]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/sched.h
mm: add new mmgrab() helper
[mirror_ubuntu-eoan-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
1da177e4
LT
32
33#include <linux/smp.h>
34#include <linux/sem.h>
ab602f79 35#include <linux/shm.h>
1da177e4 36#include <linux/signal.h>
1da177e4
LT
37#include <linux/compiler.h>
38#include <linux/completion.h>
39#include <linux/pid.h>
40#include <linux/percpu.h>
41#include <linux/topology.h>
42#include <linux/seccomp.h>
e56d0903 43#include <linux/rcupdate.h>
05725f7e 44#include <linux/rculist.h>
23f78d4a 45#include <linux/rtmutex.h>
1da177e4 46
a3b6714e
DW
47#include <linux/time.h>
48#include <linux/param.h>
49#include <linux/resource.h>
50#include <linux/timer.h>
51#include <linux/hrtimer.h>
5c9a8750 52#include <linux/kcov.h>
7c3ab738 53#include <linux/task_io_accounting.h>
9745512c 54#include <linux/latencytop.h>
9e2b2dc4 55#include <linux/cred.h>
fa14ff4a 56#include <linux/llist.h>
7b44ab97 57#include <linux/uidgid.h>
21caf2fc 58#include <linux/gfp.h>
d4311ff1 59#include <linux/magic.h>
7d7efec3 60#include <linux/cgroup-defs.h>
a3b6714e
DW
61
62#include <asm/processor.h>
36d57ac4 63
d50dde5a
DF
64#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
65
66/*
67 * Extended scheduling parameters data structure.
68 *
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
72 *
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
76 *
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
83 * instance.
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
89 *
90 * This is reflected by the actual fields of the sched_attr structure:
91 *
92 * @size size of the structure, for fwd/bwd compat.
93 *
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
101 *
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
aab03e05
DF
105 *
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
109 */
110struct sched_attr {
111 u32 size;
112
113 u32 sched_policy;
114 u64 sched_flags;
115
116 /* SCHED_NORMAL, SCHED_BATCH */
117 s32 sched_nice;
118
119 /* SCHED_FIFO, SCHED_RR */
120 u32 sched_priority;
121
122 /* SCHED_DEADLINE */
123 u64 sched_runtime;
124 u64 sched_deadline;
125 u64 sched_period;
126};
127
c87e2837 128struct futex_pi_state;
286100a6 129struct robust_list_head;
bddd87c7 130struct bio_list;
5ad4e53b 131struct fs_struct;
cdd6c482 132struct perf_event_context;
73c10101 133struct blk_plug;
c4ad8f98 134struct filename;
89076bc3 135struct nameidata;
1da177e4 136
615d6e87
DB
137#define VMACACHE_BITS 2
138#define VMACACHE_SIZE (1U << VMACACHE_BITS)
139#define VMACACHE_MASK (VMACACHE_SIZE - 1)
140
1da177e4
LT
141/*
142 * These are the constant used to fake the fixed-point load-average
143 * counting. Some notes:
144 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
145 * a load-average precision of 10 bits integer + 11 bits fractional
146 * - if you want to count load-averages more often, you need more
147 * precision, or rounding will get you. With 2-second counting freq,
148 * the EXP_n values would be 1981, 2034 and 2043 if still using only
149 * 11 bit fractions.
150 */
151extern unsigned long avenrun[]; /* Load averages */
2d02494f 152extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
153
154#define FSHIFT 11 /* nr of bits of precision */
155#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 156#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
157#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
158#define EXP_5 2014 /* 1/exp(5sec/5min) */
159#define EXP_15 2037 /* 1/exp(5sec/15min) */
160
161#define CALC_LOAD(load,exp,n) \
162 load *= exp; \
163 load += n*(FIXED_1-exp); \
164 load >>= FSHIFT;
165
166extern unsigned long total_forks;
167extern int nr_threads;
1da177e4
LT
168DECLARE_PER_CPU(unsigned long, process_counts);
169extern int nr_processes(void);
170extern unsigned long nr_running(void);
2ee507c4 171extern bool single_task_running(void);
1da177e4 172extern unsigned long nr_iowait(void);
8c215bd3 173extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 174extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 175
0f004f5a 176extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
177
178#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
179extern void cpu_load_update_nohz_start(void);
180extern void cpu_load_update_nohz_stop(void);
3289bdb4 181#else
1f41906a
FW
182static inline void cpu_load_update_nohz_start(void) { }
183static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 184#endif
1da177e4 185
b637a328
PM
186extern void dump_cpu_task(int cpu);
187
43ae34cb
IM
188struct seq_file;
189struct cfs_rq;
4cf86d77 190struct task_group;
43ae34cb
IM
191#ifdef CONFIG_SCHED_DEBUG
192extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
193extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 194#endif
1da177e4 195
4a8342d2
LT
196/*
197 * Task state bitmask. NOTE! These bits are also
198 * encoded in fs/proc/array.c: get_task_state().
199 *
200 * We have two separate sets of flags: task->state
201 * is about runnability, while task->exit_state are
202 * about the task exiting. Confusing, but this way
203 * modifying one set can't modify the other one by
204 * mistake.
205 */
1da177e4
LT
206#define TASK_RUNNING 0
207#define TASK_INTERRUPTIBLE 1
208#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
209#define __TASK_STOPPED 4
210#define __TASK_TRACED 8
4a8342d2 211/* in tsk->exit_state */
ad86622b
ON
212#define EXIT_DEAD 16
213#define EXIT_ZOMBIE 32
abd50b39 214#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 215/* in tsk->state again */
af927232 216#define TASK_DEAD 64
f021a3c2 217#define TASK_WAKEKILL 128
e9c84311 218#define TASK_WAKING 256
f2530dc7 219#define TASK_PARKED 512
80ed87c8 220#define TASK_NOLOAD 1024
7dc603c9
PZ
221#define TASK_NEW 2048
222#define TASK_STATE_MAX 4096
f021a3c2 223
7dc603c9 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2 228
642fa448 229/* Convenience macros for the sake of set_current_state */
f021a3c2
MW
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
8eb23b9f
PZ
256#define __set_current_state(state_value) \
257 do { \
258 current->task_state_change = _THIS_IP_; \
259 current->state = (state_value); \
260 } while (0)
261#define set_current_state(state_value) \
262 do { \
263 current->task_state_change = _THIS_IP_; \
a2250238 264 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267#else
498d0c57
AM
268/*
269 * set_current_state() includes a barrier so that the write of current->state
270 * is correctly serialised wrt the caller's subsequent test of whether to
271 * actually sleep:
272 *
a2250238 273 * for (;;) {
498d0c57 274 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
275 * if (!need_sleep)
276 * break;
277 *
278 * schedule();
279 * }
280 * __set_current_state(TASK_RUNNING);
281 *
282 * If the caller does not need such serialisation (because, for instance, the
283 * condition test and condition change and wakeup are under the same lock) then
284 * use __set_current_state().
285 *
286 * The above is typically ordered against the wakeup, which does:
287 *
288 * need_sleep = false;
289 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
290 *
291 * Where wake_up_state() (and all other wakeup primitives) imply enough
292 * barriers to order the store of the variable against wakeup.
293 *
294 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
295 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
296 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 297 *
a2250238 298 * This is obviously fine, since they both store the exact same value.
498d0c57 299 *
a2250238 300 * Also see the comments of try_to_wake_up().
498d0c57 301 */
8eb23b9f 302#define __set_current_state(state_value) \
1da177e4 303 do { current->state = (state_value); } while (0)
8eb23b9f 304#define set_current_state(state_value) \
b92b8b35 305 smp_store_mb(current->state, (state_value))
1da177e4 306
8eb23b9f
PZ
307#endif
308
1da177e4
LT
309/* Task command name length */
310#define TASK_COMM_LEN 16
311
1da177e4
LT
312#include <linux/spinlock.h>
313
314/*
315 * This serializes "schedule()" and also protects
316 * the run-queue from deletions/modifications (but
317 * _adding_ to the beginning of the run-queue has
318 * a separate lock).
319 */
320extern rwlock_t tasklist_lock;
321extern spinlock_t mmlist_lock;
322
36c8b586 323struct task_struct;
1da177e4 324
db1466b3
PM
325#ifdef CONFIG_PROVE_RCU
326extern int lockdep_tasklist_lock_is_held(void);
327#endif /* #ifdef CONFIG_PROVE_RCU */
328
1da177e4
LT
329extern void sched_init(void);
330extern void sched_init_smp(void);
2d07b255 331extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 332extern void init_idle(struct task_struct *idle, int cpu);
1df21055 333extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 334
3fa0818b
RR
335extern cpumask_var_t cpu_isolated_map;
336
89f19f04 337extern int runqueue_is_locked(int cpu);
017730c1 338
3451d024 339#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 340extern void nohz_balance_enter_idle(int cpu);
69e1e811 341extern void set_cpu_sd_state_idle(void);
bc7a34b8 342extern int get_nohz_timer_target(void);
46cb4b7c 343#else
c1cc017c 344static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 345static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 346#endif
1da177e4 347
e59e2ae2 348/*
39bc89fd 349 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
350 */
351extern void show_state_filter(unsigned long state_filter);
352
353static inline void show_state(void)
354{
39bc89fd 355 show_state_filter(0);
e59e2ae2
IM
356}
357
1da177e4
LT
358extern void show_regs(struct pt_regs *);
359
360/*
361 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
362 * task), SP is the stack pointer of the first frame that should be shown in the back
363 * trace (or NULL if the entire call-chain of the task should be shown).
364 */
365extern void show_stack(struct task_struct *task, unsigned long *sp);
366
1da177e4
LT
367extern void cpu_init (void);
368extern void trap_init(void);
369extern void update_process_times(int user);
370extern void scheduler_tick(void);
9cf7243d 371extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
372extern int sched_cpu_activate(unsigned int cpu);
373extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 374
f2785ddb
TG
375#ifdef CONFIG_HOTPLUG_CPU
376extern int sched_cpu_dying(unsigned int cpu);
377#else
378# define sched_cpu_dying NULL
379#endif
1da177e4 380
82a1fcb9
IM
381extern void sched_show_task(struct task_struct *p);
382
19cc36c0 383#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 384extern void touch_softlockup_watchdog_sched(void);
8446f1d3 385extern void touch_softlockup_watchdog(void);
d6ad3e28 386extern void touch_softlockup_watchdog_sync(void);
04c9167f 387extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
388extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
389 void __user *buffer,
390 size_t *lenp, loff_t *ppos);
9c44bc03 391extern unsigned int softlockup_panic;
ac1f5912 392extern unsigned int hardlockup_panic;
004417a6 393void lockup_detector_init(void);
8446f1d3 394#else
03e0d461
TH
395static inline void touch_softlockup_watchdog_sched(void)
396{
397}
8446f1d3
IM
398static inline void touch_softlockup_watchdog(void)
399{
400}
d6ad3e28
JW
401static inline void touch_softlockup_watchdog_sync(void)
402{
403}
04c9167f
JF
404static inline void touch_all_softlockup_watchdogs(void)
405{
406}
004417a6
PZ
407static inline void lockup_detector_init(void)
408{
409}
8446f1d3
IM
410#endif
411
8b414521
MT
412#ifdef CONFIG_DETECT_HUNG_TASK
413void reset_hung_task_detector(void);
414#else
415static inline void reset_hung_task_detector(void)
416{
417}
418#endif
419
1da177e4
LT
420/* Attach to any functions which should be ignored in wchan output. */
421#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
422
423/* Linker adds these: start and end of __sched functions */
424extern char __sched_text_start[], __sched_text_end[];
425
1da177e4
LT
426/* Is this address in the __sched functions? */
427extern int in_sched_functions(unsigned long addr);
428
429#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 430extern signed long schedule_timeout(signed long timeout);
64ed93a2 431extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 432extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 433extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 434extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 435asmlinkage void schedule(void);
c5491ea7 436extern void schedule_preempt_disabled(void);
1da177e4 437
10ab5643
TH
438extern int __must_check io_schedule_prepare(void);
439extern void io_schedule_finish(int token);
9cff8ade 440extern long io_schedule_timeout(long timeout);
10ab5643 441extern void io_schedule(void);
9cff8ade 442
9af6528e
PZ
443void __noreturn do_task_dead(void);
444
ab516013 445struct nsproxy;
acce292c 446struct user_namespace;
1da177e4 447
efc1a3b1
DH
448#ifdef CONFIG_MMU
449extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
450extern unsigned long
451arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
452 unsigned long, unsigned long);
453extern unsigned long
454arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
455 unsigned long len, unsigned long pgoff,
456 unsigned long flags);
efc1a3b1
DH
457#else
458static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
459#endif
1da177e4 460
d049f74f
KC
461#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
462#define SUID_DUMP_USER 1 /* Dump as user of process */
463#define SUID_DUMP_ROOT 2 /* Dump as root */
464
6c5d5238 465/* mm flags */
f8af4da3 466
7288e118 467/* for SUID_DUMP_* above */
3cb4a0bb 468#define MMF_DUMPABLE_BITS 2
f8af4da3 469#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 470
942be387
ON
471extern void set_dumpable(struct mm_struct *mm, int value);
472/*
473 * This returns the actual value of the suid_dumpable flag. For things
474 * that are using this for checking for privilege transitions, it must
475 * test against SUID_DUMP_USER rather than treating it as a boolean
476 * value.
477 */
478static inline int __get_dumpable(unsigned long mm_flags)
479{
480 return mm_flags & MMF_DUMPABLE_MASK;
481}
482
483static inline int get_dumpable(struct mm_struct *mm)
484{
485 return __get_dumpable(mm->flags);
486}
487
3cb4a0bb
KH
488/* coredump filter bits */
489#define MMF_DUMP_ANON_PRIVATE 2
490#define MMF_DUMP_ANON_SHARED 3
491#define MMF_DUMP_MAPPED_PRIVATE 4
492#define MMF_DUMP_MAPPED_SHARED 5
82df3973 493#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
494#define MMF_DUMP_HUGETLB_PRIVATE 7
495#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
496#define MMF_DUMP_DAX_PRIVATE 9
497#define MMF_DUMP_DAX_SHARED 10
f8af4da3 498
3cb4a0bb 499#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 500#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
501#define MMF_DUMP_FILTER_MASK \
502 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
503#define MMF_DUMP_FILTER_DEFAULT \
e575f111 504 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
505 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
506
507#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
508# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
509#else
510# define MMF_DUMP_MASK_DEFAULT_ELF 0
511#endif
f8af4da3
HD
512 /* leave room for more dump flags */
513#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 514#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
3fb4afd9
SK
515/*
516 * This one-shot flag is dropped due to necessity of changing exe once again
517 * on NFS restore
518 */
519//#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 520
9f68f672
ON
521#define MMF_HAS_UPROBES 19 /* has uprobes */
522#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
862e3073 523#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
3f70dc38 524#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
6fcb52a5 525#define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
f8ac4ec9 526
f8af4da3 527#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 528
1da177e4
LT
529struct sighand_struct {
530 atomic_t count;
531 struct k_sigaction action[_NSIG];
532 spinlock_t siglock;
b8fceee1 533 wait_queue_head_t signalfd_wqh;
1da177e4
LT
534};
535
0e464814 536struct pacct_struct {
f6ec29a4
KK
537 int ac_flag;
538 long ac_exitcode;
0e464814 539 unsigned long ac_mem;
d4bc42af 540 u64 ac_utime, ac_stime;
77787bfb 541 unsigned long ac_minflt, ac_majflt;
0e464814
KK
542};
543
42c4ab41 544struct cpu_itimer {
858cf3a8
FW
545 u64 expires;
546 u64 incr;
42c4ab41
SG
547};
548
d37f761d 549/**
9d7fb042 550 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
551 * @utime: time spent in user mode
552 * @stime: time spent in system mode
9d7fb042 553 * @lock: protects the above two fields
d37f761d 554 *
9d7fb042
PZ
555 * Stores previous user/system time values such that we can guarantee
556 * monotonicity.
d37f761d 557 */
9d7fb042
PZ
558struct prev_cputime {
559#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5613fda9
FW
560 u64 utime;
561 u64 stime;
9d7fb042
PZ
562 raw_spinlock_t lock;
563#endif
d37f761d
FW
564};
565
9d7fb042
PZ
566static inline void prev_cputime_init(struct prev_cputime *prev)
567{
568#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
569 prev->utime = prev->stime = 0;
570 raw_spin_lock_init(&prev->lock);
571#endif
572}
573
f06febc9
FM
574/**
575 * struct task_cputime - collected CPU time counts
5613fda9
FW
576 * @utime: time spent in user mode, in nanoseconds
577 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 578 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 579 *
9d7fb042
PZ
580 * This structure groups together three kinds of CPU time that are tracked for
581 * threads and thread groups. Most things considering CPU time want to group
582 * these counts together and treat all three of them in parallel.
f06febc9
FM
583 */
584struct task_cputime {
5613fda9
FW
585 u64 utime;
586 u64 stime;
f06febc9
FM
587 unsigned long long sum_exec_runtime;
588};
9d7fb042 589
f06febc9 590/* Alternate field names when used to cache expirations. */
f06febc9 591#define virt_exp utime
9d7fb042 592#define prof_exp stime
f06febc9
FM
593#define sched_exp sum_exec_runtime
594
971e8a98
JL
595/*
596 * This is the atomic variant of task_cputime, which can be used for
597 * storing and updating task_cputime statistics without locking.
598 */
599struct task_cputime_atomic {
600 atomic64_t utime;
601 atomic64_t stime;
602 atomic64_t sum_exec_runtime;
603};
604
605#define INIT_CPUTIME_ATOMIC \
606 (struct task_cputime_atomic) { \
607 .utime = ATOMIC64_INIT(0), \
608 .stime = ATOMIC64_INIT(0), \
609 .sum_exec_runtime = ATOMIC64_INIT(0), \
610 }
611
609ca066 612#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 613
c99e6efe 614/*
87dcbc06
PZ
615 * Disable preemption until the scheduler is running -- use an unconditional
616 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 617 *
87dcbc06 618 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 619 */
87dcbc06 620#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 621
c99e6efe 622/*
609ca066
PZ
623 * Initial preempt_count value; reflects the preempt_count schedule invariant
624 * which states that during context switches:
d86ee480 625 *
609ca066
PZ
626 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
627 *
628 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
629 * Note: See finish_task_switch().
c99e6efe 630 */
609ca066 631#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 632
f06febc9 633/**
4cd4c1b4 634 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 635 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
636 * @running: true when there are timers running and
637 * @cputime_atomic receives updates.
c8d75aa4
JL
638 * @checking_timer: true when a thread in the group is in the
639 * process of checking for thread group timers.
f06febc9
FM
640 *
641 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 642 * used for thread group CPU timer calculations.
f06febc9 643 */
4cd4c1b4 644struct thread_group_cputimer {
71107445 645 struct task_cputime_atomic cputime_atomic;
d5c373eb 646 bool running;
c8d75aa4 647 bool checking_timer;
f06febc9 648};
f06febc9 649
4714d1d3 650#include <linux/rwsem.h>
5091faa4
MG
651struct autogroup;
652
1da177e4 653/*
e815f0a8 654 * NOTE! "signal_struct" does not have its own
1da177e4
LT
655 * locking, because a shared signal_struct always
656 * implies a shared sighand_struct, so locking
657 * sighand_struct is always a proper superset of
658 * the locking of signal_struct.
659 */
660struct signal_struct {
ea6d290c 661 atomic_t sigcnt;
1da177e4 662 atomic_t live;
b3ac022c 663 int nr_threads;
0c740d0a 664 struct list_head thread_head;
1da177e4
LT
665
666 wait_queue_head_t wait_chldexit; /* for wait4() */
667
668 /* current thread group signal load-balancing target: */
36c8b586 669 struct task_struct *curr_target;
1da177e4
LT
670
671 /* shared signal handling: */
672 struct sigpending shared_pending;
673
674 /* thread group exit support */
675 int group_exit_code;
676 /* overloaded:
677 * - notify group_exit_task when ->count is equal to notify_count
678 * - everyone except group_exit_task is stopped during signal delivery
679 * of fatal signals, group_exit_task processes the signal.
680 */
1da177e4 681 int notify_count;
07dd20e0 682 struct task_struct *group_exit_task;
1da177e4
LT
683
684 /* thread group stop support, overloads group_exit_code too */
685 int group_stop_count;
686 unsigned int flags; /* see SIGNAL_* flags below */
687
ebec18a6
LP
688 /*
689 * PR_SET_CHILD_SUBREAPER marks a process, like a service
690 * manager, to re-parent orphan (double-forking) child processes
691 * to this process instead of 'init'. The service manager is
692 * able to receive SIGCHLD signals and is able to investigate
693 * the process until it calls wait(). All children of this
694 * process will inherit a flag if they should look for a
695 * child_subreaper process at exit.
696 */
697 unsigned int is_child_subreaper:1;
698 unsigned int has_child_subreaper:1;
699
b18b6a9c
NP
700#ifdef CONFIG_POSIX_TIMERS
701
1da177e4 702 /* POSIX.1b Interval Timers */
5ed67f05
PE
703 int posix_timer_id;
704 struct list_head posix_timers;
1da177e4
LT
705
706 /* ITIMER_REAL timer for the process */
2ff678b8
TG
707 struct hrtimer real_timer;
708 ktime_t it_real_incr;
1da177e4 709
42c4ab41
SG
710 /*
711 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
712 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
713 * values are defined to 0 and 1 respectively
714 */
715 struct cpu_itimer it[2];
1da177e4 716
f06febc9 717 /*
4cd4c1b4
PZ
718 * Thread group totals for process CPU timers.
719 * See thread_group_cputimer(), et al, for details.
f06febc9 720 */
4cd4c1b4 721 struct thread_group_cputimer cputimer;
f06febc9
FM
722
723 /* Earliest-expiration cache. */
724 struct task_cputime cputime_expires;
725
b18b6a9c
NP
726 struct list_head cpu_timers[3];
727
728#endif
729
730 struct pid *leader_pid;
731
d027d45d 732#ifdef CONFIG_NO_HZ_FULL
f009a7a7 733 atomic_t tick_dep_mask;
d027d45d
FW
734#endif
735
ab521dc0 736 struct pid *tty_old_pgrp;
1ec320af 737
1da177e4
LT
738 /* boolean value for session group leader */
739 int leader;
740
741 struct tty_struct *tty; /* NULL if no tty */
742
5091faa4
MG
743#ifdef CONFIG_SCHED_AUTOGROUP
744 struct autogroup *autogroup;
745#endif
1da177e4
LT
746 /*
747 * Cumulative resource counters for dead threads in the group,
748 * and for reaped dead child processes forked by this group.
749 * Live threads maintain their own counters and add to these
750 * in __exit_signal, except for the group leader.
751 */
e78c3496 752 seqlock_t stats_lock;
5613fda9 753 u64 utime, stime, cutime, cstime;
16a6d9be
FW
754 u64 gtime;
755 u64 cgtime;
9d7fb042 756 struct prev_cputime prev_cputime;
1da177e4
LT
757 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
758 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 759 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 760 unsigned long maxrss, cmaxrss;
940389b8 761 struct task_io_accounting ioac;
1da177e4 762
32bd671d
PZ
763 /*
764 * Cumulative ns of schedule CPU time fo dead threads in the
765 * group, not including a zombie group leader, (This only differs
766 * from jiffies_to_ns(utime + stime) if sched_clock uses something
767 * other than jiffies.)
768 */
769 unsigned long long sum_sched_runtime;
770
1da177e4
LT
771 /*
772 * We don't bother to synchronize most readers of this at all,
773 * because there is no reader checking a limit that actually needs
774 * to get both rlim_cur and rlim_max atomically, and either one
775 * alone is a single word that can safely be read normally.
776 * getrlimit/setrlimit use task_lock(current->group_leader) to
777 * protect this instead of the siglock, because they really
778 * have no need to disable irqs.
779 */
780 struct rlimit rlim[RLIM_NLIMITS];
781
0e464814
KK
782#ifdef CONFIG_BSD_PROCESS_ACCT
783 struct pacct_struct pacct; /* per-process accounting information */
784#endif
ad4ecbcb 785#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
786 struct taskstats *stats;
787#endif
522ed776
MT
788#ifdef CONFIG_AUDIT
789 unsigned audit_tty;
790 struct tty_audit_buf *tty_audit_buf;
791#endif
28b83c51 792
c96fc2d8
TH
793 /*
794 * Thread is the potential origin of an oom condition; kill first on
795 * oom
796 */
797 bool oom_flag_origin;
a9c58b90
DR
798 short oom_score_adj; /* OOM kill score adjustment */
799 short oom_score_adj_min; /* OOM kill score adjustment min value.
800 * Only settable by CAP_SYS_RESOURCE. */
26db62f1
MH
801 struct mm_struct *oom_mm; /* recorded mm when the thread group got
802 * killed by the oom killer */
9b1bf12d
KM
803
804 struct mutex cred_guard_mutex; /* guard against foreign influences on
805 * credential calculations
806 * (notably. ptrace) */
1da177e4
LT
807};
808
809/*
810 * Bits in flags field of signal_struct.
811 */
812#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
813#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
814#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 815#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
816/*
817 * Pending notifications to parent.
818 */
819#define SIGNAL_CLD_STOPPED 0x00000010
820#define SIGNAL_CLD_CONTINUED 0x00000020
821#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 822
fae5fa44
ON
823#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
824
2d39b3cd
JI
825#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
826 SIGNAL_STOP_CONTINUED)
827
828static inline void signal_set_stop_flags(struct signal_struct *sig,
829 unsigned int flags)
830{
831 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
832 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
833}
834
ed5d2cac
ON
835/* If true, all threads except ->group_exit_task have pending SIGKILL */
836static inline int signal_group_exit(const struct signal_struct *sig)
837{
838 return (sig->flags & SIGNAL_GROUP_EXIT) ||
839 (sig->group_exit_task != NULL);
840}
841
1da177e4
LT
842/*
843 * Some day this will be a full-fledged user tracking system..
844 */
845struct user_struct {
846 atomic_t __count; /* reference count */
847 atomic_t processes; /* How many processes does this user have? */
1da177e4 848 atomic_t sigpending; /* How many pending signals does this user have? */
4afeff85
EP
849#ifdef CONFIG_FANOTIFY
850 atomic_t fanotify_listeners;
851#endif
7ef9964e 852#ifdef CONFIG_EPOLL
52bd19f7 853 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 854#endif
970a8645 855#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
856 /* protected by mq_lock */
857 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 858#endif
1da177e4 859 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 860 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 861 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
862
863#ifdef CONFIG_KEYS
864 struct key *uid_keyring; /* UID specific keyring */
865 struct key *session_keyring; /* UID's default session keyring */
866#endif
867
868 /* Hash table maintenance information */
735de223 869 struct hlist_node uidhash_node;
7b44ab97 870 kuid_t uid;
24e377a8 871
aaac3ba9 872#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
873 atomic_long_t locked_vm;
874#endif
1da177e4
LT
875};
876
eb41d946 877extern int uids_sysfs_init(void);
5cb350ba 878
7b44ab97 879extern struct user_struct *find_user(kuid_t);
1da177e4
LT
880
881extern struct user_struct root_user;
882#define INIT_USER (&root_user)
883
b6dff3ec 884
1da177e4
LT
885struct backing_dev_info;
886struct reclaim_state;
887
f6db8347 888#ifdef CONFIG_SCHED_INFO
1da177e4
LT
889struct sched_info {
890 /* cumulative counters */
2d72376b 891 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 892 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
893
894 /* timestamps */
172ba844
BS
895 unsigned long long last_arrival,/* when we last ran on a cpu */
896 last_queued; /* when we were last queued to run */
1da177e4 897};
f6db8347 898#endif /* CONFIG_SCHED_INFO */
1da177e4 899
ca74e92b
SN
900#ifdef CONFIG_TASK_DELAY_ACCT
901struct task_delay_info {
902 spinlock_t lock;
903 unsigned int flags; /* Private per-task flags */
904
905 /* For each stat XXX, add following, aligned appropriately
906 *
907 * struct timespec XXX_start, XXX_end;
908 * u64 XXX_delay;
909 * u32 XXX_count;
910 *
911 * Atomicity of updates to XXX_delay, XXX_count protected by
912 * single lock above (split into XXX_lock if contention is an issue).
913 */
0ff92245
SN
914
915 /*
916 * XXX_count is incremented on every XXX operation, the delay
917 * associated with the operation is added to XXX_delay.
918 * XXX_delay contains the accumulated delay time in nanoseconds.
919 */
9667a23d 920 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
921 u64 blkio_delay; /* wait for sync block io completion */
922 u64 swapin_delay; /* wait for swapin block io completion */
923 u32 blkio_count; /* total count of the number of sync block */
924 /* io operations performed */
925 u32 swapin_count; /* total count of the number of swapin block */
926 /* io operations performed */
873b4771 927
9667a23d 928 u64 freepages_start;
873b4771
KK
929 u64 freepages_delay; /* wait for memory reclaim */
930 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 931};
52f17b6c
CS
932#endif /* CONFIG_TASK_DELAY_ACCT */
933
934static inline int sched_info_on(void)
935{
936#ifdef CONFIG_SCHEDSTATS
937 return 1;
938#elif defined(CONFIG_TASK_DELAY_ACCT)
939 extern int delayacct_on;
940 return delayacct_on;
941#else
942 return 0;
ca74e92b 943#endif
52f17b6c 944}
ca74e92b 945
cb251765
MG
946#ifdef CONFIG_SCHEDSTATS
947void force_schedstat_enabled(void);
948#endif
949
d15bcfdb
IM
950enum cpu_idle_type {
951 CPU_IDLE,
952 CPU_NOT_IDLE,
953 CPU_NEWLY_IDLE,
954 CPU_MAX_IDLE_TYPES
1da177e4
LT
955};
956
6ecdd749
YD
957/*
958 * Integer metrics need fixed point arithmetic, e.g., sched/fair
959 * has a few: load, load_avg, util_avg, freq, and capacity.
960 *
961 * We define a basic fixed point arithmetic range, and then formalize
962 * all these metrics based on that basic range.
963 */
964# define SCHED_FIXEDPOINT_SHIFT 10
965# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
966
1399fa78 967/*
ca8ce3d0 968 * Increase resolution of cpu_capacity calculations
1399fa78 969 */
6ecdd749 970#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 971#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 972
76751049
PZ
973/*
974 * Wake-queues are lists of tasks with a pending wakeup, whose
975 * callers have already marked the task as woken internally,
976 * and can thus carry on. A common use case is being able to
977 * do the wakeups once the corresponding user lock as been
978 * released.
979 *
980 * We hold reference to each task in the list across the wakeup,
981 * thus guaranteeing that the memory is still valid by the time
982 * the actual wakeups are performed in wake_up_q().
983 *
984 * One per task suffices, because there's never a need for a task to be
985 * in two wake queues simultaneously; it is forbidden to abandon a task
986 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
987 * already in a wake queue, the wakeup will happen soon and the second
988 * waker can just skip it.
989 *
194a6b5b 990 * The DEFINE_WAKE_Q macro declares and initializes the list head.
76751049 991 * wake_up_q() does NOT reinitialize the list; it's expected to be
0754445d
DB
992 * called near the end of a function. Otherwise, the list can be
993 * re-initialized for later re-use by wake_q_init().
76751049
PZ
994 *
995 * Note that this can cause spurious wakeups. schedule() callers
996 * must ensure the call is done inside a loop, confirming that the
997 * wakeup condition has in fact occurred.
998 */
999struct wake_q_node {
1000 struct wake_q_node *next;
1001};
1002
1003struct wake_q_head {
1004 struct wake_q_node *first;
1005 struct wake_q_node **lastp;
1006};
1007
1008#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1009
194a6b5b 1010#define DEFINE_WAKE_Q(name) \
76751049
PZ
1011 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1012
bcc9a76d
WL
1013static inline void wake_q_init(struct wake_q_head *head)
1014{
1015 head->first = WAKE_Q_TAIL;
1016 head->lastp = &head->first;
1017}
1018
76751049
PZ
1019extern void wake_q_add(struct wake_q_head *head,
1020 struct task_struct *task);
1021extern void wake_up_q(struct wake_q_head *head);
1022
1399fa78
NR
1023/*
1024 * sched-domains (multiprocessor balancing) declarations:
1025 */
2dd73a4f 1026#ifdef CONFIG_SMP
b5d978e0
PZ
1027#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1028#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1029#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1030#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1031#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1032#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1f6e6c7c 1033#define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
bd425d4b 1034#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
d77b3ed5 1035#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1036#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1037#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1038#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1039#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1040#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1041#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1042
143e1e28 1043#ifdef CONFIG_SCHED_SMT
b6220ad6 1044static inline int cpu_smt_flags(void)
143e1e28 1045{
5d4dfddd 1046 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1047}
1048#endif
1049
1050#ifdef CONFIG_SCHED_MC
b6220ad6 1051static inline int cpu_core_flags(void)
143e1e28
VG
1052{
1053 return SD_SHARE_PKG_RESOURCES;
1054}
1055#endif
1056
1057#ifdef CONFIG_NUMA
b6220ad6 1058static inline int cpu_numa_flags(void)
143e1e28
VG
1059{
1060 return SD_NUMA;
1061}
1062#endif
532cb4c4 1063
afe06efd
TC
1064extern int arch_asym_cpu_priority(int cpu);
1065
1d3504fc
HS
1066struct sched_domain_attr {
1067 int relax_domain_level;
1068};
1069
1070#define SD_ATTR_INIT (struct sched_domain_attr) { \
1071 .relax_domain_level = -1, \
1072}
1073
60495e77
PZ
1074extern int sched_domain_level_max;
1075
5e6521ea
LZ
1076struct sched_group;
1077
24fc7edb
PZ
1078struct sched_domain_shared {
1079 atomic_t ref;
0e369d75 1080 atomic_t nr_busy_cpus;
10e2f1ac 1081 int has_idle_cores;
24fc7edb
PZ
1082};
1083
1da177e4
LT
1084struct sched_domain {
1085 /* These fields must be setup */
1086 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1087 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1088 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1089 unsigned long min_interval; /* Minimum balance interval ms */
1090 unsigned long max_interval; /* Maximum balance interval ms */
1091 unsigned int busy_factor; /* less balancing by factor if busy */
1092 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1093 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1094 unsigned int busy_idx;
1095 unsigned int idle_idx;
1096 unsigned int newidle_idx;
1097 unsigned int wake_idx;
147cbb4b 1098 unsigned int forkexec_idx;
a52bfd73 1099 unsigned int smt_gain;
25f55d9d
VG
1100
1101 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1102 int flags; /* See SD_* */
60495e77 1103 int level;
1da177e4
LT
1104
1105 /* Runtime fields. */
1106 unsigned long last_balance; /* init to jiffies. units in jiffies */
1107 unsigned int balance_interval; /* initialise to 1. units in ms. */
1108 unsigned int nr_balance_failed; /* initialise to 0 */
1109
f48627e6 1110 /* idle_balance() stats */
9bd721c5 1111 u64 max_newidle_lb_cost;
f48627e6 1112 unsigned long next_decay_max_lb_cost;
2398f2c6 1113
10e2f1ac
PZ
1114 u64 avg_scan_cost; /* select_idle_sibling */
1115
1da177e4
LT
1116#ifdef CONFIG_SCHEDSTATS
1117 /* load_balance() stats */
480b9434
KC
1118 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1119 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1120 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1121 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1122 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1123 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1124 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1125 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1126
1127 /* Active load balancing */
480b9434
KC
1128 unsigned int alb_count;
1129 unsigned int alb_failed;
1130 unsigned int alb_pushed;
1da177e4 1131
68767a0a 1132 /* SD_BALANCE_EXEC stats */
480b9434
KC
1133 unsigned int sbe_count;
1134 unsigned int sbe_balanced;
1135 unsigned int sbe_pushed;
1da177e4 1136
68767a0a 1137 /* SD_BALANCE_FORK stats */
480b9434
KC
1138 unsigned int sbf_count;
1139 unsigned int sbf_balanced;
1140 unsigned int sbf_pushed;
68767a0a 1141
1da177e4 1142 /* try_to_wake_up() stats */
480b9434
KC
1143 unsigned int ttwu_wake_remote;
1144 unsigned int ttwu_move_affine;
1145 unsigned int ttwu_move_balance;
1da177e4 1146#endif
a5d8c348
IM
1147#ifdef CONFIG_SCHED_DEBUG
1148 char *name;
1149#endif
dce840a0
PZ
1150 union {
1151 void *private; /* used during construction */
1152 struct rcu_head rcu; /* used during destruction */
1153 };
24fc7edb 1154 struct sched_domain_shared *shared;
6c99e9ad 1155
669c55e9 1156 unsigned int span_weight;
4200efd9
IM
1157 /*
1158 * Span of all CPUs in this domain.
1159 *
1160 * NOTE: this field is variable length. (Allocated dynamically
1161 * by attaching extra space to the end of the structure,
1162 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1163 */
1164 unsigned long span[0];
1da177e4
LT
1165};
1166
758b2cdc
RR
1167static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1168{
6c99e9ad 1169 return to_cpumask(sd->span);
758b2cdc
RR
1170}
1171
acc3f5d7 1172extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1173 struct sched_domain_attr *dattr_new);
029190c5 1174
acc3f5d7
RR
1175/* Allocate an array of sched domains, for partition_sched_domains(). */
1176cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1177void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1178
39be3501
PZ
1179bool cpus_share_cache(int this_cpu, int that_cpu);
1180
143e1e28 1181typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1182typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1183
1184#define SDTL_OVERLAP 0x01
1185
1186struct sd_data {
1187 struct sched_domain **__percpu sd;
24fc7edb 1188 struct sched_domain_shared **__percpu sds;
143e1e28 1189 struct sched_group **__percpu sg;
63b2ca30 1190 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1191};
1192
1193struct sched_domain_topology_level {
1194 sched_domain_mask_f mask;
1195 sched_domain_flags_f sd_flags;
1196 int flags;
1197 int numa_level;
1198 struct sd_data data;
1199#ifdef CONFIG_SCHED_DEBUG
1200 char *name;
1201#endif
1202};
1203
143e1e28 1204extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1205extern void wake_up_if_idle(int cpu);
143e1e28
VG
1206
1207#ifdef CONFIG_SCHED_DEBUG
1208# define SD_INIT_NAME(type) .name = #type
1209#else
1210# define SD_INIT_NAME(type)
1211#endif
1212
1b427c15 1213#else /* CONFIG_SMP */
1da177e4 1214
1b427c15 1215struct sched_domain_attr;
d02c7a8c 1216
1b427c15 1217static inline void
acc3f5d7 1218partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1219 struct sched_domain_attr *dattr_new)
1220{
d02c7a8c 1221}
39be3501
PZ
1222
1223static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1224{
1225 return true;
1226}
1227
1b427c15 1228#endif /* !CONFIG_SMP */
1da177e4 1229
47fe38fc 1230
1da177e4 1231struct io_context; /* See blkdev.h */
1da177e4 1232
1da177e4 1233
383f2835 1234#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1235extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1236#else
1237static inline void prefetch_stack(struct task_struct *t) { }
1238#endif
1da177e4
LT
1239
1240struct audit_context; /* See audit.c */
1241struct mempolicy;
b92ce558 1242struct pipe_inode_info;
4865ecf1 1243struct uts_namespace;
1da177e4 1244
20b8a59f 1245struct load_weight {
9dbdb155
PZ
1246 unsigned long weight;
1247 u32 inv_weight;
20b8a59f
IM
1248};
1249
9d89c257 1250/*
7b595334
YD
1251 * The load_avg/util_avg accumulates an infinite geometric series
1252 * (see __update_load_avg() in kernel/sched/fair.c).
1253 *
1254 * [load_avg definition]
1255 *
1256 * load_avg = runnable% * scale_load_down(load)
1257 *
1258 * where runnable% is the time ratio that a sched_entity is runnable.
1259 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1260 * blocked sched_entities.
7b595334
YD
1261 *
1262 * load_avg may also take frequency scaling into account:
1263 *
1264 * load_avg = runnable% * scale_load_down(load) * freq%
1265 *
1266 * where freq% is the CPU frequency normalized to the highest frequency.
1267 *
1268 * [util_avg definition]
1269 *
1270 * util_avg = running% * SCHED_CAPACITY_SCALE
1271 *
1272 * where running% is the time ratio that a sched_entity is running on
1273 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1274 * and blocked sched_entities.
1275 *
1276 * util_avg may also factor frequency scaling and CPU capacity scaling:
1277 *
1278 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1279 *
1280 * where freq% is the same as above, and capacity% is the CPU capacity
1281 * normalized to the greatest capacity (due to uarch differences, etc).
1282 *
1283 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1284 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1285 * we therefore scale them to as large a range as necessary. This is for
1286 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1287 *
1288 * [Overflow issue]
1289 *
1290 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1291 * with the highest load (=88761), always runnable on a single cfs_rq,
1292 * and should not overflow as the number already hits PID_MAX_LIMIT.
1293 *
1294 * For all other cases (including 32-bit kernels), struct load_weight's
1295 * weight will overflow first before we do, because:
1296 *
1297 * Max(load_avg) <= Max(load.weight)
1298 *
1299 * Then it is the load_weight's responsibility to consider overflow
1300 * issues.
9d89c257 1301 */
9d85f21c 1302struct sched_avg {
9d89c257
YD
1303 u64 last_update_time, load_sum;
1304 u32 util_sum, period_contrib;
1305 unsigned long load_avg, util_avg;
9d85f21c
PT
1306};
1307
94c18227 1308#ifdef CONFIG_SCHEDSTATS
41acab88 1309struct sched_statistics {
20b8a59f 1310 u64 wait_start;
94c18227 1311 u64 wait_max;
6d082592
AV
1312 u64 wait_count;
1313 u64 wait_sum;
8f0dfc34
AV
1314 u64 iowait_count;
1315 u64 iowait_sum;
94c18227 1316
20b8a59f 1317 u64 sleep_start;
20b8a59f 1318 u64 sleep_max;
94c18227
IM
1319 s64 sum_sleep_runtime;
1320
1321 u64 block_start;
20b8a59f
IM
1322 u64 block_max;
1323 u64 exec_max;
eba1ed4b 1324 u64 slice_max;
cc367732 1325
cc367732
IM
1326 u64 nr_migrations_cold;
1327 u64 nr_failed_migrations_affine;
1328 u64 nr_failed_migrations_running;
1329 u64 nr_failed_migrations_hot;
1330 u64 nr_forced_migrations;
cc367732
IM
1331
1332 u64 nr_wakeups;
1333 u64 nr_wakeups_sync;
1334 u64 nr_wakeups_migrate;
1335 u64 nr_wakeups_local;
1336 u64 nr_wakeups_remote;
1337 u64 nr_wakeups_affine;
1338 u64 nr_wakeups_affine_attempts;
1339 u64 nr_wakeups_passive;
1340 u64 nr_wakeups_idle;
41acab88
LDM
1341};
1342#endif
1343
1344struct sched_entity {
1345 struct load_weight load; /* for load-balancing */
1346 struct rb_node run_node;
1347 struct list_head group_node;
1348 unsigned int on_rq;
1349
1350 u64 exec_start;
1351 u64 sum_exec_runtime;
1352 u64 vruntime;
1353 u64 prev_sum_exec_runtime;
1354
41acab88
LDM
1355 u64 nr_migrations;
1356
41acab88
LDM
1357#ifdef CONFIG_SCHEDSTATS
1358 struct sched_statistics statistics;
94c18227
IM
1359#endif
1360
20b8a59f 1361#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1362 int depth;
20b8a59f
IM
1363 struct sched_entity *parent;
1364 /* rq on which this entity is (to be) queued: */
1365 struct cfs_rq *cfs_rq;
1366 /* rq "owned" by this entity/group: */
1367 struct cfs_rq *my_q;
1368#endif
8bd75c77 1369
141965c7 1370#ifdef CONFIG_SMP
5a107804
JO
1371 /*
1372 * Per entity load average tracking.
1373 *
1374 * Put into separate cache line so it does not
1375 * collide with read-mostly values above.
1376 */
1377 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1378#endif
20b8a59f 1379};
70b97a7f 1380
fa717060
PZ
1381struct sched_rt_entity {
1382 struct list_head run_list;
78f2c7db 1383 unsigned long timeout;
57d2aa00 1384 unsigned long watchdog_stamp;
bee367ed 1385 unsigned int time_slice;
ff77e468
PZ
1386 unsigned short on_rq;
1387 unsigned short on_list;
6f505b16 1388
58d6c2d7 1389 struct sched_rt_entity *back;
052f1dc7 1390#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1391 struct sched_rt_entity *parent;
1392 /* rq on which this entity is (to be) queued: */
1393 struct rt_rq *rt_rq;
1394 /* rq "owned" by this entity/group: */
1395 struct rt_rq *my_q;
1396#endif
fa717060
PZ
1397};
1398
aab03e05
DF
1399struct sched_dl_entity {
1400 struct rb_node rb_node;
1401
1402 /*
1403 * Original scheduling parameters. Copied here from sched_attr
4027d080 1404 * during sched_setattr(), they will remain the same until
1405 * the next sched_setattr().
aab03e05
DF
1406 */
1407 u64 dl_runtime; /* maximum runtime for each instance */
1408 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1409 u64 dl_period; /* separation of two instances (period) */
332ac17e 1410 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1411
1412 /*
1413 * Actual scheduling parameters. Initialized with the values above,
1414 * they are continously updated during task execution. Note that
1415 * the remaining runtime could be < 0 in case we are in overrun.
1416 */
1417 s64 runtime; /* remaining runtime for this instance */
1418 u64 deadline; /* absolute deadline for this instance */
1419 unsigned int flags; /* specifying the scheduler behaviour */
1420
1421 /*
1422 * Some bool flags:
1423 *
1424 * @dl_throttled tells if we exhausted the runtime. If so, the
1425 * task has to wait for a replenishment to be performed at the
1426 * next firing of dl_timer.
1427 *
2d3d891d
DF
1428 * @dl_boosted tells if we are boosted due to DI. If so we are
1429 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1430 * exit the critical section);
1431 *
1432 * @dl_yielded tells if task gave up the cpu before consuming
1433 * all its available runtime during the last job.
aab03e05 1434 */
72f9f3fd 1435 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1436
1437 /*
1438 * Bandwidth enforcement timer. Each -deadline task has its
1439 * own bandwidth to be enforced, thus we need one timer per task.
1440 */
1441 struct hrtimer dl_timer;
1442};
8bd75c77 1443
1d082fd0
PM
1444union rcu_special {
1445 struct {
8203d6d0
PM
1446 u8 blocked;
1447 u8 need_qs;
1448 u8 exp_need_qs;
1449 u8 pad; /* Otherwise the compiler can store garbage here. */
1450 } b; /* Bits. */
1451 u32 s; /* Set of bits. */
1d082fd0 1452};
86848966
PM
1453struct rcu_node;
1454
8dc85d54
PZ
1455enum perf_event_task_context {
1456 perf_invalid_context = -1,
1457 perf_hw_context = 0,
89a1e187 1458 perf_sw_context,
8dc85d54
PZ
1459 perf_nr_task_contexts,
1460};
1461
72b252ae
MG
1462/* Track pages that require TLB flushes */
1463struct tlbflush_unmap_batch {
1464 /*
1465 * Each bit set is a CPU that potentially has a TLB entry for one of
1466 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1467 */
1468 struct cpumask cpumask;
1469
1470 /* True if any bit in cpumask is set */
1471 bool flush_required;
d950c947
MG
1472
1473 /*
1474 * If true then the PTE was dirty when unmapped. The entry must be
1475 * flushed before IO is initiated or a stale TLB entry potentially
1476 * allows an update without redirtying the page.
1477 */
1478 bool writable;
72b252ae
MG
1479};
1480
1da177e4 1481struct task_struct {
c65eacbe
AL
1482#ifdef CONFIG_THREAD_INFO_IN_TASK
1483 /*
1484 * For reasons of header soup (see current_thread_info()), this
1485 * must be the first element of task_struct.
1486 */
1487 struct thread_info thread_info;
1488#endif
1da177e4 1489 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1490 void *stack;
1da177e4 1491 atomic_t usage;
97dc32cd
WC
1492 unsigned int flags; /* per process flags, defined below */
1493 unsigned int ptrace;
1da177e4 1494
2dd73a4f 1495#ifdef CONFIG_SMP
fa14ff4a 1496 struct llist_node wake_entry;
3ca7a440 1497 int on_cpu;
c65eacbe
AL
1498#ifdef CONFIG_THREAD_INFO_IN_TASK
1499 unsigned int cpu; /* current CPU */
1500#endif
63b0e9ed 1501 unsigned int wakee_flips;
62470419 1502 unsigned long wakee_flip_decay_ts;
63b0e9ed 1503 struct task_struct *last_wakee;
ac66f547
PZ
1504
1505 int wake_cpu;
2dd73a4f 1506#endif
fd2f4419 1507 int on_rq;
50e645a8 1508
b29739f9 1509 int prio, static_prio, normal_prio;
c7aceaba 1510 unsigned int rt_priority;
5522d5d5 1511 const struct sched_class *sched_class;
20b8a59f 1512 struct sched_entity se;
fa717060 1513 struct sched_rt_entity rt;
8323f26c
PZ
1514#ifdef CONFIG_CGROUP_SCHED
1515 struct task_group *sched_task_group;
1516#endif
aab03e05 1517 struct sched_dl_entity dl;
1da177e4 1518
e107be36
AK
1519#ifdef CONFIG_PREEMPT_NOTIFIERS
1520 /* list of struct preempt_notifier: */
1521 struct hlist_head preempt_notifiers;
1522#endif
1523
6c5c9341 1524#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1525 unsigned int btrace_seq;
6c5c9341 1526#endif
1da177e4 1527
97dc32cd 1528 unsigned int policy;
29baa747 1529 int nr_cpus_allowed;
1da177e4 1530 cpumask_t cpus_allowed;
1da177e4 1531
a57eb940 1532#ifdef CONFIG_PREEMPT_RCU
e260be67 1533 int rcu_read_lock_nesting;
1d082fd0 1534 union rcu_special rcu_read_unlock_special;
f41d911f 1535 struct list_head rcu_node_entry;
a57eb940 1536 struct rcu_node *rcu_blocked_node;
28f6569a 1537#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1538#ifdef CONFIG_TASKS_RCU
1539 unsigned long rcu_tasks_nvcsw;
1540 bool rcu_tasks_holdout;
1541 struct list_head rcu_tasks_holdout_list;
176f8f7a 1542 int rcu_tasks_idle_cpu;
8315f422 1543#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1544
f6db8347 1545#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1546 struct sched_info sched_info;
1547#endif
1548
1549 struct list_head tasks;
806c09a7 1550#ifdef CONFIG_SMP
917b627d 1551 struct plist_node pushable_tasks;
1baca4ce 1552 struct rb_node pushable_dl_tasks;
806c09a7 1553#endif
1da177e4
LT
1554
1555 struct mm_struct *mm, *active_mm;
615d6e87
DB
1556 /* per-thread vma caching */
1557 u32 vmacache_seqnum;
1558 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1559#if defined(SPLIT_RSS_COUNTING)
1560 struct task_rss_stat rss_stat;
1561#endif
1da177e4 1562/* task state */
97dc32cd 1563 int exit_state;
1da177e4
LT
1564 int exit_code, exit_signal;
1565 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1566 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1567
1568 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1569 unsigned int personality;
9b89f6ba 1570
be958bdc 1571 /* scheduler bits, serialized by scheduler locks */
ca94c442 1572 unsigned sched_reset_on_fork:1;
a8e4f2ea 1573 unsigned sched_contributes_to_load:1;
ff303e66 1574 unsigned sched_migrated:1;
b7e7ade3 1575 unsigned sched_remote_wakeup:1;
be958bdc
PZ
1576 unsigned :0; /* force alignment to the next boundary */
1577
1578 /* unserialized, strictly 'current' */
1579 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1580 unsigned in_iowait:1;
7e781418
AL
1581#if !defined(TIF_RESTORE_SIGMASK)
1582 unsigned restore_sigmask:1;
1583#endif
626ebc41
TH
1584#ifdef CONFIG_MEMCG
1585 unsigned memcg_may_oom:1;
127424c8 1586#ifndef CONFIG_SLOB
6f185c29
VD
1587 unsigned memcg_kmem_skip_account:1;
1588#endif
127424c8 1589#endif
ff303e66
PZ
1590#ifdef CONFIG_COMPAT_BRK
1591 unsigned brk_randomized:1;
1592#endif
6f185c29 1593
1d4457f9
KC
1594 unsigned long atomic_flags; /* Flags needing atomic access. */
1595
f56141e3
AL
1596 struct restart_block restart_block;
1597
1da177e4
LT
1598 pid_t pid;
1599 pid_t tgid;
0a425405 1600
1314562a 1601#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1602 /* Canary value for the -fstack-protector gcc feature */
1603 unsigned long stack_canary;
1314562a 1604#endif
4d1d61a6 1605 /*
1da177e4 1606 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1607 * older sibling, respectively. (p->father can be replaced with
f470021a 1608 * p->real_parent->pid)
1da177e4 1609 */
abd63bc3
KC
1610 struct task_struct __rcu *real_parent; /* real parent process */
1611 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1612 /*
f470021a 1613 * children/sibling forms the list of my natural children
1da177e4
LT
1614 */
1615 struct list_head children; /* list of my children */
1616 struct list_head sibling; /* linkage in my parent's children list */
1617 struct task_struct *group_leader; /* threadgroup leader */
1618
f470021a
RM
1619 /*
1620 * ptraced is the list of tasks this task is using ptrace on.
1621 * This includes both natural children and PTRACE_ATTACH targets.
1622 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1623 */
1624 struct list_head ptraced;
1625 struct list_head ptrace_entry;
1626
1da177e4 1627 /* PID/PID hash table linkage. */
92476d7f 1628 struct pid_link pids[PIDTYPE_MAX];
47e65328 1629 struct list_head thread_group;
0c740d0a 1630 struct list_head thread_node;
1da177e4
LT
1631
1632 struct completion *vfork_done; /* for vfork() */
1633 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1634 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1635
5613fda9 1636 u64 utime, stime;
40565b5a 1637#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5613fda9 1638 u64 utimescaled, stimescaled;
40565b5a 1639#endif
16a6d9be 1640 u64 gtime;
9d7fb042 1641 struct prev_cputime prev_cputime;
6a61671b 1642#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1643 seqcount_t vtime_seqcount;
6a61671b
FW
1644 unsigned long long vtime_snap;
1645 enum {
7098c1ea
FW
1646 /* Task is sleeping or running in a CPU with VTIME inactive */
1647 VTIME_INACTIVE = 0,
1648 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1649 VTIME_USER,
7098c1ea 1650 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1651 VTIME_SYS,
1652 } vtime_snap_whence;
d99ca3b9 1653#endif
d027d45d
FW
1654
1655#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1656 atomic_t tick_dep_mask;
d027d45d 1657#endif
1da177e4 1658 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1659 u64 start_time; /* monotonic time in nsec */
57e0be04 1660 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1661/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1662 unsigned long min_flt, maj_flt;
1663
b18b6a9c 1664#ifdef CONFIG_POSIX_TIMERS
f06febc9 1665 struct task_cputime cputime_expires;
1da177e4 1666 struct list_head cpu_timers[3];
b18b6a9c 1667#endif
1da177e4
LT
1668
1669/* process credentials */
64b875f7 1670 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1b0ba1c9 1671 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1672 * credentials (COW) */
1b0ba1c9 1673 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1674 * credentials (COW) */
36772092
PBG
1675 char comm[TASK_COMM_LEN]; /* executable name excluding path
1676 - access with [gs]et_task_comm (which lock
1677 it with task_lock())
221af7f8 1678 - initialized normally by setup_new_exec */
1da177e4 1679/* file system info */
756daf26 1680 struct nameidata *nameidata;
3d5b6fcc 1681#ifdef CONFIG_SYSVIPC
1da177e4
LT
1682/* ipc stuff */
1683 struct sysv_sem sysvsem;
ab602f79 1684 struct sysv_shm sysvshm;
3d5b6fcc 1685#endif
e162b39a 1686#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1687/* hung task detection */
82a1fcb9
IM
1688 unsigned long last_switch_count;
1689#endif
1da177e4
LT
1690/* filesystem information */
1691 struct fs_struct *fs;
1692/* open file information */
1693 struct files_struct *files;
1651e14e 1694/* namespaces */
ab516013 1695 struct nsproxy *nsproxy;
1da177e4
LT
1696/* signal handlers */
1697 struct signal_struct *signal;
1698 struct sighand_struct *sighand;
1699
1700 sigset_t blocked, real_blocked;
f3de272b 1701 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1702 struct sigpending pending;
1703
1704 unsigned long sas_ss_sp;
1705 size_t sas_ss_size;
2a742138 1706 unsigned sas_ss_flags;
2e01fabe 1707
67d12145 1708 struct callback_head *task_works;
e73f8959 1709
1da177e4 1710 struct audit_context *audit_context;
bfef93a5 1711#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1712 kuid_t loginuid;
4746ec5b 1713 unsigned int sessionid;
bfef93a5 1714#endif
932ecebb 1715 struct seccomp seccomp;
1da177e4
LT
1716
1717/* Thread group tracking */
1718 u32 parent_exec_id;
1719 u32 self_exec_id;
58568d2a
MX
1720/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1721 * mempolicy */
1da177e4 1722 spinlock_t alloc_lock;
1da177e4 1723
b29739f9 1724 /* Protection of the PI data structures: */
1d615482 1725 raw_spinlock_t pi_lock;
b29739f9 1726
76751049
PZ
1727 struct wake_q_node wake_q;
1728
23f78d4a
IM
1729#ifdef CONFIG_RT_MUTEXES
1730 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1731 struct rb_root pi_waiters;
1732 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1733 /* Deadlock detection and priority inheritance handling */
1734 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1735#endif
1736
408894ee
IM
1737#ifdef CONFIG_DEBUG_MUTEXES
1738 /* mutex deadlock detection */
1739 struct mutex_waiter *blocked_on;
1740#endif
de30a2b3
IM
1741#ifdef CONFIG_TRACE_IRQFLAGS
1742 unsigned int irq_events;
de30a2b3 1743 unsigned long hardirq_enable_ip;
de30a2b3 1744 unsigned long hardirq_disable_ip;
fa1452e8 1745 unsigned int hardirq_enable_event;
de30a2b3 1746 unsigned int hardirq_disable_event;
fa1452e8
HS
1747 int hardirqs_enabled;
1748 int hardirq_context;
de30a2b3 1749 unsigned long softirq_disable_ip;
de30a2b3 1750 unsigned long softirq_enable_ip;
fa1452e8 1751 unsigned int softirq_disable_event;
de30a2b3 1752 unsigned int softirq_enable_event;
fa1452e8 1753 int softirqs_enabled;
de30a2b3
IM
1754 int softirq_context;
1755#endif
fbb9ce95 1756#ifdef CONFIG_LOCKDEP
bdb9441e 1757# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1758 u64 curr_chain_key;
1759 int lockdep_depth;
fbb9ce95 1760 unsigned int lockdep_recursion;
c7aceaba 1761 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1762 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1763#endif
c6d30853
AR
1764#ifdef CONFIG_UBSAN
1765 unsigned int in_ubsan;
1766#endif
408894ee 1767
1da177e4
LT
1768/* journalling filesystem info */
1769 void *journal_info;
1770
d89d8796 1771/* stacked block device info */
bddd87c7 1772 struct bio_list *bio_list;
d89d8796 1773
73c10101
JA
1774#ifdef CONFIG_BLOCK
1775/* stack plugging */
1776 struct blk_plug *plug;
1777#endif
1778
1da177e4
LT
1779/* VM state */
1780 struct reclaim_state *reclaim_state;
1781
1da177e4
LT
1782 struct backing_dev_info *backing_dev_info;
1783
1784 struct io_context *io_context;
1785
1786 unsigned long ptrace_message;
1787 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1788 struct task_io_accounting ioac;
8f0ab514 1789#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1790 u64 acct_rss_mem1; /* accumulated rss usage */
1791 u64 acct_vm_mem1; /* accumulated virtual memory usage */
605dc2b3 1792 u64 acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1793#endif
1794#ifdef CONFIG_CPUSETS
58568d2a 1795 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1796 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1797 int cpuset_mem_spread_rotor;
6adef3eb 1798 int cpuset_slab_spread_rotor;
1da177e4 1799#endif
ddbcc7e8 1800#ifdef CONFIG_CGROUPS
817929ec 1801 /* Control Group info protected by css_set_lock */
2c392b8c 1802 struct css_set __rcu *cgroups;
817929ec
PM
1803 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1804 struct list_head cg_list;
ddbcc7e8 1805#endif
e02737d5
FY
1806#ifdef CONFIG_INTEL_RDT_A
1807 int closid;
1808#endif
42b2dd0a 1809#ifdef CONFIG_FUTEX
0771dfef 1810 struct robust_list_head __user *robust_list;
34f192c6
IM
1811#ifdef CONFIG_COMPAT
1812 struct compat_robust_list_head __user *compat_robust_list;
1813#endif
c87e2837
IM
1814 struct list_head pi_state_list;
1815 struct futex_pi_state *pi_state_cache;
c7aceaba 1816#endif
cdd6c482 1817#ifdef CONFIG_PERF_EVENTS
8dc85d54 1818 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1819 struct mutex perf_event_mutex;
1820 struct list_head perf_event_list;
a63eaf34 1821#endif
8f47b187
TG
1822#ifdef CONFIG_DEBUG_PREEMPT
1823 unsigned long preempt_disable_ip;
1824#endif
c7aceaba 1825#ifdef CONFIG_NUMA
58568d2a 1826 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1827 short il_next;
207205a2 1828 short pref_node_fork;
42b2dd0a 1829#endif
cbee9f88
PZ
1830#ifdef CONFIG_NUMA_BALANCING
1831 int numa_scan_seq;
cbee9f88 1832 unsigned int numa_scan_period;
598f0ec0 1833 unsigned int numa_scan_period_max;
de1c9ce6 1834 int numa_preferred_nid;
6b9a7460 1835 unsigned long numa_migrate_retry;
cbee9f88 1836 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1837 u64 last_task_numa_placement;
1838 u64 last_sum_exec_runtime;
cbee9f88 1839 struct callback_head numa_work;
f809ca9a 1840
8c8a743c
PZ
1841 struct list_head numa_entry;
1842 struct numa_group *numa_group;
1843
745d6147 1844 /*
44dba3d5
IM
1845 * numa_faults is an array split into four regions:
1846 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1847 * in this precise order.
1848 *
1849 * faults_memory: Exponential decaying average of faults on a per-node
1850 * basis. Scheduling placement decisions are made based on these
1851 * counts. The values remain static for the duration of a PTE scan.
1852 * faults_cpu: Track the nodes the process was running on when a NUMA
1853 * hinting fault was incurred.
1854 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1855 * during the current scan window. When the scan completes, the counts
1856 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1857 */
44dba3d5 1858 unsigned long *numa_faults;
83e1d2cd 1859 unsigned long total_numa_faults;
745d6147 1860
04bb2f94
RR
1861 /*
1862 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1863 * scan window were remote/local or failed to migrate. The task scan
1864 * period is adapted based on the locality of the faults with different
1865 * weights depending on whether they were shared or private faults
04bb2f94 1866 */
074c2381 1867 unsigned long numa_faults_locality[3];
04bb2f94 1868
b32e86b4 1869 unsigned long numa_pages_migrated;
cbee9f88
PZ
1870#endif /* CONFIG_NUMA_BALANCING */
1871
72b252ae
MG
1872#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1873 struct tlbflush_unmap_batch tlb_ubc;
1874#endif
1875
e56d0903 1876 struct rcu_head rcu;
b92ce558
JA
1877
1878 /*
1879 * cache last used pipe for splice
1880 */
1881 struct pipe_inode_info *splice_pipe;
5640f768
ED
1882
1883 struct page_frag task_frag;
1884
ca74e92b
SN
1885#ifdef CONFIG_TASK_DELAY_ACCT
1886 struct task_delay_info *delays;
f4f154fd
AM
1887#endif
1888#ifdef CONFIG_FAULT_INJECTION
1889 int make_it_fail;
ca74e92b 1890#endif
9d823e8f
WF
1891 /*
1892 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1893 * balance_dirty_pages() for some dirty throttling pause
1894 */
1895 int nr_dirtied;
1896 int nr_dirtied_pause;
83712358 1897 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1898
9745512c
AV
1899#ifdef CONFIG_LATENCYTOP
1900 int latency_record_count;
1901 struct latency_record latency_record[LT_SAVECOUNT];
1902#endif
6976675d
AV
1903 /*
1904 * time slack values; these are used to round up poll() and
1905 * select() etc timeout values. These are in nanoseconds.
1906 */
da8b44d5
JS
1907 u64 timer_slack_ns;
1908 u64 default_timer_slack_ns;
f8d570a4 1909
0b24becc
AR
1910#ifdef CONFIG_KASAN
1911 unsigned int kasan_depth;
1912#endif
fb52607a 1913#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1914 /* Index of current stored address in ret_stack */
f201ae23
FW
1915 int curr_ret_stack;
1916 /* Stack of return addresses for return function tracing */
1917 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1918 /* time stamp for last schedule */
1919 unsigned long long ftrace_timestamp;
f201ae23
FW
1920 /*
1921 * Number of functions that haven't been traced
1922 * because of depth overrun.
1923 */
1924 atomic_t trace_overrun;
380c4b14
FW
1925 /* Pause for the tracing */
1926 atomic_t tracing_graph_pause;
f201ae23 1927#endif
ea4e2bc4
SR
1928#ifdef CONFIG_TRACING
1929 /* state flags for use by tracers */
1930 unsigned long trace;
b1cff0ad 1931 /* bitmask and counter of trace recursion */
261842b7
SR
1932 unsigned long trace_recursion;
1933#endif /* CONFIG_TRACING */
5c9a8750
DV
1934#ifdef CONFIG_KCOV
1935 /* Coverage collection mode enabled for this task (0 if disabled). */
1936 enum kcov_mode kcov_mode;
1937 /* Size of the kcov_area. */
1938 unsigned kcov_size;
1939 /* Buffer for coverage collection. */
1940 void *kcov_area;
1941 /* kcov desciptor wired with this task or NULL. */
1942 struct kcov *kcov;
1943#endif
6f185c29 1944#ifdef CONFIG_MEMCG
626ebc41
TH
1945 struct mem_cgroup *memcg_in_oom;
1946 gfp_t memcg_oom_gfp_mask;
1947 int memcg_oom_order;
b23afb93
TH
1948
1949 /* number of pages to reclaim on returning to userland */
1950 unsigned int memcg_nr_pages_over_high;
569b846d 1951#endif
0326f5a9
SD
1952#ifdef CONFIG_UPROBES
1953 struct uprobe_task *utask;
0326f5a9 1954#endif
cafe5635
KO
1955#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1956 unsigned int sequential_io;
1957 unsigned int sequential_io_avg;
1958#endif
8eb23b9f
PZ
1959#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1960 unsigned long task_state_change;
1961#endif
8bcbde54 1962 int pagefault_disabled;
03049269 1963#ifdef CONFIG_MMU
29c696e1 1964 struct task_struct *oom_reaper_list;
03049269 1965#endif
ba14a194
AL
1966#ifdef CONFIG_VMAP_STACK
1967 struct vm_struct *stack_vm_area;
1968#endif
68f24b08
AL
1969#ifdef CONFIG_THREAD_INFO_IN_TASK
1970 /* A live task holds one reference. */
1971 atomic_t stack_refcount;
1972#endif
0c8c0f03
DH
1973/* CPU-specific state of this task */
1974 struct thread_struct thread;
1975/*
1976 * WARNING: on x86, 'thread_struct' contains a variable-sized
1977 * structure. It *MUST* be at the end of 'task_struct'.
1978 *
1979 * Do not put anything below here!
1980 */
1da177e4
LT
1981};
1982
5aaeb5c0
IM
1983#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1984extern int arch_task_struct_size __read_mostly;
1985#else
1986# define arch_task_struct_size (sizeof(struct task_struct))
1987#endif
0c8c0f03 1988
ba14a194
AL
1989#ifdef CONFIG_VMAP_STACK
1990static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1991{
1992 return t->stack_vm_area;
1993}
1994#else
1995static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1996{
1997 return NULL;
1998}
1999#endif
2000
76e6eee0 2001/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 2002#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 2003
50605ffb
TG
2004static inline int tsk_nr_cpus_allowed(struct task_struct *p)
2005{
2006 return p->nr_cpus_allowed;
2007}
2008
6688cc05
PZ
2009#define TNF_MIGRATED 0x01
2010#define TNF_NO_GROUP 0x02
dabe1d99 2011#define TNF_SHARED 0x04
04bb2f94 2012#define TNF_FAULT_LOCAL 0x08
074c2381 2013#define TNF_MIGRATE_FAIL 0x10
6688cc05 2014
b18dc5f2
MH
2015static inline bool in_vfork(struct task_struct *tsk)
2016{
2017 bool ret;
2018
2019 /*
2020 * need RCU to access ->real_parent if CLONE_VM was used along with
2021 * CLONE_PARENT.
2022 *
2023 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2024 * imply CLONE_VM
2025 *
2026 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2027 * ->real_parent is not necessarily the task doing vfork(), so in
2028 * theory we can't rely on task_lock() if we want to dereference it.
2029 *
2030 * And in this case we can't trust the real_parent->mm == tsk->mm
2031 * check, it can be false negative. But we do not care, if init or
2032 * another oom-unkillable task does this it should blame itself.
2033 */
2034 rcu_read_lock();
2035 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2036 rcu_read_unlock();
2037
2038 return ret;
2039}
2040
cbee9f88 2041#ifdef CONFIG_NUMA_BALANCING
6688cc05 2042extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 2043extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 2044extern void set_numabalancing_state(bool enabled);
82727018 2045extern void task_numa_free(struct task_struct *p);
10f39042
RR
2046extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2047 int src_nid, int dst_cpu);
cbee9f88 2048#else
ac8e895b 2049static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 2050 int flags)
cbee9f88
PZ
2051{
2052}
e29cf08b
MG
2053static inline pid_t task_numa_group_id(struct task_struct *p)
2054{
2055 return 0;
2056}
1a687c2e
MG
2057static inline void set_numabalancing_state(bool enabled)
2058{
2059}
82727018
RR
2060static inline void task_numa_free(struct task_struct *p)
2061{
2062}
10f39042
RR
2063static inline bool should_numa_migrate_memory(struct task_struct *p,
2064 struct page *page, int src_nid, int dst_cpu)
2065{
2066 return true;
2067}
cbee9f88
PZ
2068#endif
2069
e868171a 2070static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
2071{
2072 return task->pids[PIDTYPE_PID].pid;
2073}
2074
e868171a 2075static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
2076{
2077 return task->group_leader->pids[PIDTYPE_PID].pid;
2078}
2079
6dda81f4
ON
2080/*
2081 * Without tasklist or rcu lock it is not safe to dereference
2082 * the result of task_pgrp/task_session even if task == current,
2083 * we can race with another thread doing sys_setsid/sys_setpgid.
2084 */
e868171a 2085static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
2086{
2087 return task->group_leader->pids[PIDTYPE_PGID].pid;
2088}
2089
e868171a 2090static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
2091{
2092 return task->group_leader->pids[PIDTYPE_SID].pid;
2093}
2094
7af57294
PE
2095struct pid_namespace;
2096
2097/*
2098 * the helpers to get the task's different pids as they are seen
2099 * from various namespaces
2100 *
2101 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2102 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2103 * current.
7af57294
PE
2104 * task_xid_nr_ns() : id seen from the ns specified;
2105 *
2106 * set_task_vxid() : assigns a virtual id to a task;
2107 *
7af57294
PE
2108 * see also pid_nr() etc in include/linux/pid.h
2109 */
52ee2dfd
ON
2110pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2111 struct pid_namespace *ns);
7af57294 2112
e868171a 2113static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2114{
2115 return tsk->pid;
2116}
2117
52ee2dfd
ON
2118static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2119 struct pid_namespace *ns)
2120{
2121 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2122}
7af57294
PE
2123
2124static inline pid_t task_pid_vnr(struct task_struct *tsk)
2125{
52ee2dfd 2126 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2127}
2128
2129
e868171a 2130static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2131{
2132 return tsk->tgid;
2133}
2134
2f2a3a46 2135pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2136
2137static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2138{
2139 return pid_vnr(task_tgid(tsk));
2140}
2141
2142
80e0b6e8 2143static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2144static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2145{
2146 pid_t pid = 0;
2147
2148 rcu_read_lock();
2149 if (pid_alive(tsk))
2150 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2151 rcu_read_unlock();
2152
2153 return pid;
2154}
2155
2156static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2157{
2158 return task_ppid_nr_ns(tsk, &init_pid_ns);
2159}
2160
52ee2dfd
ON
2161static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2162 struct pid_namespace *ns)
7af57294 2163{
52ee2dfd 2164 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2165}
2166
7af57294
PE
2167static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2168{
52ee2dfd 2169 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2170}
2171
2172
52ee2dfd
ON
2173static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2174 struct pid_namespace *ns)
7af57294 2175{
52ee2dfd 2176 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2177}
2178
7af57294
PE
2179static inline pid_t task_session_vnr(struct task_struct *tsk)
2180{
52ee2dfd 2181 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2182}
2183
1b0f7ffd
ON
2184/* obsolete, do not use */
2185static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2186{
2187 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2188}
7af57294 2189
1da177e4
LT
2190/**
2191 * pid_alive - check that a task structure is not stale
2192 * @p: Task structure to be checked.
2193 *
2194 * Test if a process is not yet dead (at most zombie state)
2195 * If pid_alive fails, then pointers within the task structure
2196 * can be stale and must not be dereferenced.
e69f6186
YB
2197 *
2198 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2199 */
ad36d282 2200static inline int pid_alive(const struct task_struct *p)
1da177e4 2201{
92476d7f 2202 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2203}
2204
f400e198 2205/**
570f5241
SS
2206 * is_global_init - check if a task structure is init. Since init
2207 * is free to have sub-threads we need to check tgid.
3260259f
HK
2208 * @tsk: Task structure to be checked.
2209 *
2210 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2211 *
2212 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2213 */
e868171a 2214static inline int is_global_init(struct task_struct *tsk)
b461cc03 2215{
570f5241 2216 return task_tgid_nr(tsk) == 1;
b461cc03 2217}
b460cbc5 2218
9ec52099
CLG
2219extern struct pid *cad_pid;
2220
1da177e4 2221extern void free_task(struct task_struct *tsk);
1da177e4 2222#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2223
158d9ebd 2224extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2225
2226static inline void put_task_struct(struct task_struct *t)
2227{
2228 if (atomic_dec_and_test(&t->usage))
8c7904a0 2229 __put_task_struct(t);
e56d0903 2230}
1da177e4 2231
150593bf
ON
2232struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2233struct task_struct *try_get_task_struct(struct task_struct **ptask);
2234
6a61671b
FW
2235#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2236extern void task_cputime(struct task_struct *t,
5613fda9 2237 u64 *utime, u64 *stime);
16a6d9be 2238extern u64 task_gtime(struct task_struct *t);
6a61671b 2239#else
6fac4829 2240static inline void task_cputime(struct task_struct *t,
5613fda9 2241 u64 *utime, u64 *stime)
6fac4829 2242{
353c50eb
SG
2243 *utime = t->utime;
2244 *stime = t->stime;
6fac4829
FW
2245}
2246
16a6d9be 2247static inline u64 task_gtime(struct task_struct *t)
40565b5a
SG
2248{
2249 return t->gtime;
2250}
2251#endif
2252
2253#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
6fac4829 2254static inline void task_cputime_scaled(struct task_struct *t,
5613fda9
FW
2255 u64 *utimescaled,
2256 u64 *stimescaled)
6fac4829 2257{
353c50eb
SG
2258 *utimescaled = t->utimescaled;
2259 *stimescaled = t->stimescaled;
6fac4829 2260}
40565b5a
SG
2261#else
2262static inline void task_cputime_scaled(struct task_struct *t,
5613fda9
FW
2263 u64 *utimescaled,
2264 u64 *stimescaled)
6a61671b 2265{
40565b5a 2266 task_cputime(t, utimescaled, stimescaled);
6a61671b
FW
2267}
2268#endif
40565b5a 2269
5613fda9
FW
2270extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
2271extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
49048622 2272
1da177e4
LT
2273/*
2274 * Per process flags
2275 */
c1de45ca 2276#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1da177e4 2277#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2278#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2279#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2280#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2281#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2282#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2283#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2284#define PF_DUMPCORE 0x00000200 /* dumped core */
2285#define PF_SIGNALED 0x00000400 /* killed by a signal */
2286#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2287#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2288#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2289#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2290#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2291#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2292#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2293#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2294#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2295#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2296#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2297#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2298#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2299#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2300#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2301#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2302#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2303#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2304
2305/*
2306 * Only the _current_ task can read/write to tsk->flags, but other
2307 * tasks can access tsk->flags in readonly mode for example
2308 * with tsk_used_math (like during threaded core dumping).
2309 * There is however an exception to this rule during ptrace
2310 * or during fork: the ptracer task is allowed to write to the
2311 * child->flags of its traced child (same goes for fork, the parent
2312 * can write to the child->flags), because we're guaranteed the
2313 * child is not running and in turn not changing child->flags
2314 * at the same time the parent does it.
2315 */
2316#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2317#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2318#define clear_used_math() clear_stopped_child_used_math(current)
2319#define set_used_math() set_stopped_child_used_math(current)
2320#define conditional_stopped_child_used_math(condition, child) \
2321 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2322#define conditional_used_math(condition) \
2323 conditional_stopped_child_used_math(condition, current)
2324#define copy_to_stopped_child_used_math(child) \
2325 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2326/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2327#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2328#define used_math() tsk_used_math(current)
2329
934f3072
JB
2330/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2331 * __GFP_FS is also cleared as it implies __GFP_IO.
2332 */
21caf2fc
ML
2333static inline gfp_t memalloc_noio_flags(gfp_t flags)
2334{
2335 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2336 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2337 return flags;
2338}
2339
2340static inline unsigned int memalloc_noio_save(void)
2341{
2342 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2343 current->flags |= PF_MEMALLOC_NOIO;
2344 return flags;
2345}
2346
2347static inline void memalloc_noio_restore(unsigned int flags)
2348{
2349 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2350}
2351
1d4457f9 2352/* Per-process atomic flags. */
a2b86f77 2353#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2354#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2355#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
77ed2c57 2356#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2ad654bc 2357
1d4457f9 2358
e0e5070b
ZL
2359#define TASK_PFA_TEST(name, func) \
2360 static inline bool task_##func(struct task_struct *p) \
2361 { return test_bit(PFA_##name, &p->atomic_flags); }
2362#define TASK_PFA_SET(name, func) \
2363 static inline void task_set_##func(struct task_struct *p) \
2364 { set_bit(PFA_##name, &p->atomic_flags); }
2365#define TASK_PFA_CLEAR(name, func) \
2366 static inline void task_clear_##func(struct task_struct *p) \
2367 { clear_bit(PFA_##name, &p->atomic_flags); }
2368
2369TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2370TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2371
2ad654bc
ZL
2372TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2373TASK_PFA_SET(SPREAD_PAGE, spread_page)
2374TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2375
2376TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2377TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2378TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2379
77ed2c57
TH
2380TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2381TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2382
e5c1902e 2383/*
a8f072c1 2384 * task->jobctl flags
e5c1902e 2385 */
a8f072c1 2386#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2387
a8f072c1
TH
2388#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2389#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2390#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2391#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2392#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2393#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2394#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2395
b76808e6
PD
2396#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2397#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2398#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2399#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2400#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2401#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2402#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2403
fb1d910c 2404#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2405#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2406
7dd3db54 2407extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2408 unsigned long mask);
73ddff2b 2409extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2410extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2411 unsigned long mask);
39efa3ef 2412
f41d911f
PM
2413static inline void rcu_copy_process(struct task_struct *p)
2414{
8315f422 2415#ifdef CONFIG_PREEMPT_RCU
f41d911f 2416 p->rcu_read_lock_nesting = 0;
1d082fd0 2417 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2418 p->rcu_blocked_node = NULL;
f41d911f 2419 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2420#endif /* #ifdef CONFIG_PREEMPT_RCU */
2421#ifdef CONFIG_TASKS_RCU
2422 p->rcu_tasks_holdout = false;
2423 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2424 p->rcu_tasks_idle_cpu = -1;
8315f422 2425#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2426}
2427
907aed48
MG
2428static inline void tsk_restore_flags(struct task_struct *task,
2429 unsigned long orig_flags, unsigned long flags)
2430{
2431 task->flags &= ~flags;
2432 task->flags |= orig_flags & flags;
2433}
2434
f82f8042
JL
2435extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2436 const struct cpumask *trial);
7f51412a
JL
2437extern int task_can_attach(struct task_struct *p,
2438 const struct cpumask *cs_cpus_allowed);
1da177e4 2439#ifdef CONFIG_SMP
1e1b6c51
KM
2440extern void do_set_cpus_allowed(struct task_struct *p,
2441 const struct cpumask *new_mask);
2442
cd8ba7cd 2443extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2444 const struct cpumask *new_mask);
1da177e4 2445#else
1e1b6c51
KM
2446static inline void do_set_cpus_allowed(struct task_struct *p,
2447 const struct cpumask *new_mask)
2448{
2449}
cd8ba7cd 2450static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2451 const struct cpumask *new_mask)
1da177e4 2452{
96f874e2 2453 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2454 return -EINVAL;
2455 return 0;
2456}
2457#endif
e0ad9556 2458
3451d024 2459#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2460void calc_load_enter_idle(void);
2461void calc_load_exit_idle(void);
2462#else
2463static inline void calc_load_enter_idle(void) { }
2464static inline void calc_load_exit_idle(void) { }
3451d024 2465#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2466
6d0d2878
CB
2467#ifndef cpu_relax_yield
2468#define cpu_relax_yield() cpu_relax()
2469#endif
2470
b342501c 2471/*
c676329a
PZ
2472 * Do not use outside of architecture code which knows its limitations.
2473 *
2474 * sched_clock() has no promise of monotonicity or bounded drift between
2475 * CPUs, use (which you should not) requires disabling IRQs.
2476 *
2477 * Please use one of the three interfaces below.
b342501c 2478 */
1bbfa6f2 2479extern unsigned long long notrace sched_clock(void);
c676329a 2480/*
489a71b0 2481 * See the comment in kernel/sched/clock.c
c676329a 2482 */
545a2bf7 2483extern u64 running_clock(void);
c676329a
PZ
2484extern u64 sched_clock_cpu(int cpu);
2485
e436d800 2486
c1955a3d 2487extern void sched_clock_init(void);
3e51f33f 2488
c1955a3d 2489#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
9881b024
PZ
2490static inline void sched_clock_init_late(void)
2491{
2492}
2493
3e51f33f
PZ
2494static inline void sched_clock_tick(void)
2495{
2496}
2497
733ce725
PG
2498static inline void clear_sched_clock_stable(void)
2499{
2500}
2501
3e51f33f
PZ
2502static inline void sched_clock_idle_sleep_event(void)
2503{
2504}
2505
2506static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2507{
2508}
2c923e94
DL
2509
2510static inline u64 cpu_clock(int cpu)
2511{
2512 return sched_clock();
2513}
2514
2515static inline u64 local_clock(void)
2516{
2517 return sched_clock();
2518}
3e51f33f 2519#else
9881b024 2520extern void sched_clock_init_late(void);
c676329a
PZ
2521/*
2522 * Architectures can set this to 1 if they have specified
2523 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2524 * but then during bootup it turns out that sched_clock()
2525 * is reliable after all:
2526 */
35af99e6 2527extern int sched_clock_stable(void);
35af99e6 2528extern void clear_sched_clock_stable(void);
c676329a 2529
3e51f33f
PZ
2530extern void sched_clock_tick(void);
2531extern void sched_clock_idle_sleep_event(void);
2532extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2533
2534/*
2535 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2536 * time source that is monotonic per cpu argument and has bounded drift
2537 * between cpus.
2538 *
2539 * ######################### BIG FAT WARNING ##########################
2540 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2541 * # go backwards !! #
2542 * ####################################################################
2543 */
2544static inline u64 cpu_clock(int cpu)
2545{
2546 return sched_clock_cpu(cpu);
2547}
2548
2549static inline u64 local_clock(void)
2550{
2551 return sched_clock_cpu(raw_smp_processor_id());
2552}
3e51f33f
PZ
2553#endif
2554
b52bfee4
VP
2555#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2556/*
2557 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2558 * The reason for this explicit opt-in is not to have perf penalty with
2559 * slow sched_clocks.
2560 */
2561extern void enable_sched_clock_irqtime(void);
2562extern void disable_sched_clock_irqtime(void);
2563#else
2564static inline void enable_sched_clock_irqtime(void) {}
2565static inline void disable_sched_clock_irqtime(void) {}
2566#endif
2567
36c8b586 2568extern unsigned long long
41b86e9c 2569task_sched_runtime(struct task_struct *task);
1da177e4
LT
2570
2571/* sched_exec is called by processes performing an exec */
2572#ifdef CONFIG_SMP
2573extern void sched_exec(void);
2574#else
2575#define sched_exec() {}
2576#endif
2577
2aa44d05
IM
2578extern void sched_clock_idle_sleep_event(void);
2579extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2580
1da177e4
LT
2581#ifdef CONFIG_HOTPLUG_CPU
2582extern void idle_task_exit(void);
2583#else
2584static inline void idle_task_exit(void) {}
2585#endif
2586
3451d024 2587#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2588extern void wake_up_nohz_cpu(int cpu);
06d8308c 2589#else
1c20091e 2590static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2591#endif
2592
ce831b38 2593#ifdef CONFIG_NO_HZ_FULL
265f22a9 2594extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2595#endif
2596
5091faa4 2597#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2598extern void sched_autogroup_create_attach(struct task_struct *p);
2599extern void sched_autogroup_detach(struct task_struct *p);
2600extern void sched_autogroup_fork(struct signal_struct *sig);
2601extern void sched_autogroup_exit(struct signal_struct *sig);
8e5bfa8c 2602extern void sched_autogroup_exit_task(struct task_struct *p);
5091faa4
MG
2603#ifdef CONFIG_PROC_FS
2604extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2605extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2606#endif
2607#else
2608static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2609static inline void sched_autogroup_detach(struct task_struct *p) { }
2610static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2611static inline void sched_autogroup_exit(struct signal_struct *sig) { }
8e5bfa8c 2612static inline void sched_autogroup_exit_task(struct task_struct *p) { }
5091faa4
MG
2613#endif
2614
fa93384f 2615extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2616extern void set_user_nice(struct task_struct *p, long nice);
2617extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2618/**
2619 * task_nice - return the nice value of a given task.
2620 * @p: the task in question.
2621 *
2622 * Return: The nice value [ -20 ... 0 ... 19 ].
2623 */
2624static inline int task_nice(const struct task_struct *p)
2625{
2626 return PRIO_TO_NICE((p)->static_prio);
2627}
36c8b586
IM
2628extern int can_nice(const struct task_struct *p, const int nice);
2629extern int task_curr(const struct task_struct *p);
1da177e4 2630extern int idle_cpu(int cpu);
fe7de49f
KM
2631extern int sched_setscheduler(struct task_struct *, int,
2632 const struct sched_param *);
961ccddd 2633extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2634 const struct sched_param *);
d50dde5a
DF
2635extern int sched_setattr(struct task_struct *,
2636 const struct sched_attr *);
36c8b586 2637extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2638/**
2639 * is_idle_task - is the specified task an idle task?
fa757281 2640 * @p: the task in question.
e69f6186
YB
2641 *
2642 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2643 */
7061ca3b 2644static inline bool is_idle_task(const struct task_struct *p)
c4f30608 2645{
c1de45ca 2646 return !!(p->flags & PF_IDLE);
c4f30608 2647}
36c8b586 2648extern struct task_struct *curr_task(int cpu);
a458ae2e 2649extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2650
2651void yield(void);
2652
1da177e4 2653union thread_union {
c65eacbe 2654#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 2655 struct thread_info thread_info;
c65eacbe 2656#endif
1da177e4
LT
2657 unsigned long stack[THREAD_SIZE/sizeof(long)];
2658};
2659
2660#ifndef __HAVE_ARCH_KSTACK_END
2661static inline int kstack_end(void *addr)
2662{
2663 /* Reliable end of stack detection:
2664 * Some APM bios versions misalign the stack
2665 */
2666 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2667}
2668#endif
2669
2670extern union thread_union init_thread_union;
2671extern struct task_struct init_task;
2672
2673extern struct mm_struct init_mm;
2674
198fe21b
PE
2675extern struct pid_namespace init_pid_ns;
2676
2677/*
2678 * find a task by one of its numerical ids
2679 *
198fe21b
PE
2680 * find_task_by_pid_ns():
2681 * finds a task by its pid in the specified namespace
228ebcbe
PE
2682 * find_task_by_vpid():
2683 * finds a task by its virtual pid
198fe21b 2684 *
e49859e7 2685 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2686 */
2687
228ebcbe
PE
2688extern struct task_struct *find_task_by_vpid(pid_t nr);
2689extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2690 struct pid_namespace *ns);
198fe21b 2691
1da177e4 2692/* per-UID process charging. */
7b44ab97 2693extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2694static inline struct user_struct *get_uid(struct user_struct *u)
2695{
2696 atomic_inc(&u->__count);
2697 return u;
2698}
2699extern void free_uid(struct user_struct *);
1da177e4
LT
2700
2701#include <asm/current.h>
2702
f0af911a 2703extern void xtime_update(unsigned long ticks);
1da177e4 2704
b3c97528
HH
2705extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2706extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2707extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2708#ifdef CONFIG_SMP
2709 extern void kick_process(struct task_struct *tsk);
2710#else
2711 static inline void kick_process(struct task_struct *tsk) { }
2712#endif
aab03e05 2713extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2714extern void sched_dead(struct task_struct *p);
1da177e4 2715
1da177e4
LT
2716extern void proc_caches_init(void);
2717extern void flush_signals(struct task_struct *);
10ab825b 2718extern void ignore_signals(struct task_struct *);
1da177e4
LT
2719extern void flush_signal_handlers(struct task_struct *, int force_default);
2720extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2721
be0e6f29 2722static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2723{
be0e6f29
ON
2724 struct task_struct *tsk = current;
2725 siginfo_t __info;
1da177e4
LT
2726 int ret;
2727
be0e6f29
ON
2728 spin_lock_irq(&tsk->sighand->siglock);
2729 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2730 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2731
2732 return ret;
53c8f9f1 2733}
1da177e4 2734
9a13049e
ON
2735static inline void kernel_signal_stop(void)
2736{
2737 spin_lock_irq(&current->sighand->siglock);
2738 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2739 __set_current_state(TASK_STOPPED);
2740 spin_unlock_irq(&current->sighand->siglock);
2741
2742 schedule();
2743}
2744
1da177e4
LT
2745extern void release_task(struct task_struct * p);
2746extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2747extern int force_sigsegv(int, struct task_struct *);
2748extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2749extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2750extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2751extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2752 const struct cred *, u32);
c4b92fc1
EB
2753extern int kill_pgrp(struct pid *pid, int sig, int priv);
2754extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2755extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2756extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2757extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2758extern void force_sig(int, struct task_struct *);
1da177e4 2759extern int send_sig(int, struct task_struct *, int);
09faef11 2760extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2761extern struct sigqueue *sigqueue_alloc(void);
2762extern void sigqueue_free(struct sigqueue *);
ac5c2153 2763extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2764extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2765
7e781418
AL
2766#ifdef TIF_RESTORE_SIGMASK
2767/*
2768 * Legacy restore_sigmask accessors. These are inefficient on
2769 * SMP architectures because they require atomic operations.
2770 */
2771
2772/**
2773 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2774 *
2775 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2776 * will run before returning to user mode, to process the flag. For
2777 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2778 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2779 * arch code will notice on return to user mode, in case those bits
2780 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2781 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2782 */
2783static inline void set_restore_sigmask(void)
2784{
2785 set_thread_flag(TIF_RESTORE_SIGMASK);
2786 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2787}
2788static inline void clear_restore_sigmask(void)
2789{
2790 clear_thread_flag(TIF_RESTORE_SIGMASK);
2791}
2792static inline bool test_restore_sigmask(void)
2793{
2794 return test_thread_flag(TIF_RESTORE_SIGMASK);
2795}
2796static inline bool test_and_clear_restore_sigmask(void)
2797{
2798 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2799}
2800
2801#else /* TIF_RESTORE_SIGMASK */
2802
2803/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2804static inline void set_restore_sigmask(void)
2805{
2806 current->restore_sigmask = true;
2807 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2808}
2809static inline void clear_restore_sigmask(void)
2810{
2811 current->restore_sigmask = false;
2812}
2813static inline bool test_restore_sigmask(void)
2814{
2815 return current->restore_sigmask;
2816}
2817static inline bool test_and_clear_restore_sigmask(void)
2818{
2819 if (!current->restore_sigmask)
2820 return false;
2821 current->restore_sigmask = false;
2822 return true;
2823}
2824#endif
2825
51a7b448
AV
2826static inline void restore_saved_sigmask(void)
2827{
2828 if (test_and_clear_restore_sigmask())
77097ae5 2829 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2830}
2831
b7f9a11a
AV
2832static inline sigset_t *sigmask_to_save(void)
2833{
2834 sigset_t *res = &current->blocked;
2835 if (unlikely(test_restore_sigmask()))
2836 res = &current->saved_sigmask;
2837 return res;
2838}
2839
9ec52099
CLG
2840static inline int kill_cad_pid(int sig, int priv)
2841{
2842 return kill_pid(cad_pid, sig, priv);
2843}
2844
1da177e4
LT
2845/* These can be the second arg to send_sig_info/send_group_sig_info. */
2846#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2847#define SEND_SIG_PRIV ((struct siginfo *) 1)
2848#define SEND_SIG_FORCED ((struct siginfo *) 2)
2849
2a855dd0
SAS
2850/*
2851 * True if we are on the alternate signal stack.
2852 */
1da177e4
LT
2853static inline int on_sig_stack(unsigned long sp)
2854{
c876eeab
AL
2855 /*
2856 * If the signal stack is SS_AUTODISARM then, by construction, we
2857 * can't be on the signal stack unless user code deliberately set
2858 * SS_AUTODISARM when we were already on it.
2859 *
2860 * This improves reliability: if user state gets corrupted such that
2861 * the stack pointer points very close to the end of the signal stack,
2862 * then this check will enable the signal to be handled anyway.
2863 */
2864 if (current->sas_ss_flags & SS_AUTODISARM)
2865 return 0;
2866
2a855dd0
SAS
2867#ifdef CONFIG_STACK_GROWSUP
2868 return sp >= current->sas_ss_sp &&
2869 sp - current->sas_ss_sp < current->sas_ss_size;
2870#else
2871 return sp > current->sas_ss_sp &&
2872 sp - current->sas_ss_sp <= current->sas_ss_size;
2873#endif
1da177e4
LT
2874}
2875
2876static inline int sas_ss_flags(unsigned long sp)
2877{
72f15c03
RW
2878 if (!current->sas_ss_size)
2879 return SS_DISABLE;
2880
2881 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2882}
2883
2a742138
SS
2884static inline void sas_ss_reset(struct task_struct *p)
2885{
2886 p->sas_ss_sp = 0;
2887 p->sas_ss_size = 0;
2888 p->sas_ss_flags = SS_DISABLE;
2889}
2890
5a1b98d3
AV
2891static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2892{
2893 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2894#ifdef CONFIG_STACK_GROWSUP
2895 return current->sas_ss_sp;
2896#else
2897 return current->sas_ss_sp + current->sas_ss_size;
2898#endif
2899 return sp;
2900}
2901
1da177e4
LT
2902/*
2903 * Routines for handling mm_structs
2904 */
2905extern struct mm_struct * mm_alloc(void);
2906
f1f10076
VN
2907/**
2908 * mmgrab() - Pin a &struct mm_struct.
2909 * @mm: The &struct mm_struct to pin.
2910 *
2911 * Make sure that @mm will not get freed even after the owning task
2912 * exits. This doesn't guarantee that the associated address space
2913 * will still exist later on and mmget_not_zero() has to be used before
2914 * accessing it.
2915 *
2916 * This is a preferred way to to pin @mm for a longer/unbounded amount
2917 * of time.
2918 *
2919 * Use mmdrop() to release the reference acquired by mmgrab().
2920 *
2921 * See also <Documentation/vm/active_mm.txt> for an in-depth explanation
2922 * of &mm_struct.mm_count vs &mm_struct.mm_users.
2923 */
2924static inline void mmgrab(struct mm_struct *mm)
2925{
2926 atomic_inc(&mm->mm_count);
2927}
2928
1da177e4 2929/* mmdrop drops the mm and the page tables */
b3c97528 2930extern void __mmdrop(struct mm_struct *);
d2005e3f 2931static inline void mmdrop(struct mm_struct *mm)
1da177e4 2932{
6fb43d7b 2933 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2934 __mmdrop(mm);
2935}
2936
7283094e
MH
2937static inline void mmdrop_async_fn(struct work_struct *work)
2938{
2939 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2940 __mmdrop(mm);
2941}
2942
2943static inline void mmdrop_async(struct mm_struct *mm)
2944{
2945 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2946 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2947 schedule_work(&mm->async_put_work);
2948 }
2949}
2950
d2005e3f
ON
2951static inline bool mmget_not_zero(struct mm_struct *mm)
2952{
2953 return atomic_inc_not_zero(&mm->mm_users);
2954}
2955
1da177e4
LT
2956/* mmput gets rid of the mappings and all user-space */
2957extern void mmput(struct mm_struct *);
7ef949d7
MH
2958#ifdef CONFIG_MMU
2959/* same as above but performs the slow path from the async context. Can
ec8d7c14
MH
2960 * be called from the atomic context as well
2961 */
2962extern void mmput_async(struct mm_struct *);
7ef949d7 2963#endif
ec8d7c14 2964
1da177e4
LT
2965/* Grab a reference to a task's mm, if it is not already going away */
2966extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2967/*
2968 * Grab a reference to a task's mm, if it is not already going away
2969 * and ptrace_may_access with the mode parameter passed to it
2970 * succeeds.
2971 */
2972extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2973/* Remove the current tasks stale references to the old mm_struct */
2974extern void mm_release(struct task_struct *, struct mm_struct *);
2975
3033f14a
JT
2976#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2977extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2978 struct task_struct *, unsigned long);
2979#else
6f2c55b8 2980extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2981 struct task_struct *);
3033f14a
JT
2982
2983/* Architectures that haven't opted into copy_thread_tls get the tls argument
2984 * via pt_regs, so ignore the tls argument passed via C. */
2985static inline int copy_thread_tls(
2986 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2987 struct task_struct *p, unsigned long tls)
2988{
2989 return copy_thread(clone_flags, sp, arg, p);
2990}
2991#endif
1da177e4 2992extern void flush_thread(void);
5f56a5df
JS
2993
2994#ifdef CONFIG_HAVE_EXIT_THREAD
e6464694 2995extern void exit_thread(struct task_struct *tsk);
5f56a5df 2996#else
e6464694 2997static inline void exit_thread(struct task_struct *tsk)
5f56a5df
JS
2998{
2999}
3000#endif
1da177e4 3001
1da177e4 3002extern void exit_files(struct task_struct *);
a7e5328a 3003extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 3004
1da177e4 3005extern void exit_itimers(struct signal_struct *);
cbaffba1 3006extern void flush_itimer_signals(void);
1da177e4 3007
9402c95f 3008extern void do_group_exit(int);
1da177e4 3009
c4ad8f98 3010extern int do_execve(struct filename *,
d7627467 3011 const char __user * const __user *,
da3d4c5f 3012 const char __user * const __user *);
51f39a1f
DD
3013extern int do_execveat(int, struct filename *,
3014 const char __user * const __user *,
3015 const char __user * const __user *,
3016 int);
3033f14a 3017extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 3018extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 3019struct task_struct *fork_idle(int);
2aa3a7f8 3020extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 3021
82b89778
AH
3022extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
3023static inline void set_task_comm(struct task_struct *tsk, const char *from)
3024{
3025 __set_task_comm(tsk, from, false);
3026}
59714d65 3027extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
3028
3029#ifdef CONFIG_SMP
317f3941 3030void scheduler_ipi(void);
85ba2d86 3031extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 3032#else
184748cc 3033static inline void scheduler_ipi(void) { }
85ba2d86
RM
3034static inline unsigned long wait_task_inactive(struct task_struct *p,
3035 long match_state)
3036{
3037 return 1;
3038}
1da177e4
LT
3039#endif
3040
fafe870f
FW
3041#define tasklist_empty() \
3042 list_empty(&init_task.tasks)
3043
05725f7e
JP
3044#define next_task(p) \
3045 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
3046
3047#define for_each_process(p) \
3048 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3049
5bb459bb 3050extern bool current_is_single_threaded(void);
d84f4f99 3051
1da177e4
LT
3052/*
3053 * Careful: do_each_thread/while_each_thread is a double loop so
3054 * 'break' will not work as expected - use goto instead.
3055 */
3056#define do_each_thread(g, t) \
3057 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3058
3059#define while_each_thread(g, t) \
3060 while ((t = next_thread(t)) != g)
3061
0c740d0a
ON
3062#define __for_each_thread(signal, t) \
3063 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3064
3065#define for_each_thread(p, t) \
3066 __for_each_thread((p)->signal, t)
3067
3068/* Careful: this is a double loop, 'break' won't work as expected. */
3069#define for_each_process_thread(p, t) \
3070 for_each_process(p) for_each_thread(p, t)
3071
0f1b92cb
ON
3072typedef int (*proc_visitor)(struct task_struct *p, void *data);
3073void walk_process_tree(struct task_struct *top, proc_visitor, void *);
3074
7e49827c
ON
3075static inline int get_nr_threads(struct task_struct *tsk)
3076{
b3ac022c 3077 return tsk->signal->nr_threads;
7e49827c
ON
3078}
3079
087806b1
ON
3080static inline bool thread_group_leader(struct task_struct *p)
3081{
3082 return p->exit_signal >= 0;
3083}
1da177e4 3084
0804ef4b
EB
3085/* Do to the insanities of de_thread it is possible for a process
3086 * to have the pid of the thread group leader without actually being
3087 * the thread group leader. For iteration through the pids in proc
3088 * all we care about is that we have a task with the appropriate
3089 * pid, we don't actually care if we have the right task.
3090 */
e1403b8e 3091static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 3092{
e1403b8e 3093 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
3094}
3095
bac0abd6 3096static inline
e1403b8e 3097bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 3098{
e1403b8e 3099 return p1->signal == p2->signal;
bac0abd6
PE
3100}
3101
36c8b586 3102static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 3103{
05725f7e
JP
3104 return list_entry_rcu(p->thread_group.next,
3105 struct task_struct, thread_group);
47e65328
ON
3106}
3107
e868171a 3108static inline int thread_group_empty(struct task_struct *p)
1da177e4 3109{
47e65328 3110 return list_empty(&p->thread_group);
1da177e4
LT
3111}
3112
3113#define delay_group_leader(p) \
3114 (thread_group_leader(p) && !thread_group_empty(p))
3115
1da177e4 3116/*
260ea101 3117 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 3118 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 3119 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 3120 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
3121 *
3122 * Nests both inside and outside of read_lock(&tasklist_lock).
3123 * It must not be nested with write_lock_irq(&tasklist_lock),
3124 * neither inside nor outside.
3125 */
3126static inline void task_lock(struct task_struct *p)
3127{
3128 spin_lock(&p->alloc_lock);
3129}
3130
3131static inline void task_unlock(struct task_struct *p)
3132{
3133 spin_unlock(&p->alloc_lock);
3134}
3135
b8ed374e 3136extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
3137 unsigned long *flags);
3138
9388dc30
AV
3139static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3140 unsigned long *flags)
3141{
3142 struct sighand_struct *ret;
3143
3144 ret = __lock_task_sighand(tsk, flags);
3145 (void)__cond_lock(&tsk->sighand->siglock, ret);
3146 return ret;
3147}
b8ed374e 3148
f63ee72e
ON
3149static inline void unlock_task_sighand(struct task_struct *tsk,
3150 unsigned long *flags)
3151{
3152 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3153}
3154
77e4ef99 3155/**
7d7efec3
TH
3156 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3157 * @tsk: task causing the changes
77e4ef99 3158 *
7d7efec3
TH
3159 * All operations which modify a threadgroup - a new thread joining the
3160 * group, death of a member thread (the assertion of PF_EXITING) and
3161 * exec(2) dethreading the process and replacing the leader - are wrapped
3162 * by threadgroup_change_{begin|end}(). This is to provide a place which
3163 * subsystems needing threadgroup stability can hook into for
3164 * synchronization.
77e4ef99 3165 */
7d7efec3 3166static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 3167{
7d7efec3
TH
3168 might_sleep();
3169 cgroup_threadgroup_change_begin(tsk);
4714d1d3 3170}
77e4ef99
TH
3171
3172/**
7d7efec3
TH
3173 * threadgroup_change_end - mark the end of changes to a threadgroup
3174 * @tsk: task causing the changes
77e4ef99 3175 *
7d7efec3 3176 * See threadgroup_change_begin().
77e4ef99 3177 */
7d7efec3 3178static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 3179{
7d7efec3 3180 cgroup_threadgroup_change_end(tsk);
4714d1d3 3181}
4714d1d3 3182
c65eacbe
AL
3183#ifdef CONFIG_THREAD_INFO_IN_TASK
3184
3185static inline struct thread_info *task_thread_info(struct task_struct *task)
3186{
3187 return &task->thread_info;
3188}
c6c314a6
AL
3189
3190/*
3191 * When accessing the stack of a non-current task that might exit, use
3192 * try_get_task_stack() instead. task_stack_page will return a pointer
3193 * that could get freed out from under you.
3194 */
c65eacbe
AL
3195static inline void *task_stack_page(const struct task_struct *task)
3196{
3197 return task->stack;
3198}
c6c314a6 3199
c65eacbe 3200#define setup_thread_stack(new,old) do { } while(0)
c6c314a6 3201
c65eacbe
AL
3202static inline unsigned long *end_of_stack(const struct task_struct *task)
3203{
3204 return task->stack;
3205}
3206
3207#elif !defined(__HAVE_THREAD_FUNCTIONS)
f037360f 3208
f7e4217b 3209#define task_thread_info(task) ((struct thread_info *)(task)->stack)
c65eacbe 3210#define task_stack_page(task) ((void *)(task)->stack)
a1261f54 3211
10ebffde
AV
3212static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3213{
3214 *task_thread_info(p) = *task_thread_info(org);
3215 task_thread_info(p)->task = p;
3216}
3217
6a40281a
CE
3218/*
3219 * Return the address of the last usable long on the stack.
3220 *
3221 * When the stack grows down, this is just above the thread
3222 * info struct. Going any lower will corrupt the threadinfo.
3223 *
3224 * When the stack grows up, this is the highest address.
3225 * Beyond that position, we corrupt data on the next page.
3226 */
10ebffde
AV
3227static inline unsigned long *end_of_stack(struct task_struct *p)
3228{
6a40281a
CE
3229#ifdef CONFIG_STACK_GROWSUP
3230 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3231#else
f7e4217b 3232 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 3233#endif
10ebffde
AV
3234}
3235
f037360f 3236#endif
c6c314a6 3237
68f24b08
AL
3238#ifdef CONFIG_THREAD_INFO_IN_TASK
3239static inline void *try_get_task_stack(struct task_struct *tsk)
3240{
3241 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3242 task_stack_page(tsk) : NULL;
3243}
3244
3245extern void put_task_stack(struct task_struct *tsk);
3246#else
c6c314a6
AL
3247static inline void *try_get_task_stack(struct task_struct *tsk)
3248{
3249 return task_stack_page(tsk);
3250}
3251
3252static inline void put_task_stack(struct task_struct *tsk) {}
68f24b08 3253#endif
c6c314a6 3254
a70857e4
AT
3255#define task_stack_end_corrupted(task) \
3256 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 3257
8b05c7e6
FT
3258static inline int object_is_on_stack(void *obj)
3259{
3260 void *stack = task_stack_page(current);
3261
3262 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3263}
3264
b235beea 3265extern void thread_stack_cache_init(void);
8c9843e5 3266
7c9f8861
ES
3267#ifdef CONFIG_DEBUG_STACK_USAGE
3268static inline unsigned long stack_not_used(struct task_struct *p)
3269{
3270 unsigned long *n = end_of_stack(p);
3271
3272 do { /* Skip over canary */
6c31da34
HD
3273# ifdef CONFIG_STACK_GROWSUP
3274 n--;
3275# else
7c9f8861 3276 n++;
6c31da34 3277# endif
7c9f8861
ES
3278 } while (!*n);
3279
6c31da34
HD
3280# ifdef CONFIG_STACK_GROWSUP
3281 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3282# else
7c9f8861 3283 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 3284# endif
7c9f8861
ES
3285}
3286#endif
d4311ff1 3287extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3288
1da177e4
LT
3289/* set thread flags in other task's structures
3290 * - see asm/thread_info.h for TIF_xxxx flags available
3291 */
3292static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3293{
a1261f54 3294 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3295}
3296
3297static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3298{
a1261f54 3299 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3300}
3301
3302static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3303{
a1261f54 3304 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3305}
3306
3307static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3308{
a1261f54 3309 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3310}
3311
3312static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3313{
a1261f54 3314 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3315}
3316
3317static inline void set_tsk_need_resched(struct task_struct *tsk)
3318{
3319 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3320}
3321
3322static inline void clear_tsk_need_resched(struct task_struct *tsk)
3323{
3324 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3325}
3326
8ae121ac
GH
3327static inline int test_tsk_need_resched(struct task_struct *tsk)
3328{
3329 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3330}
3331
690cc3ff
EB
3332static inline int restart_syscall(void)
3333{
3334 set_tsk_thread_flag(current, TIF_SIGPENDING);
3335 return -ERESTARTNOINTR;
3336}
3337
1da177e4
LT
3338static inline int signal_pending(struct task_struct *p)
3339{
3340 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3341}
f776d12d 3342
d9588725
RM
3343static inline int __fatal_signal_pending(struct task_struct *p)
3344{
3345 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3346}
f776d12d
MW
3347
3348static inline int fatal_signal_pending(struct task_struct *p)
3349{
3350 return signal_pending(p) && __fatal_signal_pending(p);
3351}
3352
16882c1e
ON
3353static inline int signal_pending_state(long state, struct task_struct *p)
3354{
3355 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3356 return 0;
3357 if (!signal_pending(p))
3358 return 0;
3359
16882c1e
ON
3360 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3361}
3362
1da177e4
LT
3363/*
3364 * cond_resched() and cond_resched_lock(): latency reduction via
3365 * explicit rescheduling in places that are safe. The return
3366 * value indicates whether a reschedule was done in fact.
3367 * cond_resched_lock() will drop the spinlock before scheduling,
3368 * cond_resched_softirq() will enable bhs before scheduling.
3369 */
35a773a0 3370#ifndef CONFIG_PREEMPT
c3921ab7 3371extern int _cond_resched(void);
35a773a0
PZ
3372#else
3373static inline int _cond_resched(void) { return 0; }
3374#endif
6f80bd98 3375
613afbf8 3376#define cond_resched() ({ \
3427445a 3377 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3378 _cond_resched(); \
3379})
6f80bd98 3380
613afbf8
FW
3381extern int __cond_resched_lock(spinlock_t *lock);
3382
3383#define cond_resched_lock(lock) ({ \
3427445a 3384 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3385 __cond_resched_lock(lock); \
3386})
3387
3388extern int __cond_resched_softirq(void);
3389
75e1056f 3390#define cond_resched_softirq() ({ \
3427445a 3391 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3392 __cond_resched_softirq(); \
613afbf8 3393})
1da177e4 3394
f6f3c437
SH
3395static inline void cond_resched_rcu(void)
3396{
3397#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3398 rcu_read_unlock();
3399 cond_resched();
3400 rcu_read_lock();
3401#endif
3402}
3403
d1c6d149
VN
3404static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3405{
3406#ifdef CONFIG_DEBUG_PREEMPT
3407 return p->preempt_disable_ip;
3408#else
3409 return 0;
3410#endif
3411}
3412
1da177e4
LT
3413/*
3414 * Does a critical section need to be broken due to another
95c354fe
NP
3415 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3416 * but a general need for low latency)
1da177e4 3417 */
95c354fe 3418static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3419{
95c354fe
NP
3420#ifdef CONFIG_PREEMPT
3421 return spin_is_contended(lock);
3422#else
1da177e4 3423 return 0;
95c354fe 3424#endif
1da177e4
LT
3425}
3426
ee761f62
TG
3427/*
3428 * Idle thread specific functions to determine the need_resched
69dd0f84 3429 * polling state.
ee761f62 3430 */
69dd0f84 3431#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3432static inline int tsk_is_polling(struct task_struct *p)
3433{
3434 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3435}
ea811747
PZ
3436
3437static inline void __current_set_polling(void)
3a98f871
TG
3438{
3439 set_thread_flag(TIF_POLLING_NRFLAG);
3440}
3441
ea811747
PZ
3442static inline bool __must_check current_set_polling_and_test(void)
3443{
3444 __current_set_polling();
3445
3446 /*
3447 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3448 * paired by resched_curr()
ea811747 3449 */
4e857c58 3450 smp_mb__after_atomic();
ea811747
PZ
3451
3452 return unlikely(tif_need_resched());
3453}
3454
3455static inline void __current_clr_polling(void)
3a98f871
TG
3456{
3457 clear_thread_flag(TIF_POLLING_NRFLAG);
3458}
ea811747
PZ
3459
3460static inline bool __must_check current_clr_polling_and_test(void)
3461{
3462 __current_clr_polling();
3463
3464 /*
3465 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3466 * paired by resched_curr()
ea811747 3467 */
4e857c58 3468 smp_mb__after_atomic();
ea811747
PZ
3469
3470 return unlikely(tif_need_resched());
3471}
3472
ee761f62
TG
3473#else
3474static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3475static inline void __current_set_polling(void) { }
3476static inline void __current_clr_polling(void) { }
3477
3478static inline bool __must_check current_set_polling_and_test(void)
3479{
3480 return unlikely(tif_need_resched());
3481}
3482static inline bool __must_check current_clr_polling_and_test(void)
3483{
3484 return unlikely(tif_need_resched());
3485}
ee761f62
TG
3486#endif
3487
8cb75e0c
PZ
3488static inline void current_clr_polling(void)
3489{
3490 __current_clr_polling();
3491
3492 /*
3493 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3494 * Once the bit is cleared, we'll get IPIs with every new
3495 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3496 * fold.
3497 */
8875125e 3498 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3499
3500 preempt_fold_need_resched();
3501}
3502
75f93fed
PZ
3503static __always_inline bool need_resched(void)
3504{
3505 return unlikely(tif_need_resched());
3506}
3507
f06febc9
FM
3508/*
3509 * Thread group CPU time accounting.
3510 */
4cd4c1b4 3511void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3512void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3513
7bb44ade
RM
3514/*
3515 * Reevaluate whether the task has signals pending delivery.
3516 * Wake the task if so.
3517 * This is required every time the blocked sigset_t changes.
3518 * callers must hold sighand->siglock.
3519 */
3520extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3521extern void recalc_sigpending(void);
3522
910ffdb1
ON
3523extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3524
3525static inline void signal_wake_up(struct task_struct *t, bool resume)
3526{
3527 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3528}
3529static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3530{
3531 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3532}
1da177e4
LT
3533
3534/*
3535 * Wrappers for p->thread_info->cpu access. No-op on UP.
3536 */
3537#ifdef CONFIG_SMP
3538
3539static inline unsigned int task_cpu(const struct task_struct *p)
3540{
c65eacbe
AL
3541#ifdef CONFIG_THREAD_INFO_IN_TASK
3542 return p->cpu;
3543#else
a1261f54 3544 return task_thread_info(p)->cpu;
c65eacbe 3545#endif
1da177e4
LT
3546}
3547
b32e86b4
IM
3548static inline int task_node(const struct task_struct *p)
3549{
3550 return cpu_to_node(task_cpu(p));
3551}
3552
c65cc870 3553extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3554
3555#else
3556
3557static inline unsigned int task_cpu(const struct task_struct *p)
3558{
3559 return 0;
3560}
3561
3562static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3563{
3564}
3565
3566#endif /* CONFIG_SMP */
3567
d9345c65
PX
3568/*
3569 * In order to reduce various lock holder preemption latencies provide an
3570 * interface to see if a vCPU is currently running or not.
3571 *
3572 * This allows us to terminate optimistic spin loops and block, analogous to
3573 * the native optimistic spin heuristic of testing if the lock owner task is
3574 * running or not.
3575 */
3576#ifndef vcpu_is_preempted
3577# define vcpu_is_preempted(cpu) false
3578#endif
3579
96f874e2
RR
3580extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3581extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3582
7c941438 3583#ifdef CONFIG_CGROUP_SCHED
07e06b01 3584extern struct task_group root_task_group;
8323f26c 3585#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3586
54e99124
DG
3587extern int task_can_switch_user(struct user_struct *up,
3588 struct task_struct *tsk);
3589
4b98d11b
AD
3590#ifdef CONFIG_TASK_XACCT
3591static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3592{
940389b8 3593 tsk->ioac.rchar += amt;
4b98d11b
AD
3594}
3595
3596static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3597{
940389b8 3598 tsk->ioac.wchar += amt;
4b98d11b
AD
3599}
3600
3601static inline void inc_syscr(struct task_struct *tsk)
3602{
940389b8 3603 tsk->ioac.syscr++;
4b98d11b
AD
3604}
3605
3606static inline void inc_syscw(struct task_struct *tsk)
3607{
940389b8 3608 tsk->ioac.syscw++;
4b98d11b
AD
3609}
3610#else
3611static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3612{
3613}
3614
3615static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3616{
3617}
3618
3619static inline void inc_syscr(struct task_struct *tsk)
3620{
3621}
3622
3623static inline void inc_syscw(struct task_struct *tsk)
3624{
3625}
3626#endif
3627
82455257
DH
3628#ifndef TASK_SIZE_OF
3629#define TASK_SIZE_OF(tsk) TASK_SIZE
3630#endif
3631
f98bafa0 3632#ifdef CONFIG_MEMCG
cf475ad2 3633extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3634#else
3635static inline void mm_update_next_owner(struct mm_struct *mm)
3636{
3637}
f98bafa0 3638#endif /* CONFIG_MEMCG */
cf475ad2 3639
3e10e716
JS
3640static inline unsigned long task_rlimit(const struct task_struct *tsk,
3641 unsigned int limit)
3642{
316c1608 3643 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3644}
3645
3646static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3647 unsigned int limit)
3648{
316c1608 3649 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3650}
3651
3652static inline unsigned long rlimit(unsigned int limit)
3653{
3654 return task_rlimit(current, limit);
3655}
3656
3657static inline unsigned long rlimit_max(unsigned int limit)
3658{
3659 return task_rlimit_max(current, limit);
3660}
3661
58919e83
RW
3662#define SCHED_CPUFREQ_RT (1U << 0)
3663#define SCHED_CPUFREQ_DL (1U << 1)
8c34ab19 3664#define SCHED_CPUFREQ_IOWAIT (1U << 2)
58919e83
RW
3665
3666#define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3667
adaf9fcd
RW
3668#ifdef CONFIG_CPU_FREQ
3669struct update_util_data {
58919e83 3670 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
adaf9fcd
RW
3671};
3672
0bed612b 3673void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
58919e83
RW
3674 void (*func)(struct update_util_data *data, u64 time,
3675 unsigned int flags));
0bed612b 3676void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3677#endif /* CONFIG_CPU_FREQ */
3678
1da177e4 3679#endif