]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/skbuff.h
Merge branch 'x86-entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / include / linux / skbuff.h
CommitLineData
2874c5fd 1/* SPDX-License-Identifier: GPL-2.0-or-later */
1da177e4
LT
2/*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
1da177e4
LT
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
187f1882 16#include <linux/bug.h>
1da177e4 17#include <linux/cache.h>
56b17425 18#include <linux/rbtree.h>
51f3d02b 19#include <linux/socket.h>
c1d1b437 20#include <linux/refcount.h>
1da177e4 21
60063497 22#include <linux/atomic.h>
1da177e4
LT
23#include <asm/types.h>
24#include <linux/spinlock.h>
1da177e4 25#include <linux/net.h>
3fc7e8a6 26#include <linux/textsearch.h>
1da177e4 27#include <net/checksum.h>
a80958f4 28#include <linux/rcupdate.h>
b7aa0bf7 29#include <linux/hrtimer.h>
131ea667 30#include <linux/dma-mapping.h>
c8f44aff 31#include <linux/netdev_features.h>
363ec392 32#include <linux/sched.h>
e6017571 33#include <linux/sched/clock.h>
1bd758eb 34#include <net/flow_dissector.h>
a60e3cc7 35#include <linux/splice.h>
72b31f72 36#include <linux/in6.h>
8b10cab6 37#include <linux/if_packet.h>
f70ea018 38#include <net/flow.h>
1da177e4 39
7a6ae71b
TH
40/* The interface for checksum offload between the stack and networking drivers
41 * is as follows...
42 *
43 * A. IP checksum related features
44 *
45 * Drivers advertise checksum offload capabilities in the features of a device.
46 * From the stack's point of view these are capabilities offered by the driver,
47 * a driver typically only advertises features that it is capable of offloading
48 * to its device.
49 *
50 * The checksum related features are:
51 *
52 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
53 * IP (one's complement) checksum for any combination
54 * of protocols or protocol layering. The checksum is
55 * computed and set in a packet per the CHECKSUM_PARTIAL
56 * interface (see below).
57 *
58 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
59 * TCP or UDP packets over IPv4. These are specifically
60 * unencapsulated packets of the form IPv4|TCP or
61 * IPv4|UDP where the Protocol field in the IPv4 header
62 * is TCP or UDP. The IPv4 header may contain IP options
63 * This feature cannot be set in features for a device
64 * with NETIF_F_HW_CSUM also set. This feature is being
65 * DEPRECATED (see below).
66 *
67 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
68 * TCP or UDP packets over IPv6. These are specifically
69 * unencapsulated packets of the form IPv6|TCP or
70 * IPv4|UDP where the Next Header field in the IPv6
71 * header is either TCP or UDP. IPv6 extension headers
72 * are not supported with this feature. This feature
73 * cannot be set in features for a device with
74 * NETIF_F_HW_CSUM also set. This feature is being
75 * DEPRECATED (see below).
76 *
77 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
78 * This flag is used only used to disable the RX checksum
79 * feature for a device. The stack will accept receive
80 * checksum indication in packets received on a device
81 * regardless of whether NETIF_F_RXCSUM is set.
82 *
83 * B. Checksumming of received packets by device. Indication of checksum
84 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
85 *
86 * CHECKSUM_NONE:
87 *
7a6ae71b 88 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
89 * The packet contains full (though not verified) checksum in packet but
90 * not in skb->csum. Thus, skb->csum is undefined in this case.
91 *
92 * CHECKSUM_UNNECESSARY:
93 *
94 * The hardware you're dealing with doesn't calculate the full checksum
95 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
96 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
97 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
98 * though. A driver or device must never modify the checksum field in the
99 * packet even if checksum is verified.
77cffe23
TH
100 *
101 * CHECKSUM_UNNECESSARY is applicable to following protocols:
102 * TCP: IPv6 and IPv4.
103 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
104 * zero UDP checksum for either IPv4 or IPv6, the networking stack
105 * may perform further validation in this case.
106 * GRE: only if the checksum is present in the header.
107 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 108 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
109 *
110 * skb->csum_level indicates the number of consecutive checksums found in
111 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
112 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
113 * and a device is able to verify the checksums for UDP (possibly zero),
114 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
115 * two. If the device were only able to verify the UDP checksum and not
116 * GRE, either because it doesn't support GRE checksum of because GRE
117 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
118 * not considered in this case).
78ea85f1
DB
119 *
120 * CHECKSUM_COMPLETE:
121 *
122 * This is the most generic way. The device supplied checksum of the _whole_
123 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
124 * hardware doesn't need to parse L3/L4 headers to implement this.
125 *
b4759dcd
DC
126 * Notes:
127 * - Even if device supports only some protocols, but is able to produce
128 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
130 *
131 * CHECKSUM_PARTIAL:
132 *
6edec0e6
TH
133 * A checksum is set up to be offloaded to a device as described in the
134 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 135 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
136 * on the same host, or it may be set in the input path in GRO or remote
137 * checksum offload. For the purposes of checksum verification, the checksum
138 * referred to by skb->csum_start + skb->csum_offset and any preceding
139 * checksums in the packet are considered verified. Any checksums in the
140 * packet that are after the checksum being offloaded are not considered to
141 * be verified.
78ea85f1 142 *
7a6ae71b
TH
143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
145 *
146 * CHECKSUM_PARTIAL:
147 *
7a6ae71b 148 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 149 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
150 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
151 * csum_start and csum_offset values are valid values given the length and
152 * offset of the packet, however they should not attempt to validate that the
153 * checksum refers to a legitimate transport layer checksum-- it is the
154 * purview of the stack to validate that csum_start and csum_offset are set
155 * correctly.
156 *
157 * When the stack requests checksum offload for a packet, the driver MUST
158 * ensure that the checksum is set correctly. A driver can either offload the
159 * checksum calculation to the device, or call skb_checksum_help (in the case
160 * that the device does not support offload for a particular checksum).
161 *
162 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
164 * checksum offload capability.
165 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
166 * on network device checksumming capabilities: if a packet does not match
167 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
168 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 169 *
7a6ae71b 170 * CHECKSUM_NONE:
78ea85f1 171 *
7a6ae71b
TH
172 * The skb was already checksummed by the protocol, or a checksum is not
173 * required.
78ea85f1
DB
174 *
175 * CHECKSUM_UNNECESSARY:
176 *
7a6ae71b
TH
177 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
178 * output.
78ea85f1 179 *
7a6ae71b
TH
180 * CHECKSUM_COMPLETE:
181 * Not used in checksum output. If a driver observes a packet with this value
182 * set in skbuff, if should treat as CHECKSUM_NONE being set.
183 *
184 * D. Non-IP checksum (CRC) offloads
185 *
186 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
187 * offloading the SCTP CRC in a packet. To perform this offload the stack
dba00306
DC
188 * will set set csum_start and csum_offset accordingly, set ip_summed to
189 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
190 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
191 * A driver that supports both IP checksum offload and SCTP CRC32c offload
192 * must verify which offload is configured for a packet by testing the
193 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
194 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
195 *
196 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197 * offloading the FCOE CRC in a packet. To perform this offload the stack
198 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199 * accordingly. Note the there is no indication in the skbuff that the
200 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201 * both IP checksum offload and FCOE CRC offload must verify which offload
202 * is configured for a packet presumably by inspecting packet headers.
203 *
204 * E. Checksumming on output with GSO.
205 *
206 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209 * part of the GSO operation is implied. If a checksum is being offloaded
210 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211 * are set to refer to the outermost checksum being offload (two offloaded
212 * checksums are possible with UDP encapsulation).
78ea85f1
DB
213 */
214
60476372 215/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
216#define CHECKSUM_NONE 0
217#define CHECKSUM_UNNECESSARY 1
218#define CHECKSUM_COMPLETE 2
219#define CHECKSUM_PARTIAL 3
1da177e4 220
77cffe23
TH
221/* Maximum value in skb->csum_level */
222#define SKB_MAX_CSUM_LEVEL 3
223
0bec8c88 224#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 225#define SKB_WITH_OVERHEAD(X) \
deea84b0 226 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
227#define SKB_MAX_ORDER(X, ORDER) \
228 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
229#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
230#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
231
87fb4b7b
ED
232/* return minimum truesize of one skb containing X bytes of data */
233#define SKB_TRUESIZE(X) ((X) + \
234 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
235 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236
1da177e4 237struct net_device;
716ea3a7 238struct scatterlist;
9c55e01c 239struct pipe_inode_info;
a8f820aa 240struct iov_iter;
fd11a83d 241struct napi_struct;
d58e468b
PP
242struct bpf_prog;
243union bpf_attr;
df5042f4 244struct skb_ext;
1da177e4 245
5f79e0f9 246#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
247struct nf_conntrack {
248 atomic_t use;
1da177e4 249};
5f79e0f9 250#endif
1da177e4 251
34666d46 252#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 253struct nf_bridge_info {
3eaf4025
FW
254 enum {
255 BRNF_PROTO_UNCHANGED,
256 BRNF_PROTO_8021Q,
257 BRNF_PROTO_PPPOE
7fb48c5b 258 } orig_proto:8;
72b1e5e4
FW
259 u8 pkt_otherhost:1;
260 u8 in_prerouting:1;
261 u8 bridged_dnat:1;
411ffb4f 262 __u16 frag_max_size;
bf1ac5ca 263 struct net_device *physindev;
63cdbc06
FW
264
265 /* always valid & non-NULL from FORWARD on, for physdev match */
266 struct net_device *physoutdev;
7fb48c5b 267 union {
72b1e5e4 268 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
269 __be32 ipv4_daddr;
270 struct in6_addr ipv6_daddr;
72b1e5e4
FW
271
272 /* after prerouting + nat detected: store original source
273 * mac since neigh resolution overwrites it, only used while
274 * skb is out in neigh layer.
275 */
276 char neigh_header[8];
72b31f72 277 };
1da177e4
LT
278};
279#endif
280
1da177e4
LT
281struct sk_buff_head {
282 /* These two members must be first. */
283 struct sk_buff *next;
284 struct sk_buff *prev;
285
286 __u32 qlen;
287 spinlock_t lock;
288};
289
290struct sk_buff;
291
9d4dde52
IC
292/* To allow 64K frame to be packed as single skb without frag_list we
293 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
294 * buffers which do not start on a page boundary.
295 *
296 * Since GRO uses frags we allocate at least 16 regardless of page
297 * size.
a715dea3 298 */
9d4dde52 299#if (65536/PAGE_SIZE + 1) < 16
eec00954 300#define MAX_SKB_FRAGS 16UL
a715dea3 301#else
9d4dde52 302#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 303#endif
5f74f82e 304extern int sysctl_max_skb_frags;
1da177e4 305
3953c46c
MRL
306/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
307 * segment using its current segmentation instead.
308 */
309#define GSO_BY_FRAGS 0xFFFF
310
1da177e4
LT
311typedef struct skb_frag_struct skb_frag_t;
312
313struct skb_frag_struct {
a8605c60
IC
314 struct {
315 struct page *p;
316 } page;
cb4dfe56 317#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
318 __u32 page_offset;
319 __u32 size;
cb4dfe56
ED
320#else
321 __u16 page_offset;
322 __u16 size;
323#endif
1da177e4
LT
324};
325
161e6137
PT
326/**
327 * skb_frag_size - Returns the size of a skb fragment
328 * @frag: skb fragment
329 */
9e903e08
ED
330static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331{
332 return frag->size;
333}
334
161e6137
PT
335/**
336 * skb_frag_size_set - Sets the size of a skb fragment
337 * @frag: skb fragment
338 * @size: size of fragment
339 */
9e903e08
ED
340static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
341{
342 frag->size = size;
343}
344
161e6137
PT
345/**
346 * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
347 * @frag: skb fragment
348 * @delta: value to add
349 */
9e903e08
ED
350static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
351{
352 frag->size += delta;
353}
354
161e6137
PT
355/**
356 * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
357 * @frag: skb fragment
358 * @delta: value to subtract
359 */
9e903e08
ED
360static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
361{
362 frag->size -= delta;
363}
364
161e6137
PT
365/**
366 * skb_frag_must_loop - Test if %p is a high memory page
367 * @p: fragment's page
368 */
c613c209
WB
369static inline bool skb_frag_must_loop(struct page *p)
370{
371#if defined(CONFIG_HIGHMEM)
372 if (PageHighMem(p))
373 return true;
374#endif
375 return false;
376}
377
378/**
379 * skb_frag_foreach_page - loop over pages in a fragment
380 *
381 * @f: skb frag to operate on
382 * @f_off: offset from start of f->page.p
383 * @f_len: length from f_off to loop over
384 * @p: (temp var) current page
385 * @p_off: (temp var) offset from start of current page,
386 * non-zero only on first page.
387 * @p_len: (temp var) length in current page,
388 * < PAGE_SIZE only on first and last page.
389 * @copied: (temp var) length so far, excluding current p_len.
390 *
391 * A fragment can hold a compound page, in which case per-page
392 * operations, notably kmap_atomic, must be called for each
393 * regular page.
394 */
395#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
396 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
397 p_off = (f_off) & (PAGE_SIZE - 1), \
398 p_len = skb_frag_must_loop(p) ? \
399 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
400 copied = 0; \
401 copied < f_len; \
402 copied += p_len, p++, p_off = 0, \
403 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
404
ac45f602
PO
405#define HAVE_HW_TIME_STAMP
406
407/**
d3a21be8 408 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
409 * @hwtstamp: hardware time stamp transformed into duration
410 * since arbitrary point in time
ac45f602
PO
411 *
412 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 413 * skb->tstamp.
ac45f602
PO
414 *
415 * hwtstamps can only be compared against other hwtstamps from
416 * the same device.
417 *
418 * This structure is attached to packets as part of the
419 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
420 */
421struct skb_shared_hwtstamps {
422 ktime_t hwtstamp;
ac45f602
PO
423};
424
2244d07b
OH
425/* Definitions for tx_flags in struct skb_shared_info */
426enum {
427 /* generate hardware time stamp */
428 SKBTX_HW_TSTAMP = 1 << 0,
429
e7fd2885 430 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
431 SKBTX_SW_TSTAMP = 1 << 1,
432
433 /* device driver is going to provide hardware time stamp */
434 SKBTX_IN_PROGRESS = 1 << 2,
435
a6686f2f 436 /* device driver supports TX zero-copy buffers */
62b1a8ab 437 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
438
439 /* generate wifi status information (where possible) */
62b1a8ab 440 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
441
442 /* This indicates at least one fragment might be overwritten
443 * (as in vmsplice(), sendfile() ...)
444 * If we need to compute a TX checksum, we'll need to copy
445 * all frags to avoid possible bad checksum
446 */
447 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
448
449 /* generate software time stamp when entering packet scheduling */
450 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
451};
452
52267790 453#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
e1c8a607 454#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 455 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
456#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
457
a6686f2f
SM
458/*
459 * The callback notifies userspace to release buffers when skb DMA is done in
460 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
461 * The zerocopy_success argument is true if zero copy transmit occurred,
462 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
463 * The ctx field is used to track device context.
464 * The desc field is used to track userspace buffer index.
a6686f2f
SM
465 */
466struct ubuf_info {
e19d6763 467 void (*callback)(struct ubuf_info *, bool zerocopy_success);
4ab6c99d
WB
468 union {
469 struct {
470 unsigned long desc;
471 void *ctx;
472 };
473 struct {
474 u32 id;
475 u16 len;
476 u16 zerocopy:1;
477 u32 bytelen;
478 };
479 };
c1d1b437 480 refcount_t refcnt;
a91dbff5
WB
481
482 struct mmpin {
483 struct user_struct *user;
484 unsigned int num_pg;
485 } mmp;
ac45f602
PO
486};
487
52267790
WB
488#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
489
6f89dbce
SV
490int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
491void mm_unaccount_pinned_pages(struct mmpin *mmp);
492
52267790 493struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
4ab6c99d
WB
494struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
495 struct ubuf_info *uarg);
52267790
WB
496
497static inline void sock_zerocopy_get(struct ubuf_info *uarg)
498{
c1d1b437 499 refcount_inc(&uarg->refcnt);
52267790
WB
500}
501
502void sock_zerocopy_put(struct ubuf_info *uarg);
52900d22 503void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
52267790
WB
504
505void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
506
b5947e5d 507int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
52267790
WB
508int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
509 struct msghdr *msg, int len,
510 struct ubuf_info *uarg);
511
1da177e4
LT
512/* This data is invariant across clones and lives at
513 * the end of the header data, ie. at skb->end.
514 */
515struct skb_shared_info {
de8f3a83
DB
516 __u8 __unused;
517 __u8 meta_len;
518 __u8 nr_frags;
9f42f126 519 __u8 tx_flags;
7967168c
HX
520 unsigned short gso_size;
521 /* Warning: this field is not always filled in (UFO)! */
522 unsigned short gso_segs;
1da177e4 523 struct sk_buff *frag_list;
ac45f602 524 struct skb_shared_hwtstamps hwtstamps;
7f564528 525 unsigned int gso_type;
09c2d251 526 u32 tskey;
ec7d2f2c
ED
527
528 /*
529 * Warning : all fields before dataref are cleared in __alloc_skb()
530 */
531 atomic_t dataref;
532
69e3c75f
JB
533 /* Intermediate layers must ensure that destructor_arg
534 * remains valid until skb destructor */
535 void * destructor_arg;
a6686f2f 536
fed66381
ED
537 /* must be last field, see pskb_expand_head() */
538 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
539};
540
541/* We divide dataref into two halves. The higher 16 bits hold references
542 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
543 * the entire skb->data. A clone of a headerless skb holds the length of
544 * the header in skb->hdr_len.
1da177e4
LT
545 *
546 * All users must obey the rule that the skb->data reference count must be
547 * greater than or equal to the payload reference count.
548 *
549 * Holding a reference to the payload part means that the user does not
550 * care about modifications to the header part of skb->data.
551 */
552#define SKB_DATAREF_SHIFT 16
553#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
554
d179cd12
DM
555
556enum {
c8753d55
VS
557 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
558 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
559 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
560};
561
7967168c
HX
562enum {
563 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
564
565 /* This indicates the skb is from an untrusted source. */
d9d30adf 566 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
567
568 /* This indicates the tcp segment has CWR set. */
d9d30adf 569 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 570
d9d30adf 571 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 572
d9d30adf 573 SKB_GSO_TCPV6 = 1 << 4,
68c33163 574
d9d30adf 575 SKB_GSO_FCOE = 1 << 5,
73136267 576
d9d30adf 577 SKB_GSO_GRE = 1 << 6,
0d89d203 578
d9d30adf 579 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 580
d9d30adf 581 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 582
d9d30adf 583 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 584
d9d30adf 585 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 586
d9d30adf 587 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 588
d9d30adf 589 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 590
d9d30adf 591 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 592
d9d30adf 593 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 594
d9d30adf 595 SKB_GSO_ESP = 1 << 15,
0c19f846
WB
596
597 SKB_GSO_UDP = 1 << 16,
ee80d1eb
WB
598
599 SKB_GSO_UDP_L4 = 1 << 17,
7967168c
HX
600};
601
2e07fa9c
ACM
602#if BITS_PER_LONG > 32
603#define NET_SKBUFF_DATA_USES_OFFSET 1
604#endif
605
606#ifdef NET_SKBUFF_DATA_USES_OFFSET
607typedef unsigned int sk_buff_data_t;
608#else
609typedef unsigned char *sk_buff_data_t;
610#endif
611
161e6137 612/**
1da177e4
LT
613 * struct sk_buff - socket buffer
614 * @next: Next buffer in list
615 * @prev: Previous buffer in list
363ec392 616 * @tstamp: Time we arrived/left
56b17425 617 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 618 * @sk: Socket we are owned by
1da177e4 619 * @dev: Device we arrived on/are leaving by
d84e0bd7 620 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 621 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 622 * @sp: the security path, used for xfrm
1da177e4
LT
623 * @len: Length of actual data
624 * @data_len: Data length
625 * @mac_len: Length of link layer header
334a8132 626 * @hdr_len: writable header length of cloned skb
663ead3b
HX
627 * @csum: Checksum (must include start/offset pair)
628 * @csum_start: Offset from skb->head where checksumming should start
629 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 630 * @priority: Packet queueing priority
60ff7467 631 * @ignore_df: allow local fragmentation
1da177e4 632 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 633 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
634 * @nohdr: Payload reference only, must not modify header
635 * @pkt_type: Packet class
c83c2486 636 * @fclone: skbuff clone status
c83c2486 637 * @ipvs_property: skbuff is owned by ipvs
875e8939
IS
638 * @offload_fwd_mark: Packet was L2-forwarded in hardware
639 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
e7246e12 640 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 641 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
642 * @tc_redirected: packet was redirected by a tc action
643 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
644 * @peeked: this packet has been seen already, so stats have been
645 * done for it, don't do them again
ba9dda3a 646 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
647 * @protocol: Packet protocol from driver
648 * @destructor: Destruct function
e2080072 649 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
a9e419dc 650 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 651 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 652 * @skb_iif: ifindex of device we arrived on
1da177e4 653 * @tc_index: Traffic control index
61b905da 654 * @hash: the packet hash
d84e0bd7 655 * @queue_mapping: Queue mapping for multiqueue devices
8b700862 656 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
df5042f4 657 * @active_extensions: active extensions (skb_ext_id types)
553a5672 658 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 659 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 660 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 661 * ports.
a3b18ddb 662 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
663 * @wifi_acked_valid: wifi_acked was set
664 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 665 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
dba00306 666 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
4ff06203 667 * @dst_pending_confirm: need to confirm neighbour
a48d189e 668 * @decrypted: Decrypted SKB
161e6137 669 * @napi_id: id of the NAPI struct this skb came from
984bc16c 670 * @secmark: security marking
d84e0bd7 671 * @mark: Generic packet mark
86a9bad3 672 * @vlan_proto: vlan encapsulation protocol
6aa895b0 673 * @vlan_tci: vlan tag control information
0d89d203 674 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
675 * @inner_transport_header: Inner transport layer header (encapsulation)
676 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 677 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
678 * @transport_header: Transport layer header
679 * @network_header: Network layer header
680 * @mac_header: Link layer header
681 * @tail: Tail pointer
682 * @end: End pointer
683 * @head: Head of buffer
684 * @data: Data head pointer
685 * @truesize: Buffer size
686 * @users: User count - see {datagram,tcp}.c
df5042f4 687 * @extensions: allocated extensions, valid if active_extensions is nonzero
1da177e4
LT
688 */
689
690struct sk_buff {
363ec392 691 union {
56b17425
ED
692 struct {
693 /* These two members must be first. */
694 struct sk_buff *next;
695 struct sk_buff *prev;
696
697 union {
bffa72cf
ED
698 struct net_device *dev;
699 /* Some protocols might use this space to store information,
700 * while device pointer would be NULL.
701 * UDP receive path is one user.
702 */
703 unsigned long dev_scratch;
56b17425
ED
704 };
705 };
fa0f5273 706 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
d4546c25 707 struct list_head list;
363ec392 708 };
fa0f5273
PO
709
710 union {
711 struct sock *sk;
712 int ip_defrag_offset;
713 };
1da177e4 714
c84d9490 715 union {
bffa72cf 716 ktime_t tstamp;
d3edd06e 717 u64 skb_mstamp_ns; /* earliest departure time */
c84d9490 718 };
1da177e4
LT
719 /*
720 * This is the control buffer. It is free to use for every
721 * layer. Please put your private variables there. If you
722 * want to keep them across layers you have to do a skb_clone()
723 * first. This is owned by whoever has the skb queued ATM.
724 */
da3f5cf1 725 char cb[48] __aligned(8);
1da177e4 726
e2080072
ED
727 union {
728 struct {
729 unsigned long _skb_refdst;
730 void (*destructor)(struct sk_buff *skb);
731 };
732 struct list_head tcp_tsorted_anchor;
733 };
734
b1937227 735#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 736 unsigned long _nfct;
da3f5cf1 737#endif
1da177e4 738 unsigned int len,
334a8132
PM
739 data_len;
740 __u16 mac_len,
741 hdr_len;
b1937227
ED
742
743 /* Following fields are _not_ copied in __copy_skb_header()
744 * Note that queue_mapping is here mostly to fill a hole.
745 */
b1937227 746 __u16 queue_mapping;
36bbef52
DB
747
748/* if you move cloned around you also must adapt those constants */
749#ifdef __BIG_ENDIAN_BITFIELD
750#define CLONED_MASK (1 << 7)
751#else
752#define CLONED_MASK 1
753#endif
754#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
755
756 __u8 __cloned_offset[0];
b1937227 757 __u8 cloned:1,
6869c4d8 758 nohdr:1,
b84f4cc9 759 fclone:2,
a59322be 760 peeked:1,
b1937227 761 head_frag:1,
8b700862 762 pfmemalloc:1;
df5042f4
FW
763#ifdef CONFIG_SKB_EXTENSIONS
764 __u8 active_extensions;
765#endif
b1937227
ED
766 /* fields enclosed in headers_start/headers_end are copied
767 * using a single memcpy() in __copy_skb_header()
768 */
ebcf34f3 769 /* private: */
b1937227 770 __u32 headers_start[0];
ebcf34f3 771 /* public: */
4031ae6e 772
233577a2
HFS
773/* if you move pkt_type around you also must adapt those constants */
774#ifdef __BIG_ENDIAN_BITFIELD
775#define PKT_TYPE_MAX (7 << 5)
776#else
777#define PKT_TYPE_MAX 7
1da177e4 778#endif
233577a2 779#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 780
233577a2 781 __u8 __pkt_type_offset[0];
b1937227 782 __u8 pkt_type:3;
b1937227 783 __u8 ignore_df:1;
b1937227
ED
784 __u8 nf_trace:1;
785 __u8 ip_summed:2;
3853b584 786 __u8 ooo_okay:1;
8b700862 787
61b905da 788 __u8 l4_hash:1;
a3b18ddb 789 __u8 sw_hash:1;
6e3e939f
JB
790 __u8 wifi_acked_valid:1;
791 __u8 wifi_acked:1;
3bdc0eba 792 __u8 no_fcs:1;
77cffe23 793 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 794 __u8 encapsulation:1;
7e2b10c1 795 __u8 encap_hdr_csum:1;
5d0c2b95 796 __u8 csum_valid:1;
8b700862 797
0c4b2d37
MM
798#ifdef __BIG_ENDIAN_BITFIELD
799#define PKT_VLAN_PRESENT_BIT 7
800#else
801#define PKT_VLAN_PRESENT_BIT 0
802#endif
803#define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
804 __u8 __pkt_vlan_present_offset[0];
805 __u8 vlan_present:1;
7e3cead5 806 __u8 csum_complete_sw:1;
b1937227 807 __u8 csum_level:2;
dba00306 808 __u8 csum_not_inet:1;
4ff06203 809 __u8 dst_pending_confirm:1;
b1937227
ED
810#ifdef CONFIG_IPV6_NDISC_NODETYPE
811 __u8 ndisc_nodetype:2;
812#endif
8b700862 813
0c4b2d37 814 __u8 ipvs_property:1;
8bce6d7d 815 __u8 inner_protocol_type:1;
e585f236 816 __u8 remcsum_offload:1;
6bc506b4
IS
817#ifdef CONFIG_NET_SWITCHDEV
818 __u8 offload_fwd_mark:1;
875e8939 819 __u8 offload_l3_fwd_mark:1;
6bc506b4 820#endif
e7246e12
WB
821#ifdef CONFIG_NET_CLS_ACT
822 __u8 tc_skip_classify:1;
8dc07fdb 823 __u8 tc_at_ingress:1;
bc31c905
WB
824 __u8 tc_redirected:1;
825 __u8 tc_from_ingress:1;
e7246e12 826#endif
a48d189e
SB
827#ifdef CONFIG_TLS_DEVICE
828 __u8 decrypted:1;
829#endif
b1937227
ED
830
831#ifdef CONFIG_NET_SCHED
832 __u16 tc_index; /* traffic control index */
b1937227 833#endif
fe55f6d5 834
b1937227
ED
835 union {
836 __wsum csum;
837 struct {
838 __u16 csum_start;
839 __u16 csum_offset;
840 };
841 };
842 __u32 priority;
843 int skb_iif;
844 __u32 hash;
845 __be16 vlan_proto;
846 __u16 vlan_tci;
2bd82484
ED
847#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
848 union {
849 unsigned int napi_id;
850 unsigned int sender_cpu;
851 };
97fc2f08 852#endif
984bc16c 853#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 854 __u32 secmark;
0c4f691f 855#endif
0c4f691f 856
3b885787
NH
857 union {
858 __u32 mark;
16fad69c 859 __u32 reserved_tailroom;
3b885787 860 };
1da177e4 861
8bce6d7d
TH
862 union {
863 __be16 inner_protocol;
864 __u8 inner_ipproto;
865 };
866
1a37e412
SH
867 __u16 inner_transport_header;
868 __u16 inner_network_header;
869 __u16 inner_mac_header;
b1937227
ED
870
871 __be16 protocol;
1a37e412
SH
872 __u16 transport_header;
873 __u16 network_header;
874 __u16 mac_header;
b1937227 875
ebcf34f3 876 /* private: */
b1937227 877 __u32 headers_end[0];
ebcf34f3 878 /* public: */
b1937227 879
1da177e4 880 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 881 sk_buff_data_t tail;
4305b541 882 sk_buff_data_t end;
1da177e4 883 unsigned char *head,
4305b541 884 *data;
27a884dc 885 unsigned int truesize;
63354797 886 refcount_t users;
df5042f4
FW
887
888#ifdef CONFIG_SKB_EXTENSIONS
889 /* only useable after checking ->active_extensions != 0 */
890 struct skb_ext *extensions;
891#endif
1da177e4
LT
892};
893
894#ifdef __KERNEL__
895/*
896 * Handling routines are only of interest to the kernel
897 */
1da177e4 898
c93bdd0e
MG
899#define SKB_ALLOC_FCLONE 0x01
900#define SKB_ALLOC_RX 0x02
fd11a83d 901#define SKB_ALLOC_NAPI 0x04
c93bdd0e 902
161e6137
PT
903/**
904 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
905 * @skb: buffer
906 */
c93bdd0e
MG
907static inline bool skb_pfmemalloc(const struct sk_buff *skb)
908{
909 return unlikely(skb->pfmemalloc);
910}
911
7fee226a
ED
912/*
913 * skb might have a dst pointer attached, refcounted or not.
914 * _skb_refdst low order bit is set if refcount was _not_ taken
915 */
916#define SKB_DST_NOREF 1UL
917#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
918
a9e419dc 919#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
920/**
921 * skb_dst - returns skb dst_entry
922 * @skb: buffer
923 *
924 * Returns skb dst_entry, regardless of reference taken or not.
925 */
adf30907
ED
926static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
927{
161e6137 928 /* If refdst was not refcounted, check we still are in a
7fee226a
ED
929 * rcu_read_lock section
930 */
931 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
932 !rcu_read_lock_held() &&
933 !rcu_read_lock_bh_held());
934 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
935}
936
7fee226a
ED
937/**
938 * skb_dst_set - sets skb dst
939 * @skb: buffer
940 * @dst: dst entry
941 *
942 * Sets skb dst, assuming a reference was taken on dst and should
943 * be released by skb_dst_drop()
944 */
adf30907
ED
945static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
946{
7fee226a
ED
947 skb->_skb_refdst = (unsigned long)dst;
948}
949
932bc4d7
JA
950/**
951 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
952 * @skb: buffer
953 * @dst: dst entry
954 *
955 * Sets skb dst, assuming a reference was not taken on dst.
956 * If dst entry is cached, we do not take reference and dst_release
957 * will be avoided by refdst_drop. If dst entry is not cached, we take
958 * reference, so that last dst_release can destroy the dst immediately.
959 */
960static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
961{
dbfc4fb7
HFS
962 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
963 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 964}
7fee226a
ED
965
966/**
25985edc 967 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
968 * @skb: buffer
969 */
970static inline bool skb_dst_is_noref(const struct sk_buff *skb)
971{
972 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
973}
974
161e6137
PT
975/**
976 * skb_rtable - Returns the skb &rtable
977 * @skb: buffer
978 */
511c3f92
ED
979static inline struct rtable *skb_rtable(const struct sk_buff *skb)
980{
adf30907 981 return (struct rtable *)skb_dst(skb);
511c3f92
ED
982}
983
8b10cab6
JHS
984/* For mangling skb->pkt_type from user space side from applications
985 * such as nft, tc, etc, we only allow a conservative subset of
986 * possible pkt_types to be set.
987*/
988static inline bool skb_pkt_type_ok(u32 ptype)
989{
990 return ptype <= PACKET_OTHERHOST;
991}
992
161e6137
PT
993/**
994 * skb_napi_id - Returns the skb's NAPI id
995 * @skb: buffer
996 */
90b602f8
ML
997static inline unsigned int skb_napi_id(const struct sk_buff *skb)
998{
999#ifdef CONFIG_NET_RX_BUSY_POLL
1000 return skb->napi_id;
1001#else
1002 return 0;
1003#endif
1004}
1005
161e6137
PT
1006/**
1007 * skb_unref - decrement the skb's reference count
1008 * @skb: buffer
1009 *
1010 * Returns true if we can free the skb.
1011 */
3889a803
PA
1012static inline bool skb_unref(struct sk_buff *skb)
1013{
1014 if (unlikely(!skb))
1015 return false;
63354797 1016 if (likely(refcount_read(&skb->users) == 1))
3889a803 1017 smp_rmb();
63354797 1018 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
1019 return false;
1020
1021 return true;
1022}
1023
0a463c78 1024void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
1025void kfree_skb(struct sk_buff *skb);
1026void kfree_skb_list(struct sk_buff *segs);
1027void skb_tx_error(struct sk_buff *skb);
1028void consume_skb(struct sk_buff *skb);
ca2c1418 1029void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 1030void __kfree_skb(struct sk_buff *skb);
d7e8883c 1031extern struct kmem_cache *skbuff_head_cache;
bad43ca8 1032
7965bd4d
JP
1033void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1034bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1035 bool *fragstolen, int *delta_truesize);
bad43ca8 1036
7965bd4d
JP
1037struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1038 int node);
2ea2f62c 1039struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 1040struct sk_buff *build_skb(void *data, unsigned int frag_size);
ba0509b6
JDB
1041struct sk_buff *build_skb_around(struct sk_buff *skb,
1042 void *data, unsigned int frag_size);
161e6137
PT
1043
1044/**
1045 * alloc_skb - allocate a network buffer
1046 * @size: size to allocate
1047 * @priority: allocation mask
1048 *
1049 * This function is a convenient wrapper around __alloc_skb().
1050 */
d179cd12 1051static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 1052 gfp_t priority)
d179cd12 1053{
564824b0 1054 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
1055}
1056
2e4e4410
ED
1057struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1058 unsigned long data_len,
1059 int max_page_order,
1060 int *errcode,
1061 gfp_t gfp_mask);
1062
d0bf4a9e
ED
1063/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1064struct sk_buff_fclones {
1065 struct sk_buff skb1;
1066
1067 struct sk_buff skb2;
1068
2638595a 1069 refcount_t fclone_ref;
d0bf4a9e
ED
1070};
1071
1072/**
1073 * skb_fclone_busy - check if fclone is busy
293de7de 1074 * @sk: socket
d0bf4a9e
ED
1075 * @skb: buffer
1076 *
bda13fed 1077 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1078 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1079 * so we also check that this didnt happen.
d0bf4a9e 1080 */
39bb5e62
ED
1081static inline bool skb_fclone_busy(const struct sock *sk,
1082 const struct sk_buff *skb)
d0bf4a9e
ED
1083{
1084 const struct sk_buff_fclones *fclones;
1085
1086 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1087
1088 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1089 refcount_read(&fclones->fclone_ref) > 1 &&
39bb5e62 1090 fclones->skb2.sk == sk;
d0bf4a9e
ED
1091}
1092
161e6137
PT
1093/**
1094 * alloc_skb_fclone - allocate a network buffer from fclone cache
1095 * @size: size to allocate
1096 * @priority: allocation mask
1097 *
1098 * This function is a convenient wrapper around __alloc_skb().
1099 */
d179cd12 1100static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1101 gfp_t priority)
d179cd12 1102{
c93bdd0e 1103 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1104}
1105
7965bd4d 1106struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
b0768a86 1107void skb_headers_offset_update(struct sk_buff *skb, int off);
7965bd4d
JP
1108int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1109struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
08303c18 1110void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
7965bd4d 1111struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1112struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1113 gfp_t gfp_mask, bool fclone);
1114static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1115 gfp_t gfp_mask)
1116{
1117 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1118}
7965bd4d
JP
1119
1120int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1121struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1122 unsigned int headroom);
1123struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1124 int newtailroom, gfp_t priority);
48a1df65
JD
1125int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1126 int offset, int len);
1127int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1128 int offset, int len);
7965bd4d 1129int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1130int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1131
1132/**
1133 * skb_pad - zero pad the tail of an skb
1134 * @skb: buffer to pad
1135 * @pad: space to pad
1136 *
1137 * Ensure that a buffer is followed by a padding area that is zero
1138 * filled. Used by network drivers which may DMA or transfer data
1139 * beyond the buffer end onto the wire.
1140 *
1141 * May return error in out of memory cases. The skb is freed on error.
1142 */
1143static inline int skb_pad(struct sk_buff *skb, int pad)
1144{
1145 return __skb_pad(skb, pad, true);
1146}
ead2ceb0 1147#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1148
be12a1fe
HFS
1149int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1150 int offset, size_t size);
1151
d94d9fee 1152struct skb_seq_state {
677e90ed
TG
1153 __u32 lower_offset;
1154 __u32 upper_offset;
1155 __u32 frag_idx;
1156 __u32 stepped_offset;
1157 struct sk_buff *root_skb;
1158 struct sk_buff *cur_skb;
1159 __u8 *frag_data;
1160};
1161
7965bd4d
JP
1162void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1163 unsigned int to, struct skb_seq_state *st);
1164unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1165 struct skb_seq_state *st);
1166void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1167
7965bd4d 1168unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1169 unsigned int to, struct ts_config *config);
3fc7e8a6 1170
09323cc4
TH
1171/*
1172 * Packet hash types specify the type of hash in skb_set_hash.
1173 *
1174 * Hash types refer to the protocol layer addresses which are used to
1175 * construct a packet's hash. The hashes are used to differentiate or identify
1176 * flows of the protocol layer for the hash type. Hash types are either
1177 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1178 *
1179 * Properties of hashes:
1180 *
1181 * 1) Two packets in different flows have different hash values
1182 * 2) Two packets in the same flow should have the same hash value
1183 *
1184 * A hash at a higher layer is considered to be more specific. A driver should
1185 * set the most specific hash possible.
1186 *
1187 * A driver cannot indicate a more specific hash than the layer at which a hash
1188 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1189 *
1190 * A driver may indicate a hash level which is less specific than the
1191 * actual layer the hash was computed on. For instance, a hash computed
1192 * at L4 may be considered an L3 hash. This should only be done if the
1193 * driver can't unambiguously determine that the HW computed the hash at
1194 * the higher layer. Note that the "should" in the second property above
1195 * permits this.
1196 */
1197enum pkt_hash_types {
1198 PKT_HASH_TYPE_NONE, /* Undefined type */
1199 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1200 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1201 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1202};
1203
bcc83839 1204static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1205{
bcc83839 1206 skb->hash = 0;
a3b18ddb 1207 skb->sw_hash = 0;
bcc83839
TH
1208 skb->l4_hash = 0;
1209}
1210
1211static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1212{
1213 if (!skb->l4_hash)
1214 skb_clear_hash(skb);
1215}
1216
1217static inline void
1218__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1219{
1220 skb->l4_hash = is_l4;
1221 skb->sw_hash = is_sw;
61b905da 1222 skb->hash = hash;
09323cc4
TH
1223}
1224
bcc83839
TH
1225static inline void
1226skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1227{
1228 /* Used by drivers to set hash from HW */
1229 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1230}
1231
1232static inline void
1233__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1234{
1235 __skb_set_hash(skb, hash, true, is_l4);
1236}
1237
e5276937 1238void __skb_get_hash(struct sk_buff *skb);
b917783c 1239u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1240u32 skb_get_poff(const struct sk_buff *skb);
1241u32 __skb_get_poff(const struct sk_buff *skb, void *data,
72a338bc 1242 const struct flow_keys_basic *keys, int hlen);
e5276937
TH
1243__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1244 void *data, int hlen_proto);
1245
1246static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1247 int thoff, u8 ip_proto)
1248{
1249 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1250}
1251
1252void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1253 const struct flow_dissector_key *key,
1254 unsigned int key_count);
1255
2dfd184a 1256#ifdef CONFIG_NET
118c8e9a
SF
1257int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1258 union bpf_attr __user *uattr);
d58e468b
PP
1259int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1260 struct bpf_prog *prog);
1261
1262int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
2dfd184a 1263#else
118c8e9a
SF
1264static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1265 union bpf_attr __user *uattr)
1266{
1267 return -EOPNOTSUPP;
1268}
1269
2dfd184a
WB
1270static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1271 struct bpf_prog *prog)
1272{
1273 return -EOPNOTSUPP;
1274}
1275
1276static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1277{
1278 return -EOPNOTSUPP;
1279}
1280#endif
d58e468b 1281
089b19a9
SF
1282struct bpf_flow_dissector;
1283bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1284 __be16 proto, int nhoff, int hlen);
1285
3cbf4ffb
SF
1286bool __skb_flow_dissect(const struct net *net,
1287 const struct sk_buff *skb,
e5276937
TH
1288 struct flow_dissector *flow_dissector,
1289 void *target_container,
cd79a238
TH
1290 void *data, __be16 proto, int nhoff, int hlen,
1291 unsigned int flags);
e5276937
TH
1292
1293static inline bool skb_flow_dissect(const struct sk_buff *skb,
1294 struct flow_dissector *flow_dissector,
cd79a238 1295 void *target_container, unsigned int flags)
e5276937 1296{
3cbf4ffb
SF
1297 return __skb_flow_dissect(NULL, skb, flow_dissector,
1298 target_container, NULL, 0, 0, 0, flags);
e5276937
TH
1299}
1300
1301static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1302 struct flow_keys *flow,
1303 unsigned int flags)
e5276937
TH
1304{
1305 memset(flow, 0, sizeof(*flow));
3cbf4ffb
SF
1306 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1307 flow, NULL, 0, 0, 0, flags);
e5276937
TH
1308}
1309
72a338bc 1310static inline bool
3cbf4ffb
SF
1311skb_flow_dissect_flow_keys_basic(const struct net *net,
1312 const struct sk_buff *skb,
72a338bc
PA
1313 struct flow_keys_basic *flow, void *data,
1314 __be16 proto, int nhoff, int hlen,
1315 unsigned int flags)
e5276937
TH
1316{
1317 memset(flow, 0, sizeof(*flow));
3cbf4ffb 1318 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
cd79a238 1319 data, proto, nhoff, hlen, flags);
e5276937
TH
1320}
1321
62b32379
SH
1322void
1323skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1324 struct flow_dissector *flow_dissector,
1325 void *target_container);
1326
3958afa1 1327static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1328{
a3b18ddb 1329 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1330 __skb_get_hash(skb);
bfb564e7 1331
61b905da 1332 return skb->hash;
bfb564e7
KK
1333}
1334
20a17bf6 1335static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1336{
c6cc1ca7
TH
1337 if (!skb->l4_hash && !skb->sw_hash) {
1338 struct flow_keys keys;
de4c1f8b 1339 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1340
de4c1f8b 1341 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1342 }
f70ea018
TH
1343
1344 return skb->hash;
1345}
1346
50fb7992
TH
1347__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1348
57bdf7f4
TH
1349static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1350{
61b905da 1351 return skb->hash;
57bdf7f4
TH
1352}
1353
3df7a74e
TH
1354static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1355{
61b905da 1356 to->hash = from->hash;
a3b18ddb 1357 to->sw_hash = from->sw_hash;
61b905da 1358 to->l4_hash = from->l4_hash;
3df7a74e
TH
1359};
1360
4305b541
ACM
1361#ifdef NET_SKBUFF_DATA_USES_OFFSET
1362static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1363{
1364 return skb->head + skb->end;
1365}
ec47ea82
AD
1366
1367static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1368{
1369 return skb->end;
1370}
4305b541
ACM
1371#else
1372static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1373{
1374 return skb->end;
1375}
ec47ea82
AD
1376
1377static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1378{
1379 return skb->end - skb->head;
1380}
4305b541
ACM
1381#endif
1382
1da177e4 1383/* Internal */
4305b541 1384#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1385
ac45f602
PO
1386static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1387{
1388 return &skb_shinfo(skb)->hwtstamps;
1389}
1390
52267790
WB
1391static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1392{
1393 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1394
1395 return is_zcopy ? skb_uarg(skb) : NULL;
1396}
1397
52900d22
WB
1398static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1399 bool *have_ref)
52267790
WB
1400{
1401 if (skb && uarg && !skb_zcopy(skb)) {
52900d22
WB
1402 if (unlikely(have_ref && *have_ref))
1403 *have_ref = false;
1404 else
1405 sock_zerocopy_get(uarg);
52267790
WB
1406 skb_shinfo(skb)->destructor_arg = uarg;
1407 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1408 }
1409}
1410
5cd8d46e
WB
1411static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1412{
1413 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1414 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1415}
1416
1417static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1418{
1419 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1420}
1421
1422static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1423{
1424 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1425}
1426
52267790
WB
1427/* Release a reference on a zerocopy structure */
1428static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1429{
1430 struct ubuf_info *uarg = skb_zcopy(skb);
1431
1432 if (uarg) {
185ce5c3
WB
1433 if (skb_zcopy_is_nouarg(skb)) {
1434 /* no notification callback */
1435 } else if (uarg->callback == sock_zerocopy_callback) {
0a4a060b
WB
1436 uarg->zerocopy = uarg->zerocopy && zerocopy;
1437 sock_zerocopy_put(uarg);
185ce5c3 1438 } else {
0a4a060b
WB
1439 uarg->callback(uarg, zerocopy);
1440 }
1441
52267790
WB
1442 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1443 }
1444}
1445
1446/* Abort a zerocopy operation and revert zckey on error in send syscall */
1447static inline void skb_zcopy_abort(struct sk_buff *skb)
1448{
1449 struct ubuf_info *uarg = skb_zcopy(skb);
1450
1451 if (uarg) {
52900d22 1452 sock_zerocopy_put_abort(uarg, false);
52267790
WB
1453 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1454 }
1455}
1456
a8305bff
DM
1457static inline void skb_mark_not_on_list(struct sk_buff *skb)
1458{
1459 skb->next = NULL;
1460}
1461
992cba7e
DM
1462static inline void skb_list_del_init(struct sk_buff *skb)
1463{
1464 __list_del_entry(&skb->list);
1465 skb_mark_not_on_list(skb);
1466}
1467
1da177e4
LT
1468/**
1469 * skb_queue_empty - check if a queue is empty
1470 * @list: queue head
1471 *
1472 * Returns true if the queue is empty, false otherwise.
1473 */
1474static inline int skb_queue_empty(const struct sk_buff_head *list)
1475{
fd44b93c 1476 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1477}
1478
fc7ebb21
DM
1479/**
1480 * skb_queue_is_last - check if skb is the last entry in the queue
1481 * @list: queue head
1482 * @skb: buffer
1483 *
1484 * Returns true if @skb is the last buffer on the list.
1485 */
1486static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1487 const struct sk_buff *skb)
1488{
fd44b93c 1489 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1490}
1491
832d11c5
IJ
1492/**
1493 * skb_queue_is_first - check if skb is the first entry in the queue
1494 * @list: queue head
1495 * @skb: buffer
1496 *
1497 * Returns true if @skb is the first buffer on the list.
1498 */
1499static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1500 const struct sk_buff *skb)
1501{
fd44b93c 1502 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1503}
1504
249c8b42
DM
1505/**
1506 * skb_queue_next - return the next packet in the queue
1507 * @list: queue head
1508 * @skb: current buffer
1509 *
1510 * Return the next packet in @list after @skb. It is only valid to
1511 * call this if skb_queue_is_last() evaluates to false.
1512 */
1513static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1514 const struct sk_buff *skb)
1515{
1516 /* This BUG_ON may seem severe, but if we just return then we
1517 * are going to dereference garbage.
1518 */
1519 BUG_ON(skb_queue_is_last(list, skb));
1520 return skb->next;
1521}
1522
832d11c5
IJ
1523/**
1524 * skb_queue_prev - return the prev packet in the queue
1525 * @list: queue head
1526 * @skb: current buffer
1527 *
1528 * Return the prev packet in @list before @skb. It is only valid to
1529 * call this if skb_queue_is_first() evaluates to false.
1530 */
1531static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1532 const struct sk_buff *skb)
1533{
1534 /* This BUG_ON may seem severe, but if we just return then we
1535 * are going to dereference garbage.
1536 */
1537 BUG_ON(skb_queue_is_first(list, skb));
1538 return skb->prev;
1539}
1540
1da177e4
LT
1541/**
1542 * skb_get - reference buffer
1543 * @skb: buffer to reference
1544 *
1545 * Makes another reference to a socket buffer and returns a pointer
1546 * to the buffer.
1547 */
1548static inline struct sk_buff *skb_get(struct sk_buff *skb)
1549{
63354797 1550 refcount_inc(&skb->users);
1da177e4
LT
1551 return skb;
1552}
1553
1554/*
f8821f96 1555 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1da177e4
LT
1556 */
1557
1da177e4
LT
1558/**
1559 * skb_cloned - is the buffer a clone
1560 * @skb: buffer to check
1561 *
1562 * Returns true if the buffer was generated with skb_clone() and is
1563 * one of multiple shared copies of the buffer. Cloned buffers are
1564 * shared data so must not be written to under normal circumstances.
1565 */
1566static inline int skb_cloned(const struct sk_buff *skb)
1567{
1568 return skb->cloned &&
1569 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1570}
1571
14bbd6a5
PS
1572static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1573{
d0164adc 1574 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1575
1576 if (skb_cloned(skb))
1577 return pskb_expand_head(skb, 0, 0, pri);
1578
1579 return 0;
1580}
1581
1da177e4
LT
1582/**
1583 * skb_header_cloned - is the header a clone
1584 * @skb: buffer to check
1585 *
1586 * Returns true if modifying the header part of the buffer requires
1587 * the data to be copied.
1588 */
1589static inline int skb_header_cloned(const struct sk_buff *skb)
1590{
1591 int dataref;
1592
1593 if (!skb->cloned)
1594 return 0;
1595
1596 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1597 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1598 return dataref != 1;
1599}
1600
9580bf2e
ED
1601static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1602{
1603 might_sleep_if(gfpflags_allow_blocking(pri));
1604
1605 if (skb_header_cloned(skb))
1606 return pskb_expand_head(skb, 0, 0, pri);
1607
1608 return 0;
1609}
1610
f4a775d1
ED
1611/**
1612 * __skb_header_release - release reference to header
1613 * @skb: buffer to operate on
f4a775d1
ED
1614 */
1615static inline void __skb_header_release(struct sk_buff *skb)
1616{
1617 skb->nohdr = 1;
1618 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1619}
1620
1621
1da177e4
LT
1622/**
1623 * skb_shared - is the buffer shared
1624 * @skb: buffer to check
1625 *
1626 * Returns true if more than one person has a reference to this
1627 * buffer.
1628 */
1629static inline int skb_shared(const struct sk_buff *skb)
1630{
63354797 1631 return refcount_read(&skb->users) != 1;
1da177e4
LT
1632}
1633
1634/**
1635 * skb_share_check - check if buffer is shared and if so clone it
1636 * @skb: buffer to check
1637 * @pri: priority for memory allocation
1638 *
1639 * If the buffer is shared the buffer is cloned and the old copy
1640 * drops a reference. A new clone with a single reference is returned.
1641 * If the buffer is not shared the original buffer is returned. When
1642 * being called from interrupt status or with spinlocks held pri must
1643 * be GFP_ATOMIC.
1644 *
1645 * NULL is returned on a memory allocation failure.
1646 */
47061bc4 1647static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1648{
d0164adc 1649 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1650 if (skb_shared(skb)) {
1651 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1652
1653 if (likely(nskb))
1654 consume_skb(skb);
1655 else
1656 kfree_skb(skb);
1da177e4
LT
1657 skb = nskb;
1658 }
1659 return skb;
1660}
1661
1662/*
1663 * Copy shared buffers into a new sk_buff. We effectively do COW on
1664 * packets to handle cases where we have a local reader and forward
1665 * and a couple of other messy ones. The normal one is tcpdumping
1666 * a packet thats being forwarded.
1667 */
1668
1669/**
1670 * skb_unshare - make a copy of a shared buffer
1671 * @skb: buffer to check
1672 * @pri: priority for memory allocation
1673 *
1674 * If the socket buffer is a clone then this function creates a new
1675 * copy of the data, drops a reference count on the old copy and returns
1676 * the new copy with the reference count at 1. If the buffer is not a clone
1677 * the original buffer is returned. When called with a spinlock held or
1678 * from interrupt state @pri must be %GFP_ATOMIC
1679 *
1680 * %NULL is returned on a memory allocation failure.
1681 */
e2bf521d 1682static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1683 gfp_t pri)
1da177e4 1684{
d0164adc 1685 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1686 if (skb_cloned(skb)) {
1687 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1688
1689 /* Free our shared copy */
1690 if (likely(nskb))
1691 consume_skb(skb);
1692 else
1693 kfree_skb(skb);
1da177e4
LT
1694 skb = nskb;
1695 }
1696 return skb;
1697}
1698
1699/**
1a5778aa 1700 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1701 * @list_: list to peek at
1702 *
1703 * Peek an &sk_buff. Unlike most other operations you _MUST_
1704 * be careful with this one. A peek leaves the buffer on the
1705 * list and someone else may run off with it. You must hold
1706 * the appropriate locks or have a private queue to do this.
1707 *
1708 * Returns %NULL for an empty list or a pointer to the head element.
1709 * The reference count is not incremented and the reference is therefore
1710 * volatile. Use with caution.
1711 */
05bdd2f1 1712static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1713{
18d07000
ED
1714 struct sk_buff *skb = list_->next;
1715
1716 if (skb == (struct sk_buff *)list_)
1717 skb = NULL;
1718 return skb;
1da177e4
LT
1719}
1720
8b69bd7d
DM
1721/**
1722 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1723 * @list_: list to peek at
1724 *
1725 * Like skb_peek(), but the caller knows that the list is not empty.
1726 */
1727static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1728{
1729 return list_->next;
1730}
1731
da5ef6e5
PE
1732/**
1733 * skb_peek_next - peek skb following the given one from a queue
1734 * @skb: skb to start from
1735 * @list_: list to peek at
1736 *
1737 * Returns %NULL when the end of the list is met or a pointer to the
1738 * next element. The reference count is not incremented and the
1739 * reference is therefore volatile. Use with caution.
1740 */
1741static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1742 const struct sk_buff_head *list_)
1743{
1744 struct sk_buff *next = skb->next;
18d07000 1745
da5ef6e5
PE
1746 if (next == (struct sk_buff *)list_)
1747 next = NULL;
1748 return next;
1749}
1750
1da177e4 1751/**
1a5778aa 1752 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1753 * @list_: list to peek at
1754 *
1755 * Peek an &sk_buff. Unlike most other operations you _MUST_
1756 * be careful with this one. A peek leaves the buffer on the
1757 * list and someone else may run off with it. You must hold
1758 * the appropriate locks or have a private queue to do this.
1759 *
1760 * Returns %NULL for an empty list or a pointer to the tail element.
1761 * The reference count is not incremented and the reference is therefore
1762 * volatile. Use with caution.
1763 */
05bdd2f1 1764static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1765{
18d07000
ED
1766 struct sk_buff *skb = list_->prev;
1767
1768 if (skb == (struct sk_buff *)list_)
1769 skb = NULL;
1770 return skb;
1771
1da177e4
LT
1772}
1773
1774/**
1775 * skb_queue_len - get queue length
1776 * @list_: list to measure
1777 *
1778 * Return the length of an &sk_buff queue.
1779 */
1780static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1781{
1782 return list_->qlen;
1783}
1784
67fed459
DM
1785/**
1786 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1787 * @list: queue to initialize
1788 *
1789 * This initializes only the list and queue length aspects of
1790 * an sk_buff_head object. This allows to initialize the list
1791 * aspects of an sk_buff_head without reinitializing things like
1792 * the spinlock. It can also be used for on-stack sk_buff_head
1793 * objects where the spinlock is known to not be used.
1794 */
1795static inline void __skb_queue_head_init(struct sk_buff_head *list)
1796{
1797 list->prev = list->next = (struct sk_buff *)list;
1798 list->qlen = 0;
1799}
1800
76f10ad0
AV
1801/*
1802 * This function creates a split out lock class for each invocation;
1803 * this is needed for now since a whole lot of users of the skb-queue
1804 * infrastructure in drivers have different locking usage (in hardirq)
1805 * than the networking core (in softirq only). In the long run either the
1806 * network layer or drivers should need annotation to consolidate the
1807 * main types of usage into 3 classes.
1808 */
1da177e4
LT
1809static inline void skb_queue_head_init(struct sk_buff_head *list)
1810{
1811 spin_lock_init(&list->lock);
67fed459 1812 __skb_queue_head_init(list);
1da177e4
LT
1813}
1814
c2ecba71
PE
1815static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1816 struct lock_class_key *class)
1817{
1818 skb_queue_head_init(list);
1819 lockdep_set_class(&list->lock, class);
1820}
1821
1da177e4 1822/*
bf299275 1823 * Insert an sk_buff on a list.
1da177e4
LT
1824 *
1825 * The "__skb_xxxx()" functions are the non-atomic ones that
1826 * can only be called with interrupts disabled.
1827 */
bf299275
GR
1828static inline void __skb_insert(struct sk_buff *newsk,
1829 struct sk_buff *prev, struct sk_buff *next,
1830 struct sk_buff_head *list)
1831{
1832 newsk->next = next;
1833 newsk->prev = prev;
1834 next->prev = prev->next = newsk;
1835 list->qlen++;
1836}
1da177e4 1837
67fed459
DM
1838static inline void __skb_queue_splice(const struct sk_buff_head *list,
1839 struct sk_buff *prev,
1840 struct sk_buff *next)
1841{
1842 struct sk_buff *first = list->next;
1843 struct sk_buff *last = list->prev;
1844
1845 first->prev = prev;
1846 prev->next = first;
1847
1848 last->next = next;
1849 next->prev = last;
1850}
1851
1852/**
1853 * skb_queue_splice - join two skb lists, this is designed for stacks
1854 * @list: the new list to add
1855 * @head: the place to add it in the first list
1856 */
1857static inline void skb_queue_splice(const struct sk_buff_head *list,
1858 struct sk_buff_head *head)
1859{
1860 if (!skb_queue_empty(list)) {
1861 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1862 head->qlen += list->qlen;
67fed459
DM
1863 }
1864}
1865
1866/**
d9619496 1867 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1868 * @list: the new list to add
1869 * @head: the place to add it in the first list
1870 *
1871 * The list at @list is reinitialised
1872 */
1873static inline void skb_queue_splice_init(struct sk_buff_head *list,
1874 struct sk_buff_head *head)
1875{
1876 if (!skb_queue_empty(list)) {
1877 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1878 head->qlen += list->qlen;
67fed459
DM
1879 __skb_queue_head_init(list);
1880 }
1881}
1882
1883/**
1884 * skb_queue_splice_tail - join two skb lists, each list being a queue
1885 * @list: the new list to add
1886 * @head: the place to add it in the first list
1887 */
1888static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1889 struct sk_buff_head *head)
1890{
1891 if (!skb_queue_empty(list)) {
1892 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1893 head->qlen += list->qlen;
67fed459
DM
1894 }
1895}
1896
1897/**
d9619496 1898 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1899 * @list: the new list to add
1900 * @head: the place to add it in the first list
1901 *
1902 * Each of the lists is a queue.
1903 * The list at @list is reinitialised
1904 */
1905static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1906 struct sk_buff_head *head)
1907{
1908 if (!skb_queue_empty(list)) {
1909 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1910 head->qlen += list->qlen;
67fed459
DM
1911 __skb_queue_head_init(list);
1912 }
1913}
1914
1da177e4 1915/**
300ce174 1916 * __skb_queue_after - queue a buffer at the list head
1da177e4 1917 * @list: list to use
300ce174 1918 * @prev: place after this buffer
1da177e4
LT
1919 * @newsk: buffer to queue
1920 *
300ce174 1921 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1922 * and you must therefore hold required locks before calling it.
1923 *
1924 * A buffer cannot be placed on two lists at the same time.
1925 */
300ce174
SH
1926static inline void __skb_queue_after(struct sk_buff_head *list,
1927 struct sk_buff *prev,
1928 struct sk_buff *newsk)
1da177e4 1929{
bf299275 1930 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1931}
1932
7965bd4d
JP
1933void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1934 struct sk_buff_head *list);
7de6c033 1935
f5572855
GR
1936static inline void __skb_queue_before(struct sk_buff_head *list,
1937 struct sk_buff *next,
1938 struct sk_buff *newsk)
1939{
1940 __skb_insert(newsk, next->prev, next, list);
1941}
1942
300ce174
SH
1943/**
1944 * __skb_queue_head - queue a buffer at the list head
1945 * @list: list to use
1946 * @newsk: buffer to queue
1947 *
1948 * Queue a buffer at the start of a list. This function takes no locks
1949 * and you must therefore hold required locks before calling it.
1950 *
1951 * A buffer cannot be placed on two lists at the same time.
1952 */
300ce174
SH
1953static inline void __skb_queue_head(struct sk_buff_head *list,
1954 struct sk_buff *newsk)
1955{
1956 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1957}
4ea7b0cf 1958void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174 1959
1da177e4
LT
1960/**
1961 * __skb_queue_tail - queue a buffer at the list tail
1962 * @list: list to use
1963 * @newsk: buffer to queue
1964 *
1965 * Queue a buffer at the end of a list. This function takes no locks
1966 * and you must therefore hold required locks before calling it.
1967 *
1968 * A buffer cannot be placed on two lists at the same time.
1969 */
1da177e4
LT
1970static inline void __skb_queue_tail(struct sk_buff_head *list,
1971 struct sk_buff *newsk)
1972{
f5572855 1973 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4 1974}
4ea7b0cf 1975void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4 1976
1da177e4
LT
1977/*
1978 * remove sk_buff from list. _Must_ be called atomically, and with
1979 * the list known..
1980 */
7965bd4d 1981void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1982static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1983{
1984 struct sk_buff *next, *prev;
1985
1986 list->qlen--;
1987 next = skb->next;
1988 prev = skb->prev;
1989 skb->next = skb->prev = NULL;
1da177e4
LT
1990 next->prev = prev;
1991 prev->next = next;
1992}
1993
f525c06d
GR
1994/**
1995 * __skb_dequeue - remove from the head of the queue
1996 * @list: list to dequeue from
1997 *
1998 * Remove the head of the list. This function does not take any locks
1999 * so must be used with appropriate locks held only. The head item is
2000 * returned or %NULL if the list is empty.
2001 */
f525c06d
GR
2002static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2003{
2004 struct sk_buff *skb = skb_peek(list);
2005 if (skb)
2006 __skb_unlink(skb, list);
2007 return skb;
2008}
4ea7b0cf 2009struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1da177e4
LT
2010
2011/**
2012 * __skb_dequeue_tail - remove from the tail of the queue
2013 * @list: list to dequeue from
2014 *
2015 * Remove the tail of the list. This function does not take any locks
2016 * so must be used with appropriate locks held only. The tail item is
2017 * returned or %NULL if the list is empty.
2018 */
1da177e4
LT
2019static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2020{
2021 struct sk_buff *skb = skb_peek_tail(list);
2022 if (skb)
2023 __skb_unlink(skb, list);
2024 return skb;
2025}
4ea7b0cf 2026struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
2027
2028
bdcc0924 2029static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
2030{
2031 return skb->data_len;
2032}
2033
2034static inline unsigned int skb_headlen(const struct sk_buff *skb)
2035{
2036 return skb->len - skb->data_len;
2037}
2038
3ece7826 2039static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 2040{
c72d8cda 2041 unsigned int i, len = 0;
1da177e4 2042
c72d8cda 2043 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 2044 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
2045 return len;
2046}
2047
2048static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2049{
2050 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
2051}
2052
131ea667
IC
2053/**
2054 * __skb_fill_page_desc - initialise a paged fragment in an skb
2055 * @skb: buffer containing fragment to be initialised
2056 * @i: paged fragment index to initialise
2057 * @page: the page to use for this fragment
2058 * @off: the offset to the data with @page
2059 * @size: the length of the data
2060 *
2061 * Initialises the @i'th fragment of @skb to point to &size bytes at
2062 * offset @off within @page.
2063 *
2064 * Does not take any additional reference on the fragment.
2065 */
2066static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2067 struct page *page, int off, int size)
1da177e4
LT
2068{
2069 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2070
c48a11c7 2071 /*
2f064f34
MH
2072 * Propagate page pfmemalloc to the skb if we can. The problem is
2073 * that not all callers have unique ownership of the page but rely
2074 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 2075 */
a8605c60 2076 frag->page.p = page;
1da177e4 2077 frag->page_offset = off;
9e903e08 2078 skb_frag_size_set(frag, size);
cca7af38
PE
2079
2080 page = compound_head(page);
2f064f34 2081 if (page_is_pfmemalloc(page))
cca7af38 2082 skb->pfmemalloc = true;
131ea667
IC
2083}
2084
2085/**
2086 * skb_fill_page_desc - initialise a paged fragment in an skb
2087 * @skb: buffer containing fragment to be initialised
2088 * @i: paged fragment index to initialise
2089 * @page: the page to use for this fragment
2090 * @off: the offset to the data with @page
2091 * @size: the length of the data
2092 *
2093 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 2094 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
2095 * addition updates @skb such that @i is the last fragment.
2096 *
2097 * Does not take any additional reference on the fragment.
2098 */
2099static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2100 struct page *page, int off, int size)
2101{
2102 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
2103 skb_shinfo(skb)->nr_frags = i + 1;
2104}
2105
7965bd4d
JP
2106void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2107 int size, unsigned int truesize);
654bed16 2108
f8e617e1
JW
2109void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2110 unsigned int truesize);
2111
1da177e4
LT
2112#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2113
27a884dc
ACM
2114#ifdef NET_SKBUFF_DATA_USES_OFFSET
2115static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2116{
2117 return skb->head + skb->tail;
2118}
2119
2120static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2121{
2122 skb->tail = skb->data - skb->head;
2123}
2124
2125static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2126{
2127 skb_reset_tail_pointer(skb);
2128 skb->tail += offset;
2129}
7cc46190 2130
27a884dc
ACM
2131#else /* NET_SKBUFF_DATA_USES_OFFSET */
2132static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2133{
2134 return skb->tail;
2135}
2136
2137static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2138{
2139 skb->tail = skb->data;
2140}
2141
2142static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2143{
2144 skb->tail = skb->data + offset;
2145}
4305b541 2146
27a884dc
ACM
2147#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2148
1da177e4
LT
2149/*
2150 * Add data to an sk_buff
2151 */
4df864c1
JB
2152void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2153void *skb_put(struct sk_buff *skb, unsigned int len);
2154static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2155{
4df864c1 2156 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2157 SKB_LINEAR_ASSERT(skb);
2158 skb->tail += len;
2159 skb->len += len;
2160 return tmp;
2161}
2162
de77b966 2163static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2164{
2165 void *tmp = __skb_put(skb, len);
2166
2167 memset(tmp, 0, len);
2168 return tmp;
2169}
2170
2171static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2172 unsigned int len)
2173{
2174 void *tmp = __skb_put(skb, len);
2175
2176 memcpy(tmp, data, len);
2177 return tmp;
2178}
2179
2180static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2181{
2182 *(u8 *)__skb_put(skb, 1) = val;
2183}
2184
83ad357d 2185static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2186{
83ad357d 2187 void *tmp = skb_put(skb, len);
e45a79da
JB
2188
2189 memset(tmp, 0, len);
2190
2191 return tmp;
2192}
2193
59ae1d12
JB
2194static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2195 unsigned int len)
2196{
2197 void *tmp = skb_put(skb, len);
2198
2199 memcpy(tmp, data, len);
2200
2201 return tmp;
2202}
2203
634fef61
JB
2204static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2205{
2206 *(u8 *)skb_put(skb, 1) = val;
2207}
2208
d58ff351
JB
2209void *skb_push(struct sk_buff *skb, unsigned int len);
2210static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2211{
2212 skb->data -= len;
2213 skb->len += len;
2214 return skb->data;
2215}
2216
af72868b
JB
2217void *skb_pull(struct sk_buff *skb, unsigned int len);
2218static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2219{
2220 skb->len -= len;
2221 BUG_ON(skb->len < skb->data_len);
2222 return skb->data += len;
2223}
2224
af72868b 2225static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2226{
2227 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2228}
2229
af72868b 2230void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2231
af72868b 2232static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2233{
2234 if (len > skb_headlen(skb) &&
987c402a 2235 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2236 return NULL;
2237 skb->len -= len;
2238 return skb->data += len;
2239}
2240
af72868b 2241static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2242{
2243 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2244}
2245
2246static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2247{
2248 if (likely(len <= skb_headlen(skb)))
2249 return 1;
2250 if (unlikely(len > skb->len))
2251 return 0;
987c402a 2252 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2253}
2254
c8c8b127
ED
2255void skb_condense(struct sk_buff *skb);
2256
1da177e4
LT
2257/**
2258 * skb_headroom - bytes at buffer head
2259 * @skb: buffer to check
2260 *
2261 * Return the number of bytes of free space at the head of an &sk_buff.
2262 */
c2636b4d 2263static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2264{
2265 return skb->data - skb->head;
2266}
2267
2268/**
2269 * skb_tailroom - bytes at buffer end
2270 * @skb: buffer to check
2271 *
2272 * Return the number of bytes of free space at the tail of an sk_buff
2273 */
2274static inline int skb_tailroom(const struct sk_buff *skb)
2275{
4305b541 2276 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2277}
2278
a21d4572
ED
2279/**
2280 * skb_availroom - bytes at buffer end
2281 * @skb: buffer to check
2282 *
2283 * Return the number of bytes of free space at the tail of an sk_buff
2284 * allocated by sk_stream_alloc()
2285 */
2286static inline int skb_availroom(const struct sk_buff *skb)
2287{
16fad69c
ED
2288 if (skb_is_nonlinear(skb))
2289 return 0;
2290
2291 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2292}
2293
1da177e4
LT
2294/**
2295 * skb_reserve - adjust headroom
2296 * @skb: buffer to alter
2297 * @len: bytes to move
2298 *
2299 * Increase the headroom of an empty &sk_buff by reducing the tail
2300 * room. This is only allowed for an empty buffer.
2301 */
8243126c 2302static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2303{
2304 skb->data += len;
2305 skb->tail += len;
2306}
2307
1837b2e2
BP
2308/**
2309 * skb_tailroom_reserve - adjust reserved_tailroom
2310 * @skb: buffer to alter
2311 * @mtu: maximum amount of headlen permitted
2312 * @needed_tailroom: minimum amount of reserved_tailroom
2313 *
2314 * Set reserved_tailroom so that headlen can be as large as possible but
2315 * not larger than mtu and tailroom cannot be smaller than
2316 * needed_tailroom.
2317 * The required headroom should already have been reserved before using
2318 * this function.
2319 */
2320static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2321 unsigned int needed_tailroom)
2322{
2323 SKB_LINEAR_ASSERT(skb);
2324 if (mtu < skb_tailroom(skb) - needed_tailroom)
2325 /* use at most mtu */
2326 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2327 else
2328 /* use up to all available space */
2329 skb->reserved_tailroom = needed_tailroom;
2330}
2331
8bce6d7d
TH
2332#define ENCAP_TYPE_ETHER 0
2333#define ENCAP_TYPE_IPPROTO 1
2334
2335static inline void skb_set_inner_protocol(struct sk_buff *skb,
2336 __be16 protocol)
2337{
2338 skb->inner_protocol = protocol;
2339 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2340}
2341
2342static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2343 __u8 ipproto)
2344{
2345 skb->inner_ipproto = ipproto;
2346 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2347}
2348
6a674e9c
JG
2349static inline void skb_reset_inner_headers(struct sk_buff *skb)
2350{
aefbd2b3 2351 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2352 skb->inner_network_header = skb->network_header;
2353 skb->inner_transport_header = skb->transport_header;
2354}
2355
0b5c9db1
JP
2356static inline void skb_reset_mac_len(struct sk_buff *skb)
2357{
2358 skb->mac_len = skb->network_header - skb->mac_header;
2359}
2360
6a674e9c
JG
2361static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2362 *skb)
2363{
2364 return skb->head + skb->inner_transport_header;
2365}
2366
55dc5a9f
TH
2367static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2368{
2369 return skb_inner_transport_header(skb) - skb->data;
2370}
2371
6a674e9c
JG
2372static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2373{
2374 skb->inner_transport_header = skb->data - skb->head;
2375}
2376
2377static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2378 const int offset)
2379{
2380 skb_reset_inner_transport_header(skb);
2381 skb->inner_transport_header += offset;
2382}
2383
2384static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2385{
2386 return skb->head + skb->inner_network_header;
2387}
2388
2389static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2390{
2391 skb->inner_network_header = skb->data - skb->head;
2392}
2393
2394static inline void skb_set_inner_network_header(struct sk_buff *skb,
2395 const int offset)
2396{
2397 skb_reset_inner_network_header(skb);
2398 skb->inner_network_header += offset;
2399}
2400
aefbd2b3
PS
2401static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2402{
2403 return skb->head + skb->inner_mac_header;
2404}
2405
2406static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2407{
2408 skb->inner_mac_header = skb->data - skb->head;
2409}
2410
2411static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2412 const int offset)
2413{
2414 skb_reset_inner_mac_header(skb);
2415 skb->inner_mac_header += offset;
2416}
fda55eca
ED
2417static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2418{
35d04610 2419 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2420}
2421
9c70220b
ACM
2422static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2423{
2e07fa9c 2424 return skb->head + skb->transport_header;
9c70220b
ACM
2425}
2426
badff6d0
ACM
2427static inline void skb_reset_transport_header(struct sk_buff *skb)
2428{
2e07fa9c 2429 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2430}
2431
967b05f6
ACM
2432static inline void skb_set_transport_header(struct sk_buff *skb,
2433 const int offset)
2434{
2e07fa9c
ACM
2435 skb_reset_transport_header(skb);
2436 skb->transport_header += offset;
ea2ae17d
ACM
2437}
2438
d56f90a7
ACM
2439static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2440{
2e07fa9c 2441 return skb->head + skb->network_header;
d56f90a7
ACM
2442}
2443
c1d2bbe1
ACM
2444static inline void skb_reset_network_header(struct sk_buff *skb)
2445{
2e07fa9c 2446 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2447}
2448
c14d2450
ACM
2449static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2450{
2e07fa9c
ACM
2451 skb_reset_network_header(skb);
2452 skb->network_header += offset;
c14d2450
ACM
2453}
2454
2e07fa9c 2455static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2456{
2e07fa9c 2457 return skb->head + skb->mac_header;
bbe735e4
ACM
2458}
2459
ea6da4fd
AV
2460static inline int skb_mac_offset(const struct sk_buff *skb)
2461{
2462 return skb_mac_header(skb) - skb->data;
2463}
2464
0daf4349
DB
2465static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2466{
2467 return skb->network_header - skb->mac_header;
2468}
2469
2e07fa9c 2470static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2471{
35d04610 2472 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2473}
2474
2475static inline void skb_reset_mac_header(struct sk_buff *skb)
2476{
2477 skb->mac_header = skb->data - skb->head;
2478}
2479
2480static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2481{
2482 skb_reset_mac_header(skb);
2483 skb->mac_header += offset;
2484}
2485
0e3da5bb
TT
2486static inline void skb_pop_mac_header(struct sk_buff *skb)
2487{
2488 skb->mac_header = skb->network_header;
2489}
2490
d2aa125d 2491static inline void skb_probe_transport_header(struct sk_buff *skb)
fbbdb8f0 2492{
72a338bc 2493 struct flow_keys_basic keys;
fbbdb8f0
YX
2494
2495 if (skb_transport_header_was_set(skb))
2496 return;
72a338bc 2497
3cbf4ffb
SF
2498 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2499 NULL, 0, 0, 0, 0))
42aecaa9 2500 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2501}
2502
03606895
ED
2503static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2504{
2505 if (skb_mac_header_was_set(skb)) {
2506 const unsigned char *old_mac = skb_mac_header(skb);
2507
2508 skb_set_mac_header(skb, -skb->mac_len);
2509 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2510 }
2511}
2512
04fb451e
MM
2513static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2514{
2515 return skb->csum_start - skb_headroom(skb);
2516}
2517
08b64fcc
AD
2518static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2519{
2520 return skb->head + skb->csum_start;
2521}
2522
2e07fa9c
ACM
2523static inline int skb_transport_offset(const struct sk_buff *skb)
2524{
2525 return skb_transport_header(skb) - skb->data;
2526}
2527
2528static inline u32 skb_network_header_len(const struct sk_buff *skb)
2529{
2530 return skb->transport_header - skb->network_header;
2531}
2532
6a674e9c
JG
2533static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2534{
2535 return skb->inner_transport_header - skb->inner_network_header;
2536}
2537
2e07fa9c
ACM
2538static inline int skb_network_offset(const struct sk_buff *skb)
2539{
2540 return skb_network_header(skb) - skb->data;
2541}
48d49d0c 2542
6a674e9c
JG
2543static inline int skb_inner_network_offset(const struct sk_buff *skb)
2544{
2545 return skb_inner_network_header(skb) - skb->data;
2546}
2547
f9599ce1
CG
2548static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2549{
2550 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2551}
2552
1da177e4
LT
2553/*
2554 * CPUs often take a performance hit when accessing unaligned memory
2555 * locations. The actual performance hit varies, it can be small if the
2556 * hardware handles it or large if we have to take an exception and fix it
2557 * in software.
2558 *
2559 * Since an ethernet header is 14 bytes network drivers often end up with
2560 * the IP header at an unaligned offset. The IP header can be aligned by
2561 * shifting the start of the packet by 2 bytes. Drivers should do this
2562 * with:
2563 *
8660c124 2564 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2565 *
2566 * The downside to this alignment of the IP header is that the DMA is now
2567 * unaligned. On some architectures the cost of an unaligned DMA is high
2568 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2569 *
1da177e4
LT
2570 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2571 * to be overridden.
2572 */
2573#ifndef NET_IP_ALIGN
2574#define NET_IP_ALIGN 2
2575#endif
2576
025be81e
AB
2577/*
2578 * The networking layer reserves some headroom in skb data (via
2579 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2580 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2581 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2582 *
2583 * Unfortunately this headroom changes the DMA alignment of the resulting
2584 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2585 * on some architectures. An architecture can override this value,
2586 * perhaps setting it to a cacheline in size (since that will maintain
2587 * cacheline alignment of the DMA). It must be a power of 2.
2588 *
d6301d3d 2589 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2590 * headroom, you should not reduce this.
5933dd2f
ED
2591 *
2592 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2593 * to reduce average number of cache lines per packet.
2594 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2595 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2596 */
2597#ifndef NET_SKB_PAD
5933dd2f 2598#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2599#endif
2600
7965bd4d 2601int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2602
5293efe6 2603static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2604{
5e1abdc3 2605 if (WARN_ON(skb_is_nonlinear(skb)))
3cc0e873 2606 return;
27a884dc
ACM
2607 skb->len = len;
2608 skb_set_tail_pointer(skb, len);
1da177e4
LT
2609}
2610
5293efe6
DB
2611static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2612{
2613 __skb_set_length(skb, len);
2614}
2615
7965bd4d 2616void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2617
2618static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2619{
3cc0e873
HX
2620 if (skb->data_len)
2621 return ___pskb_trim(skb, len);
2622 __skb_trim(skb, len);
2623 return 0;
1da177e4
LT
2624}
2625
2626static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2627{
2628 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2629}
2630
e9fa4f7b
HX
2631/**
2632 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2633 * @skb: buffer to alter
2634 * @len: new length
2635 *
2636 * This is identical to pskb_trim except that the caller knows that
2637 * the skb is not cloned so we should never get an error due to out-
2638 * of-memory.
2639 */
2640static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2641{
2642 int err = pskb_trim(skb, len);
2643 BUG_ON(err);
2644}
2645
5293efe6
DB
2646static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2647{
2648 unsigned int diff = len - skb->len;
2649
2650 if (skb_tailroom(skb) < diff) {
2651 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2652 GFP_ATOMIC);
2653 if (ret)
2654 return ret;
2655 }
2656 __skb_set_length(skb, len);
2657 return 0;
2658}
2659
1da177e4
LT
2660/**
2661 * skb_orphan - orphan a buffer
2662 * @skb: buffer to orphan
2663 *
2664 * If a buffer currently has an owner then we call the owner's
2665 * destructor function and make the @skb unowned. The buffer continues
2666 * to exist but is no longer charged to its former owner.
2667 */
2668static inline void skb_orphan(struct sk_buff *skb)
2669{
c34a7612 2670 if (skb->destructor) {
1da177e4 2671 skb->destructor(skb);
c34a7612
ED
2672 skb->destructor = NULL;
2673 skb->sk = NULL;
376c7311
ED
2674 } else {
2675 BUG_ON(skb->sk);
c34a7612 2676 }
1da177e4
LT
2677}
2678
a353e0ce
MT
2679/**
2680 * skb_orphan_frags - orphan the frags contained in a buffer
2681 * @skb: buffer to orphan frags from
2682 * @gfp_mask: allocation mask for replacement pages
2683 *
2684 * For each frag in the SKB which needs a destructor (i.e. has an
2685 * owner) create a copy of that frag and release the original
2686 * page by calling the destructor.
2687 */
2688static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2689{
1f8b977a
WB
2690 if (likely(!skb_zcopy(skb)))
2691 return 0;
185ce5c3
WB
2692 if (!skb_zcopy_is_nouarg(skb) &&
2693 skb_uarg(skb)->callback == sock_zerocopy_callback)
1f8b977a
WB
2694 return 0;
2695 return skb_copy_ubufs(skb, gfp_mask);
2696}
2697
2698/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2699static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2700{
2701 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2702 return 0;
2703 return skb_copy_ubufs(skb, gfp_mask);
2704}
2705
1da177e4
LT
2706/**
2707 * __skb_queue_purge - empty a list
2708 * @list: list to empty
2709 *
2710 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2711 * the list and one reference dropped. This function does not take the
2712 * list lock and the caller must hold the relevant locks to use it.
2713 */
1da177e4
LT
2714static inline void __skb_queue_purge(struct sk_buff_head *list)
2715{
2716 struct sk_buff *skb;
2717 while ((skb = __skb_dequeue(list)) != NULL)
2718 kfree_skb(skb);
2719}
4ea7b0cf 2720void skb_queue_purge(struct sk_buff_head *list);
1da177e4 2721
385114de 2722unsigned int skb_rbtree_purge(struct rb_root *root);
9f5afeae 2723
7965bd4d 2724void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2725
7965bd4d
JP
2726struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2727 gfp_t gfp_mask);
8af27456
CH
2728
2729/**
2730 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2731 * @dev: network device to receive on
2732 * @length: length to allocate
2733 *
2734 * Allocate a new &sk_buff and assign it a usage count of one. The
2735 * buffer has unspecified headroom built in. Users should allocate
2736 * the headroom they think they need without accounting for the
2737 * built in space. The built in space is used for optimisations.
2738 *
2739 * %NULL is returned if there is no free memory. Although this function
2740 * allocates memory it can be called from an interrupt.
2741 */
2742static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2743 unsigned int length)
8af27456
CH
2744{
2745 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2746}
2747
6f532612
ED
2748/* legacy helper around __netdev_alloc_skb() */
2749static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2750 gfp_t gfp_mask)
2751{
2752 return __netdev_alloc_skb(NULL, length, gfp_mask);
2753}
2754
2755/* legacy helper around netdev_alloc_skb() */
2756static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2757{
2758 return netdev_alloc_skb(NULL, length);
2759}
2760
2761
4915a0de
ED
2762static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2763 unsigned int length, gfp_t gfp)
61321bbd 2764{
4915a0de 2765 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2766
2767 if (NET_IP_ALIGN && skb)
2768 skb_reserve(skb, NET_IP_ALIGN);
2769 return skb;
2770}
2771
4915a0de
ED
2772static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2773 unsigned int length)
2774{
2775 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2776}
2777
181edb2b
AD
2778static inline void skb_free_frag(void *addr)
2779{
8c2dd3e4 2780 page_frag_free(addr);
181edb2b
AD
2781}
2782
ffde7328 2783void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2784struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2785 unsigned int length, gfp_t gfp_mask);
2786static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2787 unsigned int length)
2788{
2789 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2790}
795bb1c0
JDB
2791void napi_consume_skb(struct sk_buff *skb, int budget);
2792
2793void __kfree_skb_flush(void);
15fad714 2794void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2795
71dfda58
AD
2796/**
2797 * __dev_alloc_pages - allocate page for network Rx
2798 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2799 * @order: size of the allocation
2800 *
2801 * Allocate a new page.
2802 *
2803 * %NULL is returned if there is no free memory.
2804*/
2805static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2806 unsigned int order)
2807{
2808 /* This piece of code contains several assumptions.
2809 * 1. This is for device Rx, therefor a cold page is preferred.
2810 * 2. The expectation is the user wants a compound page.
2811 * 3. If requesting a order 0 page it will not be compound
2812 * due to the check to see if order has a value in prep_new_page
2813 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2814 * code in gfp_to_alloc_flags that should be enforcing this.
2815 */
453f85d4 2816 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
71dfda58
AD
2817
2818 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2819}
2820
2821static inline struct page *dev_alloc_pages(unsigned int order)
2822{
95829b3a 2823 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2824}
2825
2826/**
2827 * __dev_alloc_page - allocate a page for network Rx
2828 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2829 *
2830 * Allocate a new page.
2831 *
2832 * %NULL is returned if there is no free memory.
2833 */
2834static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2835{
2836 return __dev_alloc_pages(gfp_mask, 0);
2837}
2838
2839static inline struct page *dev_alloc_page(void)
2840{
95829b3a 2841 return dev_alloc_pages(0);
71dfda58
AD
2842}
2843
0614002b
MG
2844/**
2845 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2846 * @page: The page that was allocated from skb_alloc_page
2847 * @skb: The skb that may need pfmemalloc set
2848 */
2849static inline void skb_propagate_pfmemalloc(struct page *page,
2850 struct sk_buff *skb)
2851{
2f064f34 2852 if (page_is_pfmemalloc(page))
0614002b
MG
2853 skb->pfmemalloc = true;
2854}
2855
131ea667 2856/**
e227867f 2857 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2858 * @frag: the paged fragment
2859 *
2860 * Returns the &struct page associated with @frag.
2861 */
2862static inline struct page *skb_frag_page(const skb_frag_t *frag)
2863{
a8605c60 2864 return frag->page.p;
131ea667
IC
2865}
2866
2867/**
2868 * __skb_frag_ref - take an addition reference on a paged fragment.
2869 * @frag: the paged fragment
2870 *
2871 * Takes an additional reference on the paged fragment @frag.
2872 */
2873static inline void __skb_frag_ref(skb_frag_t *frag)
2874{
2875 get_page(skb_frag_page(frag));
2876}
2877
2878/**
2879 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2880 * @skb: the buffer
2881 * @f: the fragment offset.
2882 *
2883 * Takes an additional reference on the @f'th paged fragment of @skb.
2884 */
2885static inline void skb_frag_ref(struct sk_buff *skb, int f)
2886{
2887 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2888}
2889
2890/**
2891 * __skb_frag_unref - release a reference on a paged fragment.
2892 * @frag: the paged fragment
2893 *
2894 * Releases a reference on the paged fragment @frag.
2895 */
2896static inline void __skb_frag_unref(skb_frag_t *frag)
2897{
2898 put_page(skb_frag_page(frag));
2899}
2900
2901/**
2902 * skb_frag_unref - release a reference on a paged fragment of an skb.
2903 * @skb: the buffer
2904 * @f: the fragment offset
2905 *
2906 * Releases a reference on the @f'th paged fragment of @skb.
2907 */
2908static inline void skb_frag_unref(struct sk_buff *skb, int f)
2909{
2910 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2911}
2912
2913/**
2914 * skb_frag_address - gets the address of the data contained in a paged fragment
2915 * @frag: the paged fragment buffer
2916 *
2917 * Returns the address of the data within @frag. The page must already
2918 * be mapped.
2919 */
2920static inline void *skb_frag_address(const skb_frag_t *frag)
2921{
2922 return page_address(skb_frag_page(frag)) + frag->page_offset;
2923}
2924
2925/**
2926 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2927 * @frag: the paged fragment buffer
2928 *
2929 * Returns the address of the data within @frag. Checks that the page
2930 * is mapped and returns %NULL otherwise.
2931 */
2932static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2933{
2934 void *ptr = page_address(skb_frag_page(frag));
2935 if (unlikely(!ptr))
2936 return NULL;
2937
2938 return ptr + frag->page_offset;
2939}
2940
2941/**
2942 * __skb_frag_set_page - sets the page contained in a paged fragment
2943 * @frag: the paged fragment
2944 * @page: the page to set
2945 *
2946 * Sets the fragment @frag to contain @page.
2947 */
2948static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2949{
a8605c60 2950 frag->page.p = page;
131ea667
IC
2951}
2952
2953/**
2954 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2955 * @skb: the buffer
2956 * @f: the fragment offset
2957 * @page: the page to set
2958 *
2959 * Sets the @f'th fragment of @skb to contain @page.
2960 */
2961static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2962 struct page *page)
2963{
2964 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2965}
2966
400dfd3a
ED
2967bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2968
131ea667
IC
2969/**
2970 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2971 * @dev: the device to map the fragment to
131ea667
IC
2972 * @frag: the paged fragment to map
2973 * @offset: the offset within the fragment (starting at the
2974 * fragment's own offset)
2975 * @size: the number of bytes to map
771b00a8 2976 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
2977 *
2978 * Maps the page associated with @frag to @device.
2979 */
2980static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2981 const skb_frag_t *frag,
2982 size_t offset, size_t size,
2983 enum dma_data_direction dir)
2984{
2985 return dma_map_page(dev, skb_frag_page(frag),
2986 frag->page_offset + offset, size, dir);
2987}
2988
117632e6
ED
2989static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2990 gfp_t gfp_mask)
2991{
2992 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2993}
2994
bad93e9d
OP
2995
2996static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2997 gfp_t gfp_mask)
2998{
2999 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3000}
3001
3002
334a8132
PM
3003/**
3004 * skb_clone_writable - is the header of a clone writable
3005 * @skb: buffer to check
3006 * @len: length up to which to write
3007 *
3008 * Returns true if modifying the header part of the cloned buffer
3009 * does not requires the data to be copied.
3010 */
05bdd2f1 3011static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
3012{
3013 return !skb_header_cloned(skb) &&
3014 skb_headroom(skb) + len <= skb->hdr_len;
3015}
3016
3697649f
DB
3017static inline int skb_try_make_writable(struct sk_buff *skb,
3018 unsigned int write_len)
3019{
3020 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3021 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3022}
3023
d9cc2048
HX
3024static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3025 int cloned)
3026{
3027 int delta = 0;
3028
d9cc2048
HX
3029 if (headroom > skb_headroom(skb))
3030 delta = headroom - skb_headroom(skb);
3031
3032 if (delta || cloned)
3033 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3034 GFP_ATOMIC);
3035 return 0;
3036}
3037
1da177e4
LT
3038/**
3039 * skb_cow - copy header of skb when it is required
3040 * @skb: buffer to cow
3041 * @headroom: needed headroom
3042 *
3043 * If the skb passed lacks sufficient headroom or its data part
3044 * is shared, data is reallocated. If reallocation fails, an error
3045 * is returned and original skb is not changed.
3046 *
3047 * The result is skb with writable area skb->head...skb->tail
3048 * and at least @headroom of space at head.
3049 */
3050static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3051{
d9cc2048
HX
3052 return __skb_cow(skb, headroom, skb_cloned(skb));
3053}
1da177e4 3054
d9cc2048
HX
3055/**
3056 * skb_cow_head - skb_cow but only making the head writable
3057 * @skb: buffer to cow
3058 * @headroom: needed headroom
3059 *
3060 * This function is identical to skb_cow except that we replace the
3061 * skb_cloned check by skb_header_cloned. It should be used when
3062 * you only need to push on some header and do not need to modify
3063 * the data.
3064 */
3065static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3066{
3067 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
3068}
3069
3070/**
3071 * skb_padto - pad an skbuff up to a minimal size
3072 * @skb: buffer to pad
3073 * @len: minimal length
3074 *
3075 * Pads up a buffer to ensure the trailing bytes exist and are
3076 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
3077 * is untouched. Otherwise it is extended. Returns zero on
3078 * success. The skb is freed on error.
1da177e4 3079 */
5b057c6b 3080static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
3081{
3082 unsigned int size = skb->len;
3083 if (likely(size >= len))
5b057c6b 3084 return 0;
987c402a 3085 return skb_pad(skb, len - size);
1da177e4
LT
3086}
3087
9c0c1124 3088/**
4ea7b0cf 3089 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
9c0c1124
AD
3090 * @skb: buffer to pad
3091 * @len: minimal length
cd0a137a 3092 * @free_on_error: free buffer on error
9c0c1124
AD
3093 *
3094 * Pads up a buffer to ensure the trailing bytes exist and are
3095 * blanked. If the buffer already contains sufficient data it
3096 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 3097 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 3098 */
cd0a137a
FF
3099static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3100 bool free_on_error)
9c0c1124
AD
3101{
3102 unsigned int size = skb->len;
3103
3104 if (unlikely(size < len)) {
3105 len -= size;
cd0a137a 3106 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
3107 return -ENOMEM;
3108 __skb_put(skb, len);
3109 }
3110 return 0;
3111}
3112
cd0a137a
FF
3113/**
3114 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3115 * @skb: buffer to pad
3116 * @len: minimal length
3117 *
3118 * Pads up a buffer to ensure the trailing bytes exist and are
3119 * blanked. If the buffer already contains sufficient data it
3120 * is untouched. Otherwise it is extended. Returns zero on
3121 * success. The skb is freed on error.
3122 */
3123static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3124{
3125 return __skb_put_padto(skb, len, true);
3126}
3127
1da177e4 3128static inline int skb_add_data(struct sk_buff *skb,
af2b040e 3129 struct iov_iter *from, int copy)
1da177e4
LT
3130{
3131 const int off = skb->len;
3132
3133 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 3134 __wsum csum = 0;
15e6cb46
AV
3135 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3136 &csum, from)) {
1da177e4
LT
3137 skb->csum = csum_block_add(skb->csum, csum, off);
3138 return 0;
3139 }
15e6cb46 3140 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3141 return 0;
3142
3143 __skb_trim(skb, off);
3144 return -EFAULT;
3145}
3146
38ba0a65
ED
3147static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3148 const struct page *page, int off)
1da177e4 3149{
1f8b977a
WB
3150 if (skb_zcopy(skb))
3151 return false;
1da177e4 3152 if (i) {
9e903e08 3153 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3154
ea2ab693 3155 return page == skb_frag_page(frag) &&
9e903e08 3156 off == frag->page_offset + skb_frag_size(frag);
1da177e4 3157 }
38ba0a65 3158 return false;
1da177e4
LT
3159}
3160
364c6bad
HX
3161static inline int __skb_linearize(struct sk_buff *skb)
3162{
3163 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3164}
3165
1da177e4
LT
3166/**
3167 * skb_linearize - convert paged skb to linear one
3168 * @skb: buffer to linarize
1da177e4
LT
3169 *
3170 * If there is no free memory -ENOMEM is returned, otherwise zero
3171 * is returned and the old skb data released.
3172 */
364c6bad
HX
3173static inline int skb_linearize(struct sk_buff *skb)
3174{
3175 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3176}
3177
cef401de
ED
3178/**
3179 * skb_has_shared_frag - can any frag be overwritten
3180 * @skb: buffer to test
3181 *
3182 * Return true if the skb has at least one frag that might be modified
3183 * by an external entity (as in vmsplice()/sendfile())
3184 */
3185static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3186{
c9af6db4
PS
3187 return skb_is_nonlinear(skb) &&
3188 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
3189}
3190
364c6bad
HX
3191/**
3192 * skb_linearize_cow - make sure skb is linear and writable
3193 * @skb: buffer to process
3194 *
3195 * If there is no free memory -ENOMEM is returned, otherwise zero
3196 * is returned and the old skb data released.
3197 */
3198static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3199{
364c6bad
HX
3200 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3201 __skb_linearize(skb) : 0;
1da177e4
LT
3202}
3203
479ffccc
DB
3204static __always_inline void
3205__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3206 unsigned int off)
3207{
3208 if (skb->ip_summed == CHECKSUM_COMPLETE)
3209 skb->csum = csum_block_sub(skb->csum,
3210 csum_partial(start, len, 0), off);
3211 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3212 skb_checksum_start_offset(skb) < 0)
3213 skb->ip_summed = CHECKSUM_NONE;
3214}
3215
1da177e4
LT
3216/**
3217 * skb_postpull_rcsum - update checksum for received skb after pull
3218 * @skb: buffer to update
3219 * @start: start of data before pull
3220 * @len: length of data pulled
3221 *
3222 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3223 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3224 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3225 */
1da177e4 3226static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3227 const void *start, unsigned int len)
1da177e4 3228{
479ffccc 3229 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
3230}
3231
479ffccc
DB
3232static __always_inline void
3233__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3234 unsigned int off)
3235{
3236 if (skb->ip_summed == CHECKSUM_COMPLETE)
3237 skb->csum = csum_block_add(skb->csum,
3238 csum_partial(start, len, 0), off);
3239}
cbb042f9 3240
479ffccc
DB
3241/**
3242 * skb_postpush_rcsum - update checksum for received skb after push
3243 * @skb: buffer to update
3244 * @start: start of data after push
3245 * @len: length of data pushed
3246 *
3247 * After doing a push on a received packet, you need to call this to
3248 * update the CHECKSUM_COMPLETE checksum.
3249 */
f8ffad69
DB
3250static inline void skb_postpush_rcsum(struct sk_buff *skb,
3251 const void *start, unsigned int len)
3252{
479ffccc 3253 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3254}
3255
af72868b 3256void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3257
82a31b92
WC
3258/**
3259 * skb_push_rcsum - push skb and update receive checksum
3260 * @skb: buffer to update
3261 * @len: length of data pulled
3262 *
3263 * This function performs an skb_push on the packet and updates
3264 * the CHECKSUM_COMPLETE checksum. It should be used on
3265 * receive path processing instead of skb_push unless you know
3266 * that the checksum difference is zero (e.g., a valid IP header)
3267 * or you are setting ip_summed to CHECKSUM_NONE.
3268 */
d58ff351 3269static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3270{
3271 skb_push(skb, len);
3272 skb_postpush_rcsum(skb, skb->data, len);
3273 return skb->data;
3274}
3275
88078d98 3276int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
7ce5a27f
DM
3277/**
3278 * pskb_trim_rcsum - trim received skb and update checksum
3279 * @skb: buffer to trim
3280 * @len: new length
3281 *
3282 * This is exactly the same as pskb_trim except that it ensures the
3283 * checksum of received packets are still valid after the operation.
6c57f045 3284 * It can change skb pointers.
7ce5a27f
DM
3285 */
3286
3287static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3288{
3289 if (likely(len >= skb->len))
3290 return 0;
88078d98 3291 return pskb_trim_rcsum_slow(skb, len);
7ce5a27f
DM
3292}
3293
5293efe6
DB
3294static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3295{
3296 if (skb->ip_summed == CHECKSUM_COMPLETE)
3297 skb->ip_summed = CHECKSUM_NONE;
3298 __skb_trim(skb, len);
3299 return 0;
3300}
3301
3302static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3303{
3304 if (skb->ip_summed == CHECKSUM_COMPLETE)
3305 skb->ip_summed = CHECKSUM_NONE;
3306 return __skb_grow(skb, len);
3307}
3308
18a4c0ea
ED
3309#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3310#define skb_rb_first(root) rb_to_skb(rb_first(root))
3311#define skb_rb_last(root) rb_to_skb(rb_last(root))
3312#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3313#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3314
1da177e4
LT
3315#define skb_queue_walk(queue, skb) \
3316 for (skb = (queue)->next; \
a1e4891f 3317 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3318 skb = skb->next)
3319
46f8914e
JC
3320#define skb_queue_walk_safe(queue, skb, tmp) \
3321 for (skb = (queue)->next, tmp = skb->next; \
3322 skb != (struct sk_buff *)(queue); \
3323 skb = tmp, tmp = skb->next)
3324
1164f52a 3325#define skb_queue_walk_from(queue, skb) \
a1e4891f 3326 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3327 skb = skb->next)
3328
18a4c0ea
ED
3329#define skb_rbtree_walk(skb, root) \
3330 for (skb = skb_rb_first(root); skb != NULL; \
3331 skb = skb_rb_next(skb))
3332
3333#define skb_rbtree_walk_from(skb) \
3334 for (; skb != NULL; \
3335 skb = skb_rb_next(skb))
3336
3337#define skb_rbtree_walk_from_safe(skb, tmp) \
3338 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3339 skb = tmp)
3340
1164f52a
DM
3341#define skb_queue_walk_from_safe(queue, skb, tmp) \
3342 for (tmp = skb->next; \
3343 skb != (struct sk_buff *)(queue); \
3344 skb = tmp, tmp = skb->next)
3345
300ce174
SH
3346#define skb_queue_reverse_walk(queue, skb) \
3347 for (skb = (queue)->prev; \
a1e4891f 3348 skb != (struct sk_buff *)(queue); \
300ce174
SH
3349 skb = skb->prev)
3350
686a2955
DM
3351#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3352 for (skb = (queue)->prev, tmp = skb->prev; \
3353 skb != (struct sk_buff *)(queue); \
3354 skb = tmp, tmp = skb->prev)
3355
3356#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3357 for (tmp = skb->prev; \
3358 skb != (struct sk_buff *)(queue); \
3359 skb = tmp, tmp = skb->prev)
1da177e4 3360
21dc3301 3361static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3362{
3363 return skb_shinfo(skb)->frag_list != NULL;
3364}
3365
3366static inline void skb_frag_list_init(struct sk_buff *skb)
3367{
3368 skb_shinfo(skb)->frag_list = NULL;
3369}
3370
ee039871
DM
3371#define skb_walk_frags(skb, iter) \
3372 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3373
ea3793ee
RW
3374
3375int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3376 const struct sk_buff *skb);
65101aec
PA
3377struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3378 struct sk_buff_head *queue,
3379 unsigned int flags,
3380 void (*destructor)(struct sock *sk,
3381 struct sk_buff *skb),
fd69c399 3382 int *off, int *err,
65101aec 3383 struct sk_buff **last);
ea3793ee 3384struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3385 void (*destructor)(struct sock *sk,
3386 struct sk_buff *skb),
fd69c399 3387 int *off, int *err,
ea3793ee 3388 struct sk_buff **last);
7965bd4d 3389struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3390 void (*destructor)(struct sock *sk,
3391 struct sk_buff *skb),
fd69c399 3392 int *off, int *err);
7965bd4d
JP
3393struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3394 int *err);
a11e1d43
LT
3395__poll_t datagram_poll(struct file *file, struct socket *sock,
3396 struct poll_table_struct *wait);
c0371da6
AV
3397int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3398 struct iov_iter *to, int size);
51f3d02b
DM
3399static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3400 struct msghdr *msg, int size)
3401{
e5a4b0bb 3402 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3403}
e5a4b0bb
AV
3404int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3405 struct msghdr *msg);
65d69e25
SG
3406int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3407 struct iov_iter *to, int len,
3408 struct ahash_request *hash);
3a654f97
AV
3409int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3410 struct iov_iter *from, int len);
3a654f97 3411int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3412void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3413void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3414static inline void skb_free_datagram_locked(struct sock *sk,
3415 struct sk_buff *skb)
3416{
3417 __skb_free_datagram_locked(sk, skb, 0);
3418}
7965bd4d 3419int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3420int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3421int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3422__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3423 int len, __wsum csum);
a60e3cc7 3424int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3425 struct pipe_inode_info *pipe, unsigned int len,
25869262 3426 unsigned int flags);
20bf50de
TH
3427int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3428 int len);
7965bd4d 3429void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3430unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3431int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3432 int len, int hlen);
7965bd4d
JP
3433void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3434int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3435void skb_scrub_packet(struct sk_buff *skb, bool xnet);
779b7931 3436bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
2b16f048 3437bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
7965bd4d 3438struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3439struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3440int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3441int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3442int skb_vlan_pop(struct sk_buff *skb);
3443int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3444struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3445 gfp_t gfp);
20380731 3446
6ce8e9ce
AV
3447static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3448{
3073f070 3449 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3450}
3451
7eab8d9e
AV
3452static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3453{
e5a4b0bb 3454 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3455}
3456
2817a336
DB
3457struct skb_checksum_ops {
3458 __wsum (*update)(const void *mem, int len, __wsum wsum);
3459 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3460};
3461
9617813d
DC
3462extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3463
2817a336
DB
3464__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3465 __wsum csum, const struct skb_checksum_ops *ops);
3466__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3467 __wsum csum);
3468
1e98a0f0
ED
3469static inline void * __must_check
3470__skb_header_pointer(const struct sk_buff *skb, int offset,
3471 int len, void *data, int hlen, void *buffer)
1da177e4 3472{
55820ee2 3473 if (hlen - offset >= len)
690e36e7 3474 return data + offset;
1da177e4 3475
690e36e7
DM
3476 if (!skb ||
3477 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3478 return NULL;
3479
3480 return buffer;
3481}
3482
1e98a0f0
ED
3483static inline void * __must_check
3484skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3485{
3486 return __skb_header_pointer(skb, offset, len, skb->data,
3487 skb_headlen(skb), buffer);
3488}
3489
4262e5cc
DB
3490/**
3491 * skb_needs_linearize - check if we need to linearize a given skb
3492 * depending on the given device features.
3493 * @skb: socket buffer to check
3494 * @features: net device features
3495 *
3496 * Returns true if either:
3497 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3498 * 2. skb is fragmented and the device does not support SG.
3499 */
3500static inline bool skb_needs_linearize(struct sk_buff *skb,
3501 netdev_features_t features)
3502{
3503 return skb_is_nonlinear(skb) &&
3504 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3505 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3506}
3507
d626f62b
ACM
3508static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3509 void *to,
3510 const unsigned int len)
3511{
3512 memcpy(to, skb->data, len);
3513}
3514
3515static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3516 const int offset, void *to,
3517 const unsigned int len)
3518{
3519 memcpy(to, skb->data + offset, len);
3520}
3521
27d7ff46
ACM
3522static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3523 const void *from,
3524 const unsigned int len)
3525{
3526 memcpy(skb->data, from, len);
3527}
3528
3529static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3530 const int offset,
3531 const void *from,
3532 const unsigned int len)
3533{
3534 memcpy(skb->data + offset, from, len);
3535}
3536
7965bd4d 3537void skb_init(void);
1da177e4 3538
ac45f602
PO
3539static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3540{
3541 return skb->tstamp;
3542}
3543
a61bbcf2
PM
3544/**
3545 * skb_get_timestamp - get timestamp from a skb
3546 * @skb: skb to get stamp from
13c6ee2a 3547 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
a61bbcf2
PM
3548 *
3549 * Timestamps are stored in the skb as offsets to a base timestamp.
3550 * This function converts the offset back to a struct timeval and stores
3551 * it in stamp.
3552 */
ac45f602 3553static inline void skb_get_timestamp(const struct sk_buff *skb,
13c6ee2a 3554 struct __kernel_old_timeval *stamp)
a61bbcf2 3555{
13c6ee2a 3556 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
a61bbcf2
PM
3557}
3558
887feae3
DD
3559static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3560 struct __kernel_sock_timeval *stamp)
3561{
3562 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3563
3564 stamp->tv_sec = ts.tv_sec;
3565 stamp->tv_usec = ts.tv_nsec / 1000;
3566}
3567
ac45f602
PO
3568static inline void skb_get_timestampns(const struct sk_buff *skb,
3569 struct timespec *stamp)
3570{
3571 *stamp = ktime_to_timespec(skb->tstamp);
3572}
3573
887feae3
DD
3574static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3575 struct __kernel_timespec *stamp)
3576{
3577 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3578
3579 stamp->tv_sec = ts.tv_sec;
3580 stamp->tv_nsec = ts.tv_nsec;
3581}
3582
b7aa0bf7 3583static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3584{
b7aa0bf7 3585 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3586}
3587
164891aa
SH
3588static inline ktime_t net_timedelta(ktime_t t)
3589{
3590 return ktime_sub(ktime_get_real(), t);
3591}
3592
b9ce204f
IJ
3593static inline ktime_t net_invalid_timestamp(void)
3594{
8b0e1953 3595 return 0;
b9ce204f 3596}
a61bbcf2 3597
de8f3a83
DB
3598static inline u8 skb_metadata_len(const struct sk_buff *skb)
3599{
3600 return skb_shinfo(skb)->meta_len;
3601}
3602
3603static inline void *skb_metadata_end(const struct sk_buff *skb)
3604{
3605 return skb_mac_header(skb);
3606}
3607
3608static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3609 const struct sk_buff *skb_b,
3610 u8 meta_len)
3611{
3612 const void *a = skb_metadata_end(skb_a);
3613 const void *b = skb_metadata_end(skb_b);
3614 /* Using more efficient varaiant than plain call to memcmp(). */
3615#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3616 u64 diffs = 0;
3617
3618 switch (meta_len) {
3619#define __it(x, op) (x -= sizeof(u##op))
3620#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3621 case 32: diffs |= __it_diff(a, b, 64);
82385b0d 3622 /* fall through */
de8f3a83 3623 case 24: diffs |= __it_diff(a, b, 64);
82385b0d 3624 /* fall through */
de8f3a83 3625 case 16: diffs |= __it_diff(a, b, 64);
82385b0d 3626 /* fall through */
de8f3a83
DB
3627 case 8: diffs |= __it_diff(a, b, 64);
3628 break;
3629 case 28: diffs |= __it_diff(a, b, 64);
82385b0d 3630 /* fall through */
de8f3a83 3631 case 20: diffs |= __it_diff(a, b, 64);
82385b0d 3632 /* fall through */
de8f3a83 3633 case 12: diffs |= __it_diff(a, b, 64);
82385b0d 3634 /* fall through */
de8f3a83
DB
3635 case 4: diffs |= __it_diff(a, b, 32);
3636 break;
3637 }
3638 return diffs;
3639#else
3640 return memcmp(a - meta_len, b - meta_len, meta_len);
3641#endif
3642}
3643
3644static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3645 const struct sk_buff *skb_b)
3646{
3647 u8 len_a = skb_metadata_len(skb_a);
3648 u8 len_b = skb_metadata_len(skb_b);
3649
3650 if (!(len_a | len_b))
3651 return false;
3652
3653 return len_a != len_b ?
3654 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3655}
3656
3657static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3658{
3659 skb_shinfo(skb)->meta_len = meta_len;
3660}
3661
3662static inline void skb_metadata_clear(struct sk_buff *skb)
3663{
3664 skb_metadata_set(skb, 0);
3665}
3666
62bccb8c
AD
3667struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3668
c1f19b51
RC
3669#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3670
7965bd4d
JP
3671void skb_clone_tx_timestamp(struct sk_buff *skb);
3672bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3673
3674#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3675
3676static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3677{
3678}
3679
3680static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3681{
3682 return false;
3683}
3684
3685#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3686
3687/**
3688 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3689 *
da92b194
RC
3690 * PHY drivers may accept clones of transmitted packets for
3691 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3692 * must call this function to return the skb back to the stack with a
3693 * timestamp.
da92b194 3694 *
c1f19b51 3695 * @skb: clone of the the original outgoing packet
7a76a021 3696 * @hwtstamps: hardware time stamps
c1f19b51
RC
3697 *
3698 */
3699void skb_complete_tx_timestamp(struct sk_buff *skb,
3700 struct skb_shared_hwtstamps *hwtstamps);
3701
e7fd2885
WB
3702void __skb_tstamp_tx(struct sk_buff *orig_skb,
3703 struct skb_shared_hwtstamps *hwtstamps,
3704 struct sock *sk, int tstype);
3705
ac45f602
PO
3706/**
3707 * skb_tstamp_tx - queue clone of skb with send time stamps
3708 * @orig_skb: the original outgoing packet
3709 * @hwtstamps: hardware time stamps, may be NULL if not available
3710 *
3711 * If the skb has a socket associated, then this function clones the
3712 * skb (thus sharing the actual data and optional structures), stores
3713 * the optional hardware time stamping information (if non NULL) or
3714 * generates a software time stamp (otherwise), then queues the clone
3715 * to the error queue of the socket. Errors are silently ignored.
3716 */
7965bd4d
JP
3717void skb_tstamp_tx(struct sk_buff *orig_skb,
3718 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3719
4507a715
RC
3720/**
3721 * skb_tx_timestamp() - Driver hook for transmit timestamping
3722 *
3723 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3724 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3725 *
73409f3b
DM
3726 * Specifically, one should make absolutely sure that this function is
3727 * called before TX completion of this packet can trigger. Otherwise
3728 * the packet could potentially already be freed.
3729 *
4507a715
RC
3730 * @skb: A socket buffer.
3731 */
3732static inline void skb_tx_timestamp(struct sk_buff *skb)
3733{
c1f19b51 3734 skb_clone_tx_timestamp(skb);
b50a5c70
ML
3735 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3736 skb_tstamp_tx(skb, NULL);
4507a715
RC
3737}
3738
6e3e939f
JB
3739/**
3740 * skb_complete_wifi_ack - deliver skb with wifi status
3741 *
3742 * @skb: the original outgoing packet
3743 * @acked: ack status
3744 *
3745 */
3746void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3747
7965bd4d
JP
3748__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3749__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3750
60476372
HX
3751static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3752{
6edec0e6
TH
3753 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3754 skb->csum_valid ||
3755 (skb->ip_summed == CHECKSUM_PARTIAL &&
3756 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3757}
3758
fb286bb2
HX
3759/**
3760 * skb_checksum_complete - Calculate checksum of an entire packet
3761 * @skb: packet to process
3762 *
3763 * This function calculates the checksum over the entire packet plus
3764 * the value of skb->csum. The latter can be used to supply the
3765 * checksum of a pseudo header as used by TCP/UDP. It returns the
3766 * checksum.
3767 *
3768 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3769 * this function can be used to verify that checksum on received
3770 * packets. In that case the function should return zero if the
3771 * checksum is correct. In particular, this function will return zero
3772 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3773 * hardware has already verified the correctness of the checksum.
3774 */
4381ca3c 3775static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3776{
60476372
HX
3777 return skb_csum_unnecessary(skb) ?
3778 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3779}
3780
77cffe23
TH
3781static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3782{
3783 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3784 if (skb->csum_level == 0)
3785 skb->ip_summed = CHECKSUM_NONE;
3786 else
3787 skb->csum_level--;
3788 }
3789}
3790
3791static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3792{
3793 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3794 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3795 skb->csum_level++;
3796 } else if (skb->ip_summed == CHECKSUM_NONE) {
3797 skb->ip_summed = CHECKSUM_UNNECESSARY;
3798 skb->csum_level = 0;
3799 }
3800}
3801
76ba0aae
TH
3802/* Check if we need to perform checksum complete validation.
3803 *
3804 * Returns true if checksum complete is needed, false otherwise
3805 * (either checksum is unnecessary or zero checksum is allowed).
3806 */
3807static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3808 bool zero_okay,
3809 __sum16 check)
3810{
5d0c2b95
TH
3811 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3812 skb->csum_valid = 1;
77cffe23 3813 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3814 return false;
3815 }
3816
3817 return true;
3818}
3819
da279887 3820/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
76ba0aae
TH
3821 * in checksum_init.
3822 */
3823#define CHECKSUM_BREAK 76
3824
4e18b9ad
TH
3825/* Unset checksum-complete
3826 *
3827 * Unset checksum complete can be done when packet is being modified
3828 * (uncompressed for instance) and checksum-complete value is
3829 * invalidated.
3830 */
3831static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3832{
3833 if (skb->ip_summed == CHECKSUM_COMPLETE)
3834 skb->ip_summed = CHECKSUM_NONE;
3835}
3836
76ba0aae
TH
3837/* Validate (init) checksum based on checksum complete.
3838 *
3839 * Return values:
3840 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3841 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3842 * checksum is stored in skb->csum for use in __skb_checksum_complete
3843 * non-zero: value of invalid checksum
3844 *
3845 */
3846static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3847 bool complete,
3848 __wsum psum)
3849{
3850 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3851 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3852 skb->csum_valid = 1;
76ba0aae
TH
3853 return 0;
3854 }
3855 }
3856
3857 skb->csum = psum;
3858
5d0c2b95
TH
3859 if (complete || skb->len <= CHECKSUM_BREAK) {
3860 __sum16 csum;
3861
3862 csum = __skb_checksum_complete(skb);
3863 skb->csum_valid = !csum;
3864 return csum;
3865 }
76ba0aae
TH
3866
3867 return 0;
3868}
3869
3870static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3871{
3872 return 0;
3873}
3874
3875/* Perform checksum validate (init). Note that this is a macro since we only
3876 * want to calculate the pseudo header which is an input function if necessary.
3877 * First we try to validate without any computation (checksum unnecessary) and
3878 * then calculate based on checksum complete calling the function to compute
3879 * pseudo header.
3880 *
3881 * Return values:
3882 * 0: checksum is validated or try to in skb_checksum_complete
3883 * non-zero: value of invalid checksum
3884 */
3885#define __skb_checksum_validate(skb, proto, complete, \
3886 zero_okay, check, compute_pseudo) \
3887({ \
3888 __sum16 __ret = 0; \
5d0c2b95 3889 skb->csum_valid = 0; \
76ba0aae
TH
3890 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3891 __ret = __skb_checksum_validate_complete(skb, \
3892 complete, compute_pseudo(skb, proto)); \
3893 __ret; \
3894})
3895
3896#define skb_checksum_init(skb, proto, compute_pseudo) \
3897 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3898
3899#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3900 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3901
3902#define skb_checksum_validate(skb, proto, compute_pseudo) \
3903 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3904
3905#define skb_checksum_validate_zero_check(skb, proto, check, \
3906 compute_pseudo) \
096a4cfa 3907 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3908
3909#define skb_checksum_simple_validate(skb) \
3910 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3911
d96535a1
TH
3912static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3913{
219f1d79 3914 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
3915}
3916
3917static inline void __skb_checksum_convert(struct sk_buff *skb,
3918 __sum16 check, __wsum pseudo)
3919{
3920 skb->csum = ~pseudo;
3921 skb->ip_summed = CHECKSUM_COMPLETE;
3922}
3923
3924#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3925do { \
3926 if (__skb_checksum_convert_check(skb)) \
3927 __skb_checksum_convert(skb, check, \
3928 compute_pseudo(skb, proto)); \
3929} while (0)
3930
15e2396d
TH
3931static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3932 u16 start, u16 offset)
3933{
3934 skb->ip_summed = CHECKSUM_PARTIAL;
3935 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3936 skb->csum_offset = offset - start;
3937}
3938
dcdc8994
TH
3939/* Update skbuf and packet to reflect the remote checksum offload operation.
3940 * When called, ptr indicates the starting point for skb->csum when
3941 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3942 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3943 */
3944static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3945 int start, int offset, bool nopartial)
dcdc8994
TH
3946{
3947 __wsum delta;
3948
15e2396d
TH
3949 if (!nopartial) {
3950 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3951 return;
3952 }
3953
dcdc8994
TH
3954 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3955 __skb_checksum_complete(skb);
3956 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3957 }
3958
3959 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3960
3961 /* Adjust skb->csum since we changed the packet */
3962 skb->csum = csum_add(skb->csum, delta);
3963}
3964
cb9c6836
FW
3965static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3966{
3967#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3968 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3969#else
3970 return NULL;
3971#endif
3972}
3973
5f79e0f9 3974#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3975void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3976static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3977{
3978 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3979 nf_conntrack_destroy(nfct);
1da177e4
LT
3980}
3981static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3982{
3983 if (nfct)
3984 atomic_inc(&nfct->use);
3985}
2fc72c7b 3986#endif
df5042f4
FW
3987
3988#ifdef CONFIG_SKB_EXTENSIONS
3989enum skb_ext_id {
3990#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3991 SKB_EXT_BRIDGE_NF,
4165079b
FW
3992#endif
3993#ifdef CONFIG_XFRM
3994 SKB_EXT_SEC_PATH,
df5042f4
FW
3995#endif
3996 SKB_EXT_NUM, /* must be last */
3997};
3998
3999/**
4000 * struct skb_ext - sk_buff extensions
4001 * @refcnt: 1 on allocation, deallocated on 0
4002 * @offset: offset to add to @data to obtain extension address
4003 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4004 * @data: start of extension data, variable sized
4005 *
4006 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4007 * to use 'u8' types while allowing up to 2kb worth of extension data.
4008 */
4009struct skb_ext {
4010 refcount_t refcnt;
4011 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4012 u8 chunks; /* same */
4013 char data[0] __aligned(8);
4014};
4015
4016void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4017void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4018void __skb_ext_put(struct skb_ext *ext);
4019
4020static inline void skb_ext_put(struct sk_buff *skb)
4021{
4022 if (skb->active_extensions)
4023 __skb_ext_put(skb->extensions);
4024}
4025
df5042f4
FW
4026static inline void __skb_ext_copy(struct sk_buff *dst,
4027 const struct sk_buff *src)
4028{
4029 dst->active_extensions = src->active_extensions;
4030
4031 if (src->active_extensions) {
4032 struct skb_ext *ext = src->extensions;
4033
4034 refcount_inc(&ext->refcnt);
4035 dst->extensions = ext;
4036 }
4037}
4038
4039static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4040{
4041 skb_ext_put(dst);
4042 __skb_ext_copy(dst, src);
4043}
4044
4045static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4046{
4047 return !!ext->offset[i];
4048}
4049
4050static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4051{
4052 return skb->active_extensions & (1 << id);
4053}
4054
4055static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4056{
4057 if (skb_ext_exist(skb, id))
4058 __skb_ext_del(skb, id);
4059}
4060
4061static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4062{
4063 if (skb_ext_exist(skb, id)) {
4064 struct skb_ext *ext = skb->extensions;
4065
4066 return (void *)ext + (ext->offset[id] << 3);
4067 }
4068
4069 return NULL;
4070}
4071#else
4072static inline void skb_ext_put(struct sk_buff *skb) {}
df5042f4
FW
4073static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4074static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4075static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4076#endif /* CONFIG_SKB_EXTENSIONS */
4077
a193a4ab
PM
4078static inline void nf_reset(struct sk_buff *skb)
4079{
5f79e0f9 4080#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4081 nf_conntrack_put(skb_nfct(skb));
4082 skb->_nfct = 0;
2fc72c7b 4083#endif
34666d46 4084#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
de8bda1d 4085 skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
a193a4ab
PM
4086#endif
4087}
4088
124dff01
PM
4089static inline void nf_reset_trace(struct sk_buff *skb)
4090{
478b360a 4091#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
4092 skb->nf_trace = 0;
4093#endif
a193a4ab
PM
4094}
4095
2b5ec1a5
YY
4096static inline void ipvs_reset(struct sk_buff *skb)
4097{
4098#if IS_ENABLED(CONFIG_IP_VS)
4099 skb->ipvs_property = 0;
4100#endif
4101}
4102
de8bda1d 4103/* Note: This doesn't put any conntrack info in dst. */
b1937227
ED
4104static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4105 bool copy)
edda553c 4106{
5f79e0f9 4107#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4108 dst->_nfct = src->_nfct;
4109 nf_conntrack_get(skb_nfct(src));
2fc72c7b 4110#endif
478b360a 4111#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
4112 if (copy)
4113 dst->nf_trace = src->nf_trace;
478b360a 4114#endif
edda553c
YK
4115}
4116
e7ac05f3
YK
4117static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4118{
e7ac05f3 4119#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 4120 nf_conntrack_put(skb_nfct(dst));
e7ac05f3 4121#endif
b1937227 4122 __nf_copy(dst, src, true);
e7ac05f3
YK
4123}
4124
984bc16c
JM
4125#ifdef CONFIG_NETWORK_SECMARK
4126static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4127{
4128 to->secmark = from->secmark;
4129}
4130
4131static inline void skb_init_secmark(struct sk_buff *skb)
4132{
4133 skb->secmark = 0;
4134}
4135#else
4136static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4137{ }
4138
4139static inline void skb_init_secmark(struct sk_buff *skb)
4140{ }
4141#endif
4142
7af8f4ca
FW
4143static inline int secpath_exists(const struct sk_buff *skb)
4144{
4145#ifdef CONFIG_XFRM
4165079b 4146 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
7af8f4ca
FW
4147#else
4148 return 0;
4149#endif
4150}
4151
574f7194
EB
4152static inline bool skb_irq_freeable(const struct sk_buff *skb)
4153{
4154 return !skb->destructor &&
7af8f4ca 4155 !secpath_exists(skb) &&
cb9c6836 4156 !skb_nfct(skb) &&
574f7194
EB
4157 !skb->_skb_refdst &&
4158 !skb_has_frag_list(skb);
4159}
4160
f25f4e44
PWJ
4161static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4162{
f25f4e44 4163 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
4164}
4165
9247744e 4166static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 4167{
4e3ab47a 4168 return skb->queue_mapping;
4e3ab47a
PE
4169}
4170
f25f4e44
PWJ
4171static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4172{
f25f4e44 4173 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
4174}
4175
d5a9e24a
DM
4176static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4177{
4178 skb->queue_mapping = rx_queue + 1;
4179}
4180
9247744e 4181static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
4182{
4183 return skb->queue_mapping - 1;
4184}
4185
9247744e 4186static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 4187{
a02cec21 4188 return skb->queue_mapping != 0;
d5a9e24a
DM
4189}
4190
4ff06203
JA
4191static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4192{
4193 skb->dst_pending_confirm = val;
4194}
4195
4196static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4197{
4198 return skb->dst_pending_confirm != 0;
4199}
4200
2294be0f 4201static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
def8b4fa 4202{
0b3d8e08 4203#ifdef CONFIG_XFRM
4165079b 4204 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
def8b4fa 4205#else
def8b4fa 4206 return NULL;
def8b4fa 4207#endif
0b3d8e08 4208}
def8b4fa 4209
68c33163
PS
4210/* Keeps track of mac header offset relative to skb->head.
4211 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4212 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
4213 * tunnel skb it points to outer mac header.
4214 * Keeps track of level of encapsulation of network headers.
4215 */
68c33163 4216struct skb_gso_cb {
802ab55a
AD
4217 union {
4218 int mac_offset;
4219 int data_offset;
4220 };
3347c960 4221 int encap_level;
76443456 4222 __wsum csum;
7e2b10c1 4223 __u16 csum_start;
68c33163 4224};
9207f9d4
KK
4225#define SKB_SGO_CB_OFFSET 32
4226#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
4227
4228static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4229{
4230 return (skb_mac_header(inner_skb) - inner_skb->head) -
4231 SKB_GSO_CB(inner_skb)->mac_offset;
4232}
4233
1e2bd517
PS
4234static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4235{
4236 int new_headroom, headroom;
4237 int ret;
4238
4239 headroom = skb_headroom(skb);
4240 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4241 if (ret)
4242 return ret;
4243
4244 new_headroom = skb_headroom(skb);
4245 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4246 return 0;
4247}
4248
08b64fcc
AD
4249static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4250{
4251 /* Do not update partial checksums if remote checksum is enabled. */
4252 if (skb->remcsum_offload)
4253 return;
4254
4255 SKB_GSO_CB(skb)->csum = res;
4256 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4257}
4258
7e2b10c1
TH
4259/* Compute the checksum for a gso segment. First compute the checksum value
4260 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4261 * then add in skb->csum (checksum from csum_start to end of packet).
4262 * skb->csum and csum_start are then updated to reflect the checksum of the
4263 * resultant packet starting from the transport header-- the resultant checksum
4264 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4265 * header.
4266 */
4267static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4268{
76443456
AD
4269 unsigned char *csum_start = skb_transport_header(skb);
4270 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4271 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 4272
76443456
AD
4273 SKB_GSO_CB(skb)->csum = res;
4274 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 4275
76443456 4276 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
4277}
4278
bdcc0924 4279static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
4280{
4281 return skb_shinfo(skb)->gso_size;
4282}
4283
36a8f39e 4284/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4285static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4286{
4287 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4288}
4289
d02f51cb
DA
4290/* Note: Should be called only if skb_is_gso(skb) is true */
4291static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4292{
4293 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4294}
4295
4c3024de 4296/* Note: Should be called only if skb_is_gso(skb) is true */
b90efd22
WB
4297static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4298{
4c3024de 4299 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
b90efd22
WB
4300}
4301
5293efe6
DB
4302static inline void skb_gso_reset(struct sk_buff *skb)
4303{
4304 skb_shinfo(skb)->gso_size = 0;
4305 skb_shinfo(skb)->gso_segs = 0;
4306 skb_shinfo(skb)->gso_type = 0;
4307}
4308
d02f51cb
DA
4309static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4310 u16 increment)
4311{
4312 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4313 return;
4314 shinfo->gso_size += increment;
4315}
4316
4317static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4318 u16 decrement)
4319{
4320 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4321 return;
4322 shinfo->gso_size -= decrement;
4323}
4324
7965bd4d 4325void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4326
4327static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4328{
4329 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4330 * wanted then gso_type will be set. */
05bdd2f1
ED
4331 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4332
b78462eb
AD
4333 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4334 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4335 __skb_warn_lro_forwarding(skb);
4336 return true;
4337 }
4338 return false;
4339}
4340
35fc92a9
HX
4341static inline void skb_forward_csum(struct sk_buff *skb)
4342{
4343 /* Unfortunately we don't support this one. Any brave souls? */
4344 if (skb->ip_summed == CHECKSUM_COMPLETE)
4345 skb->ip_summed = CHECKSUM_NONE;
4346}
4347
bc8acf2c
ED
4348/**
4349 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4350 * @skb: skb to check
4351 *
4352 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4353 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4354 * use this helper, to document places where we make this assertion.
4355 */
05bdd2f1 4356static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
4357{
4358#ifdef DEBUG
4359 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4360#endif
4361}
4362
f35d9d8a 4363bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4364
ed1f50c3 4365int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4366struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4367 unsigned int transport_len,
4368 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4369
3a7c1ee4
AD
4370/**
4371 * skb_head_is_locked - Determine if the skb->head is locked down
4372 * @skb: skb to check
4373 *
4374 * The head on skbs build around a head frag can be removed if they are
4375 * not cloned. This function returns true if the skb head is locked down
4376 * due to either being allocated via kmalloc, or by being a clone with
4377 * multiple references to the head.
4378 */
4379static inline bool skb_head_is_locked(const struct sk_buff *skb)
4380{
4381 return !skb->head_frag || skb_cloned(skb);
4382}
fe6cc55f 4383
179bc67f
EC
4384/* Local Checksum Offload.
4385 * Compute outer checksum based on the assumption that the
4386 * inner checksum will be offloaded later.
d0dcde64 4387 * See Documentation/networking/checksum-offloads.rst for
e8ae7b00 4388 * explanation of how this works.
179bc67f
EC
4389 * Fill in outer checksum adjustment (e.g. with sum of outer
4390 * pseudo-header) before calling.
4391 * Also ensure that inner checksum is in linear data area.
4392 */
4393static inline __wsum lco_csum(struct sk_buff *skb)
4394{
9e74a6da
AD
4395 unsigned char *csum_start = skb_checksum_start(skb);
4396 unsigned char *l4_hdr = skb_transport_header(skb);
4397 __wsum partial;
179bc67f
EC
4398
4399 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4400 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4401 skb->csum_offset));
4402
179bc67f 4403 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4404 * adjustment filled in by caller) and return result.
179bc67f 4405 */
9e74a6da 4406 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4407}
4408
1da177e4
LT
4409#endif /* __KERNEL__ */
4410#endif /* _LINUX_SKBUFF_H */