void task_numa_free(struct task_struct *p)
1763{
1764}
10f39042
RR
1765static inline bool should_numa_migrate_memory(struct task_struct *p,
1766 struct page *page, int src_nid, int dst_cpu)
1767{
1768 return true;
1769}
cbee9f88
PZ
1770#endif
1771
e868171a 1772static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1773{
1774 return task->pids[PIDTYPE_PID].pid;
1775}
1776
e868171a 1777static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1778{
1779 return task->group_leader->pids[PIDTYPE_PID].pid;
1780}
1781
6dda81f4
ON
1782/*
1783 * Without tasklist or rcu lock it is not safe to dereference
1784 * the result of task_pgrp/task_session even if task == current,
1785 * we can race with another thread doing sys_setsid/sys_setpgid.
1786 */
e868171a 1787static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1788{
1789 return task->group_leader->pids[PIDTYPE_PGID].pid;
1790}
1791
e868171a 1792static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1793{
1794 return task->group_leader->pids[PIDTYPE_SID].pid;
1795}
1796
7af57294
PE
1797struct pid_namespace;
1798
1799/*
1800 * the helpers to get the task's different pids as they are seen
1801 * from various namespaces
1802 *
1803 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1804 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1805 * current.
7af57294
PE
1806 * task_xid_nr_ns() : id seen from the ns specified;
1807 *
1808 * set_task_vxid() : assigns a virtual id to a task;
1809 *
7af57294
PE
1810 * see also pid_nr() etc in include/linux/pid.h
1811 */
52ee2dfd
ON
1812pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1813 struct pid_namespace *ns);
7af57294 1814
e868171a 1815static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1816{
1817 return tsk->pid;
1818}
1819
52ee2dfd
ON
1820static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1821 struct pid_namespace *ns)
1822{
1823 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1824}
7af57294
PE
1825
1826static inline pid_t task_pid_vnr(struct task_struct *tsk)
1827{
52ee2dfd 1828 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1829}
1830
1831
e868171a 1832static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1833{
1834 return tsk->tgid;
1835}
1836
2f2a3a46 1837pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1838
1839static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1840{
1841 return pid_vnr(task_tgid(tsk));
1842}
1843
1844
80e0b6e8 1845static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1846static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1847{
1848 pid_t pid = 0;
1849
1850 rcu_read_lock();
1851 if (pid_alive(tsk))
1852 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1853 rcu_read_unlock();
1854
1855 return pid;
1856}
1857
1858static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1859{
1860 return task_ppid_nr_ns(tsk, &init_pid_ns);
1861}
1862
52ee2dfd
ON
1863static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1864 struct pid_namespace *ns)
7af57294 1865{
52ee2dfd 1866 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1867}
1868
7af57294
PE
1869static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1870{
52ee2dfd 1871 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1872}
1873
1874
52ee2dfd
ON
1875static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1876 struct pid_namespace *ns)
7af57294 1877{
52ee2dfd 1878 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1879}
1880
7af57294
PE
1881static inline pid_t task_session_vnr(struct task_struct *tsk)
1882{
52ee2dfd 1883 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1884}
1885
1b0f7ffd
ON
1886/* obsolete, do not use */
1887static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1888{
1889 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1890}
7af57294 1891
1da177e4
LT
1892/**
1893 * pid_alive - check that a task structure is not stale
1894 * @p: Task structure to be checked.
1895 *
1896 * Test if a process is not yet dead (at most zombie state)
1897 * If pid_alive fails, then pointers within the task structure
1898 * can be stale and must not be dereferenced.
e69f6186
YB
1899 *
1900 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 1901 */
ad36d282 1902static inline int pid_alive(const struct task_struct *p)
1da177e4 1903{
92476d7f 1904 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
1905}
1906
f400e198 1907/**
b460cbc5 1908 * is_global_init - check if a task structure is init
3260259f
HK
1909 * @tsk: Task structure to be checked.
1910 *
1911 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1912 *
1913 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1914 */
e868171a 1915static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
1916{
1917 return tsk->pid == 1;
1918}
b460cbc5 1919
9ec52099
CLG
1920extern struct pid *cad_pid;
1921
1da177e4 1922extern void free_task(struct task_struct *tsk);
1da177e4 1923#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 1924
158d9ebd 1925extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
1926
1927static inline void put_task_struct(struct task_struct *t)
1928{
1929 if (atomic_dec_and_test(&t->usage))
8c7904a0 1930 __put_task_struct(t);
e56d0903 1931}
1da177e4 1932
6a61671b
FW
1933#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1934extern void task_cputime(struct task_struct *t,
1935 cputime_t *utime, cputime_t *stime);
1936extern void task_cputime_scaled(struct task_struct *t,
1937 cputime_t *utimescaled, cputime_t *stimescaled);
1938extern cputime_t task_gtime(struct task_struct *t);
1939#else
6fac4829
FW
1940static inline void task_cputime(struct task_struct *t,
1941 cputime_t *utime, cputime_t *stime)
1942{
1943 if (utime)
1944 *utime = t->utime;
1945 if (stime)
1946 *stime = t->stime;
1947}
1948
1949static inline void task_cputime_scaled(struct task_struct *t,
1950 cputime_t *utimescaled,
1951 cputime_t *stimescaled)
1952{
1953 if (utimescaled)
1954 *utimescaled = t->utimescaled;
1955 if (stimescaled)
1956 *stimescaled = t->stimescaled;
1957}
6a61671b
FW
1958
1959static inline cputime_t task_gtime(struct task_struct *t)
1960{
1961 return t->gtime;
1962}
1963#endif
e80d0a1a
FW
1964extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1965extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 1966
1da177e4
LT
1967/*
1968 * Per process flags
1969 */
1da177e4 1970#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 1971#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 1972#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 1973#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 1974#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 1975#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
1976#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1977#define PF_DUMPCORE 0x00000200 /* dumped core */
1978#define PF_SIGNALED 0x00000400 /* killed by a signal */
1979#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 1980#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 1981#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 1982#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
1983#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1984#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1985#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1986#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 1987#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 1988#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 1989#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
1990#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1991#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 1992#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 1993#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 1994#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 1995#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 1996#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
1997
1998/*
1999 * Only the _current_ task can read/write to tsk->flags, but other
2000 * tasks can access tsk->flags in readonly mode for example
2001 * with tsk_used_math (like during threaded core dumping).
2002 * There is however an exception to this rule during ptrace
2003 * or during fork: the ptracer task is allowed to write to the
2004 * child->flags of its traced child (same goes for fork, the parent
2005 * can write to the child->flags), because we're guaranteed the
2006 * child is not running and in turn not changing child->flags
2007 * at the same time the parent does it.
2008 */
2009#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2010#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2011#define clear_used_math() clear_stopped_child_used_math(current)
2012#define set_used_math() set_stopped_child_used_math(current)
2013#define conditional_stopped_child_used_math(condition, child) \
2014 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2015#define conditional_used_math(condition) \
2016 conditional_stopped_child_used_math(condition, current)
2017#define copy_to_stopped_child_used_math(child) \
2018 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2019/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2020#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2021#define used_math() tsk_used_math(current)
2022
934f3072
JB
2023/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2024 * __GFP_FS is also cleared as it implies __GFP_IO.
2025 */
21caf2fc
ML
2026static inline gfp_t memalloc_noio_flags(gfp_t flags)
2027{
2028 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2029 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2030 return flags;
2031}
2032
2033static inline unsigned int memalloc_noio_save(void)
2034{
2035 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2036 current->flags |= PF_MEMALLOC_NOIO;
2037 return flags;
2038}
2039
2040static inline void memalloc_noio_restore(unsigned int flags)
2041{
2042 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2043}
2044
1d4457f9 2045/* Per-process atomic flags. */
a2b86f77 2046#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2047#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2048#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2049
1d4457f9 2050
e0e5070b
ZL
2051#define TASK_PFA_TEST(name, func) \
2052 static inline bool task_##func(struct task_struct *p) \
2053 { return test_bit(PFA_##name, &p->atomic_flags); }
2054#define TASK_PFA_SET(name, func) \
2055 static inline void task_set_##func(struct task_struct *p) \
2056 { set_bit(PFA_##name, &p->atomic_flags); }
2057#define TASK_PFA_CLEAR(name, func) \
2058 static inline void task_clear_##func(struct task_struct *p) \
2059 { clear_bit(PFA_##name, &p->atomic_flags); }
2060
2061TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2062TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2063
2ad654bc
ZL
2064TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2065TASK_PFA_SET(SPREAD_PAGE, spread_page)
2066TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2067
2068TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2069TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2070TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2071
e5c1902e 2072/*
a8f072c1 2073 * task->jobctl flags
e5c1902e 2074 */
a8f072c1 2075#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2076
a8f072c1
TH
2077#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2078#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2079#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2080#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2081#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2082#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2083#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2084
b76808e6
PD
2085#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2086#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2087#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2088#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2089#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2090#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2091#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2092
fb1d910c 2093#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2094#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2095
7dd3db54 2096extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2097 unsigned long mask);
73ddff2b 2098extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2099extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2100 unsigned long mask);
39efa3ef 2101
f41d911f
PM
2102static inline void rcu_copy_process(struct task_struct *p)
2103{
8315f422 2104#ifdef CONFIG_PREEMPT_RCU
f41d911f 2105 p->rcu_read_lock_nesting = 0;
1d082fd0 2106 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2107 p->rcu_blocked_node = NULL;
f41d911f 2108 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2109#endif /* #ifdef CONFIG_PREEMPT_RCU */
2110#ifdef CONFIG_TASKS_RCU
2111 p->rcu_tasks_holdout = false;
2112 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2113 p->rcu_tasks_idle_cpu = -1;
8315f422 2114#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2115}
2116
907aed48
MG
2117static inline void tsk_restore_flags(struct task_struct *task,
2118 unsigned long orig_flags, unsigned long flags)
2119{
2120 task->flags &= ~flags;
2121 task->flags |= orig_flags & flags;
2122}
2123
f82f8042
JL
2124extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2125 const struct cpumask *trial);
7f51412a
JL
2126extern int task_can_attach(struct task_struct *p,
2127 const struct cpumask *cs_cpus_allowed);
1da177e4 2128#ifdef CONFIG_SMP
1e1b6c51
KM
2129extern void do_set_cpus_allowed(struct task_struct *p,
2130 const struct cpumask *new_mask);
2131
cd8ba7cd 2132extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2133 const struct cpumask *new_mask);
1da177e4 2134#else
1e1b6c51
KM
2135static inline void do_set_cpus_allowed(struct task_struct *p,
2136 const struct cpumask *new_mask)
2137{
2138}
cd8ba7cd 2139static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2140 const struct cpumask *new_mask)
1da177e4 2141{
96f874e2 2142 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2143 return -EINVAL;
2144 return 0;
2145}
2146#endif
e0ad9556 2147
3451d024 2148#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2149void calc_load_enter_idle(void);
2150void calc_load_exit_idle(void);
2151#else
2152static inline void calc_load_enter_idle(void) { }
2153static inline void calc_load_exit_idle(void) { }
3451d024 2154#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2155
e0ad9556 2156#ifndef CONFIG_CPUMASK_OFFSTACK
cd8ba7cd
MT
2157static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2158{
2159 return set_cpus_allowed_ptr(p, &new_mask);
2160}
e0ad9556 2161#endif
1da177e4 2162
b342501c 2163/*
c676329a
PZ
2164 * Do not use outside of architecture code which knows its limitations.
2165 *
2166 * sched_clock() has no promise of monotonicity or bounded drift between
2167 * CPUs, use (which you should not) requires disabling IRQs.
2168 *
2169 * Please use one of the three interfaces below.
b342501c 2170 */
1bbfa6f2 2171extern unsigned long long notrace sched_clock(void);
c676329a 2172/*
489a71b0 2173 * See the comment in kernel/sched/clock.c
c676329a
PZ
2174 */
2175extern u64 cpu_clock(int cpu);
2176extern u64 local_clock(void);
545a2bf7 2177extern u64 running_clock(void);
c676329a
PZ
2178extern u64 sched_clock_cpu(int cpu);
2179
e436d800 2180
c1955a3d 2181extern void sched_clock_init(void);
3e51f33f 2182
c1955a3d 2183#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2184static inline void sched_clock_tick(void)
2185{
2186}
2187
2188static inline void sched_clock_idle_sleep_event(void)
2189{
2190}
2191
2192static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2193{
2194}
2195#else
c676329a
PZ
2196/*
2197 * Architectures can set this to 1 if they have specified
2198 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2199 * but then during bootup it turns out that sched_clock()
2200 * is reliable after all:
2201 */
35af99e6
PZ
2202extern int sched_clock_stable(void);
2203extern void set_sched_clock_stable(void);
2204extern void clear_sched_clock_stable(void);
c676329a 2205
3e51f33f
PZ
2206extern void sched_clock_tick(void);
2207extern void sched_clock_idle_sleep_event(void);
2208extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2209#endif
2210
b52bfee4
VP
2211#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2212/*
2213 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2214 * The reason for this explicit opt-in is not to have perf penalty with
2215 * slow sched_clocks.
2216 */
2217extern void enable_sched_clock_irqtime(void);
2218extern void disable_sched_clock_irqtime(void);
2219#else
2220static inline void enable_sched_clock_irqtime(void) {}
2221static inline void disable_sched_clock_irqtime(void) {}
2222#endif
2223
36c8b586 2224extern unsigned long long
41b86e9c 2225task_sched_runtime(struct task_struct *task);
1da177e4
LT
2226
2227/* sched_exec is called by processes performing an exec */
2228#ifdef CONFIG_SMP
2229extern void sched_exec(void);
2230#else
2231#define sched_exec() {}
2232#endif
2233
2aa44d05
IM
2234extern void sched_clock_idle_sleep_event(void);
2235extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2236
1da177e4
LT
2237#ifdef CONFIG_HOTPLUG_CPU
2238extern void idle_task_exit(void);
2239#else
2240static inline void idle_task_exit(void) {}
2241#endif
2242
3451d024 2243#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2244extern void wake_up_nohz_cpu(int cpu);
06d8308c 2245#else
1c20091e 2246static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2247#endif
2248
ce831b38
FW
2249#ifdef CONFIG_NO_HZ_FULL
2250extern bool sched_can_stop_tick(void);
265f22a9 2251extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2252#else
2253static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2254#endif
2255
5091faa4 2256#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2257extern void sched_autogroup_create_attach(struct task_struct *p);
2258extern void sched_autogroup_detach(struct task_struct *p);
2259extern void sched_autogroup_fork(struct signal_struct *sig);
2260extern void sched_autogroup_exit(struct signal_struct *sig);
2261#ifdef CONFIG_PROC_FS
2262extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2263extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2264#endif
2265#else
2266static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2267static inline void sched_autogroup_detach(struct task_struct *p) { }
2268static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2269static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2270#endif
2271
fa93384f 2272extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2273extern void set_user_nice(struct task_struct *p, long nice);
2274extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2275/**
2276 * task_nice - return the nice value of a given task.
2277 * @p: the task in question.
2278 *
2279 * Return: The nice value [ -20 ... 0 ... 19 ].
2280 */
2281static inline int task_nice(const struct task_struct *p)
2282{
2283 return PRIO_TO_NICE((p)->static_prio);
2284}
36c8b586
IM
2285extern int can_nice(const struct task_struct *p, const int nice);
2286extern int task_curr(const struct task_struct *p);
1da177e4 2287extern int idle_cpu(int cpu);
fe7de49f
KM
2288extern int sched_setscheduler(struct task_struct *, int,
2289 const struct sched_param *);
961ccddd 2290extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2291 const struct sched_param *);
d50dde5a
DF
2292extern int sched_setattr(struct task_struct *,
2293 const struct sched_attr *);
36c8b586 2294extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2295/**
2296 * is_idle_task - is the specified task an idle task?
fa757281 2297 * @p: the task in question.
e69f6186
YB
2298 *
2299 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2300 */
7061ca3b 2301static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2302{
2303 return p->pid == 0;
2304}
36c8b586
IM
2305extern struct task_struct *curr_task(int cpu);
2306extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2307
2308void yield(void);
2309
1da177e4
LT
2310union thread_union {
2311 struct thread_info thread_info;
2312 unsigned long stack[THREAD_SIZE/sizeof(long)];
2313};
2314
2315#ifndef __HAVE_ARCH_KSTACK_END
2316static inline int kstack_end(void *addr)
2317{
2318 /* Reliable end of stack detection:
2319 * Some APM bios versions misalign the stack
2320 */
2321 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2322}
2323#endif
2324
2325extern union thread_union init_thread_union;
2326extern struct task_struct init_task;
2327
2328extern struct mm_struct init_mm;
2329
198fe21b
PE
2330extern struct pid_namespace init_pid_ns;
2331
2332/*
2333 * find a task by one of its numerical ids
2334 *
198fe21b
PE
2335 * find_task_by_pid_ns():
2336 * finds a task by its pid in the specified namespace
228ebcbe
PE
2337 * find_task_by_vpid():
2338 * finds a task by its virtual pid
198fe21b 2339 *
e49859e7 2340 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2341 */
2342
228ebcbe
PE
2343extern struct task_struct *find_task_by_vpid(pid_t nr);
2344extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2345 struct pid_namespace *ns);
198fe21b 2346
1da177e4 2347/* per-UID process charging. */
7b44ab97 2348extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2349static inline struct user_struct *get_uid(struct user_struct *u)
2350{
2351 atomic_inc(&u->__count);
2352 return u;
2353}
2354extern void free_uid(struct user_struct *);
1da177e4
LT
2355
2356#include <asm/current.h>
2357
f0af911a 2358extern void xtime_update(unsigned long ticks);
1da177e4 2359
b3c97528
HH
2360extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2361extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2362extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2363#ifdef CONFIG_SMP
2364 extern void kick_process(struct task_struct *tsk);
2365#else
2366 static inline void kick_process(struct task_struct *tsk) { }
2367#endif
aab03e05 2368extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2369extern void sched_dead(struct task_struct *p);
1da177e4 2370
1da177e4
LT
2371extern void proc_caches_init(void);
2372extern void flush_signals(struct task_struct *);
3bcac026 2373extern void __flush_signals(struct task_struct *);
10ab825b 2374extern void ignore_signals(struct task_struct *);
1da177e4
LT
2375extern void flush_signal_handlers(struct task_struct *, int force_default);
2376extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2377
2378static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2379{
2380 unsigned long flags;
2381 int ret;
2382
2383 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2384 ret = dequeue_signal(tsk, mask, info);
2385 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2386
2387 return ret;
53c8f9f1 2388}
1da177e4
LT
2389
2390extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2391 sigset_t *mask);
2392extern void unblock_all_signals(void);
2393extern void release_task(struct task_struct * p);
2394extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2395extern int force_sigsegv(int, struct task_struct *);
2396extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2397extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2398extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2399extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2400 const struct cred *, u32);
c4b92fc1
EB
2401extern int kill_pgrp(struct pid *pid, int sig, int priv);
2402extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2403extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2404extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2405extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2406extern void force_sig(int, struct task_struct *);
1da177e4 2407extern int send_sig(int, struct task_struct *, int);
09faef11 2408extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2409extern struct sigqueue *sigqueue_alloc(void);
2410extern void sigqueue_free(struct sigqueue *);
ac5c2153 2411extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2412extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2413
51a7b448
AV
2414static inline void restore_saved_sigmask(void)
2415{
2416 if (test_and_clear_restore_sigmask())
77097ae5 2417 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2418}
2419
b7f9a11a
AV
2420static inline sigset_t *sigmask_to_save(void)
2421{
2422 sigset_t *res = &current->blocked;
2423 if (unlikely(test_restore_sigmask()))
2424 res = &current->saved_sigmask;
2425 return res;
2426}
2427
9ec52099
CLG
2428static inline int kill_cad_pid(int sig, int priv)
2429{
2430 return kill_pid(cad_pid, sig, priv);
2431}
2432
1da177e4
LT
2433/* These can be the second arg to send_sig_info/send_group_sig_info. */
2434#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2435#define SEND_SIG_PRIV ((struct siginfo *) 1)
2436#define SEND_SIG_FORCED ((struct siginfo *) 2)
2437
2a855dd0
SAS
2438/*
2439 * True if we are on the alternate signal stack.
2440 */
1da177e4
LT
2441static inline int on_sig_stack(unsigned long sp)
2442{
2a855dd0
SAS
2443#ifdef CONFIG_STACK_GROWSUP
2444 return sp >= current->sas_ss_sp &&
2445 sp - current->sas_ss_sp < current->sas_ss_size;
2446#else
2447 return sp > current->sas_ss_sp &&
2448 sp - current->sas_ss_sp <= current->sas_ss_size;
2449#endif
1da177e4
LT
2450}
2451
2452static inline int sas_ss_flags(unsigned long sp)
2453{
72f15c03
RW
2454 if (!current->sas_ss_size)
2455 return SS_DISABLE;
2456
2457 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2458}
2459
5a1b98d3
AV
2460static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2461{
2462 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2463#ifdef CONFIG_STACK_GROWSUP
2464 return current->sas_ss_sp;
2465#else
2466 return current->sas_ss_sp + current->sas_ss_size;
2467#endif
2468 return sp;
2469}
2470
1da177e4
LT
2471/*
2472 * Routines for handling mm_structs
2473 */
2474extern struct mm_struct * mm_alloc(void);
2475
2476/* mmdrop drops the mm and the page tables */
b3c97528 2477extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2478static inline void mmdrop(struct mm_struct * mm)
2479{
6fb43d7b 2480 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2481 __mmdrop(mm);
2482}
2483
2484/* mmput gets rid of the mappings and all user-space */
2485extern void mmput(struct mm_struct *);
2486/* Grab a reference to a task's mm, if it is not already going away */
2487extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2488/*
2489 * Grab a reference to a task's mm, if it is not already going away
2490 * and ptrace_may_access with the mode parameter passed to it
2491 * succeeds.
2492 */
2493extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2494/* Remove the current tasks stale references to the old mm_struct */
2495extern void mm_release(struct task_struct *, struct mm_struct *);
2496
6f2c55b8 2497extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2498 struct task_struct *);
1da177e4
LT
2499extern void flush_thread(void);
2500extern void exit_thread(void);
2501
1da177e4 2502extern void exit_files(struct task_struct *);
a7e5328a 2503extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2504
1da177e4 2505extern void exit_itimers(struct signal_struct *);
cbaffba1 2506extern void flush_itimer_signals(void);
1da177e4 2507
9402c95f 2508extern void do_group_exit(int);
1da177e4 2509
c4ad8f98 2510extern int do_execve(struct filename *,
d7627467 2511 const char __user * const __user *,
da3d4c5f 2512 const char __user * const __user *);
51f39a1f
DD
2513extern int do_execveat(int, struct filename *,
2514 const char __user * const __user *,
2515 const char __user * const __user *,
2516 int);
e80d6661 2517extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2518struct task_struct *fork_idle(int);
2aa3a7f8 2519extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2520
82b89778
AH
2521extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2522static inline void set_task_comm(struct task_struct *tsk, const char *from)
2523{
2524 __set_task_comm(tsk, from, false);
2525}
59714d65 2526extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2527
2528#ifdef CONFIG_SMP
317f3941 2529void scheduler_ipi(void);
85ba2d86 2530extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2531#else
184748cc 2532static inline void scheduler_ipi(void) { }
85ba2d86
RM
2533static inline unsigned long wait_task_inactive(struct task_struct *p,
2534 long match_state)
2535{
2536 return 1;
2537}
1da177e4
LT
2538#endif
2539
05725f7e
JP
2540#define next_task(p) \
2541 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2542
2543#define for_each_process(p) \
2544 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2545
5bb459bb 2546extern bool current_is_single_threaded(void);
d84f4f99 2547
1da177e4
LT
2548/*
2549 * Careful: do_each_thread/while_each_thread is a double loop so
2550 * 'break' will not work as expected - use goto instead.
2551 */
2552#define do_each_thread(g, t) \
2553 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2554
2555#define while_each_thread(g, t) \
2556 while ((t = next_thread(t)) != g)
2557
0c740d0a
ON
2558#define __for_each_thread(signal, t) \
2559 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2560
2561#define for_each_thread(p, t) \
2562 __for_each_thread((p)->signal, t)
2563
2564/* Careful: this is a double loop, 'break' won't work as expected. */
2565#define for_each_process_thread(p, t) \
2566 for_each_process(p) for_each_thread(p, t)
2567
7e49827c
ON
2568static inline int get_nr_threads(struct task_struct *tsk)
2569{
b3ac022c 2570 return tsk->signal->nr_threads;
7e49827c
ON
2571}
2572
087806b1
ON
2573static inline bool thread_group_leader(struct task_struct *p)
2574{
2575 return p->exit_signal >= 0;
2576}
1da177e4 2577
0804ef4b
EB
2578/* Do to the insanities of de_thread it is possible for a process
2579 * to have the pid of the thread group leader without actually being
2580 * the thread group leader. For iteration through the pids in proc
2581 * all we care about is that we have a task with the appropriate
2582 * pid, we don't actually care if we have the right task.
2583 */
e1403b8e 2584static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2585{
e1403b8e 2586 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2587}
2588
bac0abd6 2589static inline
e1403b8e 2590bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2591{
e1403b8e 2592 return p1->signal == p2->signal;
bac0abd6
PE
2593}
2594
36c8b586 2595static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2596{
05725f7e
JP
2597 return list_entry_rcu(p->thread_group.next,
2598 struct task_struct, thread_group);
47e65328
ON
2599}
2600
e868171a 2601static inline int thread_group_empty(struct task_struct *p)
1da177e4 2602{
47e65328 2603 return list_empty(&p->thread_group);
1da177e4
LT
2604}
2605
2606#define delay_group_leader(p) \
2607 (thread_group_leader(p) && !thread_group_empty(p))
2608
1da177e4 2609/*
260ea101 2610 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2611 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2612 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2613 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2614 *
2615 * Nests both inside and outside of read_lock(&tasklist_lock).
2616 * It must not be nested with write_lock_irq(&tasklist_lock),
2617 * neither inside nor outside.
2618 */
2619static inline void task_lock(struct task_struct *p)
2620{
2621 spin_lock(&p->alloc_lock);
2622}
2623
2624static inline void task_unlock(struct task_struct *p)
2625{
2626 spin_unlock(&p->alloc_lock);
2627}
2628
b8ed374e 2629extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2630 unsigned long *flags);
2631
9388dc30
AV
2632static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2633 unsigned long *flags)
2634{
2635 struct sighand_struct *ret;
2636
2637 ret = __lock_task_sighand(tsk, flags);
2638 (void)__cond_lock(&tsk->sighand->siglock, ret);
2639 return ret;
2640}
b8ed374e 2641
f63ee72e
ON
2642static inline void unlock_task_sighand(struct task_struct *tsk,
2643 unsigned long *flags)
2644{
2645 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2646}
2647
4714d1d3 2648#ifdef CONFIG_CGROUPS
257058ae 2649static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2650{
257058ae 2651 down_read(&tsk->signal->group_rwsem);
4714d1d3 2652}
257058ae 2653static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2654{
257058ae 2655 up_read(&tsk->signal->group_rwsem);
4714d1d3 2656}
77e4ef99
TH
2657
2658/**
2659 * threadgroup_lock - lock threadgroup
2660 * @tsk: member task of the threadgroup to lock
2661 *
2662 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2663 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
e56fb287
ON
2664 * change ->group_leader/pid. This is useful for cases where the threadgroup
2665 * needs to stay stable across blockable operations.
77e4ef99
TH
2666 *
2667 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2668 * synchronization. While held, no new task will be added to threadgroup
2669 * and no existing live task will have its PF_EXITING set.
2670 *
e56fb287
ON
2671 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2672 * sub-thread becomes a new leader.
77e4ef99 2673 */
257058ae 2674static inline void threadgroup_lock(struct task_struct *tsk)
4714d1d3 2675{
257058ae 2676 down_write(&tsk->signal->group_rwsem);
4714d1d3 2677}
77e4ef99
TH
2678
2679/**
2680 * threadgroup_unlock - unlock threadgroup
2681 * @tsk: member task of the threadgroup to unlock
2682 *
2683 * Reverse threadgroup_lock().
2684 */
257058ae 2685static inline void threadgroup_unlock(struct task_struct *tsk)
4714d1d3 2686{
257058ae 2687 up_write(&tsk->signal->group_rwsem);
4714d1d3
BB
2688}
2689#else
257058ae
TH
2690static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2691static inline void threadgroup_change_end(struct task_struct *tsk) {}
2692static inline void threadgroup_lock(struct task_struct *tsk) {}
2693static inline void threadgroup_unlock(struct task_struct *tsk) {}
4714d1d3
BB
2694#endif
2695
f037360f
AV
2696#ifndef __HAVE_THREAD_FUNCTIONS
2697
f7e4217b
RZ
2698#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2699#define task_stack_page(task) ((task)->stack)
a1261f54 2700
10ebffde
AV
2701static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2702{
2703 *task_thread_info(p) = *task_thread_info(org);
2704 task_thread_info(p)->task = p;
2705}
2706
6a40281a
CE
2707/*
2708 * Return the address of the last usable long on the stack.
2709 *
2710 * When the stack grows down, this is just above the thread
2711 * info struct. Going any lower will corrupt the threadinfo.
2712 *
2713 * When the stack grows up, this is the highest address.
2714 * Beyond that position, we corrupt data on the next page.
2715 */
10ebffde
AV
2716static inline unsigned long *end_of_stack(struct task_struct *p)
2717{
6a40281a
CE
2718#ifdef CONFIG_STACK_GROWSUP
2719 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2720#else
f7e4217b 2721 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2722#endif
10ebffde
AV
2723}
2724
f037360f 2725#endif
a70857e4
AT
2726#define task_stack_end_corrupted(task) \
2727 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2728
8b05c7e6
FT
2729static inline int object_is_on_stack(void *obj)
2730{
2731 void *stack = task_stack_page(current);
2732
2733 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2734}
2735
8c9843e5
BH
2736extern void thread_info_cache_init(void);
2737
7c9f8861
ES
2738#ifdef CONFIG_DEBUG_STACK_USAGE
2739static inline unsigned long stack_not_used(struct task_struct *p)
2740{
2741 unsigned long *n = end_of_stack(p);
2742
2743 do { /* Skip over canary */
2744 n++;
2745 } while (!*n);
2746
2747 return (unsigned long)n - (unsigned long)end_of_stack(p);
2748}
2749#endif
d4311ff1 2750extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2751
1da177e4
LT
2752/* set thread flags in other task's structures
2753 * - see asm/thread_info.h for TIF_xxxx flags available
2754 */
2755static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2756{
a1261f54 2757 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2758}
2759
2760static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2761{
a1261f54 2762 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2763}
2764
2765static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2766{
a1261f54 2767 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2768}
2769
2770static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2771{
a1261f54 2772 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2773}
2774
2775static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2776{
a1261f54 2777 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2778}
2779
2780static inline void set_tsk_need_resched(struct task_struct *tsk)
2781{
2782 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2783}
2784
2785static inline void clear_tsk_need_resched(struct task_struct *tsk)
2786{
2787 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2788}
2789
8ae121ac
GH
2790static inline int test_tsk_need_resched(struct task_struct *tsk)
2791{
2792 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2793}
2794
690cc3ff
EB
2795static inline int restart_syscall(void)
2796{
2797 set_tsk_thread_flag(current, TIF_SIGPENDING);
2798 return -ERESTARTNOINTR;
2799}
2800
1da177e4
LT
2801static inline int signal_pending(struct task_struct *p)
2802{
2803 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2804}
f776d12d 2805
d9588725
RM
2806static inline int __fatal_signal_pending(struct task_struct *p)
2807{
2808 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2809}
f776d12d
MW
2810
2811static inline int fatal_signal_pending(struct task_struct *p)
2812{
2813 return signal_pending(p) && __fatal_signal_pending(p);
2814}
2815
16882c1e
ON
2816static inline int signal_pending_state(long state, struct task_struct *p)
2817{
2818 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2819 return 0;
2820 if (!signal_pending(p))
2821 return 0;
2822
16882c1e
ON
2823 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2824}
2825
1da177e4
LT
2826/*
2827 * cond_resched() and cond_resched_lock(): latency reduction via
2828 * explicit rescheduling in places that are safe. The return
2829 * value indicates whether a reschedule was done in fact.
2830 * cond_resched_lock() will drop the spinlock before scheduling,
2831 * cond_resched_softirq() will enable bhs before scheduling.
2832 */
c3921ab7 2833extern int _cond_resched(void);
6f80bd98 2834
613afbf8 2835#define cond_resched() ({ \
3427445a 2836 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2837 _cond_resched(); \
2838})
6f80bd98 2839
613afbf8
FW
2840extern int __cond_resched_lock(spinlock_t *lock);
2841
bdd4e85d 2842#ifdef CONFIG_PREEMPT_COUNT
716a4234 2843#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
02b67cc3 2844#else
716a4234 2845#define PREEMPT_LOCK_OFFSET 0
02b67cc3 2846#endif
716a4234 2847
613afbf8 2848#define cond_resched_lock(lock) ({ \
3427445a 2849 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2850 __cond_resched_lock(lock); \
2851})
2852
2853extern int __cond_resched_softirq(void);
2854
75e1056f 2855#define cond_resched_softirq() ({ \
3427445a 2856 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2857 __cond_resched_softirq(); \
613afbf8 2858})
1da177e4 2859
f6f3c437
SH
2860static inline void cond_resched_rcu(void)
2861{
2862#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2863 rcu_read_unlock();
2864 cond_resched();
2865 rcu_read_lock();
2866#endif
2867}
2868
1da177e4
LT
2869/*
2870 * Does a critical section need to be broken due to another
95c354fe
NP
2871 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2872 * but a general need for low latency)
1da177e4 2873 */
95c354fe 2874static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2875{
95c354fe
NP
2876#ifdef CONFIG_PREEMPT
2877 return spin_is_contended(lock);
2878#else
1da177e4 2879 return 0;
95c354fe 2880#endif
1da177e4
LT
2881}
2882
ee761f62
TG
2883/*
2884 * Idle thread specific functions to determine the need_resched
69dd0f84 2885 * polling state.
ee761f62 2886 */
69dd0f84 2887#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2888static inline int tsk_is_polling(struct task_struct *p)
2889{
2890 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2891}
ea811747
PZ
2892
2893static inline void __current_set_polling(void)
3a98f871
TG
2894{
2895 set_thread_flag(TIF_POLLING_NRFLAG);
2896}
2897
ea811747
PZ
2898static inline bool __must_check current_set_polling_and_test(void)
2899{
2900 __current_set_polling();
2901
2902 /*
2903 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2904 * paired by resched_curr()
ea811747 2905 */
4e857c58 2906 smp_mb__after_atomic();
ea811747
PZ
2907
2908 return unlikely(tif_need_resched());
2909}
2910
2911static inline void __current_clr_polling(void)
3a98f871
TG
2912{
2913 clear_thread_flag(TIF_POLLING_NRFLAG);
2914}
ea811747
PZ
2915
2916static inline bool __must_check current_clr_polling_and_test(void)
2917{
2918 __current_clr_polling();
2919
2920 /*
2921 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2922 * paired by resched_curr()
ea811747 2923 */
4e857c58 2924 smp_mb__after_atomic();
ea811747
PZ
2925
2926 return unlikely(tif_need_resched());
2927}
2928
ee761f62
TG
2929#else
2930static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
2931static inline void __current_set_polling(void) { }
2932static inline void __current_clr_polling(void) { }
2933
2934static inline bool __must_check current_set_polling_and_test(void)
2935{
2936 return unlikely(tif_need_resched());
2937}
2938static inline bool __must_check current_clr_polling_and_test(void)
2939{
2940 return unlikely(tif_need_resched());
2941}
ee761f62
TG
2942#endif
2943
8cb75e0c
PZ
2944static inline void current_clr_polling(void)
2945{
2946 __current_clr_polling();
2947
2948 /*
2949 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2950 * Once the bit is cleared, we'll get IPIs with every new
2951 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2952 * fold.
2953 */
8875125e 2954 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
2955
2956 preempt_fold_need_resched();
2957}
2958
75f93fed
PZ
2959static __always_inline bool need_resched(void)
2960{
2961 return unlikely(tif_need_resched());
2962}
2963
f06febc9
FM
2964/*
2965 * Thread group CPU time accounting.
2966 */
4cd4c1b4 2967void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 2968void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 2969
490dea45 2970static inline void thread_group_cputime_init(struct signal_struct *sig)
f06febc9 2971{
ee30a7b2 2972 raw_spin_lock_init(&sig->cputimer.lock);
f06febc9
FM
2973}
2974
7bb44ade
RM
2975/*
2976 * Reevaluate whether the task has signals pending delivery.
2977 * Wake the task if so.
2978 * This is required every time the blocked sigset_t changes.
2979 * callers must hold sighand->siglock.
2980 */
2981extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
2982extern void recalc_sigpending(void);
2983
910ffdb1
ON
2984extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2985
2986static inline void signal_wake_up(struct task_struct *t, bool resume)
2987{
2988 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2989}
2990static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2991{
2992 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2993}
1da177e4
LT
2994
2995/*
2996 * Wrappers for p->thread_info->cpu access. No-op on UP.
2997 */
2998#ifdef CONFIG_SMP
2999
3000static inline unsigned int task_cpu(const struct task_struct *p)
3001{
a1261f54 3002 return task_thread_info(p)->cpu;
1da177e4
LT
3003}
3004
b32e86b4
IM
3005static inline int task_node(const struct task_struct *p)
3006{
3007 return cpu_to_node(task_cpu(p));
3008}
3009
c65cc870 3010extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3011
3012#else
3013
3014static inline unsigned int task_cpu(const struct task_struct *p)
3015{
3016 return 0;
3017}
3018
3019static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3020{
3021}
3022
3023#endif /* CONFIG_SMP */
3024
96f874e2
RR
3025extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3026extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3027
7c941438 3028#ifdef CONFIG_CGROUP_SCHED
07e06b01 3029extern struct task_group root_task_group;
8323f26c 3030#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3031
54e99124
DG
3032extern int task_can_switch_user(struct user_struct *up,
3033 struct task_struct *tsk);
3034
4b98d11b
AD
3035#ifdef CONFIG_TASK_XACCT
3036static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3037{
940389b8 3038 tsk->ioac.rchar += amt;
4b98d11b
AD
3039}
3040
3041static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3042{
940389b8 3043 tsk->ioac.wchar += amt;
4b98d11b
AD
3044}
3045
3046static inline void inc_syscr(struct task_struct *tsk)
3047{
940389b8 3048 tsk->ioac.syscr++;
4b98d11b
AD
3049}
3050
3051static inline void inc_syscw(struct task_struct *tsk)
3052{
940389b8 3053 tsk->ioac.syscw++;
4b98d11b
AD
3054}
3055#else
3056static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3057{
3058}
3059
3060static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3061{
3062}
3063
3064static inline void inc_syscr(struct task_struct *tsk)
3065{
3066}
3067
3068static inline void inc_syscw(struct task_struct *tsk)
3069{
3070}
3071#endif
3072
82455257
DH
3073#ifndef TASK_SIZE_OF
3074#define TASK_SIZE_OF(tsk) TASK_SIZE
3075#endif
3076
f98bafa0 3077#ifdef CONFIG_MEMCG
cf475ad2 3078extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3079#else
3080static inline void mm_update_next_owner(struct mm_struct *mm)
3081{
3082}
f98bafa0 3083#endif /* CONFIG_MEMCG */
cf475ad2 3084
3e10e716
JS
3085static inline unsigned long task_rlimit(const struct task_struct *tsk,
3086 unsigned int limit)
3087{
3088 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
3089}
3090
3091static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3092 unsigned int limit)
3093{
3094 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
3095}
3096
3097static inline unsigned long rlimit(unsigned int limit)
3098{
3099 return task_rlimit(current, limit);
3100}
3101
3102static inline unsigned long rlimit_max(unsigned int limit)
3103{
3104 return task_rlimit_max(current, limit);
3105}
3106
1da177e4 3107#endif