]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - include/linux/sched.h
sched/fair: Remove unused cfs_rq_clock_task() function
[mirror_ubuntu-hirsute-kernel.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10
IM
27#include <linux/sched/prio.h>
28#include <linux/signal_types.h>
29#include <linux/mm_types_task.h>
30#include <linux/task_io_accounting.h>
d7822b1e 31#include <linux/rseq.h>
a3b6714e 32
5eca1c10 33/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 34struct audit_context;
c7af7877 35struct backing_dev_info;
bddd87c7 36struct bio_list;
73c10101 37struct blk_plug;
3c93a0c0 38struct capture_control;
c7af7877 39struct cfs_rq;
c7af7877
IM
40struct fs_struct;
41struct futex_pi_state;
42struct io_context;
43struct mempolicy;
89076bc3 44struct nameidata;
c7af7877
IM
45struct nsproxy;
46struct perf_event_context;
47struct pid_namespace;
48struct pipe_inode_info;
49struct rcu_node;
50struct reclaim_state;
51struct robust_list_head;
3c93a0c0
QY
52struct root_domain;
53struct rq;
c7af7877
IM
54struct sched_attr;
55struct sched_param;
43ae34cb 56struct seq_file;
c7af7877
IM
57struct sighand_struct;
58struct signal_struct;
59struct task_delay_info;
4cf86d77 60struct task_group;
1da177e4 61
4a8342d2
LT
62/*
63 * Task state bitmask. NOTE! These bits are also
64 * encoded in fs/proc/array.c: get_task_state().
65 *
66 * We have two separate sets of flags: task->state
67 * is about runnability, while task->exit_state are
68 * about the task exiting. Confusing, but this way
69 * modifying one set can't modify the other one by
70 * mistake.
71 */
5eca1c10
IM
72
73/* Used in tsk->state: */
92c4bc9f
PZ
74#define TASK_RUNNING 0x0000
75#define TASK_INTERRUPTIBLE 0x0001
76#define TASK_UNINTERRUPTIBLE 0x0002
77#define __TASK_STOPPED 0x0004
78#define __TASK_TRACED 0x0008
5eca1c10 79/* Used in tsk->exit_state: */
92c4bc9f
PZ
80#define EXIT_DEAD 0x0010
81#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
82#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
83/* Used in tsk->state again: */
8ef9925b
PZ
84#define TASK_PARKED 0x0040
85#define TASK_DEAD 0x0080
86#define TASK_WAKEKILL 0x0100
87#define TASK_WAKING 0x0200
92c4bc9f
PZ
88#define TASK_NOLOAD 0x0400
89#define TASK_NEW 0x0800
90#define TASK_STATE_MAX 0x1000
5eca1c10 91
5eca1c10
IM
92/* Convenience macros for the sake of set_current_state: */
93#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
94#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
95#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
96
97#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
98
99/* Convenience macros for the sake of wake_up(): */
100#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
101
102/* get_task_state(): */
103#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
104 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
105 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
106 TASK_PARKED)
5eca1c10
IM
107
108#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
109
110#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
111
112#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
113
114#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
115 (task->flags & PF_FROZEN) == 0 && \
116 (task->state & TASK_NOLOAD) == 0)
1da177e4 117
8eb23b9f
PZ
118#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
119
b5bf9a90
PZ
120/*
121 * Special states are those that do not use the normal wait-loop pattern. See
122 * the comment with set_special_state().
123 */
124#define is_special_task_state(state) \
1cef1150 125 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 126
8eb23b9f
PZ
127#define __set_current_state(state_value) \
128 do { \
b5bf9a90 129 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
130 current->task_state_change = _THIS_IP_; \
131 current->state = (state_value); \
132 } while (0)
b5bf9a90 133
8eb23b9f
PZ
134#define set_current_state(state_value) \
135 do { \
b5bf9a90 136 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 137 current->task_state_change = _THIS_IP_; \
a2250238 138 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
139 } while (0)
140
b5bf9a90
PZ
141#define set_special_state(state_value) \
142 do { \
143 unsigned long flags; /* may shadow */ \
144 WARN_ON_ONCE(!is_special_task_state(state_value)); \
145 raw_spin_lock_irqsave(&current->pi_lock, flags); \
146 current->task_state_change = _THIS_IP_; \
147 current->state = (state_value); \
148 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
149 } while (0)
8eb23b9f 150#else
498d0c57
AM
151/*
152 * set_current_state() includes a barrier so that the write of current->state
153 * is correctly serialised wrt the caller's subsequent test of whether to
154 * actually sleep:
155 *
a2250238 156 * for (;;) {
498d0c57 157 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
158 * if (!need_sleep)
159 * break;
160 *
161 * schedule();
162 * }
163 * __set_current_state(TASK_RUNNING);
164 *
165 * If the caller does not need such serialisation (because, for instance, the
166 * condition test and condition change and wakeup are under the same lock) then
167 * use __set_current_state().
168 *
169 * The above is typically ordered against the wakeup, which does:
170 *
b5bf9a90
PZ
171 * need_sleep = false;
172 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 173 *
7696f991
AP
174 * where wake_up_state() executes a full memory barrier before accessing the
175 * task state.
a2250238
PZ
176 *
177 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
178 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
179 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 180 *
b5bf9a90 181 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 182 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
183 * a problem either because that will result in one extra go around the loop
184 * and our @cond test will save the day.
498d0c57 185 *
a2250238 186 * Also see the comments of try_to_wake_up().
498d0c57 187 */
b5bf9a90
PZ
188#define __set_current_state(state_value) \
189 current->state = (state_value)
190
191#define set_current_state(state_value) \
192 smp_store_mb(current->state, (state_value))
193
194/*
195 * set_special_state() should be used for those states when the blocking task
196 * can not use the regular condition based wait-loop. In that case we must
197 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
198 * will not collide with our state change.
199 */
200#define set_special_state(state_value) \
201 do { \
202 unsigned long flags; /* may shadow */ \
203 raw_spin_lock_irqsave(&current->pi_lock, flags); \
204 current->state = (state_value); \
205 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
206 } while (0)
207
8eb23b9f
PZ
208#endif
209
5eca1c10
IM
210/* Task command name length: */
211#define TASK_COMM_LEN 16
1da177e4 212
1da177e4
LT
213extern void scheduler_tick(void);
214
5eca1c10
IM
215#define MAX_SCHEDULE_TIMEOUT LONG_MAX
216
217extern long schedule_timeout(long timeout);
218extern long schedule_timeout_interruptible(long timeout);
219extern long schedule_timeout_killable(long timeout);
220extern long schedule_timeout_uninterruptible(long timeout);
221extern long schedule_timeout_idle(long timeout);
1da177e4 222asmlinkage void schedule(void);
c5491ea7 223extern void schedule_preempt_disabled(void);
1da177e4 224
10ab5643
TH
225extern int __must_check io_schedule_prepare(void);
226extern void io_schedule_finish(int token);
9cff8ade 227extern long io_schedule_timeout(long timeout);
10ab5643 228extern void io_schedule(void);
9cff8ade 229
d37f761d 230/**
0ba42a59 231 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
232 * @utime: time spent in user mode
233 * @stime: time spent in system mode
9d7fb042 234 * @lock: protects the above two fields
d37f761d 235 *
9d7fb042
PZ
236 * Stores previous user/system time values such that we can guarantee
237 * monotonicity.
d37f761d 238 */
9d7fb042
PZ
239struct prev_cputime {
240#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
241 u64 utime;
242 u64 stime;
243 raw_spinlock_t lock;
9d7fb042 244#endif
d37f761d
FW
245};
246
f06febc9
FM
247/**
248 * struct task_cputime - collected CPU time counts
5613fda9
FW
249 * @utime: time spent in user mode, in nanoseconds
250 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 251 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 252 *
9d7fb042
PZ
253 * This structure groups together three kinds of CPU time that are tracked for
254 * threads and thread groups. Most things considering CPU time want to group
255 * these counts together and treat all three of them in parallel.
f06febc9
FM
256 */
257struct task_cputime {
5eca1c10
IM
258 u64 utime;
259 u64 stime;
260 unsigned long long sum_exec_runtime;
f06febc9 261};
9d7fb042 262
5eca1c10
IM
263/* Alternate field names when used on cache expirations: */
264#define virt_exp utime
265#define prof_exp stime
266#define sched_exp sum_exec_runtime
f06febc9 267
bac5b6b6
FW
268enum vtime_state {
269 /* Task is sleeping or running in a CPU with VTIME inactive: */
270 VTIME_INACTIVE = 0,
271 /* Task runs in userspace in a CPU with VTIME active: */
272 VTIME_USER,
273 /* Task runs in kernelspace in a CPU with VTIME active: */
274 VTIME_SYS,
275};
276
277struct vtime {
278 seqcount_t seqcount;
279 unsigned long long starttime;
280 enum vtime_state state;
2a42eb95
WL
281 u64 utime;
282 u64 stime;
283 u64 gtime;
bac5b6b6
FW
284};
285
69842cba
PB
286/*
287 * Utilization clamp constraints.
288 * @UCLAMP_MIN: Minimum utilization
289 * @UCLAMP_MAX: Maximum utilization
290 * @UCLAMP_CNT: Utilization clamp constraints count
291 */
292enum uclamp_id {
293 UCLAMP_MIN = 0,
294 UCLAMP_MAX,
295 UCLAMP_CNT
296};
297
f9a25f77
MP
298#ifdef CONFIG_SMP
299extern struct root_domain def_root_domain;
300extern struct mutex sched_domains_mutex;
301#endif
302
1da177e4 303struct sched_info {
7f5f8e8d 304#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
305 /* Cumulative counters: */
306
307 /* # of times we have run on this CPU: */
308 unsigned long pcount;
309
310 /* Time spent waiting on a runqueue: */
311 unsigned long long run_delay;
312
313 /* Timestamps: */
314
315 /* When did we last run on a CPU? */
316 unsigned long long last_arrival;
317
318 /* When were we last queued to run? */
319 unsigned long long last_queued;
1da177e4 320
f6db8347 321#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 322};
1da177e4 323
6ecdd749
YD
324/*
325 * Integer metrics need fixed point arithmetic, e.g., sched/fair
326 * has a few: load, load_avg, util_avg, freq, and capacity.
327 *
328 * We define a basic fixed point arithmetic range, and then formalize
329 * all these metrics based on that basic range.
330 */
5eca1c10
IM
331# define SCHED_FIXEDPOINT_SHIFT 10
332# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 333
69842cba
PB
334/* Increase resolution of cpu_capacity calculations */
335# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
336# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
337
20b8a59f 338struct load_weight {
5eca1c10
IM
339 unsigned long weight;
340 u32 inv_weight;
20b8a59f
IM
341};
342
7f65ea42
PB
343/**
344 * struct util_est - Estimation utilization of FAIR tasks
345 * @enqueued: instantaneous estimated utilization of a task/cpu
346 * @ewma: the Exponential Weighted Moving Average (EWMA)
347 * utilization of a task
348 *
349 * Support data structure to track an Exponential Weighted Moving Average
350 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
351 * average each time a task completes an activation. Sample's weight is chosen
352 * so that the EWMA will be relatively insensitive to transient changes to the
353 * task's workload.
354 *
355 * The enqueued attribute has a slightly different meaning for tasks and cpus:
356 * - task: the task's util_avg at last task dequeue time
357 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
358 * Thus, the util_est.enqueued of a task represents the contribution on the
359 * estimated utilization of the CPU where that task is currently enqueued.
360 *
361 * Only for tasks we track a moving average of the past instantaneous
362 * estimated utilization. This allows to absorb sporadic drops in utilization
363 * of an otherwise almost periodic task.
364 */
365struct util_est {
366 unsigned int enqueued;
367 unsigned int ewma;
368#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 369} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 370
9d89c257 371/*
7b595334
YD
372 * The load_avg/util_avg accumulates an infinite geometric series
373 * (see __update_load_avg() in kernel/sched/fair.c).
374 *
375 * [load_avg definition]
376 *
377 * load_avg = runnable% * scale_load_down(load)
378 *
379 * where runnable% is the time ratio that a sched_entity is runnable.
380 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 381 * blocked sched_entities.
7b595334 382 *
7b595334
YD
383 * [util_avg definition]
384 *
385 * util_avg = running% * SCHED_CAPACITY_SCALE
386 *
387 * where running% is the time ratio that a sched_entity is running on
388 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
389 * and blocked sched_entities.
390 *
23127296
VG
391 * load_avg and util_avg don't direcly factor frequency scaling and CPU
392 * capacity scaling. The scaling is done through the rq_clock_pelt that
393 * is used for computing those signals (see update_rq_clock_pelt())
7b595334 394 *
23127296
VG
395 * N.B., the above ratios (runnable% and running%) themselves are in the
396 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
397 * to as large a range as necessary. This is for example reflected by
398 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
399 *
400 * [Overflow issue]
401 *
402 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
403 * with the highest load (=88761), always runnable on a single cfs_rq,
404 * and should not overflow as the number already hits PID_MAX_LIMIT.
405 *
406 * For all other cases (including 32-bit kernels), struct load_weight's
407 * weight will overflow first before we do, because:
408 *
409 * Max(load_avg) <= Max(load.weight)
410 *
411 * Then it is the load_weight's responsibility to consider overflow
412 * issues.
9d89c257 413 */
9d85f21c 414struct sched_avg {
5eca1c10
IM
415 u64 last_update_time;
416 u64 load_sum;
1ea6c46a 417 u64 runnable_load_sum;
5eca1c10
IM
418 u32 util_sum;
419 u32 period_contrib;
420 unsigned long load_avg;
1ea6c46a 421 unsigned long runnable_load_avg;
5eca1c10 422 unsigned long util_avg;
7f65ea42 423 struct util_est util_est;
317d359d 424} ____cacheline_aligned;
9d85f21c 425
41acab88 426struct sched_statistics {
7f5f8e8d 427#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
428 u64 wait_start;
429 u64 wait_max;
430 u64 wait_count;
431 u64 wait_sum;
432 u64 iowait_count;
433 u64 iowait_sum;
434
435 u64 sleep_start;
436 u64 sleep_max;
437 s64 sum_sleep_runtime;
438
439 u64 block_start;
440 u64 block_max;
441 u64 exec_max;
442 u64 slice_max;
443
444 u64 nr_migrations_cold;
445 u64 nr_failed_migrations_affine;
446 u64 nr_failed_migrations_running;
447 u64 nr_failed_migrations_hot;
448 u64 nr_forced_migrations;
449
450 u64 nr_wakeups;
451 u64 nr_wakeups_sync;
452 u64 nr_wakeups_migrate;
453 u64 nr_wakeups_local;
454 u64 nr_wakeups_remote;
455 u64 nr_wakeups_affine;
456 u64 nr_wakeups_affine_attempts;
457 u64 nr_wakeups_passive;
458 u64 nr_wakeups_idle;
41acab88 459#endif
7f5f8e8d 460};
41acab88
LDM
461
462struct sched_entity {
5eca1c10
IM
463 /* For load-balancing: */
464 struct load_weight load;
1ea6c46a 465 unsigned long runnable_weight;
5eca1c10
IM
466 struct rb_node run_node;
467 struct list_head group_node;
468 unsigned int on_rq;
41acab88 469
5eca1c10
IM
470 u64 exec_start;
471 u64 sum_exec_runtime;
472 u64 vruntime;
473 u64 prev_sum_exec_runtime;
41acab88 474
5eca1c10 475 u64 nr_migrations;
41acab88 476
5eca1c10 477 struct sched_statistics statistics;
94c18227 478
20b8a59f 479#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
480 int depth;
481 struct sched_entity *parent;
20b8a59f 482 /* rq on which this entity is (to be) queued: */
5eca1c10 483 struct cfs_rq *cfs_rq;
20b8a59f 484 /* rq "owned" by this entity/group: */
5eca1c10 485 struct cfs_rq *my_q;
20b8a59f 486#endif
8bd75c77 487
141965c7 488#ifdef CONFIG_SMP
5a107804
JO
489 /*
490 * Per entity load average tracking.
491 *
492 * Put into separate cache line so it does not
493 * collide with read-mostly values above.
494 */
317d359d 495 struct sched_avg avg;
9d85f21c 496#endif
20b8a59f 497};
70b97a7f 498
fa717060 499struct sched_rt_entity {
5eca1c10
IM
500 struct list_head run_list;
501 unsigned long timeout;
502 unsigned long watchdog_stamp;
503 unsigned int time_slice;
504 unsigned short on_rq;
505 unsigned short on_list;
506
507 struct sched_rt_entity *back;
052f1dc7 508#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 509 struct sched_rt_entity *parent;
6f505b16 510 /* rq on which this entity is (to be) queued: */
5eca1c10 511 struct rt_rq *rt_rq;
6f505b16 512 /* rq "owned" by this entity/group: */
5eca1c10 513 struct rt_rq *my_q;
6f505b16 514#endif
3859a271 515} __randomize_layout;
fa717060 516
aab03e05 517struct sched_dl_entity {
5eca1c10 518 struct rb_node rb_node;
aab03e05
DF
519
520 /*
521 * Original scheduling parameters. Copied here from sched_attr
4027d080 522 * during sched_setattr(), they will remain the same until
523 * the next sched_setattr().
aab03e05 524 */
5eca1c10
IM
525 u64 dl_runtime; /* Maximum runtime for each instance */
526 u64 dl_deadline; /* Relative deadline of each instance */
527 u64 dl_period; /* Separation of two instances (period) */
54d6d303 528 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 529 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
530
531 /*
532 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 533 * they are continuously updated during task execution. Note that
aab03e05
DF
534 * the remaining runtime could be < 0 in case we are in overrun.
535 */
5eca1c10
IM
536 s64 runtime; /* Remaining runtime for this instance */
537 u64 deadline; /* Absolute deadline for this instance */
538 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
539
540 /*
541 * Some bool flags:
542 *
543 * @dl_throttled tells if we exhausted the runtime. If so, the
544 * task has to wait for a replenishment to be performed at the
545 * next firing of dl_timer.
546 *
2d3d891d
DF
547 * @dl_boosted tells if we are boosted due to DI. If so we are
548 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
549 * exit the critical section);
550 *
5eca1c10 551 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 552 * all its available runtime during the last job.
209a0cbd
LA
553 *
554 * @dl_non_contending tells if the task is inactive while still
555 * contributing to the active utilization. In other words, it
556 * indicates if the inactive timer has been armed and its handler
557 * has not been executed yet. This flag is useful to avoid race
558 * conditions between the inactive timer handler and the wakeup
559 * code.
34be3930
JL
560 *
561 * @dl_overrun tells if the task asked to be informed about runtime
562 * overruns.
aab03e05 563 */
aa5222e9
DC
564 unsigned int dl_throttled : 1;
565 unsigned int dl_boosted : 1;
566 unsigned int dl_yielded : 1;
567 unsigned int dl_non_contending : 1;
34be3930 568 unsigned int dl_overrun : 1;
aab03e05
DF
569
570 /*
571 * Bandwidth enforcement timer. Each -deadline task has its
572 * own bandwidth to be enforced, thus we need one timer per task.
573 */
5eca1c10 574 struct hrtimer dl_timer;
209a0cbd
LA
575
576 /*
577 * Inactive timer, responsible for decreasing the active utilization
578 * at the "0-lag time". When a -deadline task blocks, it contributes
579 * to GRUB's active utilization until the "0-lag time", hence a
580 * timer is needed to decrease the active utilization at the correct
581 * time.
582 */
583 struct hrtimer inactive_timer;
aab03e05 584};
8bd75c77 585
69842cba
PB
586#ifdef CONFIG_UCLAMP_TASK
587/* Number of utilization clamp buckets (shorter alias) */
588#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
589
590/*
591 * Utilization clamp for a scheduling entity
592 * @value: clamp value "assigned" to a se
593 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 594 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 595 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
596 *
597 * The bucket_id is the index of the clamp bucket matching the clamp value
598 * which is pre-computed and stored to avoid expensive integer divisions from
599 * the fast path.
e8f14172
PB
600 *
601 * The active bit is set whenever a task has got an "effective" value assigned,
602 * which can be different from the clamp value "requested" from user-space.
603 * This allows to know a task is refcounted in the rq's bucket corresponding
604 * to the "effective" bucket_id.
a509a7cd
PB
605 *
606 * The user_defined bit is set whenever a task has got a task-specific clamp
607 * value requested from userspace, i.e. the system defaults apply to this task
608 * just as a restriction. This allows to relax default clamps when a less
609 * restrictive task-specific value has been requested, thus allowing to
610 * implement a "nice" semantic. For example, a task running with a 20%
611 * default boost can still drop its own boosting to 0%.
69842cba
PB
612 */
613struct uclamp_se {
614 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
615 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 616 unsigned int active : 1;
a509a7cd 617 unsigned int user_defined : 1;
69842cba
PB
618};
619#endif /* CONFIG_UCLAMP_TASK */
620
1d082fd0
PM
621union rcu_special {
622 struct {
5eca1c10
IM
623 u8 blocked;
624 u8 need_qs;
05f41571 625 u8 exp_hint; /* Hint for performance. */
23634ebc 626 u8 deferred_qs;
8203d6d0 627 } b; /* Bits. */
05f41571 628 u32 s; /* Set of bits. */
1d082fd0 629};
86848966 630
8dc85d54
PZ
631enum perf_event_task_context {
632 perf_invalid_context = -1,
633 perf_hw_context = 0,
89a1e187 634 perf_sw_context,
8dc85d54
PZ
635 perf_nr_task_contexts,
636};
637
eb61baf6
IM
638struct wake_q_node {
639 struct wake_q_node *next;
640};
641
1da177e4 642struct task_struct {
c65eacbe
AL
643#ifdef CONFIG_THREAD_INFO_IN_TASK
644 /*
645 * For reasons of header soup (see current_thread_info()), this
646 * must be the first element of task_struct.
647 */
5eca1c10 648 struct thread_info thread_info;
c65eacbe 649#endif
5eca1c10
IM
650 /* -1 unrunnable, 0 runnable, >0 stopped: */
651 volatile long state;
29e48ce8
KC
652
653 /*
654 * This begins the randomizable portion of task_struct. Only
655 * scheduling-critical items should be added above here.
656 */
657 randomized_struct_fields_start
658
5eca1c10 659 void *stack;
ec1d2819 660 refcount_t usage;
5eca1c10
IM
661 /* Per task flags (PF_*), defined further below: */
662 unsigned int flags;
663 unsigned int ptrace;
1da177e4 664
2dd73a4f 665#ifdef CONFIG_SMP
5eca1c10
IM
666 struct llist_node wake_entry;
667 int on_cpu;
c65eacbe 668#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
669 /* Current CPU: */
670 unsigned int cpu;
c65eacbe 671#endif
5eca1c10
IM
672 unsigned int wakee_flips;
673 unsigned long wakee_flip_decay_ts;
674 struct task_struct *last_wakee;
ac66f547 675
32e839dd
MG
676 /*
677 * recent_used_cpu is initially set as the last CPU used by a task
678 * that wakes affine another task. Waker/wakee relationships can
679 * push tasks around a CPU where each wakeup moves to the next one.
680 * Tracking a recently used CPU allows a quick search for a recently
681 * used CPU that may be idle.
682 */
683 int recent_used_cpu;
5eca1c10 684 int wake_cpu;
2dd73a4f 685#endif
5eca1c10
IM
686 int on_rq;
687
688 int prio;
689 int static_prio;
690 int normal_prio;
691 unsigned int rt_priority;
50e645a8 692
5eca1c10
IM
693 const struct sched_class *sched_class;
694 struct sched_entity se;
695 struct sched_rt_entity rt;
8323f26c 696#ifdef CONFIG_CGROUP_SCHED
5eca1c10 697 struct task_group *sched_task_group;
8323f26c 698#endif
5eca1c10 699 struct sched_dl_entity dl;
1da177e4 700
69842cba 701#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
702 /* Clamp values requested for a scheduling entity */
703 struct uclamp_se uclamp_req[UCLAMP_CNT];
704 /* Effective clamp values used for a scheduling entity */
69842cba
PB
705 struct uclamp_se uclamp[UCLAMP_CNT];
706#endif
707
e107be36 708#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
709 /* List of struct preempt_notifier: */
710 struct hlist_head preempt_notifiers;
e107be36
AK
711#endif
712
6c5c9341 713#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 714 unsigned int btrace_seq;
6c5c9341 715#endif
1da177e4 716
5eca1c10
IM
717 unsigned int policy;
718 int nr_cpus_allowed;
3bd37062
SAS
719 const cpumask_t *cpus_ptr;
720 cpumask_t cpus_mask;
1da177e4 721
a57eb940 722#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
723 int rcu_read_lock_nesting;
724 union rcu_special rcu_read_unlock_special;
725 struct list_head rcu_node_entry;
726 struct rcu_node *rcu_blocked_node;
28f6569a 727#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 728
8315f422 729#ifdef CONFIG_TASKS_RCU
5eca1c10 730 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
731 u8 rcu_tasks_holdout;
732 u8 rcu_tasks_idx;
5eca1c10 733 int rcu_tasks_idle_cpu;
ccdd29ff 734 struct list_head rcu_tasks_holdout_list;
8315f422 735#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 736
5eca1c10 737 struct sched_info sched_info;
1da177e4 738
5eca1c10 739 struct list_head tasks;
806c09a7 740#ifdef CONFIG_SMP
5eca1c10
IM
741 struct plist_node pushable_tasks;
742 struct rb_node pushable_dl_tasks;
806c09a7 743#endif
1da177e4 744
5eca1c10
IM
745 struct mm_struct *mm;
746 struct mm_struct *active_mm;
314ff785
IM
747
748 /* Per-thread vma caching: */
5eca1c10 749 struct vmacache vmacache;
314ff785 750
5eca1c10
IM
751#ifdef SPLIT_RSS_COUNTING
752 struct task_rss_stat rss_stat;
34e55232 753#endif
5eca1c10
IM
754 int exit_state;
755 int exit_code;
756 int exit_signal;
757 /* The signal sent when the parent dies: */
758 int pdeath_signal;
759 /* JOBCTL_*, siglock protected: */
760 unsigned long jobctl;
761
762 /* Used for emulating ABI behavior of previous Linux versions: */
763 unsigned int personality;
764
765 /* Scheduler bits, serialized by scheduler locks: */
766 unsigned sched_reset_on_fork:1;
767 unsigned sched_contributes_to_load:1;
768 unsigned sched_migrated:1;
769 unsigned sched_remote_wakeup:1;
eb414681
JW
770#ifdef CONFIG_PSI
771 unsigned sched_psi_wake_requeue:1;
772#endif
773
5eca1c10
IM
774 /* Force alignment to the next boundary: */
775 unsigned :0;
776
777 /* Unserialized, strictly 'current' */
778
779 /* Bit to tell LSMs we're in execve(): */
780 unsigned in_execve:1;
781 unsigned in_iowait:1;
782#ifndef TIF_RESTORE_SIGMASK
783 unsigned restore_sigmask:1;
7e781418 784#endif
626ebc41 785#ifdef CONFIG_MEMCG
29ef680a 786 unsigned in_user_fault:1;
127424c8 787#endif
ff303e66 788#ifdef CONFIG_COMPAT_BRK
5eca1c10 789 unsigned brk_randomized:1;
ff303e66 790#endif
77f88796
TH
791#ifdef CONFIG_CGROUPS
792 /* disallow userland-initiated cgroup migration */
793 unsigned no_cgroup_migration:1;
76f969e8
RG
794 /* task is frozen/stopped (used by the cgroup freezer) */
795 unsigned frozen:1;
77f88796 796#endif
d09d8df3
JB
797#ifdef CONFIG_BLK_CGROUP
798 /* to be used once the psi infrastructure lands upstream. */
799 unsigned use_memdelay:1;
800#endif
6f185c29 801
5eca1c10 802 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 803
5eca1c10 804 struct restart_block restart_block;
f56141e3 805
5eca1c10
IM
806 pid_t pid;
807 pid_t tgid;
0a425405 808
050e9baa 809#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
810 /* Canary value for the -fstack-protector GCC feature: */
811 unsigned long stack_canary;
1314562a 812#endif
4d1d61a6 813 /*
5eca1c10 814 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 815 * older sibling, respectively. (p->father can be replaced with
f470021a 816 * p->real_parent->pid)
1da177e4 817 */
5eca1c10
IM
818
819 /* Real parent process: */
820 struct task_struct __rcu *real_parent;
821
822 /* Recipient of SIGCHLD, wait4() reports: */
823 struct task_struct __rcu *parent;
824
1da177e4 825 /*
5eca1c10 826 * Children/sibling form the list of natural children:
1da177e4 827 */
5eca1c10
IM
828 struct list_head children;
829 struct list_head sibling;
830 struct task_struct *group_leader;
1da177e4 831
f470021a 832 /*
5eca1c10
IM
833 * 'ptraced' is the list of tasks this task is using ptrace() on.
834 *
f470021a 835 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 836 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 837 */
5eca1c10
IM
838 struct list_head ptraced;
839 struct list_head ptrace_entry;
f470021a 840
1da177e4 841 /* PID/PID hash table linkage. */
2c470475
EB
842 struct pid *thread_pid;
843 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
844 struct list_head thread_group;
845 struct list_head thread_node;
846
847 struct completion *vfork_done;
1da177e4 848
5eca1c10
IM
849 /* CLONE_CHILD_SETTID: */
850 int __user *set_child_tid;
1da177e4 851
5eca1c10
IM
852 /* CLONE_CHILD_CLEARTID: */
853 int __user *clear_child_tid;
854
855 u64 utime;
856 u64 stime;
40565b5a 857#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
858 u64 utimescaled;
859 u64 stimescaled;
40565b5a 860#endif
5eca1c10
IM
861 u64 gtime;
862 struct prev_cputime prev_cputime;
6a61671b 863#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 864 struct vtime vtime;
d99ca3b9 865#endif
d027d45d
FW
866
867#ifdef CONFIG_NO_HZ_FULL
5eca1c10 868 atomic_t tick_dep_mask;
d027d45d 869#endif
5eca1c10
IM
870 /* Context switch counts: */
871 unsigned long nvcsw;
872 unsigned long nivcsw;
873
874 /* Monotonic time in nsecs: */
875 u64 start_time;
876
877 /* Boot based time in nsecs: */
878 u64 real_start_time;
879
880 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
881 unsigned long min_flt;
882 unsigned long maj_flt;
1da177e4 883
b18b6a9c 884#ifdef CONFIG_POSIX_TIMERS
5eca1c10
IM
885 struct task_cputime cputime_expires;
886 struct list_head cpu_timers[3];
b18b6a9c 887#endif
1da177e4 888
5eca1c10
IM
889 /* Process credentials: */
890
891 /* Tracer's credentials at attach: */
892 const struct cred __rcu *ptracer_cred;
893
894 /* Objective and real subjective task credentials (COW): */
895 const struct cred __rcu *real_cred;
896
897 /* Effective (overridable) subjective task credentials (COW): */
898 const struct cred __rcu *cred;
899
7743c48e
DH
900#ifdef CONFIG_KEYS
901 /* Cached requested key. */
902 struct key *cached_requested_key;
903#endif
904
5eca1c10
IM
905 /*
906 * executable name, excluding path.
907 *
908 * - normally initialized setup_new_exec()
909 * - access it with [gs]et_task_comm()
910 * - lock it with task_lock()
911 */
912 char comm[TASK_COMM_LEN];
913
914 struct nameidata *nameidata;
915
3d5b6fcc 916#ifdef CONFIG_SYSVIPC
5eca1c10
IM
917 struct sysv_sem sysvsem;
918 struct sysv_shm sysvshm;
3d5b6fcc 919#endif
e162b39a 920#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 921 unsigned long last_switch_count;
a2e51445 922 unsigned long last_switch_time;
82a1fcb9 923#endif
5eca1c10
IM
924 /* Filesystem information: */
925 struct fs_struct *fs;
926
927 /* Open file information: */
928 struct files_struct *files;
929
930 /* Namespaces: */
931 struct nsproxy *nsproxy;
932
933 /* Signal handlers: */
934 struct signal_struct *signal;
935 struct sighand_struct *sighand;
936 sigset_t blocked;
937 sigset_t real_blocked;
938 /* Restored if set_restore_sigmask() was used: */
939 sigset_t saved_sigmask;
940 struct sigpending pending;
941 unsigned long sas_ss_sp;
942 size_t sas_ss_size;
943 unsigned int sas_ss_flags;
944
945 struct callback_head *task_works;
946
4b7d248b 947#ifdef CONFIG_AUDIT
bfef93a5 948#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
949 struct audit_context *audit_context;
950#endif
5eca1c10
IM
951 kuid_t loginuid;
952 unsigned int sessionid;
bfef93a5 953#endif
5eca1c10
IM
954 struct seccomp seccomp;
955
956 /* Thread group tracking: */
957 u32 parent_exec_id;
958 u32 self_exec_id;
1da177e4 959
5eca1c10
IM
960 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
961 spinlock_t alloc_lock;
1da177e4 962
b29739f9 963 /* Protection of the PI data structures: */
5eca1c10 964 raw_spinlock_t pi_lock;
b29739f9 965
5eca1c10 966 struct wake_q_node wake_q;
76751049 967
23f78d4a 968#ifdef CONFIG_RT_MUTEXES
5eca1c10 969 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 970 struct rb_root_cached pi_waiters;
e96a7705
XP
971 /* Updated under owner's pi_lock and rq lock */
972 struct task_struct *pi_top_task;
5eca1c10
IM
973 /* Deadlock detection and priority inheritance handling: */
974 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
975#endif
976
408894ee 977#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
978 /* Mutex deadlock detection: */
979 struct mutex_waiter *blocked_on;
408894ee 980#endif
5eca1c10 981
de30a2b3 982#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
983 unsigned int irq_events;
984 unsigned long hardirq_enable_ip;
985 unsigned long hardirq_disable_ip;
986 unsigned int hardirq_enable_event;
987 unsigned int hardirq_disable_event;
988 int hardirqs_enabled;
989 int hardirq_context;
990 unsigned long softirq_disable_ip;
991 unsigned long softirq_enable_ip;
992 unsigned int softirq_disable_event;
993 unsigned int softirq_enable_event;
994 int softirqs_enabled;
995 int softirq_context;
de30a2b3 996#endif
5eca1c10 997
fbb9ce95 998#ifdef CONFIG_LOCKDEP
5eca1c10
IM
999# define MAX_LOCK_DEPTH 48UL
1000 u64 curr_chain_key;
1001 int lockdep_depth;
1002 unsigned int lockdep_recursion;
1003 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 1004#endif
5eca1c10 1005
c6d30853 1006#ifdef CONFIG_UBSAN
5eca1c10 1007 unsigned int in_ubsan;
c6d30853 1008#endif
408894ee 1009
5eca1c10
IM
1010 /* Journalling filesystem info: */
1011 void *journal_info;
1da177e4 1012
5eca1c10
IM
1013 /* Stacked block device info: */
1014 struct bio_list *bio_list;
d89d8796 1015
73c10101 1016#ifdef CONFIG_BLOCK
5eca1c10
IM
1017 /* Stack plugging: */
1018 struct blk_plug *plug;
73c10101
JA
1019#endif
1020
5eca1c10
IM
1021 /* VM state: */
1022 struct reclaim_state *reclaim_state;
1023
1024 struct backing_dev_info *backing_dev_info;
1da177e4 1025
5eca1c10 1026 struct io_context *io_context;
1da177e4 1027
5e1f0f09
MG
1028#ifdef CONFIG_COMPACTION
1029 struct capture_control *capture_control;
1030#endif
5eca1c10
IM
1031 /* Ptrace state: */
1032 unsigned long ptrace_message;
ae7795bc 1033 kernel_siginfo_t *last_siginfo;
1da177e4 1034
5eca1c10 1035 struct task_io_accounting ioac;
eb414681
JW
1036#ifdef CONFIG_PSI
1037 /* Pressure stall state */
1038 unsigned int psi_flags;
1039#endif
5eca1c10
IM
1040#ifdef CONFIG_TASK_XACCT
1041 /* Accumulated RSS usage: */
1042 u64 acct_rss_mem1;
1043 /* Accumulated virtual memory usage: */
1044 u64 acct_vm_mem1;
1045 /* stime + utime since last update: */
1046 u64 acct_timexpd;
1da177e4
LT
1047#endif
1048#ifdef CONFIG_CPUSETS
5eca1c10
IM
1049 /* Protected by ->alloc_lock: */
1050 nodemask_t mems_allowed;
1051 /* Seqence number to catch updates: */
1052 seqcount_t mems_allowed_seq;
1053 int cpuset_mem_spread_rotor;
1054 int cpuset_slab_spread_rotor;
1da177e4 1055#endif
ddbcc7e8 1056#ifdef CONFIG_CGROUPS
5eca1c10
IM
1057 /* Control Group info protected by css_set_lock: */
1058 struct css_set __rcu *cgroups;
1059 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1060 struct list_head cg_list;
ddbcc7e8 1061#endif
e6d42931 1062#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1063 u32 closid;
d6aaba61 1064 u32 rmid;
e02737d5 1065#endif
42b2dd0a 1066#ifdef CONFIG_FUTEX
5eca1c10 1067 struct robust_list_head __user *robust_list;
34f192c6
IM
1068#ifdef CONFIG_COMPAT
1069 struct compat_robust_list_head __user *compat_robust_list;
1070#endif
5eca1c10
IM
1071 struct list_head pi_state_list;
1072 struct futex_pi_state *pi_state_cache;
c7aceaba 1073#endif
cdd6c482 1074#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1075 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1076 struct mutex perf_event_mutex;
1077 struct list_head perf_event_list;
a63eaf34 1078#endif
8f47b187 1079#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1080 unsigned long preempt_disable_ip;
8f47b187 1081#endif
c7aceaba 1082#ifdef CONFIG_NUMA
5eca1c10
IM
1083 /* Protected by alloc_lock: */
1084 struct mempolicy *mempolicy;
45816682 1085 short il_prev;
5eca1c10 1086 short pref_node_fork;
42b2dd0a 1087#endif
cbee9f88 1088#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1089 int numa_scan_seq;
1090 unsigned int numa_scan_period;
1091 unsigned int numa_scan_period_max;
1092 int numa_preferred_nid;
1093 unsigned long numa_migrate_retry;
1094 /* Migration stamp: */
1095 u64 node_stamp;
1096 u64 last_task_numa_placement;
1097 u64 last_sum_exec_runtime;
1098 struct callback_head numa_work;
1099
cb361d8c
JH
1100 /*
1101 * This pointer is only modified for current in syscall and
1102 * pagefault context (and for tasks being destroyed), so it can be read
1103 * from any of the following contexts:
1104 * - RCU read-side critical section
1105 * - current->numa_group from everywhere
1106 * - task's runqueue locked, task not running
1107 */
1108 struct numa_group __rcu *numa_group;
8c8a743c 1109
745d6147 1110 /*
44dba3d5
IM
1111 * numa_faults is an array split into four regions:
1112 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1113 * in this precise order.
1114 *
1115 * faults_memory: Exponential decaying average of faults on a per-node
1116 * basis. Scheduling placement decisions are made based on these
1117 * counts. The values remain static for the duration of a PTE scan.
1118 * faults_cpu: Track the nodes the process was running on when a NUMA
1119 * hinting fault was incurred.
1120 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1121 * during the current scan window. When the scan completes, the counts
1122 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1123 */
5eca1c10
IM
1124 unsigned long *numa_faults;
1125 unsigned long total_numa_faults;
745d6147 1126
04bb2f94
RR
1127 /*
1128 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1129 * scan window were remote/local or failed to migrate. The task scan
1130 * period is adapted based on the locality of the faults with different
1131 * weights depending on whether they were shared or private faults
04bb2f94 1132 */
5eca1c10 1133 unsigned long numa_faults_locality[3];
04bb2f94 1134
5eca1c10 1135 unsigned long numa_pages_migrated;
cbee9f88
PZ
1136#endif /* CONFIG_NUMA_BALANCING */
1137
d7822b1e
MD
1138#ifdef CONFIG_RSEQ
1139 struct rseq __user *rseq;
d7822b1e
MD
1140 u32 rseq_sig;
1141 /*
1142 * RmW on rseq_event_mask must be performed atomically
1143 * with respect to preemption.
1144 */
1145 unsigned long rseq_event_mask;
1146#endif
1147
5eca1c10 1148 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1149
5eca1c10 1150 struct rcu_head rcu;
b92ce558 1151
5eca1c10
IM
1152 /* Cache last used pipe for splice(): */
1153 struct pipe_inode_info *splice_pipe;
5640f768 1154
5eca1c10 1155 struct page_frag task_frag;
5640f768 1156
47913d4e
IM
1157#ifdef CONFIG_TASK_DELAY_ACCT
1158 struct task_delay_info *delays;
f4f154fd 1159#endif
47913d4e 1160
f4f154fd 1161#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1162 int make_it_fail;
9049f2f6 1163 unsigned int fail_nth;
ca74e92b 1164#endif
9d823e8f 1165 /*
5eca1c10
IM
1166 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1167 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1168 */
5eca1c10
IM
1169 int nr_dirtied;
1170 int nr_dirtied_pause;
1171 /* Start of a write-and-pause period: */
1172 unsigned long dirty_paused_when;
9d823e8f 1173
9745512c 1174#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1175 int latency_record_count;
1176 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1177#endif
6976675d 1178 /*
5eca1c10 1179 * Time slack values; these are used to round up poll() and
6976675d
AV
1180 * select() etc timeout values. These are in nanoseconds.
1181 */
5eca1c10
IM
1182 u64 timer_slack_ns;
1183 u64 default_timer_slack_ns;
f8d570a4 1184
0b24becc 1185#ifdef CONFIG_KASAN
5eca1c10 1186 unsigned int kasan_depth;
0b24becc 1187#endif
5eca1c10 1188
fb52607a 1189#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1190 /* Index of current stored address in ret_stack: */
1191 int curr_ret_stack;
39eb456d 1192 int curr_ret_depth;
5eca1c10
IM
1193
1194 /* Stack of return addresses for return function tracing: */
1195 struct ftrace_ret_stack *ret_stack;
1196
1197 /* Timestamp for last schedule: */
1198 unsigned long long ftrace_timestamp;
1199
f201ae23
FW
1200 /*
1201 * Number of functions that haven't been traced
5eca1c10 1202 * because of depth overrun:
f201ae23 1203 */
5eca1c10
IM
1204 atomic_t trace_overrun;
1205
1206 /* Pause tracing: */
1207 atomic_t tracing_graph_pause;
f201ae23 1208#endif
5eca1c10 1209
ea4e2bc4 1210#ifdef CONFIG_TRACING
5eca1c10
IM
1211 /* State flags for use by tracers: */
1212 unsigned long trace;
1213
1214 /* Bitmask and counter of trace recursion: */
1215 unsigned long trace_recursion;
261842b7 1216#endif /* CONFIG_TRACING */
5eca1c10 1217
5c9a8750 1218#ifdef CONFIG_KCOV
5eca1c10 1219 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1220 unsigned int kcov_mode;
5eca1c10
IM
1221
1222 /* Size of the kcov_area: */
1223 unsigned int kcov_size;
1224
1225 /* Buffer for coverage collection: */
1226 void *kcov_area;
1227
1228 /* KCOV descriptor wired with this task or NULL: */
1229 struct kcov *kcov;
5c9a8750 1230#endif
5eca1c10 1231
6f185c29 1232#ifdef CONFIG_MEMCG
5eca1c10
IM
1233 struct mem_cgroup *memcg_in_oom;
1234 gfp_t memcg_oom_gfp_mask;
1235 int memcg_oom_order;
b23afb93 1236
5eca1c10
IM
1237 /* Number of pages to reclaim on returning to userland: */
1238 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1239
1240 /* Used by memcontrol for targeted memcg charge: */
1241 struct mem_cgroup *active_memcg;
569b846d 1242#endif
5eca1c10 1243
d09d8df3
JB
1244#ifdef CONFIG_BLK_CGROUP
1245 struct request_queue *throttle_queue;
1246#endif
1247
0326f5a9 1248#ifdef CONFIG_UPROBES
5eca1c10 1249 struct uprobe_task *utask;
0326f5a9 1250#endif
cafe5635 1251#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1252 unsigned int sequential_io;
1253 unsigned int sequential_io_avg;
cafe5635 1254#endif
8eb23b9f 1255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1256 unsigned long task_state_change;
8eb23b9f 1257#endif
5eca1c10 1258 int pagefault_disabled;
03049269 1259#ifdef CONFIG_MMU
5eca1c10 1260 struct task_struct *oom_reaper_list;
03049269 1261#endif
ba14a194 1262#ifdef CONFIG_VMAP_STACK
5eca1c10 1263 struct vm_struct *stack_vm_area;
ba14a194 1264#endif
68f24b08 1265#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1266 /* A live task holds one reference: */
f0b89d39 1267 refcount_t stack_refcount;
d83a7cb3
JP
1268#endif
1269#ifdef CONFIG_LIVEPATCH
1270 int patch_state;
0302e28d 1271#endif
e4e55b47
TH
1272#ifdef CONFIG_SECURITY
1273 /* Used by LSM modules for access restriction: */
1274 void *security;
68f24b08 1275#endif
29e48ce8 1276
afaef01c
AP
1277#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1278 unsigned long lowest_stack;
c8d12627 1279 unsigned long prev_lowest_stack;
afaef01c
AP
1280#endif
1281
29e48ce8
KC
1282 /*
1283 * New fields for task_struct should be added above here, so that
1284 * they are included in the randomized portion of task_struct.
1285 */
1286 randomized_struct_fields_end
1287
5eca1c10
IM
1288 /* CPU-specific state of this task: */
1289 struct thread_struct thread;
1290
1291 /*
1292 * WARNING: on x86, 'thread_struct' contains a variable-sized
1293 * structure. It *MUST* be at the end of 'task_struct'.
1294 *
1295 * Do not put anything below here!
1296 */
1da177e4
LT
1297};
1298
e868171a 1299static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1300{
2c470475 1301 return task->thread_pid;
22c935f4
EB
1302}
1303
7af57294
PE
1304/*
1305 * the helpers to get the task's different pids as they are seen
1306 * from various namespaces
1307 *
1308 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1309 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1310 * current.
7af57294
PE
1311 * task_xid_nr_ns() : id seen from the ns specified;
1312 *
7af57294
PE
1313 * see also pid_nr() etc in include/linux/pid.h
1314 */
5eca1c10 1315pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1316
e868171a 1317static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1318{
1319 return tsk->pid;
1320}
1321
5eca1c10 1322static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1323{
1324 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1325}
7af57294
PE
1326
1327static inline pid_t task_pid_vnr(struct task_struct *tsk)
1328{
52ee2dfd 1329 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1330}
1331
1332
e868171a 1333static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1334{
1335 return tsk->tgid;
1336}
1337
5eca1c10
IM
1338/**
1339 * pid_alive - check that a task structure is not stale
1340 * @p: Task structure to be checked.
1341 *
1342 * Test if a process is not yet dead (at most zombie state)
1343 * If pid_alive fails, then pointers within the task structure
1344 * can be stale and must not be dereferenced.
1345 *
1346 * Return: 1 if the process is alive. 0 otherwise.
1347 */
1348static inline int pid_alive(const struct task_struct *p)
1349{
2c470475 1350 return p->thread_pid != NULL;
5eca1c10 1351}
7af57294 1352
5eca1c10 1353static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1354{
52ee2dfd 1355 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1356}
1357
7af57294
PE
1358static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1359{
52ee2dfd 1360 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1361}
1362
1363
5eca1c10 1364static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1365{
52ee2dfd 1366 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1367}
1368
7af57294
PE
1369static inline pid_t task_session_vnr(struct task_struct *tsk)
1370{
52ee2dfd 1371 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1372}
1373
dd1c1f2f
ON
1374static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1375{
6883f81a 1376 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1377}
1378
1379static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1380{
6883f81a 1381 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1382}
1383
1384static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1385{
1386 pid_t pid = 0;
1387
1388 rcu_read_lock();
1389 if (pid_alive(tsk))
1390 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1391 rcu_read_unlock();
1392
1393 return pid;
1394}
1395
1396static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1397{
1398 return task_ppid_nr_ns(tsk, &init_pid_ns);
1399}
1400
5eca1c10 1401/* Obsolete, do not use: */
1b0f7ffd
ON
1402static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1403{
1404 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1405}
7af57294 1406
06eb6184
PZ
1407#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1408#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1409
1d48b080 1410static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1411{
1593baab
PZ
1412 unsigned int tsk_state = READ_ONCE(tsk->state);
1413 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1414
06eb6184
PZ
1415 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1416
06eb6184
PZ
1417 if (tsk_state == TASK_IDLE)
1418 state = TASK_REPORT_IDLE;
1419
1593baab
PZ
1420 return fls(state);
1421}
1422
1d48b080 1423static inline char task_index_to_char(unsigned int state)
1593baab 1424{
8ef9925b 1425 static const char state_char[] = "RSDTtXZPI";
1593baab 1426
06eb6184 1427 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1428
1593baab
PZ
1429 return state_char[state];
1430}
1431
1432static inline char task_state_to_char(struct task_struct *tsk)
1433{
1d48b080 1434 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1435}
1436
f400e198 1437/**
570f5241
SS
1438 * is_global_init - check if a task structure is init. Since init
1439 * is free to have sub-threads we need to check tgid.
3260259f
HK
1440 * @tsk: Task structure to be checked.
1441 *
1442 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1443 *
1444 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1445 */
e868171a 1446static inline int is_global_init(struct task_struct *tsk)
b461cc03 1447{
570f5241 1448 return task_tgid_nr(tsk) == 1;
b461cc03 1449}
b460cbc5 1450
9ec52099
CLG
1451extern struct pid *cad_pid;
1452
1da177e4
LT
1453/*
1454 * Per process flags
1455 */
5eca1c10
IM
1456#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1457#define PF_EXITING 0x00000004 /* Getting shut down */
1458#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1459#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1460#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1461#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1462#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1463#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1464#define PF_DUMPCORE 0x00000200 /* Dumped core */
1465#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1466#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1467#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1468#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1469#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1470#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1471#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1472#define PF_KSWAPD 0x00020000 /* I am kswapd */
1473#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1474#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1475#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1476#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1477#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1478#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
eb414681 1479#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
73ab1cb2 1480#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
3bd37062 1481#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1482#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1483#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
5eca1c10
IM
1484#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1485#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1486
1487/*
1488 * Only the _current_ task can read/write to tsk->flags, but other
1489 * tasks can access tsk->flags in readonly mode for example
1490 * with tsk_used_math (like during threaded core dumping).
1491 * There is however an exception to this rule during ptrace
1492 * or during fork: the ptracer task is allowed to write to the
1493 * child->flags of its traced child (same goes for fork, the parent
1494 * can write to the child->flags), because we're guaranteed the
1495 * child is not running and in turn not changing child->flags
1496 * at the same time the parent does it.
1497 */
5eca1c10
IM
1498#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1499#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1500#define clear_used_math() clear_stopped_child_used_math(current)
1501#define set_used_math() set_stopped_child_used_math(current)
1502
1da177e4
LT
1503#define conditional_stopped_child_used_math(condition, child) \
1504 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1505
1506#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1507
1da177e4
LT
1508#define copy_to_stopped_child_used_math(child) \
1509 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1510
1da177e4 1511/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1512#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1513#define used_math() tsk_used_math(current)
1da177e4 1514
62ec05dd
TG
1515static inline bool is_percpu_thread(void)
1516{
1517#ifdef CONFIG_SMP
1518 return (current->flags & PF_NO_SETAFFINITY) &&
1519 (current->nr_cpus_allowed == 1);
1520#else
1521 return true;
1522#endif
1523}
1524
1d4457f9 1525/* Per-process atomic flags. */
5eca1c10
IM
1526#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1527#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1528#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1529#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1530#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1531#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1532#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1533#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1534
e0e5070b
ZL
1535#define TASK_PFA_TEST(name, func) \
1536 static inline bool task_##func(struct task_struct *p) \
1537 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1538
e0e5070b
ZL
1539#define TASK_PFA_SET(name, func) \
1540 static inline void task_set_##func(struct task_struct *p) \
1541 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1542
e0e5070b
ZL
1543#define TASK_PFA_CLEAR(name, func) \
1544 static inline void task_clear_##func(struct task_struct *p) \
1545 { clear_bit(PFA_##name, &p->atomic_flags); }
1546
1547TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1548TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1549
2ad654bc
ZL
1550TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1551TASK_PFA_SET(SPREAD_PAGE, spread_page)
1552TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1553
1554TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1555TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1556TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1557
356e4bff
TG
1558TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1559TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1560TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1561
71368af9
WL
1562TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1563TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1564TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1565
356e4bff
TG
1566TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1567TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1568
9137bb27
TG
1569TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1570TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1571TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1572
1573TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1574TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1575
5eca1c10 1576static inline void
717a94b5 1577current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1578{
717a94b5
N
1579 current->flags &= ~flags;
1580 current->flags |= orig_flags & flags;
907aed48
MG
1581}
1582
5eca1c10
IM
1583extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1584extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1585#ifdef CONFIG_SMP
5eca1c10
IM
1586extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1587extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1588#else
5eca1c10 1589static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1590{
1591}
5eca1c10 1592static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1593{
96f874e2 1594 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1595 return -EINVAL;
1596 return 0;
1597}
1598#endif
e0ad9556 1599
fa93384f 1600extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1601extern void set_user_nice(struct task_struct *p, long nice);
1602extern int task_prio(const struct task_struct *p);
5eca1c10 1603
d0ea0268
DY
1604/**
1605 * task_nice - return the nice value of a given task.
1606 * @p: the task in question.
1607 *
1608 * Return: The nice value [ -20 ... 0 ... 19 ].
1609 */
1610static inline int task_nice(const struct task_struct *p)
1611{
1612 return PRIO_TO_NICE((p)->static_prio);
1613}
5eca1c10 1614
36c8b586
IM
1615extern int can_nice(const struct task_struct *p, const int nice);
1616extern int task_curr(const struct task_struct *p);
1da177e4 1617extern int idle_cpu(int cpu);
943d355d 1618extern int available_idle_cpu(int cpu);
5eca1c10
IM
1619extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1620extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1621extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1622extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1623extern struct task_struct *idle_task(int cpu);
5eca1c10 1624
c4f30608
PM
1625/**
1626 * is_idle_task - is the specified task an idle task?
fa757281 1627 * @p: the task in question.
e69f6186
YB
1628 *
1629 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1630 */
7061ca3b 1631static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1632{
c1de45ca 1633 return !!(p->flags & PF_IDLE);
c4f30608 1634}
5eca1c10 1635
36c8b586 1636extern struct task_struct *curr_task(int cpu);
a458ae2e 1637extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1638
1639void yield(void);
1640
1da177e4 1641union thread_union {
0500871f
DH
1642#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1643 struct task_struct task;
1644#endif
c65eacbe 1645#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1646 struct thread_info thread_info;
c65eacbe 1647#endif
1da177e4
LT
1648 unsigned long stack[THREAD_SIZE/sizeof(long)];
1649};
1650
0500871f
DH
1651#ifndef CONFIG_THREAD_INFO_IN_TASK
1652extern struct thread_info init_thread_info;
1653#endif
1654
1655extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1656
f3ac6067
IM
1657#ifdef CONFIG_THREAD_INFO_IN_TASK
1658static inline struct thread_info *task_thread_info(struct task_struct *task)
1659{
1660 return &task->thread_info;
1661}
1662#elif !defined(__HAVE_THREAD_FUNCTIONS)
1663# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1664#endif
1665
198fe21b
PE
1666/*
1667 * find a task by one of its numerical ids
1668 *
198fe21b
PE
1669 * find_task_by_pid_ns():
1670 * finds a task by its pid in the specified namespace
228ebcbe
PE
1671 * find_task_by_vpid():
1672 * finds a task by its virtual pid
198fe21b 1673 *
e49859e7 1674 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1675 */
1676
228ebcbe 1677extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1678extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1679
2ee08260
MR
1680/*
1681 * find a task by its virtual pid and get the task struct
1682 */
1683extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1684
b3c97528
HH
1685extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1686extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1687extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1688
1da177e4 1689#ifdef CONFIG_SMP
5eca1c10 1690extern void kick_process(struct task_struct *tsk);
1da177e4 1691#else
5eca1c10 1692static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1693#endif
1da177e4 1694
82b89778 1695extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1696
82b89778
AH
1697static inline void set_task_comm(struct task_struct *tsk, const char *from)
1698{
1699 __set_task_comm(tsk, from, false);
1700}
5eca1c10 1701
3756f640
AB
1702extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1703#define get_task_comm(buf, tsk) ({ \
1704 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1705 __get_task_comm(buf, sizeof(buf), tsk); \
1706})
1da177e4
LT
1707
1708#ifdef CONFIG_SMP
317f3941 1709void scheduler_ipi(void);
85ba2d86 1710extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1711#else
184748cc 1712static inline void scheduler_ipi(void) { }
5eca1c10 1713static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1714{
1715 return 1;
1716}
1da177e4
LT
1717#endif
1718
5eca1c10
IM
1719/*
1720 * Set thread flags in other task's structures.
1721 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1722 */
1723static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1724{
a1261f54 1725 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1726}
1727
1728static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1729{
a1261f54 1730 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1731}
1732
93ee37c2
DM
1733static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1734 bool value)
1735{
1736 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1737}
1738
1da177e4
LT
1739static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1740{
a1261f54 1741 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1742}
1743
1744static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1745{
a1261f54 1746 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1747}
1748
1749static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1750{
a1261f54 1751 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1752}
1753
1754static inline void set_tsk_need_resched(struct task_struct *tsk)
1755{
1756 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1757}
1758
1759static inline void clear_tsk_need_resched(struct task_struct *tsk)
1760{
1761 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1762}
1763
8ae121ac
GH
1764static inline int test_tsk_need_resched(struct task_struct *tsk)
1765{
1766 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1767}
1768
1da177e4
LT
1769/*
1770 * cond_resched() and cond_resched_lock(): latency reduction via
1771 * explicit rescheduling in places that are safe. The return
1772 * value indicates whether a reschedule was done in fact.
1773 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1774 */
c1a280b6 1775#ifndef CONFIG_PREEMPTION
c3921ab7 1776extern int _cond_resched(void);
35a773a0
PZ
1777#else
1778static inline int _cond_resched(void) { return 0; }
1779#endif
6f80bd98 1780
613afbf8 1781#define cond_resched() ({ \
3427445a 1782 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1783 _cond_resched(); \
1784})
6f80bd98 1785
613afbf8
FW
1786extern int __cond_resched_lock(spinlock_t *lock);
1787
1788#define cond_resched_lock(lock) ({ \
3427445a 1789 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1790 __cond_resched_lock(lock); \
1791})
1792
f6f3c437
SH
1793static inline void cond_resched_rcu(void)
1794{
1795#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1796 rcu_read_unlock();
1797 cond_resched();
1798 rcu_read_lock();
1799#endif
1800}
1801
1da177e4
LT
1802/*
1803 * Does a critical section need to be broken due to another
c1a280b6 1804 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 1805 * but a general need for low latency)
1da177e4 1806 */
95c354fe 1807static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1808{
c1a280b6 1809#ifdef CONFIG_PREEMPTION
95c354fe
NP
1810 return spin_is_contended(lock);
1811#else
1da177e4 1812 return 0;
95c354fe 1813#endif
1da177e4
LT
1814}
1815
75f93fed
PZ
1816static __always_inline bool need_resched(void)
1817{
1818 return unlikely(tif_need_resched());
1819}
1820
1da177e4
LT
1821/*
1822 * Wrappers for p->thread_info->cpu access. No-op on UP.
1823 */
1824#ifdef CONFIG_SMP
1825
1826static inline unsigned int task_cpu(const struct task_struct *p)
1827{
c65eacbe 1828#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1829 return READ_ONCE(p->cpu);
c65eacbe 1830#else
c546951d 1831 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1832#endif
1da177e4
LT
1833}
1834
c65cc870 1835extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1836
1837#else
1838
1839static inline unsigned int task_cpu(const struct task_struct *p)
1840{
1841 return 0;
1842}
1843
1844static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1845{
1846}
1847
1848#endif /* CONFIG_SMP */
1849
d9345c65
PX
1850/*
1851 * In order to reduce various lock holder preemption latencies provide an
1852 * interface to see if a vCPU is currently running or not.
1853 *
1854 * This allows us to terminate optimistic spin loops and block, analogous to
1855 * the native optimistic spin heuristic of testing if the lock owner task is
1856 * running or not.
1857 */
1858#ifndef vcpu_is_preempted
1859# define vcpu_is_preempted(cpu) false
1860#endif
1861
96f874e2
RR
1862extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1863extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1864
82455257
DH
1865#ifndef TASK_SIZE_OF
1866#define TASK_SIZE_OF(tsk) TASK_SIZE
1867#endif
1868
d7822b1e
MD
1869#ifdef CONFIG_RSEQ
1870
1871/*
1872 * Map the event mask on the user-space ABI enum rseq_cs_flags
1873 * for direct mask checks.
1874 */
1875enum rseq_event_mask_bits {
1876 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1877 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1878 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1879};
1880
1881enum rseq_event_mask {
1882 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1883 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1884 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1885};
1886
1887static inline void rseq_set_notify_resume(struct task_struct *t)
1888{
1889 if (t->rseq)
1890 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1891}
1892
784e0300 1893void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1894
784e0300
WD
1895static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1896 struct pt_regs *regs)
d7822b1e
MD
1897{
1898 if (current->rseq)
784e0300 1899 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1900}
1901
784e0300
WD
1902static inline void rseq_signal_deliver(struct ksignal *ksig,
1903 struct pt_regs *regs)
d7822b1e
MD
1904{
1905 preempt_disable();
1906 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1907 preempt_enable();
784e0300 1908 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1909}
1910
1911/* rseq_preempt() requires preemption to be disabled. */
1912static inline void rseq_preempt(struct task_struct *t)
1913{
1914 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1915 rseq_set_notify_resume(t);
1916}
1917
1918/* rseq_migrate() requires preemption to be disabled. */
1919static inline void rseq_migrate(struct task_struct *t)
1920{
1921 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1922 rseq_set_notify_resume(t);
1923}
1924
1925/*
1926 * If parent process has a registered restartable sequences area, the
9a789fcf 1927 * child inherits. Only applies when forking a process, not a thread.
d7822b1e
MD
1928 */
1929static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1930{
1931 if (clone_flags & CLONE_THREAD) {
1932 t->rseq = NULL;
d7822b1e
MD
1933 t->rseq_sig = 0;
1934 t->rseq_event_mask = 0;
1935 } else {
1936 t->rseq = current->rseq;
d7822b1e
MD
1937 t->rseq_sig = current->rseq_sig;
1938 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1939 }
1940}
1941
1942static inline void rseq_execve(struct task_struct *t)
1943{
1944 t->rseq = NULL;
d7822b1e
MD
1945 t->rseq_sig = 0;
1946 t->rseq_event_mask = 0;
1947}
1948
1949#else
1950
1951static inline void rseq_set_notify_resume(struct task_struct *t)
1952{
1953}
784e0300
WD
1954static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1955 struct pt_regs *regs)
d7822b1e
MD
1956{
1957}
784e0300
WD
1958static inline void rseq_signal_deliver(struct ksignal *ksig,
1959 struct pt_regs *regs)
d7822b1e
MD
1960{
1961}
1962static inline void rseq_preempt(struct task_struct *t)
1963{
1964}
1965static inline void rseq_migrate(struct task_struct *t)
1966{
1967}
1968static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1969{
1970}
1971static inline void rseq_execve(struct task_struct *t)
1972{
1973}
1974
1975#endif
1976
73ab1cb2
TY
1977void __exit_umh(struct task_struct *tsk);
1978
1979static inline void exit_umh(struct task_struct *tsk)
1980{
1981 if (unlikely(tsk->flags & PF_UMH))
1982 __exit_umh(tsk);
1983}
1984
d7822b1e
MD
1985#ifdef CONFIG_DEBUG_RSEQ
1986
1987void rseq_syscall(struct pt_regs *regs);
1988
1989#else
1990
1991static inline void rseq_syscall(struct pt_regs *regs)
1992{
1993}
1994
1995#endif
1996
3c93a0c0
QY
1997const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
1998char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
1999int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2000
2001const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2002const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2003const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2004
2005int sched_trace_rq_cpu(struct rq *rq);
2006
2007const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2008
1da177e4 2009#endif