]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/sched.h
delaycct: Convert obsolete cputime type to nsecs
[mirror_ubuntu-eoan-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
e56d0903 44#include <linux/rcupdate.h>
05725f7e 45#include <linux/rculist.h>
23f78d4a 46#include <linux/rtmutex.h>
1da177e4 47
a3b6714e
DW
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
5c9a8750 53#include <linux/kcov.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
180extern void cpu_load_update_nohz_start(void);
181extern void cpu_load_update_nohz_stop(void);
3289bdb4 182#else
1f41906a
FW
183static inline void cpu_load_update_nohz_start(void) { }
184static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 185#endif
1da177e4 186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8 221#define TASK_NOLOAD 1024
7dc603c9
PZ
222#define TASK_NEW 2048
223#define TASK_STATE_MAX 4096
f021a3c2 224
7dc603c9 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
73342151 226
e1781538
PZ
227extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
229
230/* Convenience macros for the sake of set_task_state */
231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 234
80ed87c8
PZ
235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
92a1f4bc
MW
237/* Convenience macros for the sake of wake_up */
238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
240
241/* get_task_state() */
242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 245
f021a3c2
MW
246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 248#define task_is_stopped_or_traced(task) \
f021a3c2 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 250#define task_contributes_to_load(task) \
e3c8ca83 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
1da177e4 254
8eb23b9f
PZ
255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257#define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262#define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
a2250238 265 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
266 } while (0)
267
8eb23b9f
PZ
268#define __set_current_state(state_value) \
269 do { \
270 current->task_state_change = _THIS_IP_; \
271 current->state = (state_value); \
272 } while (0)
273#define set_current_state(state_value) \
274 do { \
275 current->task_state_change = _THIS_IP_; \
a2250238 276 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
277 } while (0)
278
279#else
280
a2250238
PZ
281/*
282 * @tsk had better be current, or you get to keep the pieces.
283 *
284 * The only reason is that computing current can be more expensive than
285 * using a pointer that's already available.
286 *
287 * Therefore, see set_current_state().
288 */
1da177e4
LT
289#define __set_task_state(tsk, state_value) \
290 do { (tsk)->state = (state_value); } while (0)
291#define set_task_state(tsk, state_value) \
b92b8b35 292 smp_store_mb((tsk)->state, (state_value))
1da177e4 293
498d0c57
AM
294/*
295 * set_current_state() includes a barrier so that the write of current->state
296 * is correctly serialised wrt the caller's subsequent test of whether to
297 * actually sleep:
298 *
a2250238 299 * for (;;) {
498d0c57 300 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
301 * if (!need_sleep)
302 * break;
303 *
304 * schedule();
305 * }
306 * __set_current_state(TASK_RUNNING);
307 *
308 * If the caller does not need such serialisation (because, for instance, the
309 * condition test and condition change and wakeup are under the same lock) then
310 * use __set_current_state().
311 *
312 * The above is typically ordered against the wakeup, which does:
313 *
314 * need_sleep = false;
315 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
316 *
317 * Where wake_up_state() (and all other wakeup primitives) imply enough
318 * barriers to order the store of the variable against wakeup.
319 *
320 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
321 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
322 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 323 *
a2250238 324 * This is obviously fine, since they both store the exact same value.
498d0c57 325 *
a2250238 326 * Also see the comments of try_to_wake_up().
498d0c57 327 */
8eb23b9f 328#define __set_current_state(state_value) \
1da177e4 329 do { current->state = (state_value); } while (0)
8eb23b9f 330#define set_current_state(state_value) \
b92b8b35 331 smp_store_mb(current->state, (state_value))
1da177e4 332
8eb23b9f
PZ
333#endif
334
1da177e4
LT
335/* Task command name length */
336#define TASK_COMM_LEN 16
337
1da177e4
LT
338#include <linux/spinlock.h>
339
340/*
341 * This serializes "schedule()" and also protects
342 * the run-queue from deletions/modifications (but
343 * _adding_ to the beginning of the run-queue has
344 * a separate lock).
345 */
346extern rwlock_t tasklist_lock;
347extern spinlock_t mmlist_lock;
348
36c8b586 349struct task_struct;
1da177e4 350
db1466b3
PM
351#ifdef CONFIG_PROVE_RCU
352extern int lockdep_tasklist_lock_is_held(void);
353#endif /* #ifdef CONFIG_PROVE_RCU */
354
1da177e4
LT
355extern void sched_init(void);
356extern void sched_init_smp(void);
2d07b255 357extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 358extern void init_idle(struct task_struct *idle, int cpu);
1df21055 359extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 360
3fa0818b
RR
361extern cpumask_var_t cpu_isolated_map;
362
89f19f04 363extern int runqueue_is_locked(int cpu);
017730c1 364
3451d024 365#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 366extern void nohz_balance_enter_idle(int cpu);
69e1e811 367extern void set_cpu_sd_state_idle(void);
bc7a34b8 368extern int get_nohz_timer_target(void);
46cb4b7c 369#else
c1cc017c 370static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 371static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 372#endif
1da177e4 373
e59e2ae2 374/*
39bc89fd 375 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
376 */
377extern void show_state_filter(unsigned long state_filter);
378
379static inline void show_state(void)
380{
39bc89fd 381 show_state_filter(0);
e59e2ae2
IM
382}
383
1da177e4
LT
384extern void show_regs(struct pt_regs *);
385
386/*
387 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
388 * task), SP is the stack pointer of the first frame that should be shown in the back
389 * trace (or NULL if the entire call-chain of the task should be shown).
390 */
391extern void show_stack(struct task_struct *task, unsigned long *sp);
392
1da177e4
LT
393extern void cpu_init (void);
394extern void trap_init(void);
395extern void update_process_times(int user);
396extern void scheduler_tick(void);
9cf7243d 397extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
398extern int sched_cpu_activate(unsigned int cpu);
399extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 400
f2785ddb
TG
401#ifdef CONFIG_HOTPLUG_CPU
402extern int sched_cpu_dying(unsigned int cpu);
403#else
404# define sched_cpu_dying NULL
405#endif
1da177e4 406
82a1fcb9
IM
407extern void sched_show_task(struct task_struct *p);
408
19cc36c0 409#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 410extern void touch_softlockup_watchdog_sched(void);
8446f1d3 411extern void touch_softlockup_watchdog(void);
d6ad3e28 412extern void touch_softlockup_watchdog_sync(void);
04c9167f 413extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
414extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
415 void __user *buffer,
416 size_t *lenp, loff_t *ppos);
9c44bc03 417extern unsigned int softlockup_panic;
ac1f5912 418extern unsigned int hardlockup_panic;
004417a6 419void lockup_detector_init(void);
8446f1d3 420#else
03e0d461
TH
421static inline void touch_softlockup_watchdog_sched(void)
422{
423}
8446f1d3
IM
424static inline void touch_softlockup_watchdog(void)
425{
426}
d6ad3e28
JW
427static inline void touch_softlockup_watchdog_sync(void)
428{
429}
04c9167f
JF
430static inline void touch_all_softlockup_watchdogs(void)
431{
432}
004417a6
PZ
433static inline void lockup_detector_init(void)
434{
435}
8446f1d3
IM
436#endif
437
8b414521
MT
438#ifdef CONFIG_DETECT_HUNG_TASK
439void reset_hung_task_detector(void);
440#else
441static inline void reset_hung_task_detector(void)
442{
443}
444#endif
445
1da177e4
LT
446/* Attach to any functions which should be ignored in wchan output. */
447#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
448
449/* Linker adds these: start and end of __sched functions */
450extern char __sched_text_start[], __sched_text_end[];
451
1da177e4
LT
452/* Is this address in the __sched functions? */
453extern int in_sched_functions(unsigned long addr);
454
455#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 456extern signed long schedule_timeout(signed long timeout);
64ed93a2 457extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 458extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 459extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 460extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 461asmlinkage void schedule(void);
c5491ea7 462extern void schedule_preempt_disabled(void);
1da177e4 463
10ab5643
TH
464extern int __must_check io_schedule_prepare(void);
465extern void io_schedule_finish(int token);
9cff8ade 466extern long io_schedule_timeout(long timeout);
10ab5643 467extern void io_schedule(void);
9cff8ade 468
9af6528e
PZ
469void __noreturn do_task_dead(void);
470
ab516013 471struct nsproxy;
acce292c 472struct user_namespace;
1da177e4 473
efc1a3b1
DH
474#ifdef CONFIG_MMU
475extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
476extern unsigned long
477arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
478 unsigned long, unsigned long);
479extern unsigned long
480arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
481 unsigned long len, unsigned long pgoff,
482 unsigned long flags);
efc1a3b1
DH
483#else
484static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
485#endif
1da177e4 486
d049f74f
KC
487#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
488#define SUID_DUMP_USER 1 /* Dump as user of process */
489#define SUID_DUMP_ROOT 2 /* Dump as root */
490
6c5d5238 491/* mm flags */
f8af4da3 492
7288e118 493/* for SUID_DUMP_* above */
3cb4a0bb 494#define MMF_DUMPABLE_BITS 2
f8af4da3 495#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 496
942be387
ON
497extern void set_dumpable(struct mm_struct *mm, int value);
498/*
499 * This returns the actual value of the suid_dumpable flag. For things
500 * that are using this for checking for privilege transitions, it must
501 * test against SUID_DUMP_USER rather than treating it as a boolean
502 * value.
503 */
504static inline int __get_dumpable(unsigned long mm_flags)
505{
506 return mm_flags & MMF_DUMPABLE_MASK;
507}
508
509static inline int get_dumpable(struct mm_struct *mm)
510{
511 return __get_dumpable(mm->flags);
512}
513
3cb4a0bb
KH
514/* coredump filter bits */
515#define MMF_DUMP_ANON_PRIVATE 2
516#define MMF_DUMP_ANON_SHARED 3
517#define MMF_DUMP_MAPPED_PRIVATE 4
518#define MMF_DUMP_MAPPED_SHARED 5
82df3973 519#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
520#define MMF_DUMP_HUGETLB_PRIVATE 7
521#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
522#define MMF_DUMP_DAX_PRIVATE 9
523#define MMF_DUMP_DAX_SHARED 10
f8af4da3 524
3cb4a0bb 525#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 526#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
527#define MMF_DUMP_FILTER_MASK \
528 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
529#define MMF_DUMP_FILTER_DEFAULT \
e575f111 530 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
531 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
532
533#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
534# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
535#else
536# define MMF_DUMP_MASK_DEFAULT_ELF 0
537#endif
f8af4da3
HD
538 /* leave room for more dump flags */
539#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 540#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
3fb4afd9
SK
541/*
542 * This one-shot flag is dropped due to necessity of changing exe once again
543 * on NFS restore
544 */
545//#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 546
9f68f672
ON
547#define MMF_HAS_UPROBES 19 /* has uprobes */
548#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
862e3073 549#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
3f70dc38 550#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
6fcb52a5 551#define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
f8ac4ec9 552
f8af4da3 553#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 554
1da177e4
LT
555struct sighand_struct {
556 atomic_t count;
557 struct k_sigaction action[_NSIG];
558 spinlock_t siglock;
b8fceee1 559 wait_queue_head_t signalfd_wqh;
1da177e4
LT
560};
561
0e464814 562struct pacct_struct {
f6ec29a4
KK
563 int ac_flag;
564 long ac_exitcode;
0e464814 565 unsigned long ac_mem;
d4bc42af 566 u64 ac_utime, ac_stime;
77787bfb 567 unsigned long ac_minflt, ac_majflt;
0e464814
KK
568};
569
42c4ab41
SG
570struct cpu_itimer {
571 cputime_t expires;
572 cputime_t incr;
8356b5f9
SG
573 u32 error;
574 u32 incr_error;
42c4ab41
SG
575};
576
d37f761d 577/**
9d7fb042 578 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
579 * @utime: time spent in user mode
580 * @stime: time spent in system mode
9d7fb042 581 * @lock: protects the above two fields
d37f761d 582 *
9d7fb042
PZ
583 * Stores previous user/system time values such that we can guarantee
584 * monotonicity.
d37f761d 585 */
9d7fb042
PZ
586struct prev_cputime {
587#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5613fda9
FW
588 u64 utime;
589 u64 stime;
9d7fb042
PZ
590 raw_spinlock_t lock;
591#endif
d37f761d
FW
592};
593
9d7fb042
PZ
594static inline void prev_cputime_init(struct prev_cputime *prev)
595{
596#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
597 prev->utime = prev->stime = 0;
598 raw_spin_lock_init(&prev->lock);
599#endif
600}
601
f06febc9
FM
602/**
603 * struct task_cputime - collected CPU time counts
5613fda9
FW
604 * @utime: time spent in user mode, in nanoseconds
605 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 606 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 607 *
9d7fb042
PZ
608 * This structure groups together three kinds of CPU time that are tracked for
609 * threads and thread groups. Most things considering CPU time want to group
610 * these counts together and treat all three of them in parallel.
f06febc9
FM
611 */
612struct task_cputime {
5613fda9
FW
613 u64 utime;
614 u64 stime;
f06febc9
FM
615 unsigned long long sum_exec_runtime;
616};
9d7fb042 617
a1cecf2b
FW
618/* Temporary type to ease cputime_t to nsecs conversion */
619struct task_cputime_t {
620 cputime_t utime;
621 cputime_t stime;
622 unsigned long long sum_exec_runtime;
623};
624
f06febc9 625/* Alternate field names when used to cache expirations. */
f06febc9 626#define virt_exp utime
9d7fb042 627#define prof_exp stime
f06febc9
FM
628#define sched_exp sum_exec_runtime
629
971e8a98
JL
630/*
631 * This is the atomic variant of task_cputime, which can be used for
632 * storing and updating task_cputime statistics without locking.
633 */
634struct task_cputime_atomic {
635 atomic64_t utime;
636 atomic64_t stime;
637 atomic64_t sum_exec_runtime;
638};
639
640#define INIT_CPUTIME_ATOMIC \
641 (struct task_cputime_atomic) { \
642 .utime = ATOMIC64_INIT(0), \
643 .stime = ATOMIC64_INIT(0), \
644 .sum_exec_runtime = ATOMIC64_INIT(0), \
645 }
646
609ca066 647#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 648
c99e6efe 649/*
87dcbc06
PZ
650 * Disable preemption until the scheduler is running -- use an unconditional
651 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 652 *
87dcbc06 653 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 654 */
87dcbc06 655#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 656
c99e6efe 657/*
609ca066
PZ
658 * Initial preempt_count value; reflects the preempt_count schedule invariant
659 * which states that during context switches:
d86ee480 660 *
609ca066
PZ
661 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
662 *
663 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
664 * Note: See finish_task_switch().
c99e6efe 665 */
609ca066 666#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 667
f06febc9 668/**
4cd4c1b4 669 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 670 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
671 * @running: true when there are timers running and
672 * @cputime_atomic receives updates.
c8d75aa4
JL
673 * @checking_timer: true when a thread in the group is in the
674 * process of checking for thread group timers.
f06febc9
FM
675 *
676 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 677 * used for thread group CPU timer calculations.
f06febc9 678 */
4cd4c1b4 679struct thread_group_cputimer {
71107445 680 struct task_cputime_atomic cputime_atomic;
d5c373eb 681 bool running;
c8d75aa4 682 bool checking_timer;
f06febc9 683};
f06febc9 684
4714d1d3 685#include <linux/rwsem.h>
5091faa4
MG
686struct autogroup;
687
1da177e4 688/*
e815f0a8 689 * NOTE! "signal_struct" does not have its own
1da177e4
LT
690 * locking, because a shared signal_struct always
691 * implies a shared sighand_struct, so locking
692 * sighand_struct is always a proper superset of
693 * the locking of signal_struct.
694 */
695struct signal_struct {
ea6d290c 696 atomic_t sigcnt;
1da177e4 697 atomic_t live;
b3ac022c 698 int nr_threads;
0c740d0a 699 struct list_head thread_head;
1da177e4
LT
700
701 wait_queue_head_t wait_chldexit; /* for wait4() */
702
703 /* current thread group signal load-balancing target: */
36c8b586 704 struct task_struct *curr_target;
1da177e4
LT
705
706 /* shared signal handling: */
707 struct sigpending shared_pending;
708
709 /* thread group exit support */
710 int group_exit_code;
711 /* overloaded:
712 * - notify group_exit_task when ->count is equal to notify_count
713 * - everyone except group_exit_task is stopped during signal delivery
714 * of fatal signals, group_exit_task processes the signal.
715 */
1da177e4 716 int notify_count;
07dd20e0 717 struct task_struct *group_exit_task;
1da177e4
LT
718
719 /* thread group stop support, overloads group_exit_code too */
720 int group_stop_count;
721 unsigned int flags; /* see SIGNAL_* flags below */
722
ebec18a6
LP
723 /*
724 * PR_SET_CHILD_SUBREAPER marks a process, like a service
725 * manager, to re-parent orphan (double-forking) child processes
726 * to this process instead of 'init'. The service manager is
727 * able to receive SIGCHLD signals and is able to investigate
728 * the process until it calls wait(). All children of this
729 * process will inherit a flag if they should look for a
730 * child_subreaper process at exit.
731 */
732 unsigned int is_child_subreaper:1;
733 unsigned int has_child_subreaper:1;
734
1da177e4 735 /* POSIX.1b Interval Timers */
5ed67f05
PE
736 int posix_timer_id;
737 struct list_head posix_timers;
1da177e4
LT
738
739 /* ITIMER_REAL timer for the process */
2ff678b8 740 struct hrtimer real_timer;
fea9d175 741 struct pid *leader_pid;
2ff678b8 742 ktime_t it_real_incr;
1da177e4 743
42c4ab41
SG
744 /*
745 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
746 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
747 * values are defined to 0 and 1 respectively
748 */
749 struct cpu_itimer it[2];
1da177e4 750
f06febc9 751 /*
4cd4c1b4
PZ
752 * Thread group totals for process CPU timers.
753 * See thread_group_cputimer(), et al, for details.
f06febc9 754 */
4cd4c1b4 755 struct thread_group_cputimer cputimer;
f06febc9
FM
756
757 /* Earliest-expiration cache. */
a1cecf2b 758 struct task_cputime_t cputime_expires;
f06febc9 759
d027d45d 760#ifdef CONFIG_NO_HZ_FULL
f009a7a7 761 atomic_t tick_dep_mask;
d027d45d
FW
762#endif
763
f06febc9
FM
764 struct list_head cpu_timers[3];
765
ab521dc0 766 struct pid *tty_old_pgrp;
1ec320af 767
1da177e4
LT
768 /* boolean value for session group leader */
769 int leader;
770
771 struct tty_struct *tty; /* NULL if no tty */
772
5091faa4
MG
773#ifdef CONFIG_SCHED_AUTOGROUP
774 struct autogroup *autogroup;
775#endif
1da177e4
LT
776 /*
777 * Cumulative resource counters for dead threads in the group,
778 * and for reaped dead child processes forked by this group.
779 * Live threads maintain their own counters and add to these
780 * in __exit_signal, except for the group leader.
781 */
e78c3496 782 seqlock_t stats_lock;
5613fda9 783 u64 utime, stime, cutime, cstime;
16a6d9be
FW
784 u64 gtime;
785 u64 cgtime;
9d7fb042 786 struct prev_cputime prev_cputime;
1da177e4
LT
787 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
788 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 789 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 790 unsigned long maxrss, cmaxrss;
940389b8 791 struct task_io_accounting ioac;
1da177e4 792
32bd671d
PZ
793 /*
794 * Cumulative ns of schedule CPU time fo dead threads in the
795 * group, not including a zombie group leader, (This only differs
796 * from jiffies_to_ns(utime + stime) if sched_clock uses something
797 * other than jiffies.)
798 */
799 unsigned long long sum_sched_runtime;
800
1da177e4
LT
801 /*
802 * We don't bother to synchronize most readers of this at all,
803 * because there is no reader checking a limit that actually needs
804 * to get both rlim_cur and rlim_max atomically, and either one
805 * alone is a single word that can safely be read normally.
806 * getrlimit/setrlimit use task_lock(current->group_leader) to
807 * protect this instead of the siglock, because they really
808 * have no need to disable irqs.
809 */
810 struct rlimit rlim[RLIM_NLIMITS];
811
0e464814
KK
812#ifdef CONFIG_BSD_PROCESS_ACCT
813 struct pacct_struct pacct; /* per-process accounting information */
814#endif
ad4ecbcb 815#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
816 struct taskstats *stats;
817#endif
522ed776
MT
818#ifdef CONFIG_AUDIT
819 unsigned audit_tty;
820 struct tty_audit_buf *tty_audit_buf;
821#endif
28b83c51 822
c96fc2d8
TH
823 /*
824 * Thread is the potential origin of an oom condition; kill first on
825 * oom
826 */
827 bool oom_flag_origin;
a9c58b90
DR
828 short oom_score_adj; /* OOM kill score adjustment */
829 short oom_score_adj_min; /* OOM kill score adjustment min value.
830 * Only settable by CAP_SYS_RESOURCE. */
26db62f1
MH
831 struct mm_struct *oom_mm; /* recorded mm when the thread group got
832 * killed by the oom killer */
9b1bf12d
KM
833
834 struct mutex cred_guard_mutex; /* guard against foreign influences on
835 * credential calculations
836 * (notably. ptrace) */
1da177e4
LT
837};
838
839/*
840 * Bits in flags field of signal_struct.
841 */
842#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
843#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
844#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 845#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
846/*
847 * Pending notifications to parent.
848 */
849#define SIGNAL_CLD_STOPPED 0x00000010
850#define SIGNAL_CLD_CONTINUED 0x00000020
851#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 852
fae5fa44
ON
853#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
854
2d39b3cd
JI
855#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
856 SIGNAL_STOP_CONTINUED)
857
858static inline void signal_set_stop_flags(struct signal_struct *sig,
859 unsigned int flags)
860{
861 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
862 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
863}
864
ed5d2cac
ON
865/* If true, all threads except ->group_exit_task have pending SIGKILL */
866static inline int signal_group_exit(const struct signal_struct *sig)
867{
868 return (sig->flags & SIGNAL_GROUP_EXIT) ||
869 (sig->group_exit_task != NULL);
870}
871
1da177e4
LT
872/*
873 * Some day this will be a full-fledged user tracking system..
874 */
875struct user_struct {
876 atomic_t __count; /* reference count */
877 atomic_t processes; /* How many processes does this user have? */
1da177e4 878 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 879#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
880 atomic_t inotify_watches; /* How many inotify watches does this user have? */
881 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
882#endif
4afeff85
EP
883#ifdef CONFIG_FANOTIFY
884 atomic_t fanotify_listeners;
885#endif
7ef9964e 886#ifdef CONFIG_EPOLL
52bd19f7 887 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 888#endif
970a8645 889#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
890 /* protected by mq_lock */
891 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 892#endif
1da177e4 893 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 894 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 895 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
896
897#ifdef CONFIG_KEYS
898 struct key *uid_keyring; /* UID specific keyring */
899 struct key *session_keyring; /* UID's default session keyring */
900#endif
901
902 /* Hash table maintenance information */
735de223 903 struct hlist_node uidhash_node;
7b44ab97 904 kuid_t uid;
24e377a8 905
aaac3ba9 906#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
907 atomic_long_t locked_vm;
908#endif
1da177e4
LT
909};
910
eb41d946 911extern int uids_sysfs_init(void);
5cb350ba 912
7b44ab97 913extern struct user_struct *find_user(kuid_t);
1da177e4
LT
914
915extern struct user_struct root_user;
916#define INIT_USER (&root_user)
917
b6dff3ec 918
1da177e4
LT
919struct backing_dev_info;
920struct reclaim_state;
921
f6db8347 922#ifdef CONFIG_SCHED_INFO
1da177e4
LT
923struct sched_info {
924 /* cumulative counters */
2d72376b 925 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 926 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
927
928 /* timestamps */
172ba844
BS
929 unsigned long long last_arrival,/* when we last ran on a cpu */
930 last_queued; /* when we were last queued to run */
1da177e4 931};
f6db8347 932#endif /* CONFIG_SCHED_INFO */
1da177e4 933
ca74e92b
SN
934#ifdef CONFIG_TASK_DELAY_ACCT
935struct task_delay_info {
936 spinlock_t lock;
937 unsigned int flags; /* Private per-task flags */
938
939 /* For each stat XXX, add following, aligned appropriately
940 *
941 * struct timespec XXX_start, XXX_end;
942 * u64 XXX_delay;
943 * u32 XXX_count;
944 *
945 * Atomicity of updates to XXX_delay, XXX_count protected by
946 * single lock above (split into XXX_lock if contention is an issue).
947 */
0ff92245
SN
948
949 /*
950 * XXX_count is incremented on every XXX operation, the delay
951 * associated with the operation is added to XXX_delay.
952 * XXX_delay contains the accumulated delay time in nanoseconds.
953 */
9667a23d 954 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
955 u64 blkio_delay; /* wait for sync block io completion */
956 u64 swapin_delay; /* wait for swapin block io completion */
957 u32 blkio_count; /* total count of the number of sync block */
958 /* io operations performed */
959 u32 swapin_count; /* total count of the number of swapin block */
960 /* io operations performed */
873b4771 961
9667a23d 962 u64 freepages_start;
873b4771
KK
963 u64 freepages_delay; /* wait for memory reclaim */
964 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 965};
52f17b6c
CS
966#endif /* CONFIG_TASK_DELAY_ACCT */
967
968static inline int sched_info_on(void)
969{
970#ifdef CONFIG_SCHEDSTATS
971 return 1;
972#elif defined(CONFIG_TASK_DELAY_ACCT)
973 extern int delayacct_on;
974 return delayacct_on;
975#else
976 return 0;
ca74e92b 977#endif
52f17b6c 978}
ca74e92b 979
cb251765
MG
980#ifdef CONFIG_SCHEDSTATS
981void force_schedstat_enabled(void);
982#endif
983
d15bcfdb
IM
984enum cpu_idle_type {
985 CPU_IDLE,
986 CPU_NOT_IDLE,
987 CPU_NEWLY_IDLE,
988 CPU_MAX_IDLE_TYPES
1da177e4
LT
989};
990
6ecdd749
YD
991/*
992 * Integer metrics need fixed point arithmetic, e.g., sched/fair
993 * has a few: load, load_avg, util_avg, freq, and capacity.
994 *
995 * We define a basic fixed point arithmetic range, and then formalize
996 * all these metrics based on that basic range.
997 */
998# define SCHED_FIXEDPOINT_SHIFT 10
999# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
1000
1399fa78 1001/*
ca8ce3d0 1002 * Increase resolution of cpu_capacity calculations
1399fa78 1003 */
6ecdd749 1004#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 1005#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 1006
76751049
PZ
1007/*
1008 * Wake-queues are lists of tasks with a pending wakeup, whose
1009 * callers have already marked the task as woken internally,
1010 * and can thus carry on. A common use case is being able to
1011 * do the wakeups once the corresponding user lock as been
1012 * released.
1013 *
1014 * We hold reference to each task in the list across the wakeup,
1015 * thus guaranteeing that the memory is still valid by the time
1016 * the actual wakeups are performed in wake_up_q().
1017 *
1018 * One per task suffices, because there's never a need for a task to be
1019 * in two wake queues simultaneously; it is forbidden to abandon a task
1020 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
1021 * already in a wake queue, the wakeup will happen soon and the second
1022 * waker can just skip it.
1023 *
194a6b5b 1024 * The DEFINE_WAKE_Q macro declares and initializes the list head.
76751049
PZ
1025 * wake_up_q() does NOT reinitialize the list; it's expected to be
1026 * called near the end of a function, where the fact that the queue is
1027 * not used again will be easy to see by inspection.
1028 *
1029 * Note that this can cause spurious wakeups. schedule() callers
1030 * must ensure the call is done inside a loop, confirming that the
1031 * wakeup condition has in fact occurred.
1032 */
1033struct wake_q_node {
1034 struct wake_q_node *next;
1035};
1036
1037struct wake_q_head {
1038 struct wake_q_node *first;
1039 struct wake_q_node **lastp;
1040};
1041
1042#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1043
194a6b5b 1044#define DEFINE_WAKE_Q(name) \
76751049
PZ
1045 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1046
1047extern void wake_q_add(struct wake_q_head *head,
1048 struct task_struct *task);
1049extern void wake_up_q(struct wake_q_head *head);
1050
1399fa78
NR
1051/*
1052 * sched-domains (multiprocessor balancing) declarations:
1053 */
2dd73a4f 1054#ifdef CONFIG_SMP
b5d978e0
PZ
1055#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1056#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1057#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1058#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1059#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1060#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1f6e6c7c 1061#define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
bd425d4b 1062#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
d77b3ed5 1063#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1064#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1065#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1066#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1067#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1068#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1069#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1070
143e1e28 1071#ifdef CONFIG_SCHED_SMT
b6220ad6 1072static inline int cpu_smt_flags(void)
143e1e28 1073{
5d4dfddd 1074 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1075}
1076#endif
1077
1078#ifdef CONFIG_SCHED_MC
b6220ad6 1079static inline int cpu_core_flags(void)
143e1e28
VG
1080{
1081 return SD_SHARE_PKG_RESOURCES;
1082}
1083#endif
1084
1085#ifdef CONFIG_NUMA
b6220ad6 1086static inline int cpu_numa_flags(void)
143e1e28
VG
1087{
1088 return SD_NUMA;
1089}
1090#endif
532cb4c4 1091
afe06efd
TC
1092extern int arch_asym_cpu_priority(int cpu);
1093
1d3504fc
HS
1094struct sched_domain_attr {
1095 int relax_domain_level;
1096};
1097
1098#define SD_ATTR_INIT (struct sched_domain_attr) { \
1099 .relax_domain_level = -1, \
1100}
1101
60495e77
PZ
1102extern int sched_domain_level_max;
1103
5e6521ea
LZ
1104struct sched_group;
1105
24fc7edb
PZ
1106struct sched_domain_shared {
1107 atomic_t ref;
0e369d75 1108 atomic_t nr_busy_cpus;
10e2f1ac 1109 int has_idle_cores;
24fc7edb
PZ
1110};
1111
1da177e4
LT
1112struct sched_domain {
1113 /* These fields must be setup */
1114 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1115 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1116 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1117 unsigned long min_interval; /* Minimum balance interval ms */
1118 unsigned long max_interval; /* Maximum balance interval ms */
1119 unsigned int busy_factor; /* less balancing by factor if busy */
1120 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1121 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1122 unsigned int busy_idx;
1123 unsigned int idle_idx;
1124 unsigned int newidle_idx;
1125 unsigned int wake_idx;
147cbb4b 1126 unsigned int forkexec_idx;
a52bfd73 1127 unsigned int smt_gain;
25f55d9d
VG
1128
1129 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1130 int flags; /* See SD_* */
60495e77 1131 int level;
1da177e4
LT
1132
1133 /* Runtime fields. */
1134 unsigned long last_balance; /* init to jiffies. units in jiffies */
1135 unsigned int balance_interval; /* initialise to 1. units in ms. */
1136 unsigned int nr_balance_failed; /* initialise to 0 */
1137
f48627e6 1138 /* idle_balance() stats */
9bd721c5 1139 u64 max_newidle_lb_cost;
f48627e6 1140 unsigned long next_decay_max_lb_cost;
2398f2c6 1141
10e2f1ac
PZ
1142 u64 avg_scan_cost; /* select_idle_sibling */
1143
1da177e4
LT
1144#ifdef CONFIG_SCHEDSTATS
1145 /* load_balance() stats */
480b9434
KC
1146 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1147 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1148 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1149 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1150 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1151 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1152 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1153 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1154
1155 /* Active load balancing */
480b9434
KC
1156 unsigned int alb_count;
1157 unsigned int alb_failed;
1158 unsigned int alb_pushed;
1da177e4 1159
68767a0a 1160 /* SD_BALANCE_EXEC stats */
480b9434
KC
1161 unsigned int sbe_count;
1162 unsigned int sbe_balanced;
1163 unsigned int sbe_pushed;
1da177e4 1164
68767a0a 1165 /* SD_BALANCE_FORK stats */
480b9434
KC
1166 unsigned int sbf_count;
1167 unsigned int sbf_balanced;
1168 unsigned int sbf_pushed;
68767a0a 1169
1da177e4 1170 /* try_to_wake_up() stats */
480b9434
KC
1171 unsigned int ttwu_wake_remote;
1172 unsigned int ttwu_move_affine;
1173 unsigned int ttwu_move_balance;
1da177e4 1174#endif
a5d8c348
IM
1175#ifdef CONFIG_SCHED_DEBUG
1176 char *name;
1177#endif
dce840a0
PZ
1178 union {
1179 void *private; /* used during construction */
1180 struct rcu_head rcu; /* used during destruction */
1181 };
24fc7edb 1182 struct sched_domain_shared *shared;
6c99e9ad 1183
669c55e9 1184 unsigned int span_weight;
4200efd9
IM
1185 /*
1186 * Span of all CPUs in this domain.
1187 *
1188 * NOTE: this field is variable length. (Allocated dynamically
1189 * by attaching extra space to the end of the structure,
1190 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1191 */
1192 unsigned long span[0];
1da177e4
LT
1193};
1194
758b2cdc
RR
1195static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1196{
6c99e9ad 1197 return to_cpumask(sd->span);
758b2cdc
RR
1198}
1199
acc3f5d7 1200extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1201 struct sched_domain_attr *dattr_new);
029190c5 1202
acc3f5d7
RR
1203/* Allocate an array of sched domains, for partition_sched_domains(). */
1204cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1205void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1206
39be3501
PZ
1207bool cpus_share_cache(int this_cpu, int that_cpu);
1208
143e1e28 1209typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1210typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1211
1212#define SDTL_OVERLAP 0x01
1213
1214struct sd_data {
1215 struct sched_domain **__percpu sd;
24fc7edb 1216 struct sched_domain_shared **__percpu sds;
143e1e28 1217 struct sched_group **__percpu sg;
63b2ca30 1218 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1219};
1220
1221struct sched_domain_topology_level {
1222 sched_domain_mask_f mask;
1223 sched_domain_flags_f sd_flags;
1224 int flags;
1225 int numa_level;
1226 struct sd_data data;
1227#ifdef CONFIG_SCHED_DEBUG
1228 char *name;
1229#endif
1230};
1231
143e1e28 1232extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1233extern void wake_up_if_idle(int cpu);
143e1e28
VG
1234
1235#ifdef CONFIG_SCHED_DEBUG
1236# define SD_INIT_NAME(type) .name = #type
1237#else
1238# define SD_INIT_NAME(type)
1239#endif
1240
1b427c15 1241#else /* CONFIG_SMP */
1da177e4 1242
1b427c15 1243struct sched_domain_attr;
d02c7a8c 1244
1b427c15 1245static inline void
acc3f5d7 1246partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1247 struct sched_domain_attr *dattr_new)
1248{
d02c7a8c 1249}
39be3501
PZ
1250
1251static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1252{
1253 return true;
1254}
1255
1b427c15 1256#endif /* !CONFIG_SMP */
1da177e4 1257
47fe38fc 1258
1da177e4 1259struct io_context; /* See blkdev.h */
1da177e4 1260
1da177e4 1261
383f2835 1262#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1263extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1264#else
1265static inline void prefetch_stack(struct task_struct *t) { }
1266#endif
1da177e4
LT
1267
1268struct audit_context; /* See audit.c */
1269struct mempolicy;
b92ce558 1270struct pipe_inode_info;
4865ecf1 1271struct uts_namespace;
1da177e4 1272
20b8a59f 1273struct load_weight {
9dbdb155
PZ
1274 unsigned long weight;
1275 u32 inv_weight;
20b8a59f
IM
1276};
1277
9d89c257 1278/*
7b595334
YD
1279 * The load_avg/util_avg accumulates an infinite geometric series
1280 * (see __update_load_avg() in kernel/sched/fair.c).
1281 *
1282 * [load_avg definition]
1283 *
1284 * load_avg = runnable% * scale_load_down(load)
1285 *
1286 * where runnable% is the time ratio that a sched_entity is runnable.
1287 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1288 * blocked sched_entities.
7b595334
YD
1289 *
1290 * load_avg may also take frequency scaling into account:
1291 *
1292 * load_avg = runnable% * scale_load_down(load) * freq%
1293 *
1294 * where freq% is the CPU frequency normalized to the highest frequency.
1295 *
1296 * [util_avg definition]
1297 *
1298 * util_avg = running% * SCHED_CAPACITY_SCALE
1299 *
1300 * where running% is the time ratio that a sched_entity is running on
1301 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1302 * and blocked sched_entities.
1303 *
1304 * util_avg may also factor frequency scaling and CPU capacity scaling:
1305 *
1306 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1307 *
1308 * where freq% is the same as above, and capacity% is the CPU capacity
1309 * normalized to the greatest capacity (due to uarch differences, etc).
1310 *
1311 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1312 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1313 * we therefore scale them to as large a range as necessary. This is for
1314 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1315 *
1316 * [Overflow issue]
1317 *
1318 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1319 * with the highest load (=88761), always runnable on a single cfs_rq,
1320 * and should not overflow as the number already hits PID_MAX_LIMIT.
1321 *
1322 * For all other cases (including 32-bit kernels), struct load_weight's
1323 * weight will overflow first before we do, because:
1324 *
1325 * Max(load_avg) <= Max(load.weight)
1326 *
1327 * Then it is the load_weight's responsibility to consider overflow
1328 * issues.
9d89c257 1329 */
9d85f21c 1330struct sched_avg {
9d89c257
YD
1331 u64 last_update_time, load_sum;
1332 u32 util_sum, period_contrib;
1333 unsigned long load_avg, util_avg;
9d85f21c
PT
1334};
1335
94c18227 1336#ifdef CONFIG_SCHEDSTATS
41acab88 1337struct sched_statistics {
20b8a59f 1338 u64 wait_start;
94c18227 1339 u64 wait_max;
6d082592
AV
1340 u64 wait_count;
1341 u64 wait_sum;
8f0dfc34
AV
1342 u64 iowait_count;
1343 u64 iowait_sum;
94c18227 1344
20b8a59f 1345 u64 sleep_start;
20b8a59f 1346 u64 sleep_max;
94c18227
IM
1347 s64 sum_sleep_runtime;
1348
1349 u64 block_start;
20b8a59f
IM
1350 u64 block_max;
1351 u64 exec_max;
eba1ed4b 1352 u64 slice_max;
cc367732 1353
cc367732
IM
1354 u64 nr_migrations_cold;
1355 u64 nr_failed_migrations_affine;
1356 u64 nr_failed_migrations_running;
1357 u64 nr_failed_migrations_hot;
1358 u64 nr_forced_migrations;
cc367732
IM
1359
1360 u64 nr_wakeups;
1361 u64 nr_wakeups_sync;
1362 u64 nr_wakeups_migrate;
1363 u64 nr_wakeups_local;
1364 u64 nr_wakeups_remote;
1365 u64 nr_wakeups_affine;
1366 u64 nr_wakeups_affine_attempts;
1367 u64 nr_wakeups_passive;
1368 u64 nr_wakeups_idle;
41acab88
LDM
1369};
1370#endif
1371
1372struct sched_entity {
1373 struct load_weight load; /* for load-balancing */
1374 struct rb_node run_node;
1375 struct list_head group_node;
1376 unsigned int on_rq;
1377
1378 u64 exec_start;
1379 u64 sum_exec_runtime;
1380 u64 vruntime;
1381 u64 prev_sum_exec_runtime;
1382
41acab88
LDM
1383 u64 nr_migrations;
1384
41acab88
LDM
1385#ifdef CONFIG_SCHEDSTATS
1386 struct sched_statistics statistics;
94c18227
IM
1387#endif
1388
20b8a59f 1389#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1390 int depth;
20b8a59f
IM
1391 struct sched_entity *parent;
1392 /* rq on which this entity is (to be) queued: */
1393 struct cfs_rq *cfs_rq;
1394 /* rq "owned" by this entity/group: */
1395 struct cfs_rq *my_q;
1396#endif
8bd75c77 1397
141965c7 1398#ifdef CONFIG_SMP
5a107804
JO
1399 /*
1400 * Per entity load average tracking.
1401 *
1402 * Put into separate cache line so it does not
1403 * collide with read-mostly values above.
1404 */
1405 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1406#endif
20b8a59f 1407};
70b97a7f 1408
fa717060
PZ
1409struct sched_rt_entity {
1410 struct list_head run_list;
78f2c7db 1411 unsigned long timeout;
57d2aa00 1412 unsigned long watchdog_stamp;
bee367ed 1413 unsigned int time_slice;
ff77e468
PZ
1414 unsigned short on_rq;
1415 unsigned short on_list;
6f505b16 1416
58d6c2d7 1417 struct sched_rt_entity *back;
052f1dc7 1418#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1419 struct sched_rt_entity *parent;
1420 /* rq on which this entity is (to be) queued: */
1421 struct rt_rq *rt_rq;
1422 /* rq "owned" by this entity/group: */
1423 struct rt_rq *my_q;
1424#endif
fa717060
PZ
1425};
1426
aab03e05
DF
1427struct sched_dl_entity {
1428 struct rb_node rb_node;
1429
1430 /*
1431 * Original scheduling parameters. Copied here from sched_attr
4027d080 1432 * during sched_setattr(), they will remain the same until
1433 * the next sched_setattr().
aab03e05
DF
1434 */
1435 u64 dl_runtime; /* maximum runtime for each instance */
1436 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1437 u64 dl_period; /* separation of two instances (period) */
332ac17e 1438 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1439
1440 /*
1441 * Actual scheduling parameters. Initialized with the values above,
1442 * they are continously updated during task execution. Note that
1443 * the remaining runtime could be < 0 in case we are in overrun.
1444 */
1445 s64 runtime; /* remaining runtime for this instance */
1446 u64 deadline; /* absolute deadline for this instance */
1447 unsigned int flags; /* specifying the scheduler behaviour */
1448
1449 /*
1450 * Some bool flags:
1451 *
1452 * @dl_throttled tells if we exhausted the runtime. If so, the
1453 * task has to wait for a replenishment to be performed at the
1454 * next firing of dl_timer.
1455 *
2d3d891d
DF
1456 * @dl_boosted tells if we are boosted due to DI. If so we are
1457 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1458 * exit the critical section);
1459 *
1460 * @dl_yielded tells if task gave up the cpu before consuming
1461 * all its available runtime during the last job.
aab03e05 1462 */
72f9f3fd 1463 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1464
1465 /*
1466 * Bandwidth enforcement timer. Each -deadline task has its
1467 * own bandwidth to be enforced, thus we need one timer per task.
1468 */
1469 struct hrtimer dl_timer;
1470};
8bd75c77 1471
1d082fd0
PM
1472union rcu_special {
1473 struct {
8203d6d0
PM
1474 u8 blocked;
1475 u8 need_qs;
1476 u8 exp_need_qs;
1477 u8 pad; /* Otherwise the compiler can store garbage here. */
1478 } b; /* Bits. */
1479 u32 s; /* Set of bits. */
1d082fd0 1480};
86848966
PM
1481struct rcu_node;
1482
8dc85d54
PZ
1483enum perf_event_task_context {
1484 perf_invalid_context = -1,
1485 perf_hw_context = 0,
89a1e187 1486 perf_sw_context,
8dc85d54
PZ
1487 perf_nr_task_contexts,
1488};
1489
72b252ae
MG
1490/* Track pages that require TLB flushes */
1491struct tlbflush_unmap_batch {
1492 /*
1493 * Each bit set is a CPU that potentially has a TLB entry for one of
1494 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1495 */
1496 struct cpumask cpumask;
1497
1498 /* True if any bit in cpumask is set */
1499 bool flush_required;
d950c947
MG
1500
1501 /*
1502 * If true then the PTE was dirty when unmapped. The entry must be
1503 * flushed before IO is initiated or a stale TLB entry potentially
1504 * allows an update without redirtying the page.
1505 */
1506 bool writable;
72b252ae
MG
1507};
1508
1da177e4 1509struct task_struct {
c65eacbe
AL
1510#ifdef CONFIG_THREAD_INFO_IN_TASK
1511 /*
1512 * For reasons of header soup (see current_thread_info()), this
1513 * must be the first element of task_struct.
1514 */
1515 struct thread_info thread_info;
1516#endif
1da177e4 1517 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1518 void *stack;
1da177e4 1519 atomic_t usage;
97dc32cd
WC
1520 unsigned int flags; /* per process flags, defined below */
1521 unsigned int ptrace;
1da177e4 1522
2dd73a4f 1523#ifdef CONFIG_SMP
fa14ff4a 1524 struct llist_node wake_entry;
3ca7a440 1525 int on_cpu;
c65eacbe
AL
1526#ifdef CONFIG_THREAD_INFO_IN_TASK
1527 unsigned int cpu; /* current CPU */
1528#endif
63b0e9ed 1529 unsigned int wakee_flips;
62470419 1530 unsigned long wakee_flip_decay_ts;
63b0e9ed 1531 struct task_struct *last_wakee;
ac66f547
PZ
1532
1533 int wake_cpu;
2dd73a4f 1534#endif
fd2f4419 1535 int on_rq;
50e645a8 1536
b29739f9 1537 int prio, static_prio, normal_prio;
c7aceaba 1538 unsigned int rt_priority;
5522d5d5 1539 const struct sched_class *sched_class;
20b8a59f 1540 struct sched_entity se;
fa717060 1541 struct sched_rt_entity rt;
8323f26c
PZ
1542#ifdef CONFIG_CGROUP_SCHED
1543 struct task_group *sched_task_group;
1544#endif
aab03e05 1545 struct sched_dl_entity dl;
1da177e4 1546
e107be36
AK
1547#ifdef CONFIG_PREEMPT_NOTIFIERS
1548 /* list of struct preempt_notifier: */
1549 struct hlist_head preempt_notifiers;
1550#endif
1551
6c5c9341 1552#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1553 unsigned int btrace_seq;
6c5c9341 1554#endif
1da177e4 1555
97dc32cd 1556 unsigned int policy;
29baa747 1557 int nr_cpus_allowed;
1da177e4 1558 cpumask_t cpus_allowed;
1da177e4 1559
a57eb940 1560#ifdef CONFIG_PREEMPT_RCU
e260be67 1561 int rcu_read_lock_nesting;
1d082fd0 1562 union rcu_special rcu_read_unlock_special;
f41d911f 1563 struct list_head rcu_node_entry;
a57eb940 1564 struct rcu_node *rcu_blocked_node;
28f6569a 1565#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1566#ifdef CONFIG_TASKS_RCU
1567 unsigned long rcu_tasks_nvcsw;
1568 bool rcu_tasks_holdout;
1569 struct list_head rcu_tasks_holdout_list;
176f8f7a 1570 int rcu_tasks_idle_cpu;
8315f422 1571#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1572
f6db8347 1573#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1574 struct sched_info sched_info;
1575#endif
1576
1577 struct list_head tasks;
806c09a7 1578#ifdef CONFIG_SMP
917b627d 1579 struct plist_node pushable_tasks;
1baca4ce 1580 struct rb_node pushable_dl_tasks;
806c09a7 1581#endif
1da177e4
LT
1582
1583 struct mm_struct *mm, *active_mm;
615d6e87
DB
1584 /* per-thread vma caching */
1585 u32 vmacache_seqnum;
1586 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1587#if defined(SPLIT_RSS_COUNTING)
1588 struct task_rss_stat rss_stat;
1589#endif
1da177e4 1590/* task state */
97dc32cd 1591 int exit_state;
1da177e4
LT
1592 int exit_code, exit_signal;
1593 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1594 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1595
1596 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1597 unsigned int personality;
9b89f6ba 1598
be958bdc 1599 /* scheduler bits, serialized by scheduler locks */
ca94c442 1600 unsigned sched_reset_on_fork:1;
a8e4f2ea 1601 unsigned sched_contributes_to_load:1;
ff303e66 1602 unsigned sched_migrated:1;
b7e7ade3 1603 unsigned sched_remote_wakeup:1;
be958bdc
PZ
1604 unsigned :0; /* force alignment to the next boundary */
1605
1606 /* unserialized, strictly 'current' */
1607 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1608 unsigned in_iowait:1;
7e781418
AL
1609#if !defined(TIF_RESTORE_SIGMASK)
1610 unsigned restore_sigmask:1;
1611#endif
626ebc41
TH
1612#ifdef CONFIG_MEMCG
1613 unsigned memcg_may_oom:1;
127424c8 1614#ifndef CONFIG_SLOB
6f185c29
VD
1615 unsigned memcg_kmem_skip_account:1;
1616#endif
127424c8 1617#endif
ff303e66
PZ
1618#ifdef CONFIG_COMPAT_BRK
1619 unsigned brk_randomized:1;
1620#endif
6f185c29 1621
1d4457f9
KC
1622 unsigned long atomic_flags; /* Flags needing atomic access. */
1623
f56141e3
AL
1624 struct restart_block restart_block;
1625
1da177e4
LT
1626 pid_t pid;
1627 pid_t tgid;
0a425405 1628
1314562a 1629#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1630 /* Canary value for the -fstack-protector gcc feature */
1631 unsigned long stack_canary;
1314562a 1632#endif
4d1d61a6 1633 /*
1da177e4 1634 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1635 * older sibling, respectively. (p->father can be replaced with
f470021a 1636 * p->real_parent->pid)
1da177e4 1637 */
abd63bc3
KC
1638 struct task_struct __rcu *real_parent; /* real parent process */
1639 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1640 /*
f470021a 1641 * children/sibling forms the list of my natural children
1da177e4
LT
1642 */
1643 struct list_head children; /* list of my children */
1644 struct list_head sibling; /* linkage in my parent's children list */
1645 struct task_struct *group_leader; /* threadgroup leader */
1646
f470021a
RM
1647 /*
1648 * ptraced is the list of tasks this task is using ptrace on.
1649 * This includes both natural children and PTRACE_ATTACH targets.
1650 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1651 */
1652 struct list_head ptraced;
1653 struct list_head ptrace_entry;
1654
1da177e4 1655 /* PID/PID hash table linkage. */
92476d7f 1656 struct pid_link pids[PIDTYPE_MAX];
47e65328 1657 struct list_head thread_group;
0c740d0a 1658 struct list_head thread_node;
1da177e4
LT
1659
1660 struct completion *vfork_done; /* for vfork() */
1661 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1662 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1663
5613fda9 1664 u64 utime, stime;
40565b5a 1665#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5613fda9 1666 u64 utimescaled, stimescaled;
40565b5a 1667#endif
16a6d9be 1668 u64 gtime;
9d7fb042 1669 struct prev_cputime prev_cputime;
6a61671b 1670#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1671 seqcount_t vtime_seqcount;
6a61671b
FW
1672 unsigned long long vtime_snap;
1673 enum {
7098c1ea
FW
1674 /* Task is sleeping or running in a CPU with VTIME inactive */
1675 VTIME_INACTIVE = 0,
1676 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1677 VTIME_USER,
7098c1ea 1678 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1679 VTIME_SYS,
1680 } vtime_snap_whence;
d99ca3b9 1681#endif
d027d45d
FW
1682
1683#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1684 atomic_t tick_dep_mask;
d027d45d 1685#endif
1da177e4 1686 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1687 u64 start_time; /* monotonic time in nsec */
57e0be04 1688 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1689/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1690 unsigned long min_flt, maj_flt;
1691
a1cecf2b 1692 struct task_cputime_t cputime_expires;
1da177e4
LT
1693 struct list_head cpu_timers[3];
1694
1695/* process credentials */
64b875f7 1696 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1b0ba1c9 1697 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1698 * credentials (COW) */
1b0ba1c9 1699 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1700 * credentials (COW) */
36772092
PBG
1701 char comm[TASK_COMM_LEN]; /* executable name excluding path
1702 - access with [gs]et_task_comm (which lock
1703 it with task_lock())
221af7f8 1704 - initialized normally by setup_new_exec */
1da177e4 1705/* file system info */
756daf26 1706 struct nameidata *nameidata;
3d5b6fcc 1707#ifdef CONFIG_SYSVIPC
1da177e4
LT
1708/* ipc stuff */
1709 struct sysv_sem sysvsem;
ab602f79 1710 struct sysv_shm sysvshm;
3d5b6fcc 1711#endif
e162b39a 1712#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1713/* hung task detection */
82a1fcb9
IM
1714 unsigned long last_switch_count;
1715#endif
1da177e4
LT
1716/* filesystem information */
1717 struct fs_struct *fs;
1718/* open file information */
1719 struct files_struct *files;
1651e14e 1720/* namespaces */
ab516013 1721 struct nsproxy *nsproxy;
1da177e4
LT
1722/* signal handlers */
1723 struct signal_struct *signal;
1724 struct sighand_struct *sighand;
1725
1726 sigset_t blocked, real_blocked;
f3de272b 1727 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1728 struct sigpending pending;
1729
1730 unsigned long sas_ss_sp;
1731 size_t sas_ss_size;
2a742138 1732 unsigned sas_ss_flags;
2e01fabe 1733
67d12145 1734 struct callback_head *task_works;
e73f8959 1735
1da177e4 1736 struct audit_context *audit_context;
bfef93a5 1737#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1738 kuid_t loginuid;
4746ec5b 1739 unsigned int sessionid;
bfef93a5 1740#endif
932ecebb 1741 struct seccomp seccomp;
1da177e4
LT
1742
1743/* Thread group tracking */
1744 u32 parent_exec_id;
1745 u32 self_exec_id;
58568d2a
MX
1746/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1747 * mempolicy */
1da177e4 1748 spinlock_t alloc_lock;
1da177e4 1749
b29739f9 1750 /* Protection of the PI data structures: */
1d615482 1751 raw_spinlock_t pi_lock;
b29739f9 1752
76751049
PZ
1753 struct wake_q_node wake_q;
1754
23f78d4a
IM
1755#ifdef CONFIG_RT_MUTEXES
1756 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1757 struct rb_root pi_waiters;
1758 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1759 /* Deadlock detection and priority inheritance handling */
1760 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1761#endif
1762
408894ee
IM
1763#ifdef CONFIG_DEBUG_MUTEXES
1764 /* mutex deadlock detection */
1765 struct mutex_waiter *blocked_on;
1766#endif
de30a2b3
IM
1767#ifdef CONFIG_TRACE_IRQFLAGS
1768 unsigned int irq_events;
de30a2b3 1769 unsigned long hardirq_enable_ip;
de30a2b3 1770 unsigned long hardirq_disable_ip;
fa1452e8 1771 unsigned int hardirq_enable_event;
de30a2b3 1772 unsigned int hardirq_disable_event;
fa1452e8
HS
1773 int hardirqs_enabled;
1774 int hardirq_context;
de30a2b3 1775 unsigned long softirq_disable_ip;
de30a2b3 1776 unsigned long softirq_enable_ip;
fa1452e8 1777 unsigned int softirq_disable_event;
de30a2b3 1778 unsigned int softirq_enable_event;
fa1452e8 1779 int softirqs_enabled;
de30a2b3
IM
1780 int softirq_context;
1781#endif
fbb9ce95 1782#ifdef CONFIG_LOCKDEP
bdb9441e 1783# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1784 u64 curr_chain_key;
1785 int lockdep_depth;
fbb9ce95 1786 unsigned int lockdep_recursion;
c7aceaba 1787 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1788 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1789#endif
c6d30853
AR
1790#ifdef CONFIG_UBSAN
1791 unsigned int in_ubsan;
1792#endif
408894ee 1793
1da177e4
LT
1794/* journalling filesystem info */
1795 void *journal_info;
1796
d89d8796 1797/* stacked block device info */
bddd87c7 1798 struct bio_list *bio_list;
d89d8796 1799
73c10101
JA
1800#ifdef CONFIG_BLOCK
1801/* stack plugging */
1802 struct blk_plug *plug;
1803#endif
1804
1da177e4
LT
1805/* VM state */
1806 struct reclaim_state *reclaim_state;
1807
1da177e4
LT
1808 struct backing_dev_info *backing_dev_info;
1809
1810 struct io_context *io_context;
1811
1812 unsigned long ptrace_message;
1813 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1814 struct task_io_accounting ioac;
8f0ab514 1815#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1816 u64 acct_rss_mem1; /* accumulated rss usage */
1817 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1818 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1819#endif
1820#ifdef CONFIG_CPUSETS
58568d2a 1821 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1822 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1823 int cpuset_mem_spread_rotor;
6adef3eb 1824 int cpuset_slab_spread_rotor;
1da177e4 1825#endif
ddbcc7e8 1826#ifdef CONFIG_CGROUPS
817929ec 1827 /* Control Group info protected by css_set_lock */
2c392b8c 1828 struct css_set __rcu *cgroups;
817929ec
PM
1829 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1830 struct list_head cg_list;
ddbcc7e8 1831#endif
e02737d5
FY
1832#ifdef CONFIG_INTEL_RDT_A
1833 int closid;
1834#endif
42b2dd0a 1835#ifdef CONFIG_FUTEX
0771dfef 1836 struct robust_list_head __user *robust_list;
34f192c6
IM
1837#ifdef CONFIG_COMPAT
1838 struct compat_robust_list_head __user *compat_robust_list;
1839#endif
c87e2837
IM
1840 struct list_head pi_state_list;
1841 struct futex_pi_state *pi_state_cache;
c7aceaba 1842#endif
cdd6c482 1843#ifdef CONFIG_PERF_EVENTS
8dc85d54 1844 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1845 struct mutex perf_event_mutex;
1846 struct list_head perf_event_list;
a63eaf34 1847#endif
8f47b187
TG
1848#ifdef CONFIG_DEBUG_PREEMPT
1849 unsigned long preempt_disable_ip;
1850#endif
c7aceaba 1851#ifdef CONFIG_NUMA
58568d2a 1852 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1853 short il_next;
207205a2 1854 short pref_node_fork;
42b2dd0a 1855#endif
cbee9f88
PZ
1856#ifdef CONFIG_NUMA_BALANCING
1857 int numa_scan_seq;
cbee9f88 1858 unsigned int numa_scan_period;
598f0ec0 1859 unsigned int numa_scan_period_max;
de1c9ce6 1860 int numa_preferred_nid;
6b9a7460 1861 unsigned long numa_migrate_retry;
cbee9f88 1862 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1863 u64 last_task_numa_placement;
1864 u64 last_sum_exec_runtime;
cbee9f88 1865 struct callback_head numa_work;
f809ca9a 1866
8c8a743c
PZ
1867 struct list_head numa_entry;
1868 struct numa_group *numa_group;
1869
745d6147 1870 /*
44dba3d5
IM
1871 * numa_faults is an array split into four regions:
1872 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1873 * in this precise order.
1874 *
1875 * faults_memory: Exponential decaying average of faults on a per-node
1876 * basis. Scheduling placement decisions are made based on these
1877 * counts. The values remain static for the duration of a PTE scan.
1878 * faults_cpu: Track the nodes the process was running on when a NUMA
1879 * hinting fault was incurred.
1880 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1881 * during the current scan window. When the scan completes, the counts
1882 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1883 */
44dba3d5 1884 unsigned long *numa_faults;
83e1d2cd 1885 unsigned long total_numa_faults;
745d6147 1886
04bb2f94
RR
1887 /*
1888 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1889 * scan window were remote/local or failed to migrate. The task scan
1890 * period is adapted based on the locality of the faults with different
1891 * weights depending on whether they were shared or private faults
04bb2f94 1892 */
074c2381 1893 unsigned long numa_faults_locality[3];
04bb2f94 1894
b32e86b4 1895 unsigned long numa_pages_migrated;
cbee9f88
PZ
1896#endif /* CONFIG_NUMA_BALANCING */
1897
72b252ae
MG
1898#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1899 struct tlbflush_unmap_batch tlb_ubc;
1900#endif
1901
e56d0903 1902 struct rcu_head rcu;
b92ce558
JA
1903
1904 /*
1905 * cache last used pipe for splice
1906 */
1907 struct pipe_inode_info *splice_pipe;
5640f768
ED
1908
1909 struct page_frag task_frag;
1910
ca74e92b
SN
1911#ifdef CONFIG_TASK_DELAY_ACCT
1912 struct task_delay_info *delays;
f4f154fd
AM
1913#endif
1914#ifdef CONFIG_FAULT_INJECTION
1915 int make_it_fail;
ca74e92b 1916#endif
9d823e8f
WF
1917 /*
1918 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1919 * balance_dirty_pages() for some dirty throttling pause
1920 */
1921 int nr_dirtied;
1922 int nr_dirtied_pause;
83712358 1923 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1924
9745512c
AV
1925#ifdef CONFIG_LATENCYTOP
1926 int latency_record_count;
1927 struct latency_record latency_record[LT_SAVECOUNT];
1928#endif
6976675d
AV
1929 /*
1930 * time slack values; these are used to round up poll() and
1931 * select() etc timeout values. These are in nanoseconds.
1932 */
da8b44d5
JS
1933 u64 timer_slack_ns;
1934 u64 default_timer_slack_ns;
f8d570a4 1935
0b24becc
AR
1936#ifdef CONFIG_KASAN
1937 unsigned int kasan_depth;
1938#endif
fb52607a 1939#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1940 /* Index of current stored address in ret_stack */
f201ae23
FW
1941 int curr_ret_stack;
1942 /* Stack of return addresses for return function tracing */
1943 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1944 /* time stamp for last schedule */
1945 unsigned long long ftrace_timestamp;
f201ae23
FW
1946 /*
1947 * Number of functions that haven't been traced
1948 * because of depth overrun.
1949 */
1950 atomic_t trace_overrun;
380c4b14
FW
1951 /* Pause for the tracing */
1952 atomic_t tracing_graph_pause;
f201ae23 1953#endif
ea4e2bc4
SR
1954#ifdef CONFIG_TRACING
1955 /* state flags for use by tracers */
1956 unsigned long trace;
b1cff0ad 1957 /* bitmask and counter of trace recursion */
261842b7
SR
1958 unsigned long trace_recursion;
1959#endif /* CONFIG_TRACING */
5c9a8750
DV
1960#ifdef CONFIG_KCOV
1961 /* Coverage collection mode enabled for this task (0 if disabled). */
1962 enum kcov_mode kcov_mode;
1963 /* Size of the kcov_area. */
1964 unsigned kcov_size;
1965 /* Buffer for coverage collection. */
1966 void *kcov_area;
1967 /* kcov desciptor wired with this task or NULL. */
1968 struct kcov *kcov;
1969#endif
6f185c29 1970#ifdef CONFIG_MEMCG
626ebc41
TH
1971 struct mem_cgroup *memcg_in_oom;
1972 gfp_t memcg_oom_gfp_mask;
1973 int memcg_oom_order;
b23afb93
TH
1974
1975 /* number of pages to reclaim on returning to userland */
1976 unsigned int memcg_nr_pages_over_high;
569b846d 1977#endif
0326f5a9
SD
1978#ifdef CONFIG_UPROBES
1979 struct uprobe_task *utask;
0326f5a9 1980#endif
cafe5635
KO
1981#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1982 unsigned int sequential_io;
1983 unsigned int sequential_io_avg;
1984#endif
8eb23b9f
PZ
1985#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1986 unsigned long task_state_change;
1987#endif
8bcbde54 1988 int pagefault_disabled;
03049269 1989#ifdef CONFIG_MMU
29c696e1 1990 struct task_struct *oom_reaper_list;
03049269 1991#endif
ba14a194
AL
1992#ifdef CONFIG_VMAP_STACK
1993 struct vm_struct *stack_vm_area;
1994#endif
68f24b08
AL
1995#ifdef CONFIG_THREAD_INFO_IN_TASK
1996 /* A live task holds one reference. */
1997 atomic_t stack_refcount;
1998#endif
0c8c0f03
DH
1999/* CPU-specific state of this task */
2000 struct thread_struct thread;
2001/*
2002 * WARNING: on x86, 'thread_struct' contains a variable-sized
2003 * structure. It *MUST* be at the end of 'task_struct'.
2004 *
2005 * Do not put anything below here!
2006 */
1da177e4
LT
2007};
2008
5aaeb5c0
IM
2009#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
2010extern int arch_task_struct_size __read_mostly;
2011#else
2012# define arch_task_struct_size (sizeof(struct task_struct))
2013#endif
0c8c0f03 2014
ba14a194
AL
2015#ifdef CONFIG_VMAP_STACK
2016static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2017{
2018 return t->stack_vm_area;
2019}
2020#else
2021static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
2022{
2023 return NULL;
2024}
2025#endif
2026
76e6eee0 2027/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 2028#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 2029
50605ffb
TG
2030static inline int tsk_nr_cpus_allowed(struct task_struct *p)
2031{
2032 return p->nr_cpus_allowed;
2033}
2034
6688cc05
PZ
2035#define TNF_MIGRATED 0x01
2036#define TNF_NO_GROUP 0x02
dabe1d99 2037#define TNF_SHARED 0x04
04bb2f94 2038#define TNF_FAULT_LOCAL 0x08
074c2381 2039#define TNF_MIGRATE_FAIL 0x10
6688cc05 2040
b18dc5f2
MH
2041static inline bool in_vfork(struct task_struct *tsk)
2042{
2043 bool ret;
2044
2045 /*
2046 * need RCU to access ->real_parent if CLONE_VM was used along with
2047 * CLONE_PARENT.
2048 *
2049 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2050 * imply CLONE_VM
2051 *
2052 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2053 * ->real_parent is not necessarily the task doing vfork(), so in
2054 * theory we can't rely on task_lock() if we want to dereference it.
2055 *
2056 * And in this case we can't trust the real_parent->mm == tsk->mm
2057 * check, it can be false negative. But we do not care, if init or
2058 * another oom-unkillable task does this it should blame itself.
2059 */
2060 rcu_read_lock();
2061 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2062 rcu_read_unlock();
2063
2064 return ret;
2065}
2066
cbee9f88 2067#ifdef CONFIG_NUMA_BALANCING
6688cc05 2068extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 2069extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 2070extern void set_numabalancing_state(bool enabled);
82727018 2071extern void task_numa_free(struct task_struct *p);
10f39042
RR
2072extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2073 int src_nid, int dst_cpu);
cbee9f88 2074#else
ac8e895b 2075static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 2076 int flags)
cbee9f88
PZ
2077{
2078}
e29cf08b
MG
2079static inline pid_t task_numa_group_id(struct task_struct *p)
2080{
2081 return 0;
2082}
1a687c2e
MG
2083static inline void set_numabalancing_state(bool enabled)
2084{
2085}
82727018
RR
2086static inline void task_numa_free(struct task_struct *p)
2087{
2088}
10f39042
RR
2089static inline bool should_numa_migrate_memory(struct task_struct *p,
2090 struct page *page, int src_nid, int dst_cpu)
2091{
2092 return true;
2093}
cbee9f88
PZ
2094#endif
2095
e868171a 2096static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
2097{
2098 return task->pids[PIDTYPE_PID].pid;
2099}
2100
e868171a 2101static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
2102{
2103 return task->group_leader->pids[PIDTYPE_PID].pid;
2104}
2105
6dda81f4
ON
2106/*
2107 * Without tasklist or rcu lock it is not safe to dereference
2108 * the result of task_pgrp/task_session even if task == current,
2109 * we can race with another thread doing sys_setsid/sys_setpgid.
2110 */
e868171a 2111static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
2112{
2113 return task->group_leader->pids[PIDTYPE_PGID].pid;
2114}
2115
e868171a 2116static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
2117{
2118 return task->group_leader->pids[PIDTYPE_SID].pid;
2119}
2120
7af57294
PE
2121struct pid_namespace;
2122
2123/*
2124 * the helpers to get the task's different pids as they are seen
2125 * from various namespaces
2126 *
2127 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2128 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2129 * current.
7af57294
PE
2130 * task_xid_nr_ns() : id seen from the ns specified;
2131 *
2132 * set_task_vxid() : assigns a virtual id to a task;
2133 *
7af57294
PE
2134 * see also pid_nr() etc in include/linux/pid.h
2135 */
52ee2dfd
ON
2136pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2137 struct pid_namespace *ns);
7af57294 2138
e868171a 2139static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2140{
2141 return tsk->pid;
2142}
2143
52ee2dfd
ON
2144static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2145 struct pid_namespace *ns)
2146{
2147 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2148}
7af57294
PE
2149
2150static inline pid_t task_pid_vnr(struct task_struct *tsk)
2151{
52ee2dfd 2152 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2153}
2154
2155
e868171a 2156static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2157{
2158 return tsk->tgid;
2159}
2160
2f2a3a46 2161pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2162
2163static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2164{
2165 return pid_vnr(task_tgid(tsk));
2166}
2167
2168
80e0b6e8 2169static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2170static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2171{
2172 pid_t pid = 0;
2173
2174 rcu_read_lock();
2175 if (pid_alive(tsk))
2176 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2177 rcu_read_unlock();
2178
2179 return pid;
2180}
2181
2182static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2183{
2184 return task_ppid_nr_ns(tsk, &init_pid_ns);
2185}
2186
52ee2dfd
ON
2187static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2188 struct pid_namespace *ns)
7af57294 2189{
52ee2dfd 2190 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2191}
2192
7af57294
PE
2193static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2194{
52ee2dfd 2195 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2196}
2197
2198
52ee2dfd
ON
2199static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2200 struct pid_namespace *ns)
7af57294 2201{
52ee2dfd 2202 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2203}
2204
7af57294
PE
2205static inline pid_t task_session_vnr(struct task_struct *tsk)
2206{
52ee2dfd 2207 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2208}
2209
1b0f7ffd
ON
2210/* obsolete, do not use */
2211static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2212{
2213 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2214}
7af57294 2215
1da177e4
LT
2216/**
2217 * pid_alive - check that a task structure is not stale
2218 * @p: Task structure to be checked.
2219 *
2220 * Test if a process is not yet dead (at most zombie state)
2221 * If pid_alive fails, then pointers within the task structure
2222 * can be stale and must not be dereferenced.
e69f6186
YB
2223 *
2224 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2225 */
ad36d282 2226static inline int pid_alive(const struct task_struct *p)
1da177e4 2227{
92476d7f 2228 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2229}
2230
f400e198 2231/**
570f5241
SS
2232 * is_global_init - check if a task structure is init. Since init
2233 * is free to have sub-threads we need to check tgid.
3260259f
HK
2234 * @tsk: Task structure to be checked.
2235 *
2236 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2237 *
2238 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2239 */
e868171a 2240static inline int is_global_init(struct task_struct *tsk)
b461cc03 2241{
570f5241 2242 return task_tgid_nr(tsk) == 1;
b461cc03 2243}
b460cbc5 2244
9ec52099
CLG
2245extern struct pid *cad_pid;
2246
1da177e4 2247extern void free_task(struct task_struct *tsk);
1da177e4 2248#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2249
158d9ebd 2250extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2251
2252static inline void put_task_struct(struct task_struct *t)
2253{
2254 if (atomic_dec_and_test(&t->usage))
8c7904a0 2255 __put_task_struct(t);
e56d0903 2256}
1da177e4 2257
150593bf
ON
2258struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2259struct task_struct *try_get_task_struct(struct task_struct **ptask);
2260
6a61671b
FW
2261#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2262extern void task_cputime(struct task_struct *t,
5613fda9 2263 u64 *utime, u64 *stime);
16a6d9be 2264extern u64 task_gtime(struct task_struct *t);
6a61671b 2265#else
6fac4829 2266static inline void task_cputime(struct task_struct *t,
5613fda9 2267 u64 *utime, u64 *stime)
6fac4829 2268{
353c50eb
SG
2269 *utime = t->utime;
2270 *stime = t->stime;
6fac4829
FW
2271}
2272
16a6d9be 2273static inline u64 task_gtime(struct task_struct *t)
40565b5a
SG
2274{
2275 return t->gtime;
2276}
2277#endif
2278
2279#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
6fac4829 2280static inline void task_cputime_scaled(struct task_struct *t,
5613fda9
FW
2281 u64 *utimescaled,
2282 u64 *stimescaled)
6fac4829 2283{
353c50eb
SG
2284 *utimescaled = t->utimescaled;
2285 *stimescaled = t->stimescaled;
6fac4829 2286}
40565b5a
SG
2287#else
2288static inline void task_cputime_scaled(struct task_struct *t,
5613fda9
FW
2289 u64 *utimescaled,
2290 u64 *stimescaled)
6a61671b 2291{
40565b5a 2292 task_cputime(t, utimescaled, stimescaled);
6a61671b
FW
2293}
2294#endif
40565b5a 2295
a1cecf2b
FW
2296static inline void task_cputime_t(struct task_struct *t,
2297 cputime_t *utime, cputime_t *stime)
2298{
5613fda9
FW
2299 u64 ut, st;
2300
2301 task_cputime(t, &ut, &st);
2302 *utime = nsecs_to_cputime(ut);
2303 *stime = nsecs_to_cputime(st);
a1cecf2b
FW
2304}
2305
2306static inline void task_cputime_t_scaled(struct task_struct *t,
2307 cputime_t *utimescaled,
2308 cputime_t *stimescaled)
2309{
5613fda9
FW
2310 u64 ut, st;
2311
2312 task_cputime_scaled(t, &ut, &st);
2313 *utimescaled = nsecs_to_cputime(ut);
2314 *stimescaled = nsecs_to_cputime(st);
a1cecf2b
FW
2315}
2316
5613fda9
FW
2317extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
2318extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
49048622 2319
1da177e4
LT
2320/*
2321 * Per process flags
2322 */
c1de45ca 2323#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1da177e4 2324#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2325#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2326#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2327#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2328#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2329#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2330#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2331#define PF_DUMPCORE 0x00000200 /* dumped core */
2332#define PF_SIGNALED 0x00000400 /* killed by a signal */
2333#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2334#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2335#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2336#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2337#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2338#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2339#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2340#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2341#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2342#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2343#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2344#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2345#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2346#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2347#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2348#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2349#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2350#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2351
2352/*
2353 * Only the _current_ task can read/write to tsk->flags, but other
2354 * tasks can access tsk->flags in readonly mode for example
2355 * with tsk_used_math (like during threaded core dumping).
2356 * There is however an exception to this rule during ptrace
2357 * or during fork: the ptracer task is allowed to write to the
2358 * child->flags of its traced child (same goes for fork, the parent
2359 * can write to the child->flags), because we're guaranteed the
2360 * child is not running and in turn not changing child->flags
2361 * at the same time the parent does it.
2362 */
2363#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2364#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2365#define clear_used_math() clear_stopped_child_used_math(current)
2366#define set_used_math() set_stopped_child_used_math(current)
2367#define conditional_stopped_child_used_math(condition, child) \
2368 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2369#define conditional_used_math(condition) \
2370 conditional_stopped_child_used_math(condition, current)
2371#define copy_to_stopped_child_used_math(child) \
2372 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2373/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2374#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2375#define used_math() tsk_used_math(current)
2376
934f3072
JB
2377/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2378 * __GFP_FS is also cleared as it implies __GFP_IO.
2379 */
21caf2fc
ML
2380static inline gfp_t memalloc_noio_flags(gfp_t flags)
2381{
2382 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2383 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2384 return flags;
2385}
2386
2387static inline unsigned int memalloc_noio_save(void)
2388{
2389 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2390 current->flags |= PF_MEMALLOC_NOIO;
2391 return flags;
2392}
2393
2394static inline void memalloc_noio_restore(unsigned int flags)
2395{
2396 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2397}
2398
1d4457f9 2399/* Per-process atomic flags. */
a2b86f77 2400#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2401#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2402#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
77ed2c57 2403#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2ad654bc 2404
1d4457f9 2405
e0e5070b
ZL
2406#define TASK_PFA_TEST(name, func) \
2407 static inline bool task_##func(struct task_struct *p) \
2408 { return test_bit(PFA_##name, &p->atomic_flags); }
2409#define TASK_PFA_SET(name, func) \
2410 static inline void task_set_##func(struct task_struct *p) \
2411 { set_bit(PFA_##name, &p->atomic_flags); }
2412#define TASK_PFA_CLEAR(name, func) \
2413 static inline void task_clear_##func(struct task_struct *p) \
2414 { clear_bit(PFA_##name, &p->atomic_flags); }
2415
2416TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2417TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2418
2ad654bc
ZL
2419TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2420TASK_PFA_SET(SPREAD_PAGE, spread_page)
2421TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2422
2423TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2424TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2425TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2426
77ed2c57
TH
2427TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2428TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2429
e5c1902e 2430/*
a8f072c1 2431 * task->jobctl flags
e5c1902e 2432 */
a8f072c1 2433#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2434
a8f072c1
TH
2435#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2436#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2437#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2438#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2439#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2440#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2441#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2442
b76808e6
PD
2443#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2444#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2445#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2446#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2447#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2448#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2449#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2450
fb1d910c 2451#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2452#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2453
7dd3db54 2454extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2455 unsigned long mask);
73ddff2b 2456extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2457extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2458 unsigned long mask);
39efa3ef 2459
f41d911f
PM
2460static inline void rcu_copy_process(struct task_struct *p)
2461{
8315f422 2462#ifdef CONFIG_PREEMPT_RCU
f41d911f 2463 p->rcu_read_lock_nesting = 0;
1d082fd0 2464 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2465 p->rcu_blocked_node = NULL;
f41d911f 2466 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2467#endif /* #ifdef CONFIG_PREEMPT_RCU */
2468#ifdef CONFIG_TASKS_RCU
2469 p->rcu_tasks_holdout = false;
2470 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2471 p->rcu_tasks_idle_cpu = -1;
8315f422 2472#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2473}
2474
907aed48
MG
2475static inline void tsk_restore_flags(struct task_struct *task,
2476 unsigned long orig_flags, unsigned long flags)
2477{
2478 task->flags &= ~flags;
2479 task->flags |= orig_flags & flags;
2480}
2481
f82f8042
JL
2482extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2483 const struct cpumask *trial);
7f51412a
JL
2484extern int task_can_attach(struct task_struct *p,
2485 const struct cpumask *cs_cpus_allowed);
1da177e4 2486#ifdef CONFIG_SMP
1e1b6c51
KM
2487extern void do_set_cpus_allowed(struct task_struct *p,
2488 const struct cpumask *new_mask);
2489
cd8ba7cd 2490extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2491 const struct cpumask *new_mask);
1da177e4 2492#else
1e1b6c51
KM
2493static inline void do_set_cpus_allowed(struct task_struct *p,
2494 const struct cpumask *new_mask)
2495{
2496}
cd8ba7cd 2497static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2498 const struct cpumask *new_mask)
1da177e4 2499{
96f874e2 2500 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2501 return -EINVAL;
2502 return 0;
2503}
2504#endif
e0ad9556 2505
3451d024 2506#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2507void calc_load_enter_idle(void);
2508void calc_load_exit_idle(void);
2509#else
2510static inline void calc_load_enter_idle(void) { }
2511static inline void calc_load_exit_idle(void) { }
3451d024 2512#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2513
6d0d2878
CB
2514#ifndef cpu_relax_yield
2515#define cpu_relax_yield() cpu_relax()
2516#endif
2517
b342501c 2518/*
c676329a
PZ
2519 * Do not use outside of architecture code which knows its limitations.
2520 *
2521 * sched_clock() has no promise of monotonicity or bounded drift between
2522 * CPUs, use (which you should not) requires disabling IRQs.
2523 *
2524 * Please use one of the three interfaces below.
b342501c 2525 */
1bbfa6f2 2526extern unsigned long long notrace sched_clock(void);
c676329a 2527/*
489a71b0 2528 * See the comment in kernel/sched/clock.c
c676329a 2529 */
545a2bf7 2530extern u64 running_clock(void);
c676329a
PZ
2531extern u64 sched_clock_cpu(int cpu);
2532
e436d800 2533
c1955a3d 2534extern void sched_clock_init(void);
3e51f33f 2535
c1955a3d 2536#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
9881b024
PZ
2537static inline void sched_clock_init_late(void)
2538{
2539}
2540
3e51f33f
PZ
2541static inline void sched_clock_tick(void)
2542{
2543}
2544
2545static inline void sched_clock_idle_sleep_event(void)
2546{
2547}
2548
2549static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2550{
2551}
2c923e94
DL
2552
2553static inline u64 cpu_clock(int cpu)
2554{
2555 return sched_clock();
2556}
2557
2558static inline u64 local_clock(void)
2559{
2560 return sched_clock();
2561}
3e51f33f 2562#else
9881b024 2563extern void sched_clock_init_late(void);
c676329a
PZ
2564/*
2565 * Architectures can set this to 1 if they have specified
2566 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2567 * but then during bootup it turns out that sched_clock()
2568 * is reliable after all:
2569 */
35af99e6 2570extern int sched_clock_stable(void);
35af99e6 2571extern void clear_sched_clock_stable(void);
c676329a 2572
3e51f33f
PZ
2573extern void sched_clock_tick(void);
2574extern void sched_clock_idle_sleep_event(void);
2575extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2576
2577/*
2578 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2579 * time source that is monotonic per cpu argument and has bounded drift
2580 * between cpus.
2581 *
2582 * ######################### BIG FAT WARNING ##########################
2583 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2584 * # go backwards !! #
2585 * ####################################################################
2586 */
2587static inline u64 cpu_clock(int cpu)
2588{
2589 return sched_clock_cpu(cpu);
2590}
2591
2592static inline u64 local_clock(void)
2593{
2594 return sched_clock_cpu(raw_smp_processor_id());
2595}
3e51f33f
PZ
2596#endif
2597
b52bfee4
VP
2598#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2599/*
2600 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2601 * The reason for this explicit opt-in is not to have perf penalty with
2602 * slow sched_clocks.
2603 */
2604extern void enable_sched_clock_irqtime(void);
2605extern void disable_sched_clock_irqtime(void);
2606#else
2607static inline void enable_sched_clock_irqtime(void) {}
2608static inline void disable_sched_clock_irqtime(void) {}
2609#endif
2610
36c8b586 2611extern unsigned long long
41b86e9c 2612task_sched_runtime(struct task_struct *task);
1da177e4
LT
2613
2614/* sched_exec is called by processes performing an exec */
2615#ifdef CONFIG_SMP
2616extern void sched_exec(void);
2617#else
2618#define sched_exec() {}
2619#endif
2620
2aa44d05
IM
2621extern void sched_clock_idle_sleep_event(void);
2622extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2623
1da177e4
LT
2624#ifdef CONFIG_HOTPLUG_CPU
2625extern void idle_task_exit(void);
2626#else
2627static inline void idle_task_exit(void) {}
2628#endif
2629
3451d024 2630#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2631extern void wake_up_nohz_cpu(int cpu);
06d8308c 2632#else
1c20091e 2633static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2634#endif
2635
ce831b38 2636#ifdef CONFIG_NO_HZ_FULL
265f22a9 2637extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2638#endif
2639
5091faa4 2640#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2641extern void sched_autogroup_create_attach(struct task_struct *p);
2642extern void sched_autogroup_detach(struct task_struct *p);
2643extern void sched_autogroup_fork(struct signal_struct *sig);
2644extern void sched_autogroup_exit(struct signal_struct *sig);
8e5bfa8c 2645extern void sched_autogroup_exit_task(struct task_struct *p);
5091faa4
MG
2646#ifdef CONFIG_PROC_FS
2647extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2648extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2649#endif
2650#else
2651static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2652static inline void sched_autogroup_detach(struct task_struct *p) { }
2653static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2654static inline void sched_autogroup_exit(struct signal_struct *sig) { }
8e5bfa8c 2655static inline void sched_autogroup_exit_task(struct task_struct *p) { }
5091faa4
MG
2656#endif
2657
fa93384f 2658extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2659extern void set_user_nice(struct task_struct *p, long nice);
2660extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2661/**
2662 * task_nice - return the nice value of a given task.
2663 * @p: the task in question.
2664 *
2665 * Return: The nice value [ -20 ... 0 ... 19 ].
2666 */
2667static inline int task_nice(const struct task_struct *p)
2668{
2669 return PRIO_TO_NICE((p)->static_prio);
2670}
36c8b586
IM
2671extern int can_nice(const struct task_struct *p, const int nice);
2672extern int task_curr(const struct task_struct *p);
1da177e4 2673extern int idle_cpu(int cpu);
fe7de49f
KM
2674extern int sched_setscheduler(struct task_struct *, int,
2675 const struct sched_param *);
961ccddd 2676extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2677 const struct sched_param *);
d50dde5a
DF
2678extern int sched_setattr(struct task_struct *,
2679 const struct sched_attr *);
36c8b586 2680extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2681/**
2682 * is_idle_task - is the specified task an idle task?
fa757281 2683 * @p: the task in question.
e69f6186
YB
2684 *
2685 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2686 */
7061ca3b 2687static inline bool is_idle_task(const struct task_struct *p)
c4f30608 2688{
c1de45ca 2689 return !!(p->flags & PF_IDLE);
c4f30608 2690}
36c8b586 2691extern struct task_struct *curr_task(int cpu);
a458ae2e 2692extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2693
2694void yield(void);
2695
1da177e4 2696union thread_union {
c65eacbe 2697#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 2698 struct thread_info thread_info;
c65eacbe 2699#endif
1da177e4
LT
2700 unsigned long stack[THREAD_SIZE/sizeof(long)];
2701};
2702
2703#ifndef __HAVE_ARCH_KSTACK_END
2704static inline int kstack_end(void *addr)
2705{
2706 /* Reliable end of stack detection:
2707 * Some APM bios versions misalign the stack
2708 */
2709 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2710}
2711#endif
2712
2713extern union thread_union init_thread_union;
2714extern struct task_struct init_task;
2715
2716extern struct mm_struct init_mm;
2717
198fe21b
PE
2718extern struct pid_namespace init_pid_ns;
2719
2720/*
2721 * find a task by one of its numerical ids
2722 *
198fe21b
PE
2723 * find_task_by_pid_ns():
2724 * finds a task by its pid in the specified namespace
228ebcbe
PE
2725 * find_task_by_vpid():
2726 * finds a task by its virtual pid
198fe21b 2727 *
e49859e7 2728 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2729 */
2730
228ebcbe
PE
2731extern struct task_struct *find_task_by_vpid(pid_t nr);
2732extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2733 struct pid_namespace *ns);
198fe21b 2734
1da177e4 2735/* per-UID process charging. */
7b44ab97 2736extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2737static inline struct user_struct *get_uid(struct user_struct *u)
2738{
2739 atomic_inc(&u->__count);
2740 return u;
2741}
2742extern void free_uid(struct user_struct *);
1da177e4
LT
2743
2744#include <asm/current.h>
2745
f0af911a 2746extern void xtime_update(unsigned long ticks);
1da177e4 2747
b3c97528
HH
2748extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2749extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2750extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2751#ifdef CONFIG_SMP
2752 extern void kick_process(struct task_struct *tsk);
2753#else
2754 static inline void kick_process(struct task_struct *tsk) { }
2755#endif
aab03e05 2756extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2757extern void sched_dead(struct task_struct *p);
1da177e4 2758
1da177e4
LT
2759extern void proc_caches_init(void);
2760extern void flush_signals(struct task_struct *);
10ab825b 2761extern void ignore_signals(struct task_struct *);
1da177e4
LT
2762extern void flush_signal_handlers(struct task_struct *, int force_default);
2763extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2764
be0e6f29 2765static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2766{
be0e6f29
ON
2767 struct task_struct *tsk = current;
2768 siginfo_t __info;
1da177e4
LT
2769 int ret;
2770
be0e6f29
ON
2771 spin_lock_irq(&tsk->sighand->siglock);
2772 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2773 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2774
2775 return ret;
53c8f9f1 2776}
1da177e4 2777
9a13049e
ON
2778static inline void kernel_signal_stop(void)
2779{
2780 spin_lock_irq(&current->sighand->siglock);
2781 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2782 __set_current_state(TASK_STOPPED);
2783 spin_unlock_irq(&current->sighand->siglock);
2784
2785 schedule();
2786}
2787
1da177e4
LT
2788extern void release_task(struct task_struct * p);
2789extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2790extern int force_sigsegv(int, struct task_struct *);
2791extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2792extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2793extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2794extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2795 const struct cred *, u32);
c4b92fc1
EB
2796extern int kill_pgrp(struct pid *pid, int sig, int priv);
2797extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2798extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2799extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2800extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2801extern void force_sig(int, struct task_struct *);
1da177e4 2802extern int send_sig(int, struct task_struct *, int);
09faef11 2803extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2804extern struct sigqueue *sigqueue_alloc(void);
2805extern void sigqueue_free(struct sigqueue *);
ac5c2153 2806extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2807extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2808
7e781418
AL
2809#ifdef TIF_RESTORE_SIGMASK
2810/*
2811 * Legacy restore_sigmask accessors. These are inefficient on
2812 * SMP architectures because they require atomic operations.
2813 */
2814
2815/**
2816 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2817 *
2818 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2819 * will run before returning to user mode, to process the flag. For
2820 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2821 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2822 * arch code will notice on return to user mode, in case those bits
2823 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2824 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2825 */
2826static inline void set_restore_sigmask(void)
2827{
2828 set_thread_flag(TIF_RESTORE_SIGMASK);
2829 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2830}
2831static inline void clear_restore_sigmask(void)
2832{
2833 clear_thread_flag(TIF_RESTORE_SIGMASK);
2834}
2835static inline bool test_restore_sigmask(void)
2836{
2837 return test_thread_flag(TIF_RESTORE_SIGMASK);
2838}
2839static inline bool test_and_clear_restore_sigmask(void)
2840{
2841 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2842}
2843
2844#else /* TIF_RESTORE_SIGMASK */
2845
2846/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2847static inline void set_restore_sigmask(void)
2848{
2849 current->restore_sigmask = true;
2850 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2851}
2852static inline void clear_restore_sigmask(void)
2853{
2854 current->restore_sigmask = false;
2855}
2856static inline bool test_restore_sigmask(void)
2857{
2858 return current->restore_sigmask;
2859}
2860static inline bool test_and_clear_restore_sigmask(void)
2861{
2862 if (!current->restore_sigmask)
2863 return false;
2864 current->restore_sigmask = false;
2865 return true;
2866}
2867#endif
2868
51a7b448
AV
2869static inline void restore_saved_sigmask(void)
2870{
2871 if (test_and_clear_restore_sigmask())
77097ae5 2872 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2873}
2874
b7f9a11a
AV
2875static inline sigset_t *sigmask_to_save(void)
2876{
2877 sigset_t *res = &current->blocked;
2878 if (unlikely(test_restore_sigmask()))
2879 res = &current->saved_sigmask;
2880 return res;
2881}
2882
9ec52099
CLG
2883static inline int kill_cad_pid(int sig, int priv)
2884{
2885 return kill_pid(cad_pid, sig, priv);
2886}
2887
1da177e4
LT
2888/* These can be the second arg to send_sig_info/send_group_sig_info. */
2889#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2890#define SEND_SIG_PRIV ((struct siginfo *) 1)
2891#define SEND_SIG_FORCED ((struct siginfo *) 2)
2892
2a855dd0
SAS
2893/*
2894 * True if we are on the alternate signal stack.
2895 */
1da177e4
LT
2896static inline int on_sig_stack(unsigned long sp)
2897{
c876eeab
AL
2898 /*
2899 * If the signal stack is SS_AUTODISARM then, by construction, we
2900 * can't be on the signal stack unless user code deliberately set
2901 * SS_AUTODISARM when we were already on it.
2902 *
2903 * This improves reliability: if user state gets corrupted such that
2904 * the stack pointer points very close to the end of the signal stack,
2905 * then this check will enable the signal to be handled anyway.
2906 */
2907 if (current->sas_ss_flags & SS_AUTODISARM)
2908 return 0;
2909
2a855dd0
SAS
2910#ifdef CONFIG_STACK_GROWSUP
2911 return sp >= current->sas_ss_sp &&
2912 sp - current->sas_ss_sp < current->sas_ss_size;
2913#else
2914 return sp > current->sas_ss_sp &&
2915 sp - current->sas_ss_sp <= current->sas_ss_size;
2916#endif
1da177e4
LT
2917}
2918
2919static inline int sas_ss_flags(unsigned long sp)
2920{
72f15c03
RW
2921 if (!current->sas_ss_size)
2922 return SS_DISABLE;
2923
2924 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2925}
2926
2a742138
SS
2927static inline void sas_ss_reset(struct task_struct *p)
2928{
2929 p->sas_ss_sp = 0;
2930 p->sas_ss_size = 0;
2931 p->sas_ss_flags = SS_DISABLE;
2932}
2933
5a1b98d3
AV
2934static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2935{
2936 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2937#ifdef CONFIG_STACK_GROWSUP
2938 return current->sas_ss_sp;
2939#else
2940 return current->sas_ss_sp + current->sas_ss_size;
2941#endif
2942 return sp;
2943}
2944
1da177e4
LT
2945/*
2946 * Routines for handling mm_structs
2947 */
2948extern struct mm_struct * mm_alloc(void);
2949
2950/* mmdrop drops the mm and the page tables */
b3c97528 2951extern void __mmdrop(struct mm_struct *);
d2005e3f 2952static inline void mmdrop(struct mm_struct *mm)
1da177e4 2953{
6fb43d7b 2954 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2955 __mmdrop(mm);
2956}
2957
7283094e
MH
2958static inline void mmdrop_async_fn(struct work_struct *work)
2959{
2960 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2961 __mmdrop(mm);
2962}
2963
2964static inline void mmdrop_async(struct mm_struct *mm)
2965{
2966 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2967 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2968 schedule_work(&mm->async_put_work);
2969 }
2970}
2971
d2005e3f
ON
2972static inline bool mmget_not_zero(struct mm_struct *mm)
2973{
2974 return atomic_inc_not_zero(&mm->mm_users);
2975}
2976
1da177e4
LT
2977/* mmput gets rid of the mappings and all user-space */
2978extern void mmput(struct mm_struct *);
7ef949d7
MH
2979#ifdef CONFIG_MMU
2980/* same as above but performs the slow path from the async context. Can
ec8d7c14
MH
2981 * be called from the atomic context as well
2982 */
2983extern void mmput_async(struct mm_struct *);
7ef949d7 2984#endif
ec8d7c14 2985
1da177e4
LT
2986/* Grab a reference to a task's mm, if it is not already going away */
2987extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2988/*
2989 * Grab a reference to a task's mm, if it is not already going away
2990 * and ptrace_may_access with the mode parameter passed to it
2991 * succeeds.
2992 */
2993extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2994/* Remove the current tasks stale references to the old mm_struct */
2995extern void mm_release(struct task_struct *, struct mm_struct *);
2996
3033f14a
JT
2997#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2998extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2999 struct task_struct *, unsigned long);
3000#else
6f2c55b8 3001extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 3002 struct task_struct *);
3033f14a
JT
3003
3004/* Architectures that haven't opted into copy_thread_tls get the tls argument
3005 * via pt_regs, so ignore the tls argument passed via C. */
3006static inline int copy_thread_tls(
3007 unsigned long clone_flags, unsigned long sp, unsigned long arg,
3008 struct task_struct *p, unsigned long tls)
3009{
3010 return copy_thread(clone_flags, sp, arg, p);
3011}
3012#endif
1da177e4 3013extern void flush_thread(void);
5f56a5df
JS
3014
3015#ifdef CONFIG_HAVE_EXIT_THREAD
e6464694 3016extern void exit_thread(struct task_struct *tsk);
5f56a5df 3017#else
e6464694 3018static inline void exit_thread(struct task_struct *tsk)
5f56a5df
JS
3019{
3020}
3021#endif
1da177e4 3022
1da177e4 3023extern void exit_files(struct task_struct *);
a7e5328a 3024extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 3025
1da177e4 3026extern void exit_itimers(struct signal_struct *);
cbaffba1 3027extern void flush_itimer_signals(void);
1da177e4 3028
9402c95f 3029extern void do_group_exit(int);
1da177e4 3030
c4ad8f98 3031extern int do_execve(struct filename *,
d7627467 3032 const char __user * const __user *,
da3d4c5f 3033 const char __user * const __user *);
51f39a1f
DD
3034extern int do_execveat(int, struct filename *,
3035 const char __user * const __user *,
3036 const char __user * const __user *,
3037 int);
3033f14a 3038extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 3039extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 3040struct task_struct *fork_idle(int);
2aa3a7f8 3041extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 3042
82b89778
AH
3043extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
3044static inline void set_task_comm(struct task_struct *tsk, const char *from)
3045{
3046 __set_task_comm(tsk, from, false);
3047}
59714d65 3048extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
3049
3050#ifdef CONFIG_SMP
317f3941 3051void scheduler_ipi(void);
85ba2d86 3052extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 3053#else
184748cc 3054static inline void scheduler_ipi(void) { }
85ba2d86
RM
3055static inline unsigned long wait_task_inactive(struct task_struct *p,
3056 long match_state)
3057{
3058 return 1;
3059}
1da177e4
LT
3060#endif
3061
fafe870f
FW
3062#define tasklist_empty() \
3063 list_empty(&init_task.tasks)
3064
05725f7e
JP
3065#define next_task(p) \
3066 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
3067
3068#define for_each_process(p) \
3069 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3070
5bb459bb 3071extern bool current_is_single_threaded(void);
d84f4f99 3072
1da177e4
LT
3073/*
3074 * Careful: do_each_thread/while_each_thread is a double loop so
3075 * 'break' will not work as expected - use goto instead.
3076 */
3077#define do_each_thread(g, t) \
3078 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3079
3080#define while_each_thread(g, t) \
3081 while ((t = next_thread(t)) != g)
3082
0c740d0a
ON
3083#define __for_each_thread(signal, t) \
3084 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3085
3086#define for_each_thread(p, t) \
3087 __for_each_thread((p)->signal, t)
3088
3089/* Careful: this is a double loop, 'break' won't work as expected. */
3090#define for_each_process_thread(p, t) \
3091 for_each_process(p) for_each_thread(p, t)
3092
7e49827c
ON
3093static inline int get_nr_threads(struct task_struct *tsk)
3094{
b3ac022c 3095 return tsk->signal->nr_threads;
7e49827c
ON
3096}
3097
087806b1
ON
3098static inline bool thread_group_leader(struct task_struct *p)
3099{
3100 return p->exit_signal >= 0;
3101}
1da177e4 3102
0804ef4b
EB
3103/* Do to the insanities of de_thread it is possible for a process
3104 * to have the pid of the thread group leader without actually being
3105 * the thread group leader. For iteration through the pids in proc
3106 * all we care about is that we have a task with the appropriate
3107 * pid, we don't actually care if we have the right task.
3108 */
e1403b8e 3109static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 3110{
e1403b8e 3111 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
3112}
3113
bac0abd6 3114static inline
e1403b8e 3115bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 3116{
e1403b8e 3117 return p1->signal == p2->signal;
bac0abd6
PE
3118}
3119
36c8b586 3120static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 3121{
05725f7e
JP
3122 return list_entry_rcu(p->thread_group.next,
3123 struct task_struct, thread_group);
47e65328
ON
3124}
3125
e868171a 3126static inline int thread_group_empty(struct task_struct *p)
1da177e4 3127{
47e65328 3128 return list_empty(&p->thread_group);
1da177e4
LT
3129}
3130
3131#define delay_group_leader(p) \
3132 (thread_group_leader(p) && !thread_group_empty(p))
3133
1da177e4 3134/*
260ea101 3135 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 3136 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 3137 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 3138 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
3139 *
3140 * Nests both inside and outside of read_lock(&tasklist_lock).
3141 * It must not be nested with write_lock_irq(&tasklist_lock),
3142 * neither inside nor outside.
3143 */
3144static inline void task_lock(struct task_struct *p)
3145{
3146 spin_lock(&p->alloc_lock);
3147}
3148
3149static inline void task_unlock(struct task_struct *p)
3150{
3151 spin_unlock(&p->alloc_lock);
3152}
3153
b8ed374e 3154extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
3155 unsigned long *flags);
3156
9388dc30
AV
3157static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3158 unsigned long *flags)
3159{
3160 struct sighand_struct *ret;
3161
3162 ret = __lock_task_sighand(tsk, flags);
3163 (void)__cond_lock(&tsk->sighand->siglock, ret);
3164 return ret;
3165}
b8ed374e 3166
f63ee72e
ON
3167static inline void unlock_task_sighand(struct task_struct *tsk,
3168 unsigned long *flags)
3169{
3170 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3171}
3172
77e4ef99 3173/**
7d7efec3
TH
3174 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3175 * @tsk: task causing the changes
77e4ef99 3176 *
7d7efec3
TH
3177 * All operations which modify a threadgroup - a new thread joining the
3178 * group, death of a member thread (the assertion of PF_EXITING) and
3179 * exec(2) dethreading the process and replacing the leader - are wrapped
3180 * by threadgroup_change_{begin|end}(). This is to provide a place which
3181 * subsystems needing threadgroup stability can hook into for
3182 * synchronization.
77e4ef99 3183 */
7d7efec3 3184static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 3185{
7d7efec3
TH
3186 might_sleep();
3187 cgroup_threadgroup_change_begin(tsk);
4714d1d3 3188}
77e4ef99
TH
3189
3190/**
7d7efec3
TH
3191 * threadgroup_change_end - mark the end of changes to a threadgroup
3192 * @tsk: task causing the changes
77e4ef99 3193 *
7d7efec3 3194 * See threadgroup_change_begin().
77e4ef99 3195 */
7d7efec3 3196static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 3197{
7d7efec3 3198 cgroup_threadgroup_change_end(tsk);
4714d1d3 3199}
4714d1d3 3200
c65eacbe
AL
3201#ifdef CONFIG_THREAD_INFO_IN_TASK
3202
3203static inline struct thread_info *task_thread_info(struct task_struct *task)
3204{
3205 return &task->thread_info;
3206}
c6c314a6
AL
3207
3208/*
3209 * When accessing the stack of a non-current task that might exit, use
3210 * try_get_task_stack() instead. task_stack_page will return a pointer
3211 * that could get freed out from under you.
3212 */
c65eacbe
AL
3213static inline void *task_stack_page(const struct task_struct *task)
3214{
3215 return task->stack;
3216}
c6c314a6 3217
c65eacbe 3218#define setup_thread_stack(new,old) do { } while(0)
c6c314a6 3219
c65eacbe
AL
3220static inline unsigned long *end_of_stack(const struct task_struct *task)
3221{
3222 return task->stack;
3223}
3224
3225#elif !defined(__HAVE_THREAD_FUNCTIONS)
f037360f 3226
f7e4217b 3227#define task_thread_info(task) ((struct thread_info *)(task)->stack)
c65eacbe 3228#define task_stack_page(task) ((void *)(task)->stack)
a1261f54 3229
10ebffde
AV
3230static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3231{
3232 *task_thread_info(p) = *task_thread_info(org);
3233 task_thread_info(p)->task = p;
3234}
3235
6a40281a
CE
3236/*
3237 * Return the address of the last usable long on the stack.
3238 *
3239 * When the stack grows down, this is just above the thread
3240 * info struct. Going any lower will corrupt the threadinfo.
3241 *
3242 * When the stack grows up, this is the highest address.
3243 * Beyond that position, we corrupt data on the next page.
3244 */
10ebffde
AV
3245static inline unsigned long *end_of_stack(struct task_struct *p)
3246{
6a40281a
CE
3247#ifdef CONFIG_STACK_GROWSUP
3248 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3249#else
f7e4217b 3250 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 3251#endif
10ebffde
AV
3252}
3253
f037360f 3254#endif
c6c314a6 3255
68f24b08
AL
3256#ifdef CONFIG_THREAD_INFO_IN_TASK
3257static inline void *try_get_task_stack(struct task_struct *tsk)
3258{
3259 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3260 task_stack_page(tsk) : NULL;
3261}
3262
3263extern void put_task_stack(struct task_struct *tsk);
3264#else
c6c314a6
AL
3265static inline void *try_get_task_stack(struct task_struct *tsk)
3266{
3267 return task_stack_page(tsk);
3268}
3269
3270static inline void put_task_stack(struct task_struct *tsk) {}
68f24b08 3271#endif
c6c314a6 3272
a70857e4
AT
3273#define task_stack_end_corrupted(task) \
3274 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 3275
8b05c7e6
FT
3276static inline int object_is_on_stack(void *obj)
3277{
3278 void *stack = task_stack_page(current);
3279
3280 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3281}
3282
b235beea 3283extern void thread_stack_cache_init(void);
8c9843e5 3284
7c9f8861
ES
3285#ifdef CONFIG_DEBUG_STACK_USAGE
3286static inline unsigned long stack_not_used(struct task_struct *p)
3287{
3288 unsigned long *n = end_of_stack(p);
3289
3290 do { /* Skip over canary */
6c31da34
HD
3291# ifdef CONFIG_STACK_GROWSUP
3292 n--;
3293# else
7c9f8861 3294 n++;
6c31da34 3295# endif
7c9f8861
ES
3296 } while (!*n);
3297
6c31da34
HD
3298# ifdef CONFIG_STACK_GROWSUP
3299 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3300# else
7c9f8861 3301 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 3302# endif
7c9f8861
ES
3303}
3304#endif
d4311ff1 3305extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3306
1da177e4
LT
3307/* set thread flags in other task's structures
3308 * - see asm/thread_info.h for TIF_xxxx flags available
3309 */
3310static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3311{
a1261f54 3312 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3313}
3314
3315static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3316{
a1261f54 3317 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3318}
3319
3320static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3321{
a1261f54 3322 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3323}
3324
3325static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3326{
a1261f54 3327 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3328}
3329
3330static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3331{
a1261f54 3332 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3333}
3334
3335static inline void set_tsk_need_resched(struct task_struct *tsk)
3336{
3337 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3338}
3339
3340static inline void clear_tsk_need_resched(struct task_struct *tsk)
3341{
3342 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3343}
3344
8ae121ac
GH
3345static inline int test_tsk_need_resched(struct task_struct *tsk)
3346{
3347 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3348}
3349
690cc3ff
EB
3350static inline int restart_syscall(void)
3351{
3352 set_tsk_thread_flag(current, TIF_SIGPENDING);
3353 return -ERESTARTNOINTR;
3354}
3355
1da177e4
LT
3356static inline int signal_pending(struct task_struct *p)
3357{
3358 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3359}
f776d12d 3360
d9588725
RM
3361static inline int __fatal_signal_pending(struct task_struct *p)
3362{
3363 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3364}
f776d12d
MW
3365
3366static inline int fatal_signal_pending(struct task_struct *p)
3367{
3368 return signal_pending(p) && __fatal_signal_pending(p);
3369}
3370
16882c1e
ON
3371static inline int signal_pending_state(long state, struct task_struct *p)
3372{
3373 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3374 return 0;
3375 if (!signal_pending(p))
3376 return 0;
3377
16882c1e
ON
3378 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3379}
3380
1da177e4
LT
3381/*
3382 * cond_resched() and cond_resched_lock(): latency reduction via
3383 * explicit rescheduling in places that are safe. The return
3384 * value indicates whether a reschedule was done in fact.
3385 * cond_resched_lock() will drop the spinlock before scheduling,
3386 * cond_resched_softirq() will enable bhs before scheduling.
3387 */
35a773a0 3388#ifndef CONFIG_PREEMPT
c3921ab7 3389extern int _cond_resched(void);
35a773a0
PZ
3390#else
3391static inline int _cond_resched(void) { return 0; }
3392#endif
6f80bd98 3393
613afbf8 3394#define cond_resched() ({ \
3427445a 3395 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3396 _cond_resched(); \
3397})
6f80bd98 3398
613afbf8
FW
3399extern int __cond_resched_lock(spinlock_t *lock);
3400
3401#define cond_resched_lock(lock) ({ \
3427445a 3402 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3403 __cond_resched_lock(lock); \
3404})
3405
3406extern int __cond_resched_softirq(void);
3407
75e1056f 3408#define cond_resched_softirq() ({ \
3427445a 3409 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3410 __cond_resched_softirq(); \
613afbf8 3411})
1da177e4 3412
f6f3c437
SH
3413static inline void cond_resched_rcu(void)
3414{
3415#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3416 rcu_read_unlock();
3417 cond_resched();
3418 rcu_read_lock();
3419#endif
3420}
3421
d1c6d149
VN
3422static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3423{
3424#ifdef CONFIG_DEBUG_PREEMPT
3425 return p->preempt_disable_ip;
3426#else
3427 return 0;
3428#endif
3429}
3430
1da177e4
LT
3431/*
3432 * Does a critical section need to be broken due to another
95c354fe
NP
3433 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3434 * but a general need for low latency)
1da177e4 3435 */
95c354fe 3436static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3437{
95c354fe
NP
3438#ifdef CONFIG_PREEMPT
3439 return spin_is_contended(lock);
3440#else
1da177e4 3441 return 0;
95c354fe 3442#endif
1da177e4
LT
3443}
3444
ee761f62
TG
3445/*
3446 * Idle thread specific functions to determine the need_resched
69dd0f84 3447 * polling state.
ee761f62 3448 */
69dd0f84 3449#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3450static inline int tsk_is_polling(struct task_struct *p)
3451{
3452 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3453}
ea811747
PZ
3454
3455static inline void __current_set_polling(void)
3a98f871
TG
3456{
3457 set_thread_flag(TIF_POLLING_NRFLAG);
3458}
3459
ea811747
PZ
3460static inline bool __must_check current_set_polling_and_test(void)
3461{
3462 __current_set_polling();
3463
3464 /*
3465 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3466 * paired by resched_curr()
ea811747 3467 */
4e857c58 3468 smp_mb__after_atomic();
ea811747
PZ
3469
3470 return unlikely(tif_need_resched());
3471}
3472
3473static inline void __current_clr_polling(void)
3a98f871
TG
3474{
3475 clear_thread_flag(TIF_POLLING_NRFLAG);
3476}
ea811747
PZ
3477
3478static inline bool __must_check current_clr_polling_and_test(void)
3479{
3480 __current_clr_polling();
3481
3482 /*
3483 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3484 * paired by resched_curr()
ea811747 3485 */
4e857c58 3486 smp_mb__after_atomic();
ea811747
PZ
3487
3488 return unlikely(tif_need_resched());
3489}
3490
ee761f62
TG
3491#else
3492static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3493static inline void __current_set_polling(void) { }
3494static inline void __current_clr_polling(void) { }
3495
3496static inline bool __must_check current_set_polling_and_test(void)
3497{
3498 return unlikely(tif_need_resched());
3499}
3500static inline bool __must_check current_clr_polling_and_test(void)
3501{
3502 return unlikely(tif_need_resched());
3503}
ee761f62
TG
3504#endif
3505
8cb75e0c
PZ
3506static inline void current_clr_polling(void)
3507{
3508 __current_clr_polling();
3509
3510 /*
3511 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3512 * Once the bit is cleared, we'll get IPIs with every new
3513 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3514 * fold.
3515 */
8875125e 3516 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3517
3518 preempt_fold_need_resched();
3519}
3520
75f93fed
PZ
3521static __always_inline bool need_resched(void)
3522{
3523 return unlikely(tif_need_resched());
3524}
3525
f06febc9
FM
3526/*
3527 * Thread group CPU time accounting.
3528 */
4cd4c1b4 3529void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
a1cecf2b
FW
3530void thread_group_cputimer(struct task_struct *tsk, struct task_cputime_t *times);
3531
3532static inline void thread_group_cputime_t(struct task_struct *tsk,
5613fda9 3533 struct task_cputime_t *cputime)
a1cecf2b 3534{
5613fda9
FW
3535 struct task_cputime times;
3536
3537 thread_group_cputime(tsk, &times);
3538 cputime->utime = nsecs_to_cputime(times.utime);
3539 cputime->stime = nsecs_to_cputime(times.stime);
3540 cputime->sum_exec_runtime = times.sum_exec_runtime;
a1cecf2b 3541}
f06febc9 3542
7bb44ade
RM
3543/*
3544 * Reevaluate whether the task has signals pending delivery.
3545 * Wake the task if so.
3546 * This is required every time the blocked sigset_t changes.
3547 * callers must hold sighand->siglock.
3548 */
3549extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3550extern void recalc_sigpending(void);
3551
910ffdb1
ON
3552extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3553
3554static inline void signal_wake_up(struct task_struct *t, bool resume)
3555{
3556 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3557}
3558static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3559{
3560 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3561}
1da177e4
LT
3562
3563/*
3564 * Wrappers for p->thread_info->cpu access. No-op on UP.
3565 */
3566#ifdef CONFIG_SMP
3567
3568static inline unsigned int task_cpu(const struct task_struct *p)
3569{
c65eacbe
AL
3570#ifdef CONFIG_THREAD_INFO_IN_TASK
3571 return p->cpu;
3572#else
a1261f54 3573 return task_thread_info(p)->cpu;
c65eacbe 3574#endif
1da177e4
LT
3575}
3576
b32e86b4
IM
3577static inline int task_node(const struct task_struct *p)
3578{
3579 return cpu_to_node(task_cpu(p));
3580}
3581
c65cc870 3582extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3583
3584#else
3585
3586static inline unsigned int task_cpu(const struct task_struct *p)
3587{
3588 return 0;
3589}
3590
3591static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3592{
3593}
3594
3595#endif /* CONFIG_SMP */
3596
d9345c65
PX
3597/*
3598 * In order to reduce various lock holder preemption latencies provide an
3599 * interface to see if a vCPU is currently running or not.
3600 *
3601 * This allows us to terminate optimistic spin loops and block, analogous to
3602 * the native optimistic spin heuristic of testing if the lock owner task is
3603 * running or not.
3604 */
3605#ifndef vcpu_is_preempted
3606# define vcpu_is_preempted(cpu) false
3607#endif
3608
96f874e2
RR
3609extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3610extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3611
7c941438 3612#ifdef CONFIG_CGROUP_SCHED
07e06b01 3613extern struct task_group root_task_group;
8323f26c 3614#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3615
54e99124
DG
3616extern int task_can_switch_user(struct user_struct *up,
3617 struct task_struct *tsk);
3618
4b98d11b
AD
3619#ifdef CONFIG_TASK_XACCT
3620static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3621{
940389b8 3622 tsk->ioac.rchar += amt;
4b98d11b
AD
3623}
3624
3625static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3626{
940389b8 3627 tsk->ioac.wchar += amt;
4b98d11b
AD
3628}
3629
3630static inline void inc_syscr(struct task_struct *tsk)
3631{
940389b8 3632 tsk->ioac.syscr++;
4b98d11b
AD
3633}
3634
3635static inline void inc_syscw(struct task_struct *tsk)
3636{
940389b8 3637 tsk->ioac.syscw++;
4b98d11b
AD
3638}
3639#else
3640static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3641{
3642}
3643
3644static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3645{
3646}
3647
3648static inline void inc_syscr(struct task_struct *tsk)
3649{
3650}
3651
3652static inline void inc_syscw(struct task_struct *tsk)
3653{
3654}
3655#endif
3656
82455257
DH
3657#ifndef TASK_SIZE_OF
3658#define TASK_SIZE_OF(tsk) TASK_SIZE
3659#endif
3660
f98bafa0 3661#ifdef CONFIG_MEMCG
cf475ad2 3662extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3663#else
3664static inline void mm_update_next_owner(struct mm_struct *mm)
3665{
3666}
f98bafa0 3667#endif /* CONFIG_MEMCG */
cf475ad2 3668
3e10e716
JS
3669static inline unsigned long task_rlimit(const struct task_struct *tsk,
3670 unsigned int limit)
3671{
316c1608 3672 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3673}
3674
3675static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3676 unsigned int limit)
3677{
316c1608 3678 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3679}
3680
3681static inline unsigned long rlimit(unsigned int limit)
3682{
3683 return task_rlimit(current, limit);
3684}
3685
3686static inline unsigned long rlimit_max(unsigned int limit)
3687{
3688 return task_rlimit_max(current, limit);
3689}
3690
58919e83
RW
3691#define SCHED_CPUFREQ_RT (1U << 0)
3692#define SCHED_CPUFREQ_DL (1U << 1)
8c34ab19 3693#define SCHED_CPUFREQ_IOWAIT (1U << 2)
58919e83
RW
3694
3695#define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3696
adaf9fcd
RW
3697#ifdef CONFIG_CPU_FREQ
3698struct update_util_data {
58919e83 3699 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
adaf9fcd
RW
3700};
3701
0bed612b 3702void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
58919e83
RW
3703 void (*func)(struct update_util_data *data, u64 time,
3704 unsigned int flags));
0bed612b 3705void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3706#endif /* CONFIG_CPU_FREQ */
3707
1da177e4 3708#endif