]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/linux/sched.h
function_graph: Make ftrace_push_return_trace() static
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
a3b6714e 24#include <linux/resource.h>
9745512c 25#include <linux/latencytop.h>
5eca1c10
IM
26#include <linux/sched/prio.h>
27#include <linux/signal_types.h>
eb414681 28#include <linux/psi_types.h>
5eca1c10
IM
29#include <linux/mm_types_task.h>
30#include <linux/task_io_accounting.h>
d7822b1e 31#include <linux/rseq.h>
a3b6714e 32
5eca1c10 33/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 34struct audit_context;
c7af7877 35struct backing_dev_info;
bddd87c7 36struct bio_list;
73c10101 37struct blk_plug;
c7af7877 38struct cfs_rq;
c7af7877
IM
39struct fs_struct;
40struct futex_pi_state;
41struct io_context;
42struct mempolicy;
89076bc3 43struct nameidata;
c7af7877
IM
44struct nsproxy;
45struct perf_event_context;
46struct pid_namespace;
47struct pipe_inode_info;
48struct rcu_node;
49struct reclaim_state;
50struct robust_list_head;
51struct sched_attr;
52struct sched_param;
43ae34cb 53struct seq_file;
c7af7877
IM
54struct sighand_struct;
55struct signal_struct;
56struct task_delay_info;
4cf86d77 57struct task_group;
1da177e4 58
4a8342d2
LT
59/*
60 * Task state bitmask. NOTE! These bits are also
61 * encoded in fs/proc/array.c: get_task_state().
62 *
63 * We have two separate sets of flags: task->state
64 * is about runnability, while task->exit_state are
65 * about the task exiting. Confusing, but this way
66 * modifying one set can't modify the other one by
67 * mistake.
68 */
5eca1c10
IM
69
70/* Used in tsk->state: */
92c4bc9f
PZ
71#define TASK_RUNNING 0x0000
72#define TASK_INTERRUPTIBLE 0x0001
73#define TASK_UNINTERRUPTIBLE 0x0002
74#define __TASK_STOPPED 0x0004
75#define __TASK_TRACED 0x0008
5eca1c10 76/* Used in tsk->exit_state: */
92c4bc9f
PZ
77#define EXIT_DEAD 0x0010
78#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
79#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
80/* Used in tsk->state again: */
8ef9925b
PZ
81#define TASK_PARKED 0x0040
82#define TASK_DEAD 0x0080
83#define TASK_WAKEKILL 0x0100
84#define TASK_WAKING 0x0200
92c4bc9f
PZ
85#define TASK_NOLOAD 0x0400
86#define TASK_NEW 0x0800
87#define TASK_STATE_MAX 0x1000
5eca1c10 88
5eca1c10
IM
89/* Convenience macros for the sake of set_current_state: */
90#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
91#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
92#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
93
94#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
95
96/* Convenience macros for the sake of wake_up(): */
97#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
98
99/* get_task_state(): */
100#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
102 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
103 TASK_PARKED)
5eca1c10
IM
104
105#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
106
107#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
108
109#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
110
111#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
112 (task->flags & PF_FROZEN) == 0 && \
113 (task->state & TASK_NOLOAD) == 0)
1da177e4 114
8eb23b9f
PZ
115#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
116
b5bf9a90
PZ
117/*
118 * Special states are those that do not use the normal wait-loop pattern. See
119 * the comment with set_special_state().
120 */
121#define is_special_task_state(state) \
1cef1150 122 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 123
8eb23b9f
PZ
124#define __set_current_state(state_value) \
125 do { \
b5bf9a90 126 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
127 current->task_state_change = _THIS_IP_; \
128 current->state = (state_value); \
129 } while (0)
b5bf9a90 130
8eb23b9f
PZ
131#define set_current_state(state_value) \
132 do { \
b5bf9a90 133 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 134 current->task_state_change = _THIS_IP_; \
a2250238 135 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
136 } while (0)
137
b5bf9a90
PZ
138#define set_special_state(state_value) \
139 do { \
140 unsigned long flags; /* may shadow */ \
141 WARN_ON_ONCE(!is_special_task_state(state_value)); \
142 raw_spin_lock_irqsave(&current->pi_lock, flags); \
143 current->task_state_change = _THIS_IP_; \
144 current->state = (state_value); \
145 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
146 } while (0)
8eb23b9f 147#else
498d0c57
AM
148/*
149 * set_current_state() includes a barrier so that the write of current->state
150 * is correctly serialised wrt the caller's subsequent test of whether to
151 * actually sleep:
152 *
a2250238 153 * for (;;) {
498d0c57 154 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
155 * if (!need_sleep)
156 * break;
157 *
158 * schedule();
159 * }
160 * __set_current_state(TASK_RUNNING);
161 *
162 * If the caller does not need such serialisation (because, for instance, the
163 * condition test and condition change and wakeup are under the same lock) then
164 * use __set_current_state().
165 *
166 * The above is typically ordered against the wakeup, which does:
167 *
b5bf9a90
PZ
168 * need_sleep = false;
169 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 170 *
7696f991
AP
171 * where wake_up_state() executes a full memory barrier before accessing the
172 * task state.
a2250238
PZ
173 *
174 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
175 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
176 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 177 *
b5bf9a90
PZ
178 * However, with slightly different timing the wakeup TASK_RUNNING store can
179 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
180 * a problem either because that will result in one extra go around the loop
181 * and our @cond test will save the day.
498d0c57 182 *
a2250238 183 * Also see the comments of try_to_wake_up().
498d0c57 184 */
b5bf9a90
PZ
185#define __set_current_state(state_value) \
186 current->state = (state_value)
187
188#define set_current_state(state_value) \
189 smp_store_mb(current->state, (state_value))
190
191/*
192 * set_special_state() should be used for those states when the blocking task
193 * can not use the regular condition based wait-loop. In that case we must
194 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
195 * will not collide with our state change.
196 */
197#define set_special_state(state_value) \
198 do { \
199 unsigned long flags; /* may shadow */ \
200 raw_spin_lock_irqsave(&current->pi_lock, flags); \
201 current->state = (state_value); \
202 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
203 } while (0)
204
8eb23b9f
PZ
205#endif
206
5eca1c10
IM
207/* Task command name length: */
208#define TASK_COMM_LEN 16
1da177e4 209
1da177e4
LT
210extern void scheduler_tick(void);
211
5eca1c10
IM
212#define MAX_SCHEDULE_TIMEOUT LONG_MAX
213
214extern long schedule_timeout(long timeout);
215extern long schedule_timeout_interruptible(long timeout);
216extern long schedule_timeout_killable(long timeout);
217extern long schedule_timeout_uninterruptible(long timeout);
218extern long schedule_timeout_idle(long timeout);
1da177e4 219asmlinkage void schedule(void);
c5491ea7 220extern void schedule_preempt_disabled(void);
1da177e4 221
10ab5643
TH
222extern int __must_check io_schedule_prepare(void);
223extern void io_schedule_finish(int token);
9cff8ade 224extern long io_schedule_timeout(long timeout);
10ab5643 225extern void io_schedule(void);
9cff8ade 226
d37f761d 227/**
0ba42a59 228 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
229 * @utime: time spent in user mode
230 * @stime: time spent in system mode
9d7fb042 231 * @lock: protects the above two fields
d37f761d 232 *
9d7fb042
PZ
233 * Stores previous user/system time values such that we can guarantee
234 * monotonicity.
d37f761d 235 */
9d7fb042
PZ
236struct prev_cputime {
237#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
238 u64 utime;
239 u64 stime;
240 raw_spinlock_t lock;
9d7fb042 241#endif
d37f761d
FW
242};
243
f06febc9
FM
244/**
245 * struct task_cputime - collected CPU time counts
5613fda9
FW
246 * @utime: time spent in user mode, in nanoseconds
247 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 248 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 249 *
9d7fb042
PZ
250 * This structure groups together three kinds of CPU time that are tracked for
251 * threads and thread groups. Most things considering CPU time want to group
252 * these counts together and treat all three of them in parallel.
f06febc9
FM
253 */
254struct task_cputime {
5eca1c10
IM
255 u64 utime;
256 u64 stime;
257 unsigned long long sum_exec_runtime;
f06febc9 258};
9d7fb042 259
5eca1c10
IM
260/* Alternate field names when used on cache expirations: */
261#define virt_exp utime
262#define prof_exp stime
263#define sched_exp sum_exec_runtime
f06febc9 264
bac5b6b6
FW
265enum vtime_state {
266 /* Task is sleeping or running in a CPU with VTIME inactive: */
267 VTIME_INACTIVE = 0,
268 /* Task runs in userspace in a CPU with VTIME active: */
269 VTIME_USER,
270 /* Task runs in kernelspace in a CPU with VTIME active: */
271 VTIME_SYS,
272};
273
274struct vtime {
275 seqcount_t seqcount;
276 unsigned long long starttime;
277 enum vtime_state state;
2a42eb95
WL
278 u64 utime;
279 u64 stime;
280 u64 gtime;
bac5b6b6
FW
281};
282
1da177e4 283struct sched_info {
7f5f8e8d 284#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
285 /* Cumulative counters: */
286
287 /* # of times we have run on this CPU: */
288 unsigned long pcount;
289
290 /* Time spent waiting on a runqueue: */
291 unsigned long long run_delay;
292
293 /* Timestamps: */
294
295 /* When did we last run on a CPU? */
296 unsigned long long last_arrival;
297
298 /* When were we last queued to run? */
299 unsigned long long last_queued;
1da177e4 300
f6db8347 301#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 302};
1da177e4 303
6ecdd749
YD
304/*
305 * Integer metrics need fixed point arithmetic, e.g., sched/fair
306 * has a few: load, load_avg, util_avg, freq, and capacity.
307 *
308 * We define a basic fixed point arithmetic range, and then formalize
309 * all these metrics based on that basic range.
310 */
5eca1c10
IM
311# define SCHED_FIXEDPOINT_SHIFT 10
312# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 313
20b8a59f 314struct load_weight {
5eca1c10
IM
315 unsigned long weight;
316 u32 inv_weight;
20b8a59f
IM
317};
318
7f65ea42
PB
319/**
320 * struct util_est - Estimation utilization of FAIR tasks
321 * @enqueued: instantaneous estimated utilization of a task/cpu
322 * @ewma: the Exponential Weighted Moving Average (EWMA)
323 * utilization of a task
324 *
325 * Support data structure to track an Exponential Weighted Moving Average
326 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
327 * average each time a task completes an activation. Sample's weight is chosen
328 * so that the EWMA will be relatively insensitive to transient changes to the
329 * task's workload.
330 *
331 * The enqueued attribute has a slightly different meaning for tasks and cpus:
332 * - task: the task's util_avg at last task dequeue time
333 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
334 * Thus, the util_est.enqueued of a task represents the contribution on the
335 * estimated utilization of the CPU where that task is currently enqueued.
336 *
337 * Only for tasks we track a moving average of the past instantaneous
338 * estimated utilization. This allows to absorb sporadic drops in utilization
339 * of an otherwise almost periodic task.
340 */
341struct util_est {
342 unsigned int enqueued;
343 unsigned int ewma;
344#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 345} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 346
9d89c257 347/*
7b595334
YD
348 * The load_avg/util_avg accumulates an infinite geometric series
349 * (see __update_load_avg() in kernel/sched/fair.c).
350 *
351 * [load_avg definition]
352 *
353 * load_avg = runnable% * scale_load_down(load)
354 *
355 * where runnable% is the time ratio that a sched_entity is runnable.
356 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 357 * blocked sched_entities.
7b595334
YD
358 *
359 * load_avg may also take frequency scaling into account:
360 *
361 * load_avg = runnable% * scale_load_down(load) * freq%
362 *
363 * where freq% is the CPU frequency normalized to the highest frequency.
364 *
365 * [util_avg definition]
366 *
367 * util_avg = running% * SCHED_CAPACITY_SCALE
368 *
369 * where running% is the time ratio that a sched_entity is running on
370 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
371 * and blocked sched_entities.
372 *
373 * util_avg may also factor frequency scaling and CPU capacity scaling:
374 *
375 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
376 *
377 * where freq% is the same as above, and capacity% is the CPU capacity
378 * normalized to the greatest capacity (due to uarch differences, etc).
379 *
380 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
381 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
382 * we therefore scale them to as large a range as necessary. This is for
383 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
384 *
385 * [Overflow issue]
386 *
387 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
388 * with the highest load (=88761), always runnable on a single cfs_rq,
389 * and should not overflow as the number already hits PID_MAX_LIMIT.
390 *
391 * For all other cases (including 32-bit kernels), struct load_weight's
392 * weight will overflow first before we do, because:
393 *
394 * Max(load_avg) <= Max(load.weight)
395 *
396 * Then it is the load_weight's responsibility to consider overflow
397 * issues.
9d89c257 398 */
9d85f21c 399struct sched_avg {
5eca1c10
IM
400 u64 last_update_time;
401 u64 load_sum;
1ea6c46a 402 u64 runnable_load_sum;
5eca1c10
IM
403 u32 util_sum;
404 u32 period_contrib;
405 unsigned long load_avg;
1ea6c46a 406 unsigned long runnable_load_avg;
5eca1c10 407 unsigned long util_avg;
7f65ea42 408 struct util_est util_est;
317d359d 409} ____cacheline_aligned;
9d85f21c 410
41acab88 411struct sched_statistics {
7f5f8e8d 412#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
413 u64 wait_start;
414 u64 wait_max;
415 u64 wait_count;
416 u64 wait_sum;
417 u64 iowait_count;
418 u64 iowait_sum;
419
420 u64 sleep_start;
421 u64 sleep_max;
422 s64 sum_sleep_runtime;
423
424 u64 block_start;
425 u64 block_max;
426 u64 exec_max;
427 u64 slice_max;
428
429 u64 nr_migrations_cold;
430 u64 nr_failed_migrations_affine;
431 u64 nr_failed_migrations_running;
432 u64 nr_failed_migrations_hot;
433 u64 nr_forced_migrations;
434
435 u64 nr_wakeups;
436 u64 nr_wakeups_sync;
437 u64 nr_wakeups_migrate;
438 u64 nr_wakeups_local;
439 u64 nr_wakeups_remote;
440 u64 nr_wakeups_affine;
441 u64 nr_wakeups_affine_attempts;
442 u64 nr_wakeups_passive;
443 u64 nr_wakeups_idle;
41acab88 444#endif
7f5f8e8d 445};
41acab88
LDM
446
447struct sched_entity {
5eca1c10
IM
448 /* For load-balancing: */
449 struct load_weight load;
1ea6c46a 450 unsigned long runnable_weight;
5eca1c10
IM
451 struct rb_node run_node;
452 struct list_head group_node;
453 unsigned int on_rq;
41acab88 454
5eca1c10
IM
455 u64 exec_start;
456 u64 sum_exec_runtime;
457 u64 vruntime;
458 u64 prev_sum_exec_runtime;
41acab88 459
5eca1c10 460 u64 nr_migrations;
41acab88 461
5eca1c10 462 struct sched_statistics statistics;
94c18227 463
20b8a59f 464#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
465 int depth;
466 struct sched_entity *parent;
20b8a59f 467 /* rq on which this entity is (to be) queued: */
5eca1c10 468 struct cfs_rq *cfs_rq;
20b8a59f 469 /* rq "owned" by this entity/group: */
5eca1c10 470 struct cfs_rq *my_q;
20b8a59f 471#endif
8bd75c77 472
141965c7 473#ifdef CONFIG_SMP
5a107804
JO
474 /*
475 * Per entity load average tracking.
476 *
477 * Put into separate cache line so it does not
478 * collide with read-mostly values above.
479 */
317d359d 480 struct sched_avg avg;
9d85f21c 481#endif
20b8a59f 482};
70b97a7f 483
fa717060 484struct sched_rt_entity {
5eca1c10
IM
485 struct list_head run_list;
486 unsigned long timeout;
487 unsigned long watchdog_stamp;
488 unsigned int time_slice;
489 unsigned short on_rq;
490 unsigned short on_list;
491
492 struct sched_rt_entity *back;
052f1dc7 493#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 494 struct sched_rt_entity *parent;
6f505b16 495 /* rq on which this entity is (to be) queued: */
5eca1c10 496 struct rt_rq *rt_rq;
6f505b16 497 /* rq "owned" by this entity/group: */
5eca1c10 498 struct rt_rq *my_q;
6f505b16 499#endif
3859a271 500} __randomize_layout;
fa717060 501
aab03e05 502struct sched_dl_entity {
5eca1c10 503 struct rb_node rb_node;
aab03e05
DF
504
505 /*
506 * Original scheduling parameters. Copied here from sched_attr
4027d080 507 * during sched_setattr(), they will remain the same until
508 * the next sched_setattr().
aab03e05 509 */
5eca1c10
IM
510 u64 dl_runtime; /* Maximum runtime for each instance */
511 u64 dl_deadline; /* Relative deadline of each instance */
512 u64 dl_period; /* Separation of two instances (period) */
54d6d303 513 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 514 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
515
516 /*
517 * Actual scheduling parameters. Initialized with the values above,
518 * they are continously updated during task execution. Note that
519 * the remaining runtime could be < 0 in case we are in overrun.
520 */
5eca1c10
IM
521 s64 runtime; /* Remaining runtime for this instance */
522 u64 deadline; /* Absolute deadline for this instance */
523 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
524
525 /*
526 * Some bool flags:
527 *
528 * @dl_throttled tells if we exhausted the runtime. If so, the
529 * task has to wait for a replenishment to be performed at the
530 * next firing of dl_timer.
531 *
2d3d891d
DF
532 * @dl_boosted tells if we are boosted due to DI. If so we are
533 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
534 * exit the critical section);
535 *
5eca1c10 536 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 537 * all its available runtime during the last job.
209a0cbd
LA
538 *
539 * @dl_non_contending tells if the task is inactive while still
540 * contributing to the active utilization. In other words, it
541 * indicates if the inactive timer has been armed and its handler
542 * has not been executed yet. This flag is useful to avoid race
543 * conditions between the inactive timer handler and the wakeup
544 * code.
34be3930
JL
545 *
546 * @dl_overrun tells if the task asked to be informed about runtime
547 * overruns.
aab03e05 548 */
aa5222e9
DC
549 unsigned int dl_throttled : 1;
550 unsigned int dl_boosted : 1;
551 unsigned int dl_yielded : 1;
552 unsigned int dl_non_contending : 1;
34be3930 553 unsigned int dl_overrun : 1;
aab03e05
DF
554
555 /*
556 * Bandwidth enforcement timer. Each -deadline task has its
557 * own bandwidth to be enforced, thus we need one timer per task.
558 */
5eca1c10 559 struct hrtimer dl_timer;
209a0cbd
LA
560
561 /*
562 * Inactive timer, responsible for decreasing the active utilization
563 * at the "0-lag time". When a -deadline task blocks, it contributes
564 * to GRUB's active utilization until the "0-lag time", hence a
565 * timer is needed to decrease the active utilization at the correct
566 * time.
567 */
568 struct hrtimer inactive_timer;
aab03e05 569};
8bd75c77 570
1d082fd0
PM
571union rcu_special {
572 struct {
5eca1c10
IM
573 u8 blocked;
574 u8 need_qs;
8203d6d0 575 } b; /* Bits. */
fcc878e4 576 u16 s; /* Set of bits. */
1d082fd0 577};
86848966 578
8dc85d54
PZ
579enum perf_event_task_context {
580 perf_invalid_context = -1,
581 perf_hw_context = 0,
89a1e187 582 perf_sw_context,
8dc85d54
PZ
583 perf_nr_task_contexts,
584};
585
eb61baf6
IM
586struct wake_q_node {
587 struct wake_q_node *next;
588};
589
1da177e4 590struct task_struct {
c65eacbe
AL
591#ifdef CONFIG_THREAD_INFO_IN_TASK
592 /*
593 * For reasons of header soup (see current_thread_info()), this
594 * must be the first element of task_struct.
595 */
5eca1c10 596 struct thread_info thread_info;
c65eacbe 597#endif
5eca1c10
IM
598 /* -1 unrunnable, 0 runnable, >0 stopped: */
599 volatile long state;
29e48ce8
KC
600
601 /*
602 * This begins the randomizable portion of task_struct. Only
603 * scheduling-critical items should be added above here.
604 */
605 randomized_struct_fields_start
606
5eca1c10
IM
607 void *stack;
608 atomic_t usage;
609 /* Per task flags (PF_*), defined further below: */
610 unsigned int flags;
611 unsigned int ptrace;
1da177e4 612
2dd73a4f 613#ifdef CONFIG_SMP
5eca1c10
IM
614 struct llist_node wake_entry;
615 int on_cpu;
c65eacbe 616#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
617 /* Current CPU: */
618 unsigned int cpu;
c65eacbe 619#endif
5eca1c10
IM
620 unsigned int wakee_flips;
621 unsigned long wakee_flip_decay_ts;
622 struct task_struct *last_wakee;
ac66f547 623
32e839dd
MG
624 /*
625 * recent_used_cpu is initially set as the last CPU used by a task
626 * that wakes affine another task. Waker/wakee relationships can
627 * push tasks around a CPU where each wakeup moves to the next one.
628 * Tracking a recently used CPU allows a quick search for a recently
629 * used CPU that may be idle.
630 */
631 int recent_used_cpu;
5eca1c10 632 int wake_cpu;
2dd73a4f 633#endif
5eca1c10
IM
634 int on_rq;
635
636 int prio;
637 int static_prio;
638 int normal_prio;
639 unsigned int rt_priority;
50e645a8 640
5eca1c10
IM
641 const struct sched_class *sched_class;
642 struct sched_entity se;
643 struct sched_rt_entity rt;
8323f26c 644#ifdef CONFIG_CGROUP_SCHED
5eca1c10 645 struct task_group *sched_task_group;
8323f26c 646#endif
5eca1c10 647 struct sched_dl_entity dl;
1da177e4 648
e107be36 649#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
650 /* List of struct preempt_notifier: */
651 struct hlist_head preempt_notifiers;
e107be36
AK
652#endif
653
6c5c9341 654#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 655 unsigned int btrace_seq;
6c5c9341 656#endif
1da177e4 657
5eca1c10
IM
658 unsigned int policy;
659 int nr_cpus_allowed;
660 cpumask_t cpus_allowed;
1da177e4 661
a57eb940 662#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
663 int rcu_read_lock_nesting;
664 union rcu_special rcu_read_unlock_special;
665 struct list_head rcu_node_entry;
666 struct rcu_node *rcu_blocked_node;
28f6569a 667#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 668
8315f422 669#ifdef CONFIG_TASKS_RCU
5eca1c10 670 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
671 u8 rcu_tasks_holdout;
672 u8 rcu_tasks_idx;
5eca1c10 673 int rcu_tasks_idle_cpu;
ccdd29ff 674 struct list_head rcu_tasks_holdout_list;
8315f422 675#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 676
5eca1c10 677 struct sched_info sched_info;
1da177e4 678
5eca1c10 679 struct list_head tasks;
806c09a7 680#ifdef CONFIG_SMP
5eca1c10
IM
681 struct plist_node pushable_tasks;
682 struct rb_node pushable_dl_tasks;
806c09a7 683#endif
1da177e4 684
5eca1c10
IM
685 struct mm_struct *mm;
686 struct mm_struct *active_mm;
314ff785
IM
687
688 /* Per-thread vma caching: */
5eca1c10 689 struct vmacache vmacache;
314ff785 690
5eca1c10
IM
691#ifdef SPLIT_RSS_COUNTING
692 struct task_rss_stat rss_stat;
34e55232 693#endif
5eca1c10
IM
694 int exit_state;
695 int exit_code;
696 int exit_signal;
697 /* The signal sent when the parent dies: */
698 int pdeath_signal;
699 /* JOBCTL_*, siglock protected: */
700 unsigned long jobctl;
701
702 /* Used for emulating ABI behavior of previous Linux versions: */
703 unsigned int personality;
704
705 /* Scheduler bits, serialized by scheduler locks: */
706 unsigned sched_reset_on_fork:1;
707 unsigned sched_contributes_to_load:1;
708 unsigned sched_migrated:1;
709 unsigned sched_remote_wakeup:1;
eb414681
JW
710#ifdef CONFIG_PSI
711 unsigned sched_psi_wake_requeue:1;
712#endif
713
5eca1c10
IM
714 /* Force alignment to the next boundary: */
715 unsigned :0;
716
717 /* Unserialized, strictly 'current' */
718
719 /* Bit to tell LSMs we're in execve(): */
720 unsigned in_execve:1;
721 unsigned in_iowait:1;
722#ifndef TIF_RESTORE_SIGMASK
723 unsigned restore_sigmask:1;
7e781418 724#endif
626ebc41 725#ifdef CONFIG_MEMCG
29ef680a 726 unsigned in_user_fault:1;
127424c8 727#endif
ff303e66 728#ifdef CONFIG_COMPAT_BRK
5eca1c10 729 unsigned brk_randomized:1;
ff303e66 730#endif
77f88796
TH
731#ifdef CONFIG_CGROUPS
732 /* disallow userland-initiated cgroup migration */
733 unsigned no_cgroup_migration:1;
734#endif
d09d8df3
JB
735#ifdef CONFIG_BLK_CGROUP
736 /* to be used once the psi infrastructure lands upstream. */
737 unsigned use_memdelay:1;
738#endif
6f185c29 739
9da3f2b7
JH
740 /*
741 * May usercopy functions fault on kernel addresses?
742 * This is not just a single bit because this can potentially nest.
743 */
744 unsigned int kernel_uaccess_faults_ok;
745
5eca1c10 746 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 747
5eca1c10 748 struct restart_block restart_block;
f56141e3 749
5eca1c10
IM
750 pid_t pid;
751 pid_t tgid;
0a425405 752
050e9baa 753#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
754 /* Canary value for the -fstack-protector GCC feature: */
755 unsigned long stack_canary;
1314562a 756#endif
4d1d61a6 757 /*
5eca1c10 758 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 759 * older sibling, respectively. (p->father can be replaced with
f470021a 760 * p->real_parent->pid)
1da177e4 761 */
5eca1c10
IM
762
763 /* Real parent process: */
764 struct task_struct __rcu *real_parent;
765
766 /* Recipient of SIGCHLD, wait4() reports: */
767 struct task_struct __rcu *parent;
768
1da177e4 769 /*
5eca1c10 770 * Children/sibling form the list of natural children:
1da177e4 771 */
5eca1c10
IM
772 struct list_head children;
773 struct list_head sibling;
774 struct task_struct *group_leader;
1da177e4 775
f470021a 776 /*
5eca1c10
IM
777 * 'ptraced' is the list of tasks this task is using ptrace() on.
778 *
f470021a 779 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 780 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 781 */
5eca1c10
IM
782 struct list_head ptraced;
783 struct list_head ptrace_entry;
f470021a 784
1da177e4 785 /* PID/PID hash table linkage. */
2c470475
EB
786 struct pid *thread_pid;
787 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
788 struct list_head thread_group;
789 struct list_head thread_node;
790
791 struct completion *vfork_done;
1da177e4 792
5eca1c10
IM
793 /* CLONE_CHILD_SETTID: */
794 int __user *set_child_tid;
1da177e4 795
5eca1c10
IM
796 /* CLONE_CHILD_CLEARTID: */
797 int __user *clear_child_tid;
798
799 u64 utime;
800 u64 stime;
40565b5a 801#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
802 u64 utimescaled;
803 u64 stimescaled;
40565b5a 804#endif
5eca1c10
IM
805 u64 gtime;
806 struct prev_cputime prev_cputime;
6a61671b 807#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 808 struct vtime vtime;
d99ca3b9 809#endif
d027d45d
FW
810
811#ifdef CONFIG_NO_HZ_FULL
5eca1c10 812 atomic_t tick_dep_mask;
d027d45d 813#endif
5eca1c10
IM
814 /* Context switch counts: */
815 unsigned long nvcsw;
816 unsigned long nivcsw;
817
818 /* Monotonic time in nsecs: */
819 u64 start_time;
820
821 /* Boot based time in nsecs: */
822 u64 real_start_time;
823
824 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
825 unsigned long min_flt;
826 unsigned long maj_flt;
1da177e4 827
b18b6a9c 828#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
829 struct task_cputime cputime_expires;
830 struct list_head cpu_timers[3];
b18b6a9c 831#endif
1da177e4 832
5eca1c10
IM
833 /* Process credentials: */
834
835 /* Tracer's credentials at attach: */
836 const struct cred __rcu *ptracer_cred;
837
838 /* Objective and real subjective task credentials (COW): */
839 const struct cred __rcu *real_cred;
840
841 /* Effective (overridable) subjective task credentials (COW): */
842 const struct cred __rcu *cred;
843
844 /*
845 * executable name, excluding path.
846 *
847 * - normally initialized setup_new_exec()
848 * - access it with [gs]et_task_comm()
849 * - lock it with task_lock()
850 */
851 char comm[TASK_COMM_LEN];
852
853 struct nameidata *nameidata;
854
3d5b6fcc 855#ifdef CONFIG_SYSVIPC
5eca1c10
IM
856 struct sysv_sem sysvsem;
857 struct sysv_shm sysvshm;
3d5b6fcc 858#endif
e162b39a 859#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 860 unsigned long last_switch_count;
a2e51445 861 unsigned long last_switch_time;
82a1fcb9 862#endif
5eca1c10
IM
863 /* Filesystem information: */
864 struct fs_struct *fs;
865
866 /* Open file information: */
867 struct files_struct *files;
868
869 /* Namespaces: */
870 struct nsproxy *nsproxy;
871
872 /* Signal handlers: */
873 struct signal_struct *signal;
874 struct sighand_struct *sighand;
875 sigset_t blocked;
876 sigset_t real_blocked;
877 /* Restored if set_restore_sigmask() was used: */
878 sigset_t saved_sigmask;
879 struct sigpending pending;
880 unsigned long sas_ss_sp;
881 size_t sas_ss_size;
882 unsigned int sas_ss_flags;
883
884 struct callback_head *task_works;
885
886 struct audit_context *audit_context;
bfef93a5 887#ifdef CONFIG_AUDITSYSCALL
5eca1c10
IM
888 kuid_t loginuid;
889 unsigned int sessionid;
bfef93a5 890#endif
5eca1c10
IM
891 struct seccomp seccomp;
892
893 /* Thread group tracking: */
894 u32 parent_exec_id;
895 u32 self_exec_id;
1da177e4 896
5eca1c10
IM
897 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
898 spinlock_t alloc_lock;
1da177e4 899
b29739f9 900 /* Protection of the PI data structures: */
5eca1c10 901 raw_spinlock_t pi_lock;
b29739f9 902
5eca1c10 903 struct wake_q_node wake_q;
76751049 904
23f78d4a 905#ifdef CONFIG_RT_MUTEXES
5eca1c10 906 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 907 struct rb_root_cached pi_waiters;
e96a7705
XP
908 /* Updated under owner's pi_lock and rq lock */
909 struct task_struct *pi_top_task;
5eca1c10
IM
910 /* Deadlock detection and priority inheritance handling: */
911 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
912#endif
913
408894ee 914#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
915 /* Mutex deadlock detection: */
916 struct mutex_waiter *blocked_on;
408894ee 917#endif
5eca1c10 918
de30a2b3 919#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
920 unsigned int irq_events;
921 unsigned long hardirq_enable_ip;
922 unsigned long hardirq_disable_ip;
923 unsigned int hardirq_enable_event;
924 unsigned int hardirq_disable_event;
925 int hardirqs_enabled;
926 int hardirq_context;
927 unsigned long softirq_disable_ip;
928 unsigned long softirq_enable_ip;
929 unsigned int softirq_disable_event;
930 unsigned int softirq_enable_event;
931 int softirqs_enabled;
932 int softirq_context;
de30a2b3 933#endif
5eca1c10 934
fbb9ce95 935#ifdef CONFIG_LOCKDEP
5eca1c10
IM
936# define MAX_LOCK_DEPTH 48UL
937 u64 curr_chain_key;
938 int lockdep_depth;
939 unsigned int lockdep_recursion;
940 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 941#endif
5eca1c10 942
c6d30853 943#ifdef CONFIG_UBSAN
5eca1c10 944 unsigned int in_ubsan;
c6d30853 945#endif
408894ee 946
5eca1c10
IM
947 /* Journalling filesystem info: */
948 void *journal_info;
1da177e4 949
5eca1c10
IM
950 /* Stacked block device info: */
951 struct bio_list *bio_list;
d89d8796 952
73c10101 953#ifdef CONFIG_BLOCK
5eca1c10
IM
954 /* Stack plugging: */
955 struct blk_plug *plug;
73c10101
JA
956#endif
957
5eca1c10
IM
958 /* VM state: */
959 struct reclaim_state *reclaim_state;
960
961 struct backing_dev_info *backing_dev_info;
1da177e4 962
5eca1c10 963 struct io_context *io_context;
1da177e4 964
5eca1c10
IM
965 /* Ptrace state: */
966 unsigned long ptrace_message;
ae7795bc 967 kernel_siginfo_t *last_siginfo;
1da177e4 968
5eca1c10 969 struct task_io_accounting ioac;
eb414681
JW
970#ifdef CONFIG_PSI
971 /* Pressure stall state */
972 unsigned int psi_flags;
973#endif
5eca1c10
IM
974#ifdef CONFIG_TASK_XACCT
975 /* Accumulated RSS usage: */
976 u64 acct_rss_mem1;
977 /* Accumulated virtual memory usage: */
978 u64 acct_vm_mem1;
979 /* stime + utime since last update: */
980 u64 acct_timexpd;
1da177e4
LT
981#endif
982#ifdef CONFIG_CPUSETS
5eca1c10
IM
983 /* Protected by ->alloc_lock: */
984 nodemask_t mems_allowed;
985 /* Seqence number to catch updates: */
986 seqcount_t mems_allowed_seq;
987 int cpuset_mem_spread_rotor;
988 int cpuset_slab_spread_rotor;
1da177e4 989#endif
ddbcc7e8 990#ifdef CONFIG_CGROUPS
5eca1c10
IM
991 /* Control Group info protected by css_set_lock: */
992 struct css_set __rcu *cgroups;
993 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
994 struct list_head cg_list;
ddbcc7e8 995#endif
f01d7d51 996#ifdef CONFIG_INTEL_RDT
0734ded1 997 u32 closid;
d6aaba61 998 u32 rmid;
e02737d5 999#endif
42b2dd0a 1000#ifdef CONFIG_FUTEX
5eca1c10 1001 struct robust_list_head __user *robust_list;
34f192c6
IM
1002#ifdef CONFIG_COMPAT
1003 struct compat_robust_list_head __user *compat_robust_list;
1004#endif
5eca1c10
IM
1005 struct list_head pi_state_list;
1006 struct futex_pi_state *pi_state_cache;
c7aceaba 1007#endif
cdd6c482 1008#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1009 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1010 struct mutex perf_event_mutex;
1011 struct list_head perf_event_list;
a63eaf34 1012#endif
8f47b187 1013#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1014 unsigned long preempt_disable_ip;
8f47b187 1015#endif
c7aceaba 1016#ifdef CONFIG_NUMA
5eca1c10
IM
1017 /* Protected by alloc_lock: */
1018 struct mempolicy *mempolicy;
45816682 1019 short il_prev;
5eca1c10 1020 short pref_node_fork;
42b2dd0a 1021#endif
cbee9f88 1022#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1023 int numa_scan_seq;
1024 unsigned int numa_scan_period;
1025 unsigned int numa_scan_period_max;
1026 int numa_preferred_nid;
1027 unsigned long numa_migrate_retry;
1028 /* Migration stamp: */
1029 u64 node_stamp;
1030 u64 last_task_numa_placement;
1031 u64 last_sum_exec_runtime;
1032 struct callback_head numa_work;
1033
5eca1c10 1034 struct numa_group *numa_group;
8c8a743c 1035
745d6147 1036 /*
44dba3d5
IM
1037 * numa_faults is an array split into four regions:
1038 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1039 * in this precise order.
1040 *
1041 * faults_memory: Exponential decaying average of faults on a per-node
1042 * basis. Scheduling placement decisions are made based on these
1043 * counts. The values remain static for the duration of a PTE scan.
1044 * faults_cpu: Track the nodes the process was running on when a NUMA
1045 * hinting fault was incurred.
1046 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1047 * during the current scan window. When the scan completes, the counts
1048 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1049 */
5eca1c10
IM
1050 unsigned long *numa_faults;
1051 unsigned long total_numa_faults;
745d6147 1052
04bb2f94
RR
1053 /*
1054 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1055 * scan window were remote/local or failed to migrate. The task scan
1056 * period is adapted based on the locality of the faults with different
1057 * weights depending on whether they were shared or private faults
04bb2f94 1058 */
5eca1c10 1059 unsigned long numa_faults_locality[3];
04bb2f94 1060
5eca1c10 1061 unsigned long numa_pages_migrated;
cbee9f88
PZ
1062#endif /* CONFIG_NUMA_BALANCING */
1063
d7822b1e
MD
1064#ifdef CONFIG_RSEQ
1065 struct rseq __user *rseq;
1066 u32 rseq_len;
1067 u32 rseq_sig;
1068 /*
1069 * RmW on rseq_event_mask must be performed atomically
1070 * with respect to preemption.
1071 */
1072 unsigned long rseq_event_mask;
1073#endif
1074
5eca1c10 1075 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1076
5eca1c10 1077 struct rcu_head rcu;
b92ce558 1078
5eca1c10
IM
1079 /* Cache last used pipe for splice(): */
1080 struct pipe_inode_info *splice_pipe;
5640f768 1081
5eca1c10 1082 struct page_frag task_frag;
5640f768 1083
47913d4e
IM
1084#ifdef CONFIG_TASK_DELAY_ACCT
1085 struct task_delay_info *delays;
f4f154fd 1086#endif
47913d4e 1087
f4f154fd 1088#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1089 int make_it_fail;
9049f2f6 1090 unsigned int fail_nth;
ca74e92b 1091#endif
9d823e8f 1092 /*
5eca1c10
IM
1093 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1094 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1095 */
5eca1c10
IM
1096 int nr_dirtied;
1097 int nr_dirtied_pause;
1098 /* Start of a write-and-pause period: */
1099 unsigned long dirty_paused_when;
9d823e8f 1100
9745512c 1101#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1102 int latency_record_count;
1103 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1104#endif
6976675d 1105 /*
5eca1c10 1106 * Time slack values; these are used to round up poll() and
6976675d
AV
1107 * select() etc timeout values. These are in nanoseconds.
1108 */
5eca1c10
IM
1109 u64 timer_slack_ns;
1110 u64 default_timer_slack_ns;
f8d570a4 1111
0b24becc 1112#ifdef CONFIG_KASAN
5eca1c10 1113 unsigned int kasan_depth;
0b24becc 1114#endif
5eca1c10 1115
fb52607a 1116#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1117 /* Index of current stored address in ret_stack: */
1118 int curr_ret_stack;
1119
1120 /* Stack of return addresses for return function tracing: */
1121 struct ftrace_ret_stack *ret_stack;
1122
1123 /* Timestamp for last schedule: */
1124 unsigned long long ftrace_timestamp;
1125
f201ae23
FW
1126 /*
1127 * Number of functions that haven't been traced
5eca1c10 1128 * because of depth overrun:
f201ae23 1129 */
5eca1c10
IM
1130 atomic_t trace_overrun;
1131
1132 /* Pause tracing: */
1133 atomic_t tracing_graph_pause;
f201ae23 1134#endif
5eca1c10 1135
ea4e2bc4 1136#ifdef CONFIG_TRACING
5eca1c10
IM
1137 /* State flags for use by tracers: */
1138 unsigned long trace;
1139
1140 /* Bitmask and counter of trace recursion: */
1141 unsigned long trace_recursion;
261842b7 1142#endif /* CONFIG_TRACING */
5eca1c10 1143
5c9a8750 1144#ifdef CONFIG_KCOV
5eca1c10 1145 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1146 unsigned int kcov_mode;
5eca1c10
IM
1147
1148 /* Size of the kcov_area: */
1149 unsigned int kcov_size;
1150
1151 /* Buffer for coverage collection: */
1152 void *kcov_area;
1153
1154 /* KCOV descriptor wired with this task or NULL: */
1155 struct kcov *kcov;
5c9a8750 1156#endif
5eca1c10 1157
6f185c29 1158#ifdef CONFIG_MEMCG
5eca1c10
IM
1159 struct mem_cgroup *memcg_in_oom;
1160 gfp_t memcg_oom_gfp_mask;
1161 int memcg_oom_order;
b23afb93 1162
5eca1c10
IM
1163 /* Number of pages to reclaim on returning to userland: */
1164 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1165
1166 /* Used by memcontrol for targeted memcg charge: */
1167 struct mem_cgroup *active_memcg;
569b846d 1168#endif
5eca1c10 1169
d09d8df3
JB
1170#ifdef CONFIG_BLK_CGROUP
1171 struct request_queue *throttle_queue;
1172#endif
1173
0326f5a9 1174#ifdef CONFIG_UPROBES
5eca1c10 1175 struct uprobe_task *utask;
0326f5a9 1176#endif
cafe5635 1177#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1178 unsigned int sequential_io;
1179 unsigned int sequential_io_avg;
cafe5635 1180#endif
8eb23b9f 1181#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1182 unsigned long task_state_change;
8eb23b9f 1183#endif
5eca1c10 1184 int pagefault_disabled;
03049269 1185#ifdef CONFIG_MMU
5eca1c10 1186 struct task_struct *oom_reaper_list;
03049269 1187#endif
ba14a194 1188#ifdef CONFIG_VMAP_STACK
5eca1c10 1189 struct vm_struct *stack_vm_area;
ba14a194 1190#endif
68f24b08 1191#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
1192 /* A live task holds one reference: */
1193 atomic_t stack_refcount;
d83a7cb3
JP
1194#endif
1195#ifdef CONFIG_LIVEPATCH
1196 int patch_state;
0302e28d 1197#endif
e4e55b47
TH
1198#ifdef CONFIG_SECURITY
1199 /* Used by LSM modules for access restriction: */
1200 void *security;
68f24b08 1201#endif
29e48ce8 1202
afaef01c
AP
1203#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1204 unsigned long lowest_stack;
c8d12627 1205 unsigned long prev_lowest_stack;
afaef01c
AP
1206#endif
1207
29e48ce8
KC
1208 /*
1209 * New fields for task_struct should be added above here, so that
1210 * they are included in the randomized portion of task_struct.
1211 */
1212 randomized_struct_fields_end
1213
5eca1c10
IM
1214 /* CPU-specific state of this task: */
1215 struct thread_struct thread;
1216
1217 /*
1218 * WARNING: on x86, 'thread_struct' contains a variable-sized
1219 * structure. It *MUST* be at the end of 'task_struct'.
1220 *
1221 * Do not put anything below here!
1222 */
1da177e4
LT
1223};
1224
e868171a 1225static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1226{
2c470475 1227 return task->thread_pid;
22c935f4
EB
1228}
1229
7af57294
PE
1230/*
1231 * the helpers to get the task's different pids as they are seen
1232 * from various namespaces
1233 *
1234 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1235 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1236 * current.
7af57294
PE
1237 * task_xid_nr_ns() : id seen from the ns specified;
1238 *
7af57294
PE
1239 * see also pid_nr() etc in include/linux/pid.h
1240 */
5eca1c10 1241pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1242
e868171a 1243static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1244{
1245 return tsk->pid;
1246}
1247
5eca1c10 1248static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1249{
1250 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1251}
7af57294
PE
1252
1253static inline pid_t task_pid_vnr(struct task_struct *tsk)
1254{
52ee2dfd 1255 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1256}
1257
1258
e868171a 1259static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1260{
1261 return tsk->tgid;
1262}
1263
5eca1c10
IM
1264/**
1265 * pid_alive - check that a task structure is not stale
1266 * @p: Task structure to be checked.
1267 *
1268 * Test if a process is not yet dead (at most zombie state)
1269 * If pid_alive fails, then pointers within the task structure
1270 * can be stale and must not be dereferenced.
1271 *
1272 * Return: 1 if the process is alive. 0 otherwise.
1273 */
1274static inline int pid_alive(const struct task_struct *p)
1275{
2c470475 1276 return p->thread_pid != NULL;
5eca1c10 1277}
7af57294 1278
5eca1c10 1279static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1280{
52ee2dfd 1281 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1282}
1283
7af57294
PE
1284static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1285{
52ee2dfd 1286 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1287}
1288
1289
5eca1c10 1290static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1291{
52ee2dfd 1292 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1293}
1294
7af57294
PE
1295static inline pid_t task_session_vnr(struct task_struct *tsk)
1296{
52ee2dfd 1297 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1298}
1299
dd1c1f2f
ON
1300static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1301{
6883f81a 1302 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1303}
1304
1305static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1306{
6883f81a 1307 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1308}
1309
1310static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1311{
1312 pid_t pid = 0;
1313
1314 rcu_read_lock();
1315 if (pid_alive(tsk))
1316 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1317 rcu_read_unlock();
1318
1319 return pid;
1320}
1321
1322static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1323{
1324 return task_ppid_nr_ns(tsk, &init_pid_ns);
1325}
1326
5eca1c10 1327/* Obsolete, do not use: */
1b0f7ffd
ON
1328static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1329{
1330 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1331}
7af57294 1332
06eb6184
PZ
1333#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1334#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1335
1d48b080 1336static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1337{
1593baab
PZ
1338 unsigned int tsk_state = READ_ONCE(tsk->state);
1339 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1340
06eb6184
PZ
1341 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1342
06eb6184
PZ
1343 if (tsk_state == TASK_IDLE)
1344 state = TASK_REPORT_IDLE;
1345
1593baab
PZ
1346 return fls(state);
1347}
1348
1d48b080 1349static inline char task_index_to_char(unsigned int state)
1593baab 1350{
8ef9925b 1351 static const char state_char[] = "RSDTtXZPI";
1593baab 1352
06eb6184 1353 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1354
1593baab
PZ
1355 return state_char[state];
1356}
1357
1358static inline char task_state_to_char(struct task_struct *tsk)
1359{
1d48b080 1360 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1361}
1362
f400e198 1363/**
570f5241
SS
1364 * is_global_init - check if a task structure is init. Since init
1365 * is free to have sub-threads we need to check tgid.
3260259f
HK
1366 * @tsk: Task structure to be checked.
1367 *
1368 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1369 *
1370 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1371 */
e868171a 1372static inline int is_global_init(struct task_struct *tsk)
b461cc03 1373{
570f5241 1374 return task_tgid_nr(tsk) == 1;
b461cc03 1375}
b460cbc5 1376
9ec52099
CLG
1377extern struct pid *cad_pid;
1378
1da177e4
LT
1379/*
1380 * Per process flags
1381 */
5eca1c10
IM
1382#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1383#define PF_EXITING 0x00000004 /* Getting shut down */
1384#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1385#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1386#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1387#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1388#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1389#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1390#define PF_DUMPCORE 0x00000200 /* Dumped core */
1391#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1392#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1393#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1394#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1395#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1396#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1397#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1398#define PF_KSWAPD 0x00020000 /* I am kswapd */
1399#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1400#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1401#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1402#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1403#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1404#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
eb414681 1405#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
5eca1c10
IM
1406#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1407#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1408#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1409#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1410#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1411
1412/*
1413 * Only the _current_ task can read/write to tsk->flags, but other
1414 * tasks can access tsk->flags in readonly mode for example
1415 * with tsk_used_math (like during threaded core dumping).
1416 * There is however an exception to this rule during ptrace
1417 * or during fork: the ptracer task is allowed to write to the
1418 * child->flags of its traced child (same goes for fork, the parent
1419 * can write to the child->flags), because we're guaranteed the
1420 * child is not running and in turn not changing child->flags
1421 * at the same time the parent does it.
1422 */
5eca1c10
IM
1423#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1424#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1425#define clear_used_math() clear_stopped_child_used_math(current)
1426#define set_used_math() set_stopped_child_used_math(current)
1427
1da177e4
LT
1428#define conditional_stopped_child_used_math(condition, child) \
1429 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1430
1431#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1432
1da177e4
LT
1433#define copy_to_stopped_child_used_math(child) \
1434 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1435
1da177e4 1436/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1437#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1438#define used_math() tsk_used_math(current)
1da177e4 1439
62ec05dd
TG
1440static inline bool is_percpu_thread(void)
1441{
1442#ifdef CONFIG_SMP
1443 return (current->flags & PF_NO_SETAFFINITY) &&
1444 (current->nr_cpus_allowed == 1);
1445#else
1446 return true;
1447#endif
1448}
1449
1d4457f9 1450/* Per-process atomic flags. */
5eca1c10
IM
1451#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1452#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1453#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1454#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1455#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1d4457f9 1456
e0e5070b
ZL
1457#define TASK_PFA_TEST(name, func) \
1458 static inline bool task_##func(struct task_struct *p) \
1459 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1460
e0e5070b
ZL
1461#define TASK_PFA_SET(name, func) \
1462 static inline void task_set_##func(struct task_struct *p) \
1463 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1464
e0e5070b
ZL
1465#define TASK_PFA_CLEAR(name, func) \
1466 static inline void task_clear_##func(struct task_struct *p) \
1467 { clear_bit(PFA_##name, &p->atomic_flags); }
1468
1469TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1470TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1471
2ad654bc
ZL
1472TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1473TASK_PFA_SET(SPREAD_PAGE, spread_page)
1474TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1475
1476TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1477TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1478TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1479
356e4bff
TG
1480TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1481TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1482TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1483
1484TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1485TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1486
5eca1c10 1487static inline void
717a94b5 1488current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1489{
717a94b5
N
1490 current->flags &= ~flags;
1491 current->flags |= orig_flags & flags;
907aed48
MG
1492}
1493
5eca1c10
IM
1494extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1495extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1496#ifdef CONFIG_SMP
5eca1c10
IM
1497extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1498extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1499#else
5eca1c10 1500static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1501{
1502}
5eca1c10 1503static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1504{
96f874e2 1505 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1506 return -EINVAL;
1507 return 0;
1508}
1509#endif
e0ad9556 1510
6d0d2878
CB
1511#ifndef cpu_relax_yield
1512#define cpu_relax_yield() cpu_relax()
1513#endif
1514
fa93384f 1515extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1516extern void set_user_nice(struct task_struct *p, long nice);
1517extern int task_prio(const struct task_struct *p);
5eca1c10 1518
d0ea0268
DY
1519/**
1520 * task_nice - return the nice value of a given task.
1521 * @p: the task in question.
1522 *
1523 * Return: The nice value [ -20 ... 0 ... 19 ].
1524 */
1525static inline int task_nice(const struct task_struct *p)
1526{
1527 return PRIO_TO_NICE((p)->static_prio);
1528}
5eca1c10 1529
36c8b586
IM
1530extern int can_nice(const struct task_struct *p, const int nice);
1531extern int task_curr(const struct task_struct *p);
1da177e4 1532extern int idle_cpu(int cpu);
943d355d 1533extern int available_idle_cpu(int cpu);
5eca1c10
IM
1534extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1535extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1536extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1537extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1538extern struct task_struct *idle_task(int cpu);
5eca1c10 1539
c4f30608
PM
1540/**
1541 * is_idle_task - is the specified task an idle task?
fa757281 1542 * @p: the task in question.
e69f6186
YB
1543 *
1544 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1545 */
7061ca3b 1546static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1547{
c1de45ca 1548 return !!(p->flags & PF_IDLE);
c4f30608 1549}
5eca1c10 1550
36c8b586 1551extern struct task_struct *curr_task(int cpu);
a458ae2e 1552extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1553
1554void yield(void);
1555
1da177e4 1556union thread_union {
0500871f
DH
1557#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1558 struct task_struct task;
1559#endif
c65eacbe 1560#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1561 struct thread_info thread_info;
c65eacbe 1562#endif
1da177e4
LT
1563 unsigned long stack[THREAD_SIZE/sizeof(long)];
1564};
1565
0500871f
DH
1566#ifndef CONFIG_THREAD_INFO_IN_TASK
1567extern struct thread_info init_thread_info;
1568#endif
1569
1570extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1571
f3ac6067
IM
1572#ifdef CONFIG_THREAD_INFO_IN_TASK
1573static inline struct thread_info *task_thread_info(struct task_struct *task)
1574{
1575 return &task->thread_info;
1576}
1577#elif !defined(__HAVE_THREAD_FUNCTIONS)
1578# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1579#endif
1580
198fe21b
PE
1581/*
1582 * find a task by one of its numerical ids
1583 *
198fe21b
PE
1584 * find_task_by_pid_ns():
1585 * finds a task by its pid in the specified namespace
228ebcbe
PE
1586 * find_task_by_vpid():
1587 * finds a task by its virtual pid
198fe21b 1588 *
e49859e7 1589 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1590 */
1591
228ebcbe 1592extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1593extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1594
2ee08260
MR
1595/*
1596 * find a task by its virtual pid and get the task struct
1597 */
1598extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1599
b3c97528
HH
1600extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1601extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1602extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1603
1da177e4 1604#ifdef CONFIG_SMP
5eca1c10 1605extern void kick_process(struct task_struct *tsk);
1da177e4 1606#else
5eca1c10 1607static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1608#endif
1da177e4 1609
82b89778 1610extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1611
82b89778
AH
1612static inline void set_task_comm(struct task_struct *tsk, const char *from)
1613{
1614 __set_task_comm(tsk, from, false);
1615}
5eca1c10 1616
3756f640
AB
1617extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1618#define get_task_comm(buf, tsk) ({ \
1619 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1620 __get_task_comm(buf, sizeof(buf), tsk); \
1621})
1da177e4
LT
1622
1623#ifdef CONFIG_SMP
317f3941 1624void scheduler_ipi(void);
85ba2d86 1625extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1626#else
184748cc 1627static inline void scheduler_ipi(void) { }
5eca1c10 1628static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1629{
1630 return 1;
1631}
1da177e4
LT
1632#endif
1633
5eca1c10
IM
1634/*
1635 * Set thread flags in other task's structures.
1636 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1637 */
1638static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1639{
a1261f54 1640 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1641}
1642
1643static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1644{
a1261f54 1645 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1646}
1647
93ee37c2
DM
1648static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1649 bool value)
1650{
1651 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1652}
1653
1da177e4
LT
1654static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1655{
a1261f54 1656 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1657}
1658
1659static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1660{
a1261f54 1661 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1662}
1663
1664static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1665{
a1261f54 1666 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1667}
1668
1669static inline void set_tsk_need_resched(struct task_struct *tsk)
1670{
1671 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1672}
1673
1674static inline void clear_tsk_need_resched(struct task_struct *tsk)
1675{
1676 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1677}
1678
8ae121ac
GH
1679static inline int test_tsk_need_resched(struct task_struct *tsk)
1680{
1681 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1682}
1683
1da177e4
LT
1684/*
1685 * cond_resched() and cond_resched_lock(): latency reduction via
1686 * explicit rescheduling in places that are safe. The return
1687 * value indicates whether a reschedule was done in fact.
1688 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1689 */
35a773a0 1690#ifndef CONFIG_PREEMPT
c3921ab7 1691extern int _cond_resched(void);
35a773a0
PZ
1692#else
1693static inline int _cond_resched(void) { return 0; }
1694#endif
6f80bd98 1695
613afbf8 1696#define cond_resched() ({ \
3427445a 1697 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1698 _cond_resched(); \
1699})
6f80bd98 1700
613afbf8
FW
1701extern int __cond_resched_lock(spinlock_t *lock);
1702
1703#define cond_resched_lock(lock) ({ \
3427445a 1704 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1705 __cond_resched_lock(lock); \
1706})
1707
f6f3c437
SH
1708static inline void cond_resched_rcu(void)
1709{
1710#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1711 rcu_read_unlock();
1712 cond_resched();
1713 rcu_read_lock();
1714#endif
1715}
1716
1da177e4
LT
1717/*
1718 * Does a critical section need to be broken due to another
95c354fe
NP
1719 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1720 * but a general need for low latency)
1da177e4 1721 */
95c354fe 1722static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1723{
95c354fe
NP
1724#ifdef CONFIG_PREEMPT
1725 return spin_is_contended(lock);
1726#else
1da177e4 1727 return 0;
95c354fe 1728#endif
1da177e4
LT
1729}
1730
75f93fed
PZ
1731static __always_inline bool need_resched(void)
1732{
1733 return unlikely(tif_need_resched());
1734}
1735
1da177e4
LT
1736/*
1737 * Wrappers for p->thread_info->cpu access. No-op on UP.
1738 */
1739#ifdef CONFIG_SMP
1740
1741static inline unsigned int task_cpu(const struct task_struct *p)
1742{
c65eacbe
AL
1743#ifdef CONFIG_THREAD_INFO_IN_TASK
1744 return p->cpu;
1745#else
a1261f54 1746 return task_thread_info(p)->cpu;
c65eacbe 1747#endif
1da177e4
LT
1748}
1749
c65cc870 1750extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1751
1752#else
1753
1754static inline unsigned int task_cpu(const struct task_struct *p)
1755{
1756 return 0;
1757}
1758
1759static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1760{
1761}
1762
1763#endif /* CONFIG_SMP */
1764
d9345c65
PX
1765/*
1766 * In order to reduce various lock holder preemption latencies provide an
1767 * interface to see if a vCPU is currently running or not.
1768 *
1769 * This allows us to terminate optimistic spin loops and block, analogous to
1770 * the native optimistic spin heuristic of testing if the lock owner task is
1771 * running or not.
1772 */
1773#ifndef vcpu_is_preempted
1774# define vcpu_is_preempted(cpu) false
1775#endif
1776
96f874e2
RR
1777extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1778extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1779
82455257
DH
1780#ifndef TASK_SIZE_OF
1781#define TASK_SIZE_OF(tsk) TASK_SIZE
1782#endif
1783
d7822b1e
MD
1784#ifdef CONFIG_RSEQ
1785
1786/*
1787 * Map the event mask on the user-space ABI enum rseq_cs_flags
1788 * for direct mask checks.
1789 */
1790enum rseq_event_mask_bits {
1791 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1792 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1793 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1794};
1795
1796enum rseq_event_mask {
1797 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1798 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1799 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1800};
1801
1802static inline void rseq_set_notify_resume(struct task_struct *t)
1803{
1804 if (t->rseq)
1805 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1806}
1807
784e0300 1808void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1809
784e0300
WD
1810static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1811 struct pt_regs *regs)
d7822b1e
MD
1812{
1813 if (current->rseq)
784e0300 1814 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1815}
1816
784e0300
WD
1817static inline void rseq_signal_deliver(struct ksignal *ksig,
1818 struct pt_regs *regs)
d7822b1e
MD
1819{
1820 preempt_disable();
1821 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1822 preempt_enable();
784e0300 1823 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1824}
1825
1826/* rseq_preempt() requires preemption to be disabled. */
1827static inline void rseq_preempt(struct task_struct *t)
1828{
1829 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1830 rseq_set_notify_resume(t);
1831}
1832
1833/* rseq_migrate() requires preemption to be disabled. */
1834static inline void rseq_migrate(struct task_struct *t)
1835{
1836 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1837 rseq_set_notify_resume(t);
1838}
1839
1840/*
1841 * If parent process has a registered restartable sequences area, the
9a789fcf 1842 * child inherits. Only applies when forking a process, not a thread.
d7822b1e
MD
1843 */
1844static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1845{
1846 if (clone_flags & CLONE_THREAD) {
1847 t->rseq = NULL;
1848 t->rseq_len = 0;
1849 t->rseq_sig = 0;
1850 t->rseq_event_mask = 0;
1851 } else {
1852 t->rseq = current->rseq;
1853 t->rseq_len = current->rseq_len;
1854 t->rseq_sig = current->rseq_sig;
1855 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1856 }
1857}
1858
1859static inline void rseq_execve(struct task_struct *t)
1860{
1861 t->rseq = NULL;
1862 t->rseq_len = 0;
1863 t->rseq_sig = 0;
1864 t->rseq_event_mask = 0;
1865}
1866
1867#else
1868
1869static inline void rseq_set_notify_resume(struct task_struct *t)
1870{
1871}
784e0300
WD
1872static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1873 struct pt_regs *regs)
d7822b1e
MD
1874{
1875}
784e0300
WD
1876static inline void rseq_signal_deliver(struct ksignal *ksig,
1877 struct pt_regs *regs)
d7822b1e
MD
1878{
1879}
1880static inline void rseq_preempt(struct task_struct *t)
1881{
1882}
1883static inline void rseq_migrate(struct task_struct *t)
1884{
1885}
1886static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1887{
1888}
1889static inline void rseq_execve(struct task_struct *t)
1890{
1891}
1892
1893#endif
1894
1895#ifdef CONFIG_DEBUG_RSEQ
1896
1897void rseq_syscall(struct pt_regs *regs);
1898
1899#else
1900
1901static inline void rseq_syscall(struct pt_regs *regs)
1902{
1903}
1904
1905#endif
1906
1da177e4 1907#endif