]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - include/linux/skbuff.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[mirror_ubuntu-eoan-kernel.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4
LT
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
187f1882 20#include <linux/bug.h>
1da177e4 21#include <linux/cache.h>
56b17425 22#include <linux/rbtree.h>
51f3d02b 23#include <linux/socket.h>
c1d1b437 24#include <linux/refcount.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1bd758eb 38#include <net/flow_dissector.h>
a60e3cc7 39#include <linux/splice.h>
72b31f72 40#include <linux/in6.h>
8b10cab6 41#include <linux/if_packet.h>
f70ea018 42#include <net/flow.h>
1da177e4 43
7a6ae71b
TH
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
89 *
90 * CHECKSUM_NONE:
91 *
7a6ae71b 92 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
77cffe23
TH
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 112 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
78ea85f1
DB
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
b4759dcd
DC
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
134 *
135 * CHECKSUM_PARTIAL:
136 *
6edec0e6
TH
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
78ea85f1 146 *
7a6ae71b
TH
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
149 *
150 * CHECKSUM_PARTIAL:
151 *
7a6ae71b 152 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 153 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 173 *
7a6ae71b 174 * CHECKSUM_NONE:
78ea85f1 175 *
7a6ae71b
TH
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
78ea85f1
DB
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
7a6ae71b
TH
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
78ea85f1 183 *
7a6ae71b
TH
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
dba00306
DC
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
78ea85f1
DB
217 */
218
60476372 219/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
1da177e4 224
77cffe23
TH
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
0bec8c88 228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 229#define SKB_WITH_OVERHEAD(X) \
deea84b0 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
87fb4b7b
ED
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
1da177e4 241struct net_device;
716ea3a7 242struct scatterlist;
9c55e01c 243struct pipe_inode_info;
a8f820aa 244struct iov_iter;
fd11a83d 245struct napi_struct;
d58e468b
PP
246struct bpf_prog;
247union bpf_attr;
1da177e4 248
5f79e0f9 249#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
250struct nf_conntrack {
251 atomic_t use;
1da177e4 252};
5f79e0f9 253#endif
1da177e4 254
34666d46 255#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 256struct nf_bridge_info {
53869ceb 257 refcount_t use;
3eaf4025
FW
258 enum {
259 BRNF_PROTO_UNCHANGED,
260 BRNF_PROTO_8021Q,
261 BRNF_PROTO_PPPOE
7fb48c5b 262 } orig_proto:8;
72b1e5e4
FW
263 u8 pkt_otherhost:1;
264 u8 in_prerouting:1;
265 u8 bridged_dnat:1;
411ffb4f 266 __u16 frag_max_size;
bf1ac5ca 267 struct net_device *physindev;
63cdbc06
FW
268
269 /* always valid & non-NULL from FORWARD on, for physdev match */
270 struct net_device *physoutdev;
7fb48c5b 271 union {
72b1e5e4 272 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
273 __be32 ipv4_daddr;
274 struct in6_addr ipv6_daddr;
72b1e5e4
FW
275
276 /* after prerouting + nat detected: store original source
277 * mac since neigh resolution overwrites it, only used while
278 * skb is out in neigh layer.
279 */
280 char neigh_header[8];
72b31f72 281 };
1da177e4
LT
282};
283#endif
284
1da177e4
LT
285struct sk_buff_head {
286 /* These two members must be first. */
287 struct sk_buff *next;
288 struct sk_buff *prev;
289
290 __u32 qlen;
291 spinlock_t lock;
292};
293
294struct sk_buff;
295
9d4dde52
IC
296/* To allow 64K frame to be packed as single skb without frag_list we
297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298 * buffers which do not start on a page boundary.
299 *
300 * Since GRO uses frags we allocate at least 16 regardless of page
301 * size.
a715dea3 302 */
9d4dde52 303#if (65536/PAGE_SIZE + 1) < 16
eec00954 304#define MAX_SKB_FRAGS 16UL
a715dea3 305#else
9d4dde52 306#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 307#endif
5f74f82e 308extern int sysctl_max_skb_frags;
1da177e4 309
3953c46c
MRL
310/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311 * segment using its current segmentation instead.
312 */
313#define GSO_BY_FRAGS 0xFFFF
314
1da177e4
LT
315typedef struct skb_frag_struct skb_frag_t;
316
317struct skb_frag_struct {
a8605c60
IC
318 struct {
319 struct page *p;
320 } page;
cb4dfe56 321#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
322 __u32 page_offset;
323 __u32 size;
cb4dfe56
ED
324#else
325 __u16 page_offset;
326 __u16 size;
327#endif
1da177e4
LT
328};
329
9e903e08
ED
330static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331{
332 return frag->size;
333}
334
335static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336{
337 frag->size = size;
338}
339
340static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
341{
342 frag->size += delta;
343}
344
345static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
346{
347 frag->size -= delta;
348}
349
c613c209
WB
350static inline bool skb_frag_must_loop(struct page *p)
351{
352#if defined(CONFIG_HIGHMEM)
353 if (PageHighMem(p))
354 return true;
355#endif
356 return false;
357}
358
359/**
360 * skb_frag_foreach_page - loop over pages in a fragment
361 *
362 * @f: skb frag to operate on
363 * @f_off: offset from start of f->page.p
364 * @f_len: length from f_off to loop over
365 * @p: (temp var) current page
366 * @p_off: (temp var) offset from start of current page,
367 * non-zero only on first page.
368 * @p_len: (temp var) length in current page,
369 * < PAGE_SIZE only on first and last page.
370 * @copied: (temp var) length so far, excluding current p_len.
371 *
372 * A fragment can hold a compound page, in which case per-page
373 * operations, notably kmap_atomic, must be called for each
374 * regular page.
375 */
376#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
377 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
378 p_off = (f_off) & (PAGE_SIZE - 1), \
379 p_len = skb_frag_must_loop(p) ? \
380 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
381 copied = 0; \
382 copied < f_len; \
383 copied += p_len, p++, p_off = 0, \
384 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
385
ac45f602
PO
386#define HAVE_HW_TIME_STAMP
387
388/**
d3a21be8 389 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
390 * @hwtstamp: hardware time stamp transformed into duration
391 * since arbitrary point in time
ac45f602
PO
392 *
393 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 394 * skb->tstamp.
ac45f602
PO
395 *
396 * hwtstamps can only be compared against other hwtstamps from
397 * the same device.
398 *
399 * This structure is attached to packets as part of the
400 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
401 */
402struct skb_shared_hwtstamps {
403 ktime_t hwtstamp;
ac45f602
PO
404};
405
2244d07b
OH
406/* Definitions for tx_flags in struct skb_shared_info */
407enum {
408 /* generate hardware time stamp */
409 SKBTX_HW_TSTAMP = 1 << 0,
410
e7fd2885 411 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
412 SKBTX_SW_TSTAMP = 1 << 1,
413
414 /* device driver is going to provide hardware time stamp */
415 SKBTX_IN_PROGRESS = 1 << 2,
416
a6686f2f 417 /* device driver supports TX zero-copy buffers */
62b1a8ab 418 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
419
420 /* generate wifi status information (where possible) */
62b1a8ab 421 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
422
423 /* This indicates at least one fragment might be overwritten
424 * (as in vmsplice(), sendfile() ...)
425 * If we need to compute a TX checksum, we'll need to copy
426 * all frags to avoid possible bad checksum
427 */
428 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
429
430 /* generate software time stamp when entering packet scheduling */
431 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
432};
433
52267790 434#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
e1c8a607 435#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 436 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
437#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
438
a6686f2f
SM
439/*
440 * The callback notifies userspace to release buffers when skb DMA is done in
441 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
442 * The zerocopy_success argument is true if zero copy transmit occurred,
443 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
444 * The ctx field is used to track device context.
445 * The desc field is used to track userspace buffer index.
a6686f2f
SM
446 */
447struct ubuf_info {
e19d6763 448 void (*callback)(struct ubuf_info *, bool zerocopy_success);
4ab6c99d
WB
449 union {
450 struct {
451 unsigned long desc;
452 void *ctx;
453 };
454 struct {
455 u32 id;
456 u16 len;
457 u16 zerocopy:1;
458 u32 bytelen;
459 };
460 };
c1d1b437 461 refcount_t refcnt;
a91dbff5
WB
462
463 struct mmpin {
464 struct user_struct *user;
465 unsigned int num_pg;
466 } mmp;
ac45f602
PO
467};
468
52267790
WB
469#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
470
6f89dbce
SV
471int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
472void mm_unaccount_pinned_pages(struct mmpin *mmp);
473
52267790 474struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
4ab6c99d
WB
475struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
476 struct ubuf_info *uarg);
52267790
WB
477
478static inline void sock_zerocopy_get(struct ubuf_info *uarg)
479{
c1d1b437 480 refcount_inc(&uarg->refcnt);
52267790
WB
481}
482
483void sock_zerocopy_put(struct ubuf_info *uarg);
484void sock_zerocopy_put_abort(struct ubuf_info *uarg);
485
486void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
487
488int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
489 struct msghdr *msg, int len,
490 struct ubuf_info *uarg);
491
1da177e4
LT
492/* This data is invariant across clones and lives at
493 * the end of the header data, ie. at skb->end.
494 */
495struct skb_shared_info {
de8f3a83
DB
496 __u8 __unused;
497 __u8 meta_len;
498 __u8 nr_frags;
9f42f126 499 __u8 tx_flags;
7967168c
HX
500 unsigned short gso_size;
501 /* Warning: this field is not always filled in (UFO)! */
502 unsigned short gso_segs;
1da177e4 503 struct sk_buff *frag_list;
ac45f602 504 struct skb_shared_hwtstamps hwtstamps;
7f564528 505 unsigned int gso_type;
09c2d251 506 u32 tskey;
ec7d2f2c
ED
507
508 /*
509 * Warning : all fields before dataref are cleared in __alloc_skb()
510 */
511 atomic_t dataref;
512
69e3c75f
JB
513 /* Intermediate layers must ensure that destructor_arg
514 * remains valid until skb destructor */
515 void * destructor_arg;
a6686f2f 516
fed66381
ED
517 /* must be last field, see pskb_expand_head() */
518 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
519};
520
521/* We divide dataref into two halves. The higher 16 bits hold references
522 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
523 * the entire skb->data. A clone of a headerless skb holds the length of
524 * the header in skb->hdr_len.
1da177e4
LT
525 *
526 * All users must obey the rule that the skb->data reference count must be
527 * greater than or equal to the payload reference count.
528 *
529 * Holding a reference to the payload part means that the user does not
530 * care about modifications to the header part of skb->data.
531 */
532#define SKB_DATAREF_SHIFT 16
533#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
534
d179cd12
DM
535
536enum {
c8753d55
VS
537 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
538 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
539 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
540};
541
7967168c
HX
542enum {
543 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
544
545 /* This indicates the skb is from an untrusted source. */
d9d30adf 546 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
547
548 /* This indicates the tcp segment has CWR set. */
d9d30adf 549 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 550
d9d30adf 551 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 552
d9d30adf 553 SKB_GSO_TCPV6 = 1 << 4,
68c33163 554
d9d30adf 555 SKB_GSO_FCOE = 1 << 5,
73136267 556
d9d30adf 557 SKB_GSO_GRE = 1 << 6,
0d89d203 558
d9d30adf 559 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 560
d9d30adf 561 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 562
d9d30adf 563 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 564
d9d30adf 565 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 566
d9d30adf 567 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 568
d9d30adf 569 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 570
d9d30adf 571 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 572
d9d30adf 573 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 574
d9d30adf 575 SKB_GSO_ESP = 1 << 15,
0c19f846
WB
576
577 SKB_GSO_UDP = 1 << 16,
ee80d1eb
WB
578
579 SKB_GSO_UDP_L4 = 1 << 17,
7967168c
HX
580};
581
2e07fa9c
ACM
582#if BITS_PER_LONG > 32
583#define NET_SKBUFF_DATA_USES_OFFSET 1
584#endif
585
586#ifdef NET_SKBUFF_DATA_USES_OFFSET
587typedef unsigned int sk_buff_data_t;
588#else
589typedef unsigned char *sk_buff_data_t;
590#endif
591
1da177e4
LT
592/**
593 * struct sk_buff - socket buffer
594 * @next: Next buffer in list
595 * @prev: Previous buffer in list
363ec392 596 * @tstamp: Time we arrived/left
56b17425 597 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 598 * @sk: Socket we are owned by
1da177e4 599 * @dev: Device we arrived on/are leaving by
d84e0bd7 600 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 601 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 602 * @sp: the security path, used for xfrm
1da177e4
LT
603 * @len: Length of actual data
604 * @data_len: Data length
605 * @mac_len: Length of link layer header
334a8132 606 * @hdr_len: writable header length of cloned skb
663ead3b
HX
607 * @csum: Checksum (must include start/offset pair)
608 * @csum_start: Offset from skb->head where checksumming should start
609 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 610 * @priority: Packet queueing priority
60ff7467 611 * @ignore_df: allow local fragmentation
1da177e4 612 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 613 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
614 * @nohdr: Payload reference only, must not modify header
615 * @pkt_type: Packet class
c83c2486 616 * @fclone: skbuff clone status
c83c2486 617 * @ipvs_property: skbuff is owned by ipvs
e7246e12 618 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 619 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
620 * @tc_redirected: packet was redirected by a tc action
621 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
622 * @peeked: this packet has been seen already, so stats have been
623 * done for it, don't do them again
ba9dda3a 624 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
625 * @protocol: Packet protocol from driver
626 * @destructor: Destruct function
e2080072 627 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
a9e419dc 628 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 629 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 630 * @skb_iif: ifindex of device we arrived on
1da177e4 631 * @tc_index: Traffic control index
61b905da 632 * @hash: the packet hash
d84e0bd7 633 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 634 * @xmit_more: More SKBs are pending for this queue
8b700862 635 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
553a5672 636 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 637 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 638 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 639 * ports.
a3b18ddb 640 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
641 * @wifi_acked_valid: wifi_acked was set
642 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 643 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
dba00306 644 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
4ff06203 645 * @dst_pending_confirm: need to confirm neighbour
a48d189e 646 * @decrypted: Decrypted SKB
06021292 647 * @napi_id: id of the NAPI struct this skb came from
984bc16c 648 * @secmark: security marking
d84e0bd7 649 * @mark: Generic packet mark
86a9bad3 650 * @vlan_proto: vlan encapsulation protocol
6aa895b0 651 * @vlan_tci: vlan tag control information
0d89d203 652 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
653 * @inner_transport_header: Inner transport layer header (encapsulation)
654 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 655 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
656 * @transport_header: Transport layer header
657 * @network_header: Network layer header
658 * @mac_header: Link layer header
659 * @tail: Tail pointer
660 * @end: End pointer
661 * @head: Head of buffer
662 * @data: Data head pointer
663 * @truesize: Buffer size
664 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
665 */
666
667struct sk_buff {
363ec392 668 union {
56b17425
ED
669 struct {
670 /* These two members must be first. */
671 struct sk_buff *next;
672 struct sk_buff *prev;
673
674 union {
bffa72cf
ED
675 struct net_device *dev;
676 /* Some protocols might use this space to store information,
677 * while device pointer would be NULL.
678 * UDP receive path is one user.
679 */
680 unsigned long dev_scratch;
56b17425
ED
681 };
682 };
fa0f5273 683 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
d4546c25 684 struct list_head list;
363ec392 685 };
fa0f5273
PO
686
687 union {
688 struct sock *sk;
689 int ip_defrag_offset;
690 };
1da177e4 691
c84d9490 692 union {
bffa72cf 693 ktime_t tstamp;
d3edd06e 694 u64 skb_mstamp_ns; /* earliest departure time */
c84d9490 695 };
1da177e4
LT
696 /*
697 * This is the control buffer. It is free to use for every
698 * layer. Please put your private variables there. If you
699 * want to keep them across layers you have to do a skb_clone()
700 * first. This is owned by whoever has the skb queued ATM.
701 */
da3f5cf1 702 char cb[48] __aligned(8);
1da177e4 703
e2080072
ED
704 union {
705 struct {
706 unsigned long _skb_refdst;
707 void (*destructor)(struct sk_buff *skb);
708 };
709 struct list_head tcp_tsorted_anchor;
710 };
711
da3f5cf1
FF
712#ifdef CONFIG_XFRM
713 struct sec_path *sp;
b1937227
ED
714#endif
715#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 716 unsigned long _nfct;
b1937227 717#endif
85224844 718#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 719 struct nf_bridge_info *nf_bridge;
da3f5cf1 720#endif
1da177e4 721 unsigned int len,
334a8132
PM
722 data_len;
723 __u16 mac_len,
724 hdr_len;
b1937227
ED
725
726 /* Following fields are _not_ copied in __copy_skb_header()
727 * Note that queue_mapping is here mostly to fill a hole.
728 */
b1937227 729 __u16 queue_mapping;
36bbef52
DB
730
731/* if you move cloned around you also must adapt those constants */
732#ifdef __BIG_ENDIAN_BITFIELD
733#define CLONED_MASK (1 << 7)
734#else
735#define CLONED_MASK 1
736#endif
737#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
738
739 __u8 __cloned_offset[0];
b1937227 740 __u8 cloned:1,
6869c4d8 741 nohdr:1,
b84f4cc9 742 fclone:2,
a59322be 743 peeked:1,
b1937227 744 head_frag:1,
36bbef52 745 xmit_more:1,
8b700862 746 pfmemalloc:1;
4031ae6e 747
b1937227
ED
748 /* fields enclosed in headers_start/headers_end are copied
749 * using a single memcpy() in __copy_skb_header()
750 */
ebcf34f3 751 /* private: */
b1937227 752 __u32 headers_start[0];
ebcf34f3 753 /* public: */
4031ae6e 754
233577a2
HFS
755/* if you move pkt_type around you also must adapt those constants */
756#ifdef __BIG_ENDIAN_BITFIELD
757#define PKT_TYPE_MAX (7 << 5)
758#else
759#define PKT_TYPE_MAX 7
1da177e4 760#endif
233577a2 761#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 762
233577a2 763 __u8 __pkt_type_offset[0];
b1937227 764 __u8 pkt_type:3;
b1937227 765 __u8 ignore_df:1;
b1937227
ED
766 __u8 nf_trace:1;
767 __u8 ip_summed:2;
3853b584 768 __u8 ooo_okay:1;
8b700862 769
61b905da 770 __u8 l4_hash:1;
a3b18ddb 771 __u8 sw_hash:1;
6e3e939f
JB
772 __u8 wifi_acked_valid:1;
773 __u8 wifi_acked:1;
3bdc0eba 774 __u8 no_fcs:1;
77cffe23 775 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 776 __u8 encapsulation:1;
7e2b10c1 777 __u8 encap_hdr_csum:1;
5d0c2b95 778 __u8 csum_valid:1;
8b700862 779
7e3cead5 780 __u8 csum_complete_sw:1;
b1937227 781 __u8 csum_level:2;
dba00306 782 __u8 csum_not_inet:1;
4ff06203 783 __u8 dst_pending_confirm:1;
b1937227
ED
784#ifdef CONFIG_IPV6_NDISC_NODETYPE
785 __u8 ndisc_nodetype:2;
786#endif
787 __u8 ipvs_property:1;
8b700862 788
8bce6d7d 789 __u8 inner_protocol_type:1;
e585f236 790 __u8 remcsum_offload:1;
6bc506b4
IS
791#ifdef CONFIG_NET_SWITCHDEV
792 __u8 offload_fwd_mark:1;
abf4bb6b 793 __u8 offload_mr_fwd_mark:1;
6bc506b4 794#endif
e7246e12
WB
795#ifdef CONFIG_NET_CLS_ACT
796 __u8 tc_skip_classify:1;
8dc07fdb 797 __u8 tc_at_ingress:1;
bc31c905
WB
798 __u8 tc_redirected:1;
799 __u8 tc_from_ingress:1;
e7246e12 800#endif
a48d189e
SB
801#ifdef CONFIG_TLS_DEVICE
802 __u8 decrypted:1;
803#endif
b1937227
ED
804
805#ifdef CONFIG_NET_SCHED
806 __u16 tc_index; /* traffic control index */
b1937227 807#endif
fe55f6d5 808
b1937227
ED
809 union {
810 __wsum csum;
811 struct {
812 __u16 csum_start;
813 __u16 csum_offset;
814 };
815 };
816 __u32 priority;
817 int skb_iif;
818 __u32 hash;
819 __be16 vlan_proto;
820 __u16 vlan_tci;
2bd82484
ED
821#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
822 union {
823 unsigned int napi_id;
824 unsigned int sender_cpu;
825 };
97fc2f08 826#endif
984bc16c 827#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 828 __u32 secmark;
0c4f691f 829#endif
0c4f691f 830
3b885787
NH
831 union {
832 __u32 mark;
16fad69c 833 __u32 reserved_tailroom;
3b885787 834 };
1da177e4 835
8bce6d7d
TH
836 union {
837 __be16 inner_protocol;
838 __u8 inner_ipproto;
839 };
840
1a37e412
SH
841 __u16 inner_transport_header;
842 __u16 inner_network_header;
843 __u16 inner_mac_header;
b1937227
ED
844
845 __be16 protocol;
1a37e412
SH
846 __u16 transport_header;
847 __u16 network_header;
848 __u16 mac_header;
b1937227 849
ebcf34f3 850 /* private: */
b1937227 851 __u32 headers_end[0];
ebcf34f3 852 /* public: */
b1937227 853
1da177e4 854 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 855 sk_buff_data_t tail;
4305b541 856 sk_buff_data_t end;
1da177e4 857 unsigned char *head,
4305b541 858 *data;
27a884dc 859 unsigned int truesize;
63354797 860 refcount_t users;
1da177e4
LT
861};
862
863#ifdef __KERNEL__
864/*
865 * Handling routines are only of interest to the kernel
866 */
1da177e4 867
c93bdd0e
MG
868#define SKB_ALLOC_FCLONE 0x01
869#define SKB_ALLOC_RX 0x02
fd11a83d 870#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
871
872/* Returns true if the skb was allocated from PFMEMALLOC reserves */
873static inline bool skb_pfmemalloc(const struct sk_buff *skb)
874{
875 return unlikely(skb->pfmemalloc);
876}
877
7fee226a
ED
878/*
879 * skb might have a dst pointer attached, refcounted or not.
880 * _skb_refdst low order bit is set if refcount was _not_ taken
881 */
882#define SKB_DST_NOREF 1UL
883#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
884
a9e419dc 885#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
886/**
887 * skb_dst - returns skb dst_entry
888 * @skb: buffer
889 *
890 * Returns skb dst_entry, regardless of reference taken or not.
891 */
adf30907
ED
892static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
893{
7fee226a
ED
894 /* If refdst was not refcounted, check we still are in a
895 * rcu_read_lock section
896 */
897 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
898 !rcu_read_lock_held() &&
899 !rcu_read_lock_bh_held());
900 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
901}
902
7fee226a
ED
903/**
904 * skb_dst_set - sets skb dst
905 * @skb: buffer
906 * @dst: dst entry
907 *
908 * Sets skb dst, assuming a reference was taken on dst and should
909 * be released by skb_dst_drop()
910 */
adf30907
ED
911static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
912{
7fee226a
ED
913 skb->_skb_refdst = (unsigned long)dst;
914}
915
932bc4d7
JA
916/**
917 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
918 * @skb: buffer
919 * @dst: dst entry
920 *
921 * Sets skb dst, assuming a reference was not taken on dst.
922 * If dst entry is cached, we do not take reference and dst_release
923 * will be avoided by refdst_drop. If dst entry is not cached, we take
924 * reference, so that last dst_release can destroy the dst immediately.
925 */
926static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
927{
dbfc4fb7
HFS
928 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
929 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 930}
7fee226a
ED
931
932/**
25985edc 933 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
934 * @skb: buffer
935 */
936static inline bool skb_dst_is_noref(const struct sk_buff *skb)
937{
938 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
939}
940
511c3f92
ED
941static inline struct rtable *skb_rtable(const struct sk_buff *skb)
942{
adf30907 943 return (struct rtable *)skb_dst(skb);
511c3f92
ED
944}
945
8b10cab6
JHS
946/* For mangling skb->pkt_type from user space side from applications
947 * such as nft, tc, etc, we only allow a conservative subset of
948 * possible pkt_types to be set.
949*/
950static inline bool skb_pkt_type_ok(u32 ptype)
951{
952 return ptype <= PACKET_OTHERHOST;
953}
954
90b602f8
ML
955static inline unsigned int skb_napi_id(const struct sk_buff *skb)
956{
957#ifdef CONFIG_NET_RX_BUSY_POLL
958 return skb->napi_id;
959#else
960 return 0;
961#endif
962}
963
3889a803
PA
964/* decrement the reference count and return true if we can free the skb */
965static inline bool skb_unref(struct sk_buff *skb)
966{
967 if (unlikely(!skb))
968 return false;
63354797 969 if (likely(refcount_read(&skb->users) == 1))
3889a803 970 smp_rmb();
63354797 971 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
972 return false;
973
974 return true;
975}
976
0a463c78 977void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
978void kfree_skb(struct sk_buff *skb);
979void kfree_skb_list(struct sk_buff *segs);
980void skb_tx_error(struct sk_buff *skb);
981void consume_skb(struct sk_buff *skb);
ca2c1418 982void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 983void __kfree_skb(struct sk_buff *skb);
d7e8883c 984extern struct kmem_cache *skbuff_head_cache;
bad43ca8 985
7965bd4d
JP
986void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
987bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
988 bool *fragstolen, int *delta_truesize);
bad43ca8 989
7965bd4d
JP
990struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
991 int node);
2ea2f62c 992struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 993struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 994static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 995 gfp_t priority)
d179cd12 996{
564824b0 997 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
998}
999
2e4e4410
ED
1000struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1001 unsigned long data_len,
1002 int max_page_order,
1003 int *errcode,
1004 gfp_t gfp_mask);
1005
d0bf4a9e
ED
1006/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1007struct sk_buff_fclones {
1008 struct sk_buff skb1;
1009
1010 struct sk_buff skb2;
1011
2638595a 1012 refcount_t fclone_ref;
d0bf4a9e
ED
1013};
1014
1015/**
1016 * skb_fclone_busy - check if fclone is busy
293de7de 1017 * @sk: socket
d0bf4a9e
ED
1018 * @skb: buffer
1019 *
bda13fed 1020 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1021 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1022 * so we also check that this didnt happen.
d0bf4a9e 1023 */
39bb5e62
ED
1024static inline bool skb_fclone_busy(const struct sock *sk,
1025 const struct sk_buff *skb)
d0bf4a9e
ED
1026{
1027 const struct sk_buff_fclones *fclones;
1028
1029 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1030
1031 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1032 refcount_read(&fclones->fclone_ref) > 1 &&
39bb5e62 1033 fclones->skb2.sk == sk;
d0bf4a9e
ED
1034}
1035
d179cd12 1036static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1037 gfp_t priority)
d179cd12 1038{
c93bdd0e 1039 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1040}
1041
7965bd4d 1042struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
b0768a86 1043void skb_headers_offset_update(struct sk_buff *skb, int off);
7965bd4d
JP
1044int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1045struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
08303c18 1046void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
7965bd4d 1047struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1048struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1049 gfp_t gfp_mask, bool fclone);
1050static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1051 gfp_t gfp_mask)
1052{
1053 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1054}
7965bd4d
JP
1055
1056int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1057struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1058 unsigned int headroom);
1059struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1060 int newtailroom, gfp_t priority);
48a1df65
JD
1061int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1062 int offset, int len);
1063int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1064 int offset, int len);
7965bd4d 1065int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1066int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1067
1068/**
1069 * skb_pad - zero pad the tail of an skb
1070 * @skb: buffer to pad
1071 * @pad: space to pad
1072 *
1073 * Ensure that a buffer is followed by a padding area that is zero
1074 * filled. Used by network drivers which may DMA or transfer data
1075 * beyond the buffer end onto the wire.
1076 *
1077 * May return error in out of memory cases. The skb is freed on error.
1078 */
1079static inline int skb_pad(struct sk_buff *skb, int pad)
1080{
1081 return __skb_pad(skb, pad, true);
1082}
ead2ceb0 1083#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1084
be12a1fe
HFS
1085int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1086 int offset, size_t size);
1087
d94d9fee 1088struct skb_seq_state {
677e90ed
TG
1089 __u32 lower_offset;
1090 __u32 upper_offset;
1091 __u32 frag_idx;
1092 __u32 stepped_offset;
1093 struct sk_buff *root_skb;
1094 struct sk_buff *cur_skb;
1095 __u8 *frag_data;
1096};
1097
7965bd4d
JP
1098void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1099 unsigned int to, struct skb_seq_state *st);
1100unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1101 struct skb_seq_state *st);
1102void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1103
7965bd4d 1104unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1105 unsigned int to, struct ts_config *config);
3fc7e8a6 1106
09323cc4
TH
1107/*
1108 * Packet hash types specify the type of hash in skb_set_hash.
1109 *
1110 * Hash types refer to the protocol layer addresses which are used to
1111 * construct a packet's hash. The hashes are used to differentiate or identify
1112 * flows of the protocol layer for the hash type. Hash types are either
1113 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1114 *
1115 * Properties of hashes:
1116 *
1117 * 1) Two packets in different flows have different hash values
1118 * 2) Two packets in the same flow should have the same hash value
1119 *
1120 * A hash at a higher layer is considered to be more specific. A driver should
1121 * set the most specific hash possible.
1122 *
1123 * A driver cannot indicate a more specific hash than the layer at which a hash
1124 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1125 *
1126 * A driver may indicate a hash level which is less specific than the
1127 * actual layer the hash was computed on. For instance, a hash computed
1128 * at L4 may be considered an L3 hash. This should only be done if the
1129 * driver can't unambiguously determine that the HW computed the hash at
1130 * the higher layer. Note that the "should" in the second property above
1131 * permits this.
1132 */
1133enum pkt_hash_types {
1134 PKT_HASH_TYPE_NONE, /* Undefined type */
1135 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1136 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1137 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1138};
1139
bcc83839 1140static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1141{
bcc83839 1142 skb->hash = 0;
a3b18ddb 1143 skb->sw_hash = 0;
bcc83839
TH
1144 skb->l4_hash = 0;
1145}
1146
1147static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1148{
1149 if (!skb->l4_hash)
1150 skb_clear_hash(skb);
1151}
1152
1153static inline void
1154__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1155{
1156 skb->l4_hash = is_l4;
1157 skb->sw_hash = is_sw;
61b905da 1158 skb->hash = hash;
09323cc4
TH
1159}
1160
bcc83839
TH
1161static inline void
1162skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1163{
1164 /* Used by drivers to set hash from HW */
1165 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1166}
1167
1168static inline void
1169__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1170{
1171 __skb_set_hash(skb, hash, true, is_l4);
1172}
1173
e5276937 1174void __skb_get_hash(struct sk_buff *skb);
b917783c 1175u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1176u32 skb_get_poff(const struct sk_buff *skb);
1177u32 __skb_get_poff(const struct sk_buff *skb, void *data,
72a338bc 1178 const struct flow_keys_basic *keys, int hlen);
e5276937
TH
1179__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1180 void *data, int hlen_proto);
1181
1182static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1183 int thoff, u8 ip_proto)
1184{
1185 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1186}
1187
1188void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1189 const struct flow_dissector_key *key,
1190 unsigned int key_count);
1191
2dfd184a 1192#ifdef CONFIG_NET
d58e468b
PP
1193int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1194 struct bpf_prog *prog);
1195
1196int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
2dfd184a
WB
1197#else
1198static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1199 struct bpf_prog *prog)
1200{
1201 return -EOPNOTSUPP;
1202}
1203
1204static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1205{
1206 return -EOPNOTSUPP;
1207}
1208#endif
d58e468b 1209
e5276937
TH
1210bool __skb_flow_dissect(const struct sk_buff *skb,
1211 struct flow_dissector *flow_dissector,
1212 void *target_container,
cd79a238
TH
1213 void *data, __be16 proto, int nhoff, int hlen,
1214 unsigned int flags);
e5276937
TH
1215
1216static inline bool skb_flow_dissect(const struct sk_buff *skb,
1217 struct flow_dissector *flow_dissector,
cd79a238 1218 void *target_container, unsigned int flags)
e5276937
TH
1219{
1220 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1221 NULL, 0, 0, 0, flags);
e5276937
TH
1222}
1223
1224static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1225 struct flow_keys *flow,
1226 unsigned int flags)
e5276937
TH
1227{
1228 memset(flow, 0, sizeof(*flow));
1229 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1230 NULL, 0, 0, 0, flags);
e5276937
TH
1231}
1232
72a338bc
PA
1233static inline bool
1234skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1235 struct flow_keys_basic *flow, void *data,
1236 __be16 proto, int nhoff, int hlen,
1237 unsigned int flags)
e5276937
TH
1238{
1239 memset(flow, 0, sizeof(*flow));
72a338bc 1240 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
cd79a238 1241 data, proto, nhoff, hlen, flags);
e5276937
TH
1242}
1243
62b32379
SH
1244void
1245skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1246 struct flow_dissector *flow_dissector,
1247 void *target_container);
1248
3958afa1 1249static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1250{
a3b18ddb 1251 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1252 __skb_get_hash(skb);
bfb564e7 1253
61b905da 1254 return skb->hash;
bfb564e7
KK
1255}
1256
20a17bf6 1257static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1258{
c6cc1ca7
TH
1259 if (!skb->l4_hash && !skb->sw_hash) {
1260 struct flow_keys keys;
de4c1f8b 1261 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1262
de4c1f8b 1263 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1264 }
f70ea018
TH
1265
1266 return skb->hash;
1267}
1268
50fb7992
TH
1269__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1270
57bdf7f4
TH
1271static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1272{
61b905da 1273 return skb->hash;
57bdf7f4
TH
1274}
1275
3df7a74e
TH
1276static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1277{
61b905da 1278 to->hash = from->hash;
a3b18ddb 1279 to->sw_hash = from->sw_hash;
61b905da 1280 to->l4_hash = from->l4_hash;
3df7a74e
TH
1281};
1282
4305b541
ACM
1283#ifdef NET_SKBUFF_DATA_USES_OFFSET
1284static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1285{
1286 return skb->head + skb->end;
1287}
ec47ea82
AD
1288
1289static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1290{
1291 return skb->end;
1292}
4305b541
ACM
1293#else
1294static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1295{
1296 return skb->end;
1297}
ec47ea82
AD
1298
1299static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1300{
1301 return skb->end - skb->head;
1302}
4305b541
ACM
1303#endif
1304
1da177e4 1305/* Internal */
4305b541 1306#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1307
ac45f602
PO
1308static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1309{
1310 return &skb_shinfo(skb)->hwtstamps;
1311}
1312
52267790
WB
1313static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1314{
1315 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1316
1317 return is_zcopy ? skb_uarg(skb) : NULL;
1318}
1319
1320static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1321{
1322 if (skb && uarg && !skb_zcopy(skb)) {
1323 sock_zerocopy_get(uarg);
1324 skb_shinfo(skb)->destructor_arg = uarg;
1325 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1326 }
1327}
1328
5cd8d46e
WB
1329static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1330{
1331 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1332 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1333}
1334
1335static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1336{
1337 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1338}
1339
1340static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1341{
1342 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1343}
1344
52267790
WB
1345/* Release a reference on a zerocopy structure */
1346static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1347{
1348 struct ubuf_info *uarg = skb_zcopy(skb);
1349
1350 if (uarg) {
0a4a060b
WB
1351 if (uarg->callback == sock_zerocopy_callback) {
1352 uarg->zerocopy = uarg->zerocopy && zerocopy;
1353 sock_zerocopy_put(uarg);
5cd8d46e 1354 } else if (!skb_zcopy_is_nouarg(skb)) {
0a4a060b
WB
1355 uarg->callback(uarg, zerocopy);
1356 }
1357
52267790
WB
1358 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1359 }
1360}
1361
1362/* Abort a zerocopy operation and revert zckey on error in send syscall */
1363static inline void skb_zcopy_abort(struct sk_buff *skb)
1364{
1365 struct ubuf_info *uarg = skb_zcopy(skb);
1366
1367 if (uarg) {
1368 sock_zerocopy_put_abort(uarg);
1369 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1370 }
1371}
1372
a8305bff
DM
1373static inline void skb_mark_not_on_list(struct sk_buff *skb)
1374{
1375 skb->next = NULL;
1376}
1377
992cba7e
DM
1378static inline void skb_list_del_init(struct sk_buff *skb)
1379{
1380 __list_del_entry(&skb->list);
1381 skb_mark_not_on_list(skb);
1382}
1383
1da177e4
LT
1384/**
1385 * skb_queue_empty - check if a queue is empty
1386 * @list: queue head
1387 *
1388 * Returns true if the queue is empty, false otherwise.
1389 */
1390static inline int skb_queue_empty(const struct sk_buff_head *list)
1391{
fd44b93c 1392 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1393}
1394
fc7ebb21
DM
1395/**
1396 * skb_queue_is_last - check if skb is the last entry in the queue
1397 * @list: queue head
1398 * @skb: buffer
1399 *
1400 * Returns true if @skb is the last buffer on the list.
1401 */
1402static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1403 const struct sk_buff *skb)
1404{
fd44b93c 1405 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1406}
1407
832d11c5
IJ
1408/**
1409 * skb_queue_is_first - check if skb is the first entry in the queue
1410 * @list: queue head
1411 * @skb: buffer
1412 *
1413 * Returns true if @skb is the first buffer on the list.
1414 */
1415static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1416 const struct sk_buff *skb)
1417{
fd44b93c 1418 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1419}
1420
249c8b42
DM
1421/**
1422 * skb_queue_next - return the next packet in the queue
1423 * @list: queue head
1424 * @skb: current buffer
1425 *
1426 * Return the next packet in @list after @skb. It is only valid to
1427 * call this if skb_queue_is_last() evaluates to false.
1428 */
1429static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1430 const struct sk_buff *skb)
1431{
1432 /* This BUG_ON may seem severe, but if we just return then we
1433 * are going to dereference garbage.
1434 */
1435 BUG_ON(skb_queue_is_last(list, skb));
1436 return skb->next;
1437}
1438
832d11c5
IJ
1439/**
1440 * skb_queue_prev - return the prev packet in the queue
1441 * @list: queue head
1442 * @skb: current buffer
1443 *
1444 * Return the prev packet in @list before @skb. It is only valid to
1445 * call this if skb_queue_is_first() evaluates to false.
1446 */
1447static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1448 const struct sk_buff *skb)
1449{
1450 /* This BUG_ON may seem severe, but if we just return then we
1451 * are going to dereference garbage.
1452 */
1453 BUG_ON(skb_queue_is_first(list, skb));
1454 return skb->prev;
1455}
1456
1da177e4
LT
1457/**
1458 * skb_get - reference buffer
1459 * @skb: buffer to reference
1460 *
1461 * Makes another reference to a socket buffer and returns a pointer
1462 * to the buffer.
1463 */
1464static inline struct sk_buff *skb_get(struct sk_buff *skb)
1465{
63354797 1466 refcount_inc(&skb->users);
1da177e4
LT
1467 return skb;
1468}
1469
1470/*
f8821f96 1471 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1da177e4
LT
1472 */
1473
1da177e4
LT
1474/**
1475 * skb_cloned - is the buffer a clone
1476 * @skb: buffer to check
1477 *
1478 * Returns true if the buffer was generated with skb_clone() and is
1479 * one of multiple shared copies of the buffer. Cloned buffers are
1480 * shared data so must not be written to under normal circumstances.
1481 */
1482static inline int skb_cloned(const struct sk_buff *skb)
1483{
1484 return skb->cloned &&
1485 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1486}
1487
14bbd6a5
PS
1488static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1489{
d0164adc 1490 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1491
1492 if (skb_cloned(skb))
1493 return pskb_expand_head(skb, 0, 0, pri);
1494
1495 return 0;
1496}
1497
1da177e4
LT
1498/**
1499 * skb_header_cloned - is the header a clone
1500 * @skb: buffer to check
1501 *
1502 * Returns true if modifying the header part of the buffer requires
1503 * the data to be copied.
1504 */
1505static inline int skb_header_cloned(const struct sk_buff *skb)
1506{
1507 int dataref;
1508
1509 if (!skb->cloned)
1510 return 0;
1511
1512 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1513 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1514 return dataref != 1;
1515}
1516
9580bf2e
ED
1517static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1518{
1519 might_sleep_if(gfpflags_allow_blocking(pri));
1520
1521 if (skb_header_cloned(skb))
1522 return pskb_expand_head(skb, 0, 0, pri);
1523
1524 return 0;
1525}
1526
f4a775d1
ED
1527/**
1528 * __skb_header_release - release reference to header
1529 * @skb: buffer to operate on
f4a775d1
ED
1530 */
1531static inline void __skb_header_release(struct sk_buff *skb)
1532{
1533 skb->nohdr = 1;
1534 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1535}
1536
1537
1da177e4
LT
1538/**
1539 * skb_shared - is the buffer shared
1540 * @skb: buffer to check
1541 *
1542 * Returns true if more than one person has a reference to this
1543 * buffer.
1544 */
1545static inline int skb_shared(const struct sk_buff *skb)
1546{
63354797 1547 return refcount_read(&skb->users) != 1;
1da177e4
LT
1548}
1549
1550/**
1551 * skb_share_check - check if buffer is shared and if so clone it
1552 * @skb: buffer to check
1553 * @pri: priority for memory allocation
1554 *
1555 * If the buffer is shared the buffer is cloned and the old copy
1556 * drops a reference. A new clone with a single reference is returned.
1557 * If the buffer is not shared the original buffer is returned. When
1558 * being called from interrupt status or with spinlocks held pri must
1559 * be GFP_ATOMIC.
1560 *
1561 * NULL is returned on a memory allocation failure.
1562 */
47061bc4 1563static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1564{
d0164adc 1565 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1566 if (skb_shared(skb)) {
1567 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1568
1569 if (likely(nskb))
1570 consume_skb(skb);
1571 else
1572 kfree_skb(skb);
1da177e4
LT
1573 skb = nskb;
1574 }
1575 return skb;
1576}
1577
1578/*
1579 * Copy shared buffers into a new sk_buff. We effectively do COW on
1580 * packets to handle cases where we have a local reader and forward
1581 * and a couple of other messy ones. The normal one is tcpdumping
1582 * a packet thats being forwarded.
1583 */
1584
1585/**
1586 * skb_unshare - make a copy of a shared buffer
1587 * @skb: buffer to check
1588 * @pri: priority for memory allocation
1589 *
1590 * If the socket buffer is a clone then this function creates a new
1591 * copy of the data, drops a reference count on the old copy and returns
1592 * the new copy with the reference count at 1. If the buffer is not a clone
1593 * the original buffer is returned. When called with a spinlock held or
1594 * from interrupt state @pri must be %GFP_ATOMIC
1595 *
1596 * %NULL is returned on a memory allocation failure.
1597 */
e2bf521d 1598static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1599 gfp_t pri)
1da177e4 1600{
d0164adc 1601 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1602 if (skb_cloned(skb)) {
1603 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1604
1605 /* Free our shared copy */
1606 if (likely(nskb))
1607 consume_skb(skb);
1608 else
1609 kfree_skb(skb);
1da177e4
LT
1610 skb = nskb;
1611 }
1612 return skb;
1613}
1614
1615/**
1a5778aa 1616 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1617 * @list_: list to peek at
1618 *
1619 * Peek an &sk_buff. Unlike most other operations you _MUST_
1620 * be careful with this one. A peek leaves the buffer on the
1621 * list and someone else may run off with it. You must hold
1622 * the appropriate locks or have a private queue to do this.
1623 *
1624 * Returns %NULL for an empty list or a pointer to the head element.
1625 * The reference count is not incremented and the reference is therefore
1626 * volatile. Use with caution.
1627 */
05bdd2f1 1628static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1629{
18d07000
ED
1630 struct sk_buff *skb = list_->next;
1631
1632 if (skb == (struct sk_buff *)list_)
1633 skb = NULL;
1634 return skb;
1da177e4
LT
1635}
1636
8b69bd7d
DM
1637/**
1638 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1639 * @list_: list to peek at
1640 *
1641 * Like skb_peek(), but the caller knows that the list is not empty.
1642 */
1643static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1644{
1645 return list_->next;
1646}
1647
da5ef6e5
PE
1648/**
1649 * skb_peek_next - peek skb following the given one from a queue
1650 * @skb: skb to start from
1651 * @list_: list to peek at
1652 *
1653 * Returns %NULL when the end of the list is met or a pointer to the
1654 * next element. The reference count is not incremented and the
1655 * reference is therefore volatile. Use with caution.
1656 */
1657static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1658 const struct sk_buff_head *list_)
1659{
1660 struct sk_buff *next = skb->next;
18d07000 1661
da5ef6e5
PE
1662 if (next == (struct sk_buff *)list_)
1663 next = NULL;
1664 return next;
1665}
1666
1da177e4 1667/**
1a5778aa 1668 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1669 * @list_: list to peek at
1670 *
1671 * Peek an &sk_buff. Unlike most other operations you _MUST_
1672 * be careful with this one. A peek leaves the buffer on the
1673 * list and someone else may run off with it. You must hold
1674 * the appropriate locks or have a private queue to do this.
1675 *
1676 * Returns %NULL for an empty list or a pointer to the tail element.
1677 * The reference count is not incremented and the reference is therefore
1678 * volatile. Use with caution.
1679 */
05bdd2f1 1680static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1681{
18d07000
ED
1682 struct sk_buff *skb = list_->prev;
1683
1684 if (skb == (struct sk_buff *)list_)
1685 skb = NULL;
1686 return skb;
1687
1da177e4
LT
1688}
1689
1690/**
1691 * skb_queue_len - get queue length
1692 * @list_: list to measure
1693 *
1694 * Return the length of an &sk_buff queue.
1695 */
1696static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1697{
1698 return list_->qlen;
1699}
1700
67fed459
DM
1701/**
1702 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1703 * @list: queue to initialize
1704 *
1705 * This initializes only the list and queue length aspects of
1706 * an sk_buff_head object. This allows to initialize the list
1707 * aspects of an sk_buff_head without reinitializing things like
1708 * the spinlock. It can also be used for on-stack sk_buff_head
1709 * objects where the spinlock is known to not be used.
1710 */
1711static inline void __skb_queue_head_init(struct sk_buff_head *list)
1712{
1713 list->prev = list->next = (struct sk_buff *)list;
1714 list->qlen = 0;
1715}
1716
76f10ad0
AV
1717/*
1718 * This function creates a split out lock class for each invocation;
1719 * this is needed for now since a whole lot of users of the skb-queue
1720 * infrastructure in drivers have different locking usage (in hardirq)
1721 * than the networking core (in softirq only). In the long run either the
1722 * network layer or drivers should need annotation to consolidate the
1723 * main types of usage into 3 classes.
1724 */
1da177e4
LT
1725static inline void skb_queue_head_init(struct sk_buff_head *list)
1726{
1727 spin_lock_init(&list->lock);
67fed459 1728 __skb_queue_head_init(list);
1da177e4
LT
1729}
1730
c2ecba71
PE
1731static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1732 struct lock_class_key *class)
1733{
1734 skb_queue_head_init(list);
1735 lockdep_set_class(&list->lock, class);
1736}
1737
1da177e4 1738/*
bf299275 1739 * Insert an sk_buff on a list.
1da177e4
LT
1740 *
1741 * The "__skb_xxxx()" functions are the non-atomic ones that
1742 * can only be called with interrupts disabled.
1743 */
7965bd4d
JP
1744void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1745 struct sk_buff_head *list);
bf299275
GR
1746static inline void __skb_insert(struct sk_buff *newsk,
1747 struct sk_buff *prev, struct sk_buff *next,
1748 struct sk_buff_head *list)
1749{
1750 newsk->next = next;
1751 newsk->prev = prev;
1752 next->prev = prev->next = newsk;
1753 list->qlen++;
1754}
1da177e4 1755
67fed459
DM
1756static inline void __skb_queue_splice(const struct sk_buff_head *list,
1757 struct sk_buff *prev,
1758 struct sk_buff *next)
1759{
1760 struct sk_buff *first = list->next;
1761 struct sk_buff *last = list->prev;
1762
1763 first->prev = prev;
1764 prev->next = first;
1765
1766 last->next = next;
1767 next->prev = last;
1768}
1769
1770/**
1771 * skb_queue_splice - join two skb lists, this is designed for stacks
1772 * @list: the new list to add
1773 * @head: the place to add it in the first list
1774 */
1775static inline void skb_queue_splice(const struct sk_buff_head *list,
1776 struct sk_buff_head *head)
1777{
1778 if (!skb_queue_empty(list)) {
1779 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1780 head->qlen += list->qlen;
67fed459
DM
1781 }
1782}
1783
1784/**
d9619496 1785 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1786 * @list: the new list to add
1787 * @head: the place to add it in the first list
1788 *
1789 * The list at @list is reinitialised
1790 */
1791static inline void skb_queue_splice_init(struct sk_buff_head *list,
1792 struct sk_buff_head *head)
1793{
1794 if (!skb_queue_empty(list)) {
1795 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1796 head->qlen += list->qlen;
67fed459
DM
1797 __skb_queue_head_init(list);
1798 }
1799}
1800
1801/**
1802 * skb_queue_splice_tail - join two skb lists, each list being a queue
1803 * @list: the new list to add
1804 * @head: the place to add it in the first list
1805 */
1806static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1807 struct sk_buff_head *head)
1808{
1809 if (!skb_queue_empty(list)) {
1810 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1811 head->qlen += list->qlen;
67fed459
DM
1812 }
1813}
1814
1815/**
d9619496 1816 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1817 * @list: the new list to add
1818 * @head: the place to add it in the first list
1819 *
1820 * Each of the lists is a queue.
1821 * The list at @list is reinitialised
1822 */
1823static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1824 struct sk_buff_head *head)
1825{
1826 if (!skb_queue_empty(list)) {
1827 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1828 head->qlen += list->qlen;
67fed459
DM
1829 __skb_queue_head_init(list);
1830 }
1831}
1832
1da177e4 1833/**
300ce174 1834 * __skb_queue_after - queue a buffer at the list head
1da177e4 1835 * @list: list to use
300ce174 1836 * @prev: place after this buffer
1da177e4
LT
1837 * @newsk: buffer to queue
1838 *
300ce174 1839 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1840 * and you must therefore hold required locks before calling it.
1841 *
1842 * A buffer cannot be placed on two lists at the same time.
1843 */
300ce174
SH
1844static inline void __skb_queue_after(struct sk_buff_head *list,
1845 struct sk_buff *prev,
1846 struct sk_buff *newsk)
1da177e4 1847{
bf299275 1848 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1849}
1850
7965bd4d
JP
1851void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1852 struct sk_buff_head *list);
7de6c033 1853
f5572855
GR
1854static inline void __skb_queue_before(struct sk_buff_head *list,
1855 struct sk_buff *next,
1856 struct sk_buff *newsk)
1857{
1858 __skb_insert(newsk, next->prev, next, list);
1859}
1860
300ce174
SH
1861/**
1862 * __skb_queue_head - queue a buffer at the list head
1863 * @list: list to use
1864 * @newsk: buffer to queue
1865 *
1866 * Queue a buffer at the start of a list. This function takes no locks
1867 * and you must therefore hold required locks before calling it.
1868 *
1869 * A buffer cannot be placed on two lists at the same time.
1870 */
7965bd4d 1871void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1872static inline void __skb_queue_head(struct sk_buff_head *list,
1873 struct sk_buff *newsk)
1874{
1875 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1876}
1877
1da177e4
LT
1878/**
1879 * __skb_queue_tail - queue a buffer at the list tail
1880 * @list: list to use
1881 * @newsk: buffer to queue
1882 *
1883 * Queue a buffer at the end of a list. This function takes no locks
1884 * and you must therefore hold required locks before calling it.
1885 *
1886 * A buffer cannot be placed on two lists at the same time.
1887 */
7965bd4d 1888void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1889static inline void __skb_queue_tail(struct sk_buff_head *list,
1890 struct sk_buff *newsk)
1891{
f5572855 1892 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1893}
1894
1da177e4
LT
1895/*
1896 * remove sk_buff from list. _Must_ be called atomically, and with
1897 * the list known..
1898 */
7965bd4d 1899void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1900static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1901{
1902 struct sk_buff *next, *prev;
1903
1904 list->qlen--;
1905 next = skb->next;
1906 prev = skb->prev;
1907 skb->next = skb->prev = NULL;
1da177e4
LT
1908 next->prev = prev;
1909 prev->next = next;
1910}
1911
f525c06d
GR
1912/**
1913 * __skb_dequeue - remove from the head of the queue
1914 * @list: list to dequeue from
1915 *
1916 * Remove the head of the list. This function does not take any locks
1917 * so must be used with appropriate locks held only. The head item is
1918 * returned or %NULL if the list is empty.
1919 */
7965bd4d 1920struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1921static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1922{
1923 struct sk_buff *skb = skb_peek(list);
1924 if (skb)
1925 __skb_unlink(skb, list);
1926 return skb;
1927}
1da177e4
LT
1928
1929/**
1930 * __skb_dequeue_tail - remove from the tail of the queue
1931 * @list: list to dequeue from
1932 *
1933 * Remove the tail of the list. This function does not take any locks
1934 * so must be used with appropriate locks held only. The tail item is
1935 * returned or %NULL if the list is empty.
1936 */
7965bd4d 1937struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1938static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1939{
1940 struct sk_buff *skb = skb_peek_tail(list);
1941 if (skb)
1942 __skb_unlink(skb, list);
1943 return skb;
1944}
1945
1946
bdcc0924 1947static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1948{
1949 return skb->data_len;
1950}
1951
1952static inline unsigned int skb_headlen(const struct sk_buff *skb)
1953{
1954 return skb->len - skb->data_len;
1955}
1956
3ece7826 1957static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 1958{
c72d8cda 1959 unsigned int i, len = 0;
1da177e4 1960
c72d8cda 1961 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 1962 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
1963 return len;
1964}
1965
1966static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1967{
1968 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
1969}
1970
131ea667
IC
1971/**
1972 * __skb_fill_page_desc - initialise a paged fragment in an skb
1973 * @skb: buffer containing fragment to be initialised
1974 * @i: paged fragment index to initialise
1975 * @page: the page to use for this fragment
1976 * @off: the offset to the data with @page
1977 * @size: the length of the data
1978 *
1979 * Initialises the @i'th fragment of @skb to point to &size bytes at
1980 * offset @off within @page.
1981 *
1982 * Does not take any additional reference on the fragment.
1983 */
1984static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1985 struct page *page, int off, int size)
1da177e4
LT
1986{
1987 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1988
c48a11c7 1989 /*
2f064f34
MH
1990 * Propagate page pfmemalloc to the skb if we can. The problem is
1991 * that not all callers have unique ownership of the page but rely
1992 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1993 */
a8605c60 1994 frag->page.p = page;
1da177e4 1995 frag->page_offset = off;
9e903e08 1996 skb_frag_size_set(frag, size);
cca7af38
PE
1997
1998 page = compound_head(page);
2f064f34 1999 if (page_is_pfmemalloc(page))
cca7af38 2000 skb->pfmemalloc = true;
131ea667
IC
2001}
2002
2003/**
2004 * skb_fill_page_desc - initialise a paged fragment in an skb
2005 * @skb: buffer containing fragment to be initialised
2006 * @i: paged fragment index to initialise
2007 * @page: the page to use for this fragment
2008 * @off: the offset to the data with @page
2009 * @size: the length of the data
2010 *
2011 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 2012 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
2013 * addition updates @skb such that @i is the last fragment.
2014 *
2015 * Does not take any additional reference on the fragment.
2016 */
2017static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2018 struct page *page, int off, int size)
2019{
2020 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
2021 skb_shinfo(skb)->nr_frags = i + 1;
2022}
2023
7965bd4d
JP
2024void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2025 int size, unsigned int truesize);
654bed16 2026
f8e617e1
JW
2027void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2028 unsigned int truesize);
2029
1da177e4 2030#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 2031#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
2032#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2033
27a884dc
ACM
2034#ifdef NET_SKBUFF_DATA_USES_OFFSET
2035static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2036{
2037 return skb->head + skb->tail;
2038}
2039
2040static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2041{
2042 skb->tail = skb->data - skb->head;
2043}
2044
2045static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2046{
2047 skb_reset_tail_pointer(skb);
2048 skb->tail += offset;
2049}
7cc46190 2050
27a884dc
ACM
2051#else /* NET_SKBUFF_DATA_USES_OFFSET */
2052static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2053{
2054 return skb->tail;
2055}
2056
2057static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2058{
2059 skb->tail = skb->data;
2060}
2061
2062static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2063{
2064 skb->tail = skb->data + offset;
2065}
4305b541 2066
27a884dc
ACM
2067#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2068
1da177e4
LT
2069/*
2070 * Add data to an sk_buff
2071 */
4df864c1
JB
2072void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2073void *skb_put(struct sk_buff *skb, unsigned int len);
2074static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2075{
4df864c1 2076 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2077 SKB_LINEAR_ASSERT(skb);
2078 skb->tail += len;
2079 skb->len += len;
2080 return tmp;
2081}
2082
de77b966 2083static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2084{
2085 void *tmp = __skb_put(skb, len);
2086
2087 memset(tmp, 0, len);
2088 return tmp;
2089}
2090
2091static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2092 unsigned int len)
2093{
2094 void *tmp = __skb_put(skb, len);
2095
2096 memcpy(tmp, data, len);
2097 return tmp;
2098}
2099
2100static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2101{
2102 *(u8 *)__skb_put(skb, 1) = val;
2103}
2104
83ad357d 2105static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2106{
83ad357d 2107 void *tmp = skb_put(skb, len);
e45a79da
JB
2108
2109 memset(tmp, 0, len);
2110
2111 return tmp;
2112}
2113
59ae1d12
JB
2114static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2115 unsigned int len)
2116{
2117 void *tmp = skb_put(skb, len);
2118
2119 memcpy(tmp, data, len);
2120
2121 return tmp;
2122}
2123
634fef61
JB
2124static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2125{
2126 *(u8 *)skb_put(skb, 1) = val;
2127}
2128
d58ff351
JB
2129void *skb_push(struct sk_buff *skb, unsigned int len);
2130static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2131{
2132 skb->data -= len;
2133 skb->len += len;
2134 return skb->data;
2135}
2136
af72868b
JB
2137void *skb_pull(struct sk_buff *skb, unsigned int len);
2138static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2139{
2140 skb->len -= len;
2141 BUG_ON(skb->len < skb->data_len);
2142 return skb->data += len;
2143}
2144
af72868b 2145static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2146{
2147 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2148}
2149
af72868b 2150void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2151
af72868b 2152static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2153{
2154 if (len > skb_headlen(skb) &&
987c402a 2155 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2156 return NULL;
2157 skb->len -= len;
2158 return skb->data += len;
2159}
2160
af72868b 2161static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2162{
2163 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2164}
2165
2166static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2167{
2168 if (likely(len <= skb_headlen(skb)))
2169 return 1;
2170 if (unlikely(len > skb->len))
2171 return 0;
987c402a 2172 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2173}
2174
c8c8b127
ED
2175void skb_condense(struct sk_buff *skb);
2176
1da177e4
LT
2177/**
2178 * skb_headroom - bytes at buffer head
2179 * @skb: buffer to check
2180 *
2181 * Return the number of bytes of free space at the head of an &sk_buff.
2182 */
c2636b4d 2183static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2184{
2185 return skb->data - skb->head;
2186}
2187
2188/**
2189 * skb_tailroom - bytes at buffer end
2190 * @skb: buffer to check
2191 *
2192 * Return the number of bytes of free space at the tail of an sk_buff
2193 */
2194static inline int skb_tailroom(const struct sk_buff *skb)
2195{
4305b541 2196 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2197}
2198
a21d4572
ED
2199/**
2200 * skb_availroom - bytes at buffer end
2201 * @skb: buffer to check
2202 *
2203 * Return the number of bytes of free space at the tail of an sk_buff
2204 * allocated by sk_stream_alloc()
2205 */
2206static inline int skb_availroom(const struct sk_buff *skb)
2207{
16fad69c
ED
2208 if (skb_is_nonlinear(skb))
2209 return 0;
2210
2211 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2212}
2213
1da177e4
LT
2214/**
2215 * skb_reserve - adjust headroom
2216 * @skb: buffer to alter
2217 * @len: bytes to move
2218 *
2219 * Increase the headroom of an empty &sk_buff by reducing the tail
2220 * room. This is only allowed for an empty buffer.
2221 */
8243126c 2222static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2223{
2224 skb->data += len;
2225 skb->tail += len;
2226}
2227
1837b2e2
BP
2228/**
2229 * skb_tailroom_reserve - adjust reserved_tailroom
2230 * @skb: buffer to alter
2231 * @mtu: maximum amount of headlen permitted
2232 * @needed_tailroom: minimum amount of reserved_tailroom
2233 *
2234 * Set reserved_tailroom so that headlen can be as large as possible but
2235 * not larger than mtu and tailroom cannot be smaller than
2236 * needed_tailroom.
2237 * The required headroom should already have been reserved before using
2238 * this function.
2239 */
2240static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2241 unsigned int needed_tailroom)
2242{
2243 SKB_LINEAR_ASSERT(skb);
2244 if (mtu < skb_tailroom(skb) - needed_tailroom)
2245 /* use at most mtu */
2246 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2247 else
2248 /* use up to all available space */
2249 skb->reserved_tailroom = needed_tailroom;
2250}
2251
8bce6d7d
TH
2252#define ENCAP_TYPE_ETHER 0
2253#define ENCAP_TYPE_IPPROTO 1
2254
2255static inline void skb_set_inner_protocol(struct sk_buff *skb,
2256 __be16 protocol)
2257{
2258 skb->inner_protocol = protocol;
2259 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2260}
2261
2262static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2263 __u8 ipproto)
2264{
2265 skb->inner_ipproto = ipproto;
2266 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2267}
2268
6a674e9c
JG
2269static inline void skb_reset_inner_headers(struct sk_buff *skb)
2270{
aefbd2b3 2271 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2272 skb->inner_network_header = skb->network_header;
2273 skb->inner_transport_header = skb->transport_header;
2274}
2275
0b5c9db1
JP
2276static inline void skb_reset_mac_len(struct sk_buff *skb)
2277{
2278 skb->mac_len = skb->network_header - skb->mac_header;
2279}
2280
6a674e9c
JG
2281static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2282 *skb)
2283{
2284 return skb->head + skb->inner_transport_header;
2285}
2286
55dc5a9f
TH
2287static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2288{
2289 return skb_inner_transport_header(skb) - skb->data;
2290}
2291
6a674e9c
JG
2292static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2293{
2294 skb->inner_transport_header = skb->data - skb->head;
2295}
2296
2297static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2298 const int offset)
2299{
2300 skb_reset_inner_transport_header(skb);
2301 skb->inner_transport_header += offset;
2302}
2303
2304static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2305{
2306 return skb->head + skb->inner_network_header;
2307}
2308
2309static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2310{
2311 skb->inner_network_header = skb->data - skb->head;
2312}
2313
2314static inline void skb_set_inner_network_header(struct sk_buff *skb,
2315 const int offset)
2316{
2317 skb_reset_inner_network_header(skb);
2318 skb->inner_network_header += offset;
2319}
2320
aefbd2b3
PS
2321static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2322{
2323 return skb->head + skb->inner_mac_header;
2324}
2325
2326static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2327{
2328 skb->inner_mac_header = skb->data - skb->head;
2329}
2330
2331static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2332 const int offset)
2333{
2334 skb_reset_inner_mac_header(skb);
2335 skb->inner_mac_header += offset;
2336}
fda55eca
ED
2337static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2338{
35d04610 2339 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2340}
2341
9c70220b
ACM
2342static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2343{
2e07fa9c 2344 return skb->head + skb->transport_header;
9c70220b
ACM
2345}
2346
badff6d0
ACM
2347static inline void skb_reset_transport_header(struct sk_buff *skb)
2348{
2e07fa9c 2349 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2350}
2351
967b05f6
ACM
2352static inline void skb_set_transport_header(struct sk_buff *skb,
2353 const int offset)
2354{
2e07fa9c
ACM
2355 skb_reset_transport_header(skb);
2356 skb->transport_header += offset;
ea2ae17d
ACM
2357}
2358
d56f90a7
ACM
2359static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2360{
2e07fa9c 2361 return skb->head + skb->network_header;
d56f90a7
ACM
2362}
2363
c1d2bbe1
ACM
2364static inline void skb_reset_network_header(struct sk_buff *skb)
2365{
2e07fa9c 2366 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2367}
2368
c14d2450
ACM
2369static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2370{
2e07fa9c
ACM
2371 skb_reset_network_header(skb);
2372 skb->network_header += offset;
c14d2450
ACM
2373}
2374
2e07fa9c 2375static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2376{
2e07fa9c 2377 return skb->head + skb->mac_header;
bbe735e4
ACM
2378}
2379
ea6da4fd
AV
2380static inline int skb_mac_offset(const struct sk_buff *skb)
2381{
2382 return skb_mac_header(skb) - skb->data;
2383}
2384
0daf4349
DB
2385static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2386{
2387 return skb->network_header - skb->mac_header;
2388}
2389
2e07fa9c 2390static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2391{
35d04610 2392 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2393}
2394
2395static inline void skb_reset_mac_header(struct sk_buff *skb)
2396{
2397 skb->mac_header = skb->data - skb->head;
2398}
2399
2400static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2401{
2402 skb_reset_mac_header(skb);
2403 skb->mac_header += offset;
2404}
2405
0e3da5bb
TT
2406static inline void skb_pop_mac_header(struct sk_buff *skb)
2407{
2408 skb->mac_header = skb->network_header;
2409}
2410
fbbdb8f0
YX
2411static inline void skb_probe_transport_header(struct sk_buff *skb,
2412 const int offset_hint)
2413{
72a338bc 2414 struct flow_keys_basic keys;
fbbdb8f0
YX
2415
2416 if (skb_transport_header_was_set(skb))
2417 return;
72a338bc 2418
15693fd3 2419 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
42aecaa9 2420 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2421 else
2422 skb_set_transport_header(skb, offset_hint);
2423}
2424
03606895
ED
2425static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2426{
2427 if (skb_mac_header_was_set(skb)) {
2428 const unsigned char *old_mac = skb_mac_header(skb);
2429
2430 skb_set_mac_header(skb, -skb->mac_len);
2431 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2432 }
2433}
2434
04fb451e
MM
2435static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2436{
2437 return skb->csum_start - skb_headroom(skb);
2438}
2439
08b64fcc
AD
2440static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2441{
2442 return skb->head + skb->csum_start;
2443}
2444
2e07fa9c
ACM
2445static inline int skb_transport_offset(const struct sk_buff *skb)
2446{
2447 return skb_transport_header(skb) - skb->data;
2448}
2449
2450static inline u32 skb_network_header_len(const struct sk_buff *skb)
2451{
2452 return skb->transport_header - skb->network_header;
2453}
2454
6a674e9c
JG
2455static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2456{
2457 return skb->inner_transport_header - skb->inner_network_header;
2458}
2459
2e07fa9c
ACM
2460static inline int skb_network_offset(const struct sk_buff *skb)
2461{
2462 return skb_network_header(skb) - skb->data;
2463}
48d49d0c 2464
6a674e9c
JG
2465static inline int skb_inner_network_offset(const struct sk_buff *skb)
2466{
2467 return skb_inner_network_header(skb) - skb->data;
2468}
2469
f9599ce1
CG
2470static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2471{
2472 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2473}
2474
1da177e4
LT
2475/*
2476 * CPUs often take a performance hit when accessing unaligned memory
2477 * locations. The actual performance hit varies, it can be small if the
2478 * hardware handles it or large if we have to take an exception and fix it
2479 * in software.
2480 *
2481 * Since an ethernet header is 14 bytes network drivers often end up with
2482 * the IP header at an unaligned offset. The IP header can be aligned by
2483 * shifting the start of the packet by 2 bytes. Drivers should do this
2484 * with:
2485 *
8660c124 2486 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2487 *
2488 * The downside to this alignment of the IP header is that the DMA is now
2489 * unaligned. On some architectures the cost of an unaligned DMA is high
2490 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2491 *
1da177e4
LT
2492 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2493 * to be overridden.
2494 */
2495#ifndef NET_IP_ALIGN
2496#define NET_IP_ALIGN 2
2497#endif
2498
025be81e
AB
2499/*
2500 * The networking layer reserves some headroom in skb data (via
2501 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2502 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2503 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2504 *
2505 * Unfortunately this headroom changes the DMA alignment of the resulting
2506 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2507 * on some architectures. An architecture can override this value,
2508 * perhaps setting it to a cacheline in size (since that will maintain
2509 * cacheline alignment of the DMA). It must be a power of 2.
2510 *
d6301d3d 2511 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2512 * headroom, you should not reduce this.
5933dd2f
ED
2513 *
2514 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2515 * to reduce average number of cache lines per packet.
2516 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2517 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2518 */
2519#ifndef NET_SKB_PAD
5933dd2f 2520#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2521#endif
2522
7965bd4d 2523int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2524
5293efe6 2525static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2526{
c4264f27 2527 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2528 WARN_ON(1);
2529 return;
2530 }
27a884dc
ACM
2531 skb->len = len;
2532 skb_set_tail_pointer(skb, len);
1da177e4
LT
2533}
2534
5293efe6
DB
2535static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2536{
2537 __skb_set_length(skb, len);
2538}
2539
7965bd4d 2540void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2541
2542static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2543{
3cc0e873
HX
2544 if (skb->data_len)
2545 return ___pskb_trim(skb, len);
2546 __skb_trim(skb, len);
2547 return 0;
1da177e4
LT
2548}
2549
2550static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2551{
2552 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2553}
2554
e9fa4f7b
HX
2555/**
2556 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2557 * @skb: buffer to alter
2558 * @len: new length
2559 *
2560 * This is identical to pskb_trim except that the caller knows that
2561 * the skb is not cloned so we should never get an error due to out-
2562 * of-memory.
2563 */
2564static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2565{
2566 int err = pskb_trim(skb, len);
2567 BUG_ON(err);
2568}
2569
5293efe6
DB
2570static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2571{
2572 unsigned int diff = len - skb->len;
2573
2574 if (skb_tailroom(skb) < diff) {
2575 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2576 GFP_ATOMIC);
2577 if (ret)
2578 return ret;
2579 }
2580 __skb_set_length(skb, len);
2581 return 0;
2582}
2583
1da177e4
LT
2584/**
2585 * skb_orphan - orphan a buffer
2586 * @skb: buffer to orphan
2587 *
2588 * If a buffer currently has an owner then we call the owner's
2589 * destructor function and make the @skb unowned. The buffer continues
2590 * to exist but is no longer charged to its former owner.
2591 */
2592static inline void skb_orphan(struct sk_buff *skb)
2593{
c34a7612 2594 if (skb->destructor) {
1da177e4 2595 skb->destructor(skb);
c34a7612
ED
2596 skb->destructor = NULL;
2597 skb->sk = NULL;
376c7311
ED
2598 } else {
2599 BUG_ON(skb->sk);
c34a7612 2600 }
1da177e4
LT
2601}
2602
a353e0ce
MT
2603/**
2604 * skb_orphan_frags - orphan the frags contained in a buffer
2605 * @skb: buffer to orphan frags from
2606 * @gfp_mask: allocation mask for replacement pages
2607 *
2608 * For each frag in the SKB which needs a destructor (i.e. has an
2609 * owner) create a copy of that frag and release the original
2610 * page by calling the destructor.
2611 */
2612static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2613{
1f8b977a
WB
2614 if (likely(!skb_zcopy(skb)))
2615 return 0;
2616 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2617 return 0;
2618 return skb_copy_ubufs(skb, gfp_mask);
2619}
2620
2621/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2622static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2623{
2624 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2625 return 0;
2626 return skb_copy_ubufs(skb, gfp_mask);
2627}
2628
1da177e4
LT
2629/**
2630 * __skb_queue_purge - empty a list
2631 * @list: list to empty
2632 *
2633 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2634 * the list and one reference dropped. This function does not take the
2635 * list lock and the caller must hold the relevant locks to use it.
2636 */
7965bd4d 2637void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2638static inline void __skb_queue_purge(struct sk_buff_head *list)
2639{
2640 struct sk_buff *skb;
2641 while ((skb = __skb_dequeue(list)) != NULL)
2642 kfree_skb(skb);
2643}
2644
385114de 2645unsigned int skb_rbtree_purge(struct rb_root *root);
9f5afeae 2646
7965bd4d 2647void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2648
7965bd4d
JP
2649struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2650 gfp_t gfp_mask);
8af27456
CH
2651
2652/**
2653 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2654 * @dev: network device to receive on
2655 * @length: length to allocate
2656 *
2657 * Allocate a new &sk_buff and assign it a usage count of one. The
2658 * buffer has unspecified headroom built in. Users should allocate
2659 * the headroom they think they need without accounting for the
2660 * built in space. The built in space is used for optimisations.
2661 *
2662 * %NULL is returned if there is no free memory. Although this function
2663 * allocates memory it can be called from an interrupt.
2664 */
2665static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2666 unsigned int length)
8af27456
CH
2667{
2668 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2669}
2670
6f532612
ED
2671/* legacy helper around __netdev_alloc_skb() */
2672static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2673 gfp_t gfp_mask)
2674{
2675 return __netdev_alloc_skb(NULL, length, gfp_mask);
2676}
2677
2678/* legacy helper around netdev_alloc_skb() */
2679static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2680{
2681 return netdev_alloc_skb(NULL, length);
2682}
2683
2684
4915a0de
ED
2685static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2686 unsigned int length, gfp_t gfp)
61321bbd 2687{
4915a0de 2688 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2689
2690 if (NET_IP_ALIGN && skb)
2691 skb_reserve(skb, NET_IP_ALIGN);
2692 return skb;
2693}
2694
4915a0de
ED
2695static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2696 unsigned int length)
2697{
2698 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2699}
2700
181edb2b
AD
2701static inline void skb_free_frag(void *addr)
2702{
8c2dd3e4 2703 page_frag_free(addr);
181edb2b
AD
2704}
2705
ffde7328 2706void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2707struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2708 unsigned int length, gfp_t gfp_mask);
2709static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2710 unsigned int length)
2711{
2712 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2713}
795bb1c0
JDB
2714void napi_consume_skb(struct sk_buff *skb, int budget);
2715
2716void __kfree_skb_flush(void);
15fad714 2717void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2718
71dfda58
AD
2719/**
2720 * __dev_alloc_pages - allocate page for network Rx
2721 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2722 * @order: size of the allocation
2723 *
2724 * Allocate a new page.
2725 *
2726 * %NULL is returned if there is no free memory.
2727*/
2728static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2729 unsigned int order)
2730{
2731 /* This piece of code contains several assumptions.
2732 * 1. This is for device Rx, therefor a cold page is preferred.
2733 * 2. The expectation is the user wants a compound page.
2734 * 3. If requesting a order 0 page it will not be compound
2735 * due to the check to see if order has a value in prep_new_page
2736 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2737 * code in gfp_to_alloc_flags that should be enforcing this.
2738 */
453f85d4 2739 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
71dfda58
AD
2740
2741 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2742}
2743
2744static inline struct page *dev_alloc_pages(unsigned int order)
2745{
95829b3a 2746 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2747}
2748
2749/**
2750 * __dev_alloc_page - allocate a page for network Rx
2751 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2752 *
2753 * Allocate a new page.
2754 *
2755 * %NULL is returned if there is no free memory.
2756 */
2757static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2758{
2759 return __dev_alloc_pages(gfp_mask, 0);
2760}
2761
2762static inline struct page *dev_alloc_page(void)
2763{
95829b3a 2764 return dev_alloc_pages(0);
71dfda58
AD
2765}
2766
0614002b
MG
2767/**
2768 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2769 * @page: The page that was allocated from skb_alloc_page
2770 * @skb: The skb that may need pfmemalloc set
2771 */
2772static inline void skb_propagate_pfmemalloc(struct page *page,
2773 struct sk_buff *skb)
2774{
2f064f34 2775 if (page_is_pfmemalloc(page))
0614002b
MG
2776 skb->pfmemalloc = true;
2777}
2778
131ea667 2779/**
e227867f 2780 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2781 * @frag: the paged fragment
2782 *
2783 * Returns the &struct page associated with @frag.
2784 */
2785static inline struct page *skb_frag_page(const skb_frag_t *frag)
2786{
a8605c60 2787 return frag->page.p;
131ea667
IC
2788}
2789
2790/**
2791 * __skb_frag_ref - take an addition reference on a paged fragment.
2792 * @frag: the paged fragment
2793 *
2794 * Takes an additional reference on the paged fragment @frag.
2795 */
2796static inline void __skb_frag_ref(skb_frag_t *frag)
2797{
2798 get_page(skb_frag_page(frag));
2799}
2800
2801/**
2802 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2803 * @skb: the buffer
2804 * @f: the fragment offset.
2805 *
2806 * Takes an additional reference on the @f'th paged fragment of @skb.
2807 */
2808static inline void skb_frag_ref(struct sk_buff *skb, int f)
2809{
2810 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2811}
2812
2813/**
2814 * __skb_frag_unref - release a reference on a paged fragment.
2815 * @frag: the paged fragment
2816 *
2817 * Releases a reference on the paged fragment @frag.
2818 */
2819static inline void __skb_frag_unref(skb_frag_t *frag)
2820{
2821 put_page(skb_frag_page(frag));
2822}
2823
2824/**
2825 * skb_frag_unref - release a reference on a paged fragment of an skb.
2826 * @skb: the buffer
2827 * @f: the fragment offset
2828 *
2829 * Releases a reference on the @f'th paged fragment of @skb.
2830 */
2831static inline void skb_frag_unref(struct sk_buff *skb, int f)
2832{
2833 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2834}
2835
2836/**
2837 * skb_frag_address - gets the address of the data contained in a paged fragment
2838 * @frag: the paged fragment buffer
2839 *
2840 * Returns the address of the data within @frag. The page must already
2841 * be mapped.
2842 */
2843static inline void *skb_frag_address(const skb_frag_t *frag)
2844{
2845 return page_address(skb_frag_page(frag)) + frag->page_offset;
2846}
2847
2848/**
2849 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2850 * @frag: the paged fragment buffer
2851 *
2852 * Returns the address of the data within @frag. Checks that the page
2853 * is mapped and returns %NULL otherwise.
2854 */
2855static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2856{
2857 void *ptr = page_address(skb_frag_page(frag));
2858 if (unlikely(!ptr))
2859 return NULL;
2860
2861 return ptr + frag->page_offset;
2862}
2863
2864/**
2865 * __skb_frag_set_page - sets the page contained in a paged fragment
2866 * @frag: the paged fragment
2867 * @page: the page to set
2868 *
2869 * Sets the fragment @frag to contain @page.
2870 */
2871static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2872{
a8605c60 2873 frag->page.p = page;
131ea667
IC
2874}
2875
2876/**
2877 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2878 * @skb: the buffer
2879 * @f: the fragment offset
2880 * @page: the page to set
2881 *
2882 * Sets the @f'th fragment of @skb to contain @page.
2883 */
2884static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2885 struct page *page)
2886{
2887 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2888}
2889
400dfd3a
ED
2890bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2891
131ea667
IC
2892/**
2893 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2894 * @dev: the device to map the fragment to
131ea667
IC
2895 * @frag: the paged fragment to map
2896 * @offset: the offset within the fragment (starting at the
2897 * fragment's own offset)
2898 * @size: the number of bytes to map
771b00a8 2899 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
2900 *
2901 * Maps the page associated with @frag to @device.
2902 */
2903static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2904 const skb_frag_t *frag,
2905 size_t offset, size_t size,
2906 enum dma_data_direction dir)
2907{
2908 return dma_map_page(dev, skb_frag_page(frag),
2909 frag->page_offset + offset, size, dir);
2910}
2911
117632e6
ED
2912static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2913 gfp_t gfp_mask)
2914{
2915 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2916}
2917
bad93e9d
OP
2918
2919static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2920 gfp_t gfp_mask)
2921{
2922 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2923}
2924
2925
334a8132
PM
2926/**
2927 * skb_clone_writable - is the header of a clone writable
2928 * @skb: buffer to check
2929 * @len: length up to which to write
2930 *
2931 * Returns true if modifying the header part of the cloned buffer
2932 * does not requires the data to be copied.
2933 */
05bdd2f1 2934static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2935{
2936 return !skb_header_cloned(skb) &&
2937 skb_headroom(skb) + len <= skb->hdr_len;
2938}
2939
3697649f
DB
2940static inline int skb_try_make_writable(struct sk_buff *skb,
2941 unsigned int write_len)
2942{
2943 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2944 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2945}
2946
d9cc2048
HX
2947static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2948 int cloned)
2949{
2950 int delta = 0;
2951
d9cc2048
HX
2952 if (headroom > skb_headroom(skb))
2953 delta = headroom - skb_headroom(skb);
2954
2955 if (delta || cloned)
2956 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2957 GFP_ATOMIC);
2958 return 0;
2959}
2960
1da177e4
LT
2961/**
2962 * skb_cow - copy header of skb when it is required
2963 * @skb: buffer to cow
2964 * @headroom: needed headroom
2965 *
2966 * If the skb passed lacks sufficient headroom or its data part
2967 * is shared, data is reallocated. If reallocation fails, an error
2968 * is returned and original skb is not changed.
2969 *
2970 * The result is skb with writable area skb->head...skb->tail
2971 * and at least @headroom of space at head.
2972 */
2973static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2974{
d9cc2048
HX
2975 return __skb_cow(skb, headroom, skb_cloned(skb));
2976}
1da177e4 2977
d9cc2048
HX
2978/**
2979 * skb_cow_head - skb_cow but only making the head writable
2980 * @skb: buffer to cow
2981 * @headroom: needed headroom
2982 *
2983 * This function is identical to skb_cow except that we replace the
2984 * skb_cloned check by skb_header_cloned. It should be used when
2985 * you only need to push on some header and do not need to modify
2986 * the data.
2987 */
2988static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2989{
2990 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2991}
2992
2993/**
2994 * skb_padto - pad an skbuff up to a minimal size
2995 * @skb: buffer to pad
2996 * @len: minimal length
2997 *
2998 * Pads up a buffer to ensure the trailing bytes exist and are
2999 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
3000 * is untouched. Otherwise it is extended. Returns zero on
3001 * success. The skb is freed on error.
1da177e4 3002 */
5b057c6b 3003static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
3004{
3005 unsigned int size = skb->len;
3006 if (likely(size >= len))
5b057c6b 3007 return 0;
987c402a 3008 return skb_pad(skb, len - size);
1da177e4
LT
3009}
3010
9c0c1124
AD
3011/**
3012 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3013 * @skb: buffer to pad
3014 * @len: minimal length
cd0a137a 3015 * @free_on_error: free buffer on error
9c0c1124
AD
3016 *
3017 * Pads up a buffer to ensure the trailing bytes exist and are
3018 * blanked. If the buffer already contains sufficient data it
3019 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 3020 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 3021 */
cd0a137a
FF
3022static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3023 bool free_on_error)
9c0c1124
AD
3024{
3025 unsigned int size = skb->len;
3026
3027 if (unlikely(size < len)) {
3028 len -= size;
cd0a137a 3029 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
3030 return -ENOMEM;
3031 __skb_put(skb, len);
3032 }
3033 return 0;
3034}
3035
cd0a137a
FF
3036/**
3037 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3038 * @skb: buffer to pad
3039 * @len: minimal length
3040 *
3041 * Pads up a buffer to ensure the trailing bytes exist and are
3042 * blanked. If the buffer already contains sufficient data it
3043 * is untouched. Otherwise it is extended. Returns zero on
3044 * success. The skb is freed on error.
3045 */
3046static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3047{
3048 return __skb_put_padto(skb, len, true);
3049}
3050
1da177e4 3051static inline int skb_add_data(struct sk_buff *skb,
af2b040e 3052 struct iov_iter *from, int copy)
1da177e4
LT
3053{
3054 const int off = skb->len;
3055
3056 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 3057 __wsum csum = 0;
15e6cb46
AV
3058 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3059 &csum, from)) {
1da177e4
LT
3060 skb->csum = csum_block_add(skb->csum, csum, off);
3061 return 0;
3062 }
15e6cb46 3063 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3064 return 0;
3065
3066 __skb_trim(skb, off);
3067 return -EFAULT;
3068}
3069
38ba0a65
ED
3070static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3071 const struct page *page, int off)
1da177e4 3072{
1f8b977a
WB
3073 if (skb_zcopy(skb))
3074 return false;
1da177e4 3075 if (i) {
9e903e08 3076 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3077
ea2ab693 3078 return page == skb_frag_page(frag) &&
9e903e08 3079 off == frag->page_offset + skb_frag_size(frag);
1da177e4 3080 }
38ba0a65 3081 return false;
1da177e4
LT
3082}
3083
364c6bad
HX
3084static inline int __skb_linearize(struct sk_buff *skb)
3085{
3086 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3087}
3088
1da177e4
LT
3089/**
3090 * skb_linearize - convert paged skb to linear one
3091 * @skb: buffer to linarize
1da177e4
LT
3092 *
3093 * If there is no free memory -ENOMEM is returned, otherwise zero
3094 * is returned and the old skb data released.
3095 */
364c6bad
HX
3096static inline int skb_linearize(struct sk_buff *skb)
3097{
3098 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3099}
3100
cef401de
ED
3101/**
3102 * skb_has_shared_frag - can any frag be overwritten
3103 * @skb: buffer to test
3104 *
3105 * Return true if the skb has at least one frag that might be modified
3106 * by an external entity (as in vmsplice()/sendfile())
3107 */
3108static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3109{
c9af6db4
PS
3110 return skb_is_nonlinear(skb) &&
3111 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
3112}
3113
364c6bad
HX
3114/**
3115 * skb_linearize_cow - make sure skb is linear and writable
3116 * @skb: buffer to process
3117 *
3118 * If there is no free memory -ENOMEM is returned, otherwise zero
3119 * is returned and the old skb data released.
3120 */
3121static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3122{
364c6bad
HX
3123 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3124 __skb_linearize(skb) : 0;
1da177e4
LT
3125}
3126
479ffccc
DB
3127static __always_inline void
3128__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3129 unsigned int off)
3130{
3131 if (skb->ip_summed == CHECKSUM_COMPLETE)
3132 skb->csum = csum_block_sub(skb->csum,
3133 csum_partial(start, len, 0), off);
3134 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3135 skb_checksum_start_offset(skb) < 0)
3136 skb->ip_summed = CHECKSUM_NONE;
3137}
3138
1da177e4
LT
3139/**
3140 * skb_postpull_rcsum - update checksum for received skb after pull
3141 * @skb: buffer to update
3142 * @start: start of data before pull
3143 * @len: length of data pulled
3144 *
3145 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3146 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3147 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3148 */
1da177e4 3149static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3150 const void *start, unsigned int len)
1da177e4 3151{
479ffccc 3152 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
3153}
3154
479ffccc
DB
3155static __always_inline void
3156__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3157 unsigned int off)
3158{
3159 if (skb->ip_summed == CHECKSUM_COMPLETE)
3160 skb->csum = csum_block_add(skb->csum,
3161 csum_partial(start, len, 0), off);
3162}
cbb042f9 3163
479ffccc
DB
3164/**
3165 * skb_postpush_rcsum - update checksum for received skb after push
3166 * @skb: buffer to update
3167 * @start: start of data after push
3168 * @len: length of data pushed
3169 *
3170 * After doing a push on a received packet, you need to call this to
3171 * update the CHECKSUM_COMPLETE checksum.
3172 */
f8ffad69
DB
3173static inline void skb_postpush_rcsum(struct sk_buff *skb,
3174 const void *start, unsigned int len)
3175{
479ffccc 3176 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3177}
3178
af72868b 3179void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3180
82a31b92
WC
3181/**
3182 * skb_push_rcsum - push skb and update receive checksum
3183 * @skb: buffer to update
3184 * @len: length of data pulled
3185 *
3186 * This function performs an skb_push on the packet and updates
3187 * the CHECKSUM_COMPLETE checksum. It should be used on
3188 * receive path processing instead of skb_push unless you know
3189 * that the checksum difference is zero (e.g., a valid IP header)
3190 * or you are setting ip_summed to CHECKSUM_NONE.
3191 */
d58ff351 3192static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3193{
3194 skb_push(skb, len);
3195 skb_postpush_rcsum(skb, skb->data, len);
3196 return skb->data;
3197}
3198
88078d98 3199int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
7ce5a27f
DM
3200/**
3201 * pskb_trim_rcsum - trim received skb and update checksum
3202 * @skb: buffer to trim
3203 * @len: new length
3204 *
3205 * This is exactly the same as pskb_trim except that it ensures the
3206 * checksum of received packets are still valid after the operation.
3207 */
3208
3209static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3210{
3211 if (likely(len >= skb->len))
3212 return 0;
88078d98 3213 return pskb_trim_rcsum_slow(skb, len);
7ce5a27f
DM
3214}
3215
5293efe6
DB
3216static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3217{
3218 if (skb->ip_summed == CHECKSUM_COMPLETE)
3219 skb->ip_summed = CHECKSUM_NONE;
3220 __skb_trim(skb, len);
3221 return 0;
3222}
3223
3224static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3225{
3226 if (skb->ip_summed == CHECKSUM_COMPLETE)
3227 skb->ip_summed = CHECKSUM_NONE;
3228 return __skb_grow(skb, len);
3229}
3230
18a4c0ea
ED
3231#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3232#define skb_rb_first(root) rb_to_skb(rb_first(root))
3233#define skb_rb_last(root) rb_to_skb(rb_last(root))
3234#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3235#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3236
1da177e4
LT
3237#define skb_queue_walk(queue, skb) \
3238 for (skb = (queue)->next; \
a1e4891f 3239 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3240 skb = skb->next)
3241
46f8914e
JC
3242#define skb_queue_walk_safe(queue, skb, tmp) \
3243 for (skb = (queue)->next, tmp = skb->next; \
3244 skb != (struct sk_buff *)(queue); \
3245 skb = tmp, tmp = skb->next)
3246
1164f52a 3247#define skb_queue_walk_from(queue, skb) \
a1e4891f 3248 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3249 skb = skb->next)
3250
18a4c0ea
ED
3251#define skb_rbtree_walk(skb, root) \
3252 for (skb = skb_rb_first(root); skb != NULL; \
3253 skb = skb_rb_next(skb))
3254
3255#define skb_rbtree_walk_from(skb) \
3256 for (; skb != NULL; \
3257 skb = skb_rb_next(skb))
3258
3259#define skb_rbtree_walk_from_safe(skb, tmp) \
3260 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3261 skb = tmp)
3262
1164f52a
DM
3263#define skb_queue_walk_from_safe(queue, skb, tmp) \
3264 for (tmp = skb->next; \
3265 skb != (struct sk_buff *)(queue); \
3266 skb = tmp, tmp = skb->next)
3267
300ce174
SH
3268#define skb_queue_reverse_walk(queue, skb) \
3269 for (skb = (queue)->prev; \
a1e4891f 3270 skb != (struct sk_buff *)(queue); \
300ce174
SH
3271 skb = skb->prev)
3272
686a2955
DM
3273#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3274 for (skb = (queue)->prev, tmp = skb->prev; \
3275 skb != (struct sk_buff *)(queue); \
3276 skb = tmp, tmp = skb->prev)
3277
3278#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3279 for (tmp = skb->prev; \
3280 skb != (struct sk_buff *)(queue); \
3281 skb = tmp, tmp = skb->prev)
1da177e4 3282
21dc3301 3283static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3284{
3285 return skb_shinfo(skb)->frag_list != NULL;
3286}
3287
3288static inline void skb_frag_list_init(struct sk_buff *skb)
3289{
3290 skb_shinfo(skb)->frag_list = NULL;
3291}
3292
ee039871
DM
3293#define skb_walk_frags(skb, iter) \
3294 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3295
ea3793ee
RW
3296
3297int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3298 const struct sk_buff *skb);
65101aec
PA
3299struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3300 struct sk_buff_head *queue,
3301 unsigned int flags,
3302 void (*destructor)(struct sock *sk,
3303 struct sk_buff *skb),
3304 int *peeked, int *off, int *err,
3305 struct sk_buff **last);
ea3793ee 3306struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3307 void (*destructor)(struct sock *sk,
3308 struct sk_buff *skb),
ea3793ee
RW
3309 int *peeked, int *off, int *err,
3310 struct sk_buff **last);
7965bd4d 3311struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3312 void (*destructor)(struct sock *sk,
3313 struct sk_buff *skb),
7965bd4d
JP
3314 int *peeked, int *off, int *err);
3315struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3316 int *err);
a11e1d43
LT
3317__poll_t datagram_poll(struct file *file, struct socket *sock,
3318 struct poll_table_struct *wait);
c0371da6
AV
3319int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3320 struct iov_iter *to, int size);
51f3d02b
DM
3321static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3322 struct msghdr *msg, int size)
3323{
e5a4b0bb 3324 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3325}
e5a4b0bb
AV
3326int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3327 struct msghdr *msg);
3a654f97
AV
3328int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3329 struct iov_iter *from, int len);
3a654f97 3330int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3331void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3332void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3333static inline void skb_free_datagram_locked(struct sock *sk,
3334 struct sk_buff *skb)
3335{
3336 __skb_free_datagram_locked(sk, skb, 0);
3337}
7965bd4d 3338int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3339int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3340int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3341__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3342 int len, __wsum csum);
a60e3cc7 3343int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3344 struct pipe_inode_info *pipe, unsigned int len,
25869262 3345 unsigned int flags);
20bf50de
TH
3346int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3347 int len);
3348int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
7965bd4d 3349void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3350unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3351int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3352 int len, int hlen);
7965bd4d
JP
3353void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3354int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3355void skb_scrub_packet(struct sk_buff *skb, bool xnet);
779b7931 3356bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
2b16f048 3357bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
7965bd4d 3358struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3359struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3360int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3361int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3362int skb_vlan_pop(struct sk_buff *skb);
3363int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3364struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3365 gfp_t gfp);
20380731 3366
6ce8e9ce
AV
3367static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3368{
3073f070 3369 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3370}
3371
7eab8d9e
AV
3372static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3373{
e5a4b0bb 3374 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3375}
3376
2817a336
DB
3377struct skb_checksum_ops {
3378 __wsum (*update)(const void *mem, int len, __wsum wsum);
3379 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3380};
3381
9617813d
DC
3382extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3383
2817a336
DB
3384__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3385 __wsum csum, const struct skb_checksum_ops *ops);
3386__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3387 __wsum csum);
3388
1e98a0f0
ED
3389static inline void * __must_check
3390__skb_header_pointer(const struct sk_buff *skb, int offset,
3391 int len, void *data, int hlen, void *buffer)
1da177e4 3392{
55820ee2 3393 if (hlen - offset >= len)
690e36e7 3394 return data + offset;
1da177e4 3395
690e36e7
DM
3396 if (!skb ||
3397 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3398 return NULL;
3399
3400 return buffer;
3401}
3402
1e98a0f0
ED
3403static inline void * __must_check
3404skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3405{
3406 return __skb_header_pointer(skb, offset, len, skb->data,
3407 skb_headlen(skb), buffer);
3408}
3409
4262e5cc
DB
3410/**
3411 * skb_needs_linearize - check if we need to linearize a given skb
3412 * depending on the given device features.
3413 * @skb: socket buffer to check
3414 * @features: net device features
3415 *
3416 * Returns true if either:
3417 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3418 * 2. skb is fragmented and the device does not support SG.
3419 */
3420static inline bool skb_needs_linearize(struct sk_buff *skb,
3421 netdev_features_t features)
3422{
3423 return skb_is_nonlinear(skb) &&
3424 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3425 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3426}
3427
d626f62b
ACM
3428static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3429 void *to,
3430 const unsigned int len)
3431{
3432 memcpy(to, skb->data, len);
3433}
3434
3435static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3436 const int offset, void *to,
3437 const unsigned int len)
3438{
3439 memcpy(to, skb->data + offset, len);
3440}
3441
27d7ff46
ACM
3442static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3443 const void *from,
3444 const unsigned int len)
3445{
3446 memcpy(skb->data, from, len);
3447}
3448
3449static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3450 const int offset,
3451 const void *from,
3452 const unsigned int len)
3453{
3454 memcpy(skb->data + offset, from, len);
3455}
3456
7965bd4d 3457void skb_init(void);
1da177e4 3458
ac45f602
PO
3459static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3460{
3461 return skb->tstamp;
3462}
3463
a61bbcf2
PM
3464/**
3465 * skb_get_timestamp - get timestamp from a skb
3466 * @skb: skb to get stamp from
3467 * @stamp: pointer to struct timeval to store stamp in
3468 *
3469 * Timestamps are stored in the skb as offsets to a base timestamp.
3470 * This function converts the offset back to a struct timeval and stores
3471 * it in stamp.
3472 */
ac45f602
PO
3473static inline void skb_get_timestamp(const struct sk_buff *skb,
3474 struct timeval *stamp)
a61bbcf2 3475{
b7aa0bf7 3476 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3477}
3478
ac45f602
PO
3479static inline void skb_get_timestampns(const struct sk_buff *skb,
3480 struct timespec *stamp)
3481{
3482 *stamp = ktime_to_timespec(skb->tstamp);
3483}
3484
b7aa0bf7 3485static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3486{
b7aa0bf7 3487 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3488}
3489
164891aa
SH
3490static inline ktime_t net_timedelta(ktime_t t)
3491{
3492 return ktime_sub(ktime_get_real(), t);
3493}
3494
b9ce204f
IJ
3495static inline ktime_t net_invalid_timestamp(void)
3496{
8b0e1953 3497 return 0;
b9ce204f 3498}
a61bbcf2 3499
de8f3a83
DB
3500static inline u8 skb_metadata_len(const struct sk_buff *skb)
3501{
3502 return skb_shinfo(skb)->meta_len;
3503}
3504
3505static inline void *skb_metadata_end(const struct sk_buff *skb)
3506{
3507 return skb_mac_header(skb);
3508}
3509
3510static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3511 const struct sk_buff *skb_b,
3512 u8 meta_len)
3513{
3514 const void *a = skb_metadata_end(skb_a);
3515 const void *b = skb_metadata_end(skb_b);
3516 /* Using more efficient varaiant than plain call to memcmp(). */
3517#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3518 u64 diffs = 0;
3519
3520 switch (meta_len) {
3521#define __it(x, op) (x -= sizeof(u##op))
3522#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3523 case 32: diffs |= __it_diff(a, b, 64);
82385b0d 3524 /* fall through */
de8f3a83 3525 case 24: diffs |= __it_diff(a, b, 64);
82385b0d 3526 /* fall through */
de8f3a83 3527 case 16: diffs |= __it_diff(a, b, 64);
82385b0d 3528 /* fall through */
de8f3a83
DB
3529 case 8: diffs |= __it_diff(a, b, 64);
3530 break;
3531 case 28: diffs |= __it_diff(a, b, 64);
82385b0d 3532 /* fall through */
de8f3a83 3533 case 20: diffs |= __it_diff(a, b, 64);
82385b0d 3534 /* fall through */
de8f3a83 3535 case 12: diffs |= __it_diff(a, b, 64);
82385b0d 3536 /* fall through */
de8f3a83
DB
3537 case 4: diffs |= __it_diff(a, b, 32);
3538 break;
3539 }
3540 return diffs;
3541#else
3542 return memcmp(a - meta_len, b - meta_len, meta_len);
3543#endif
3544}
3545
3546static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3547 const struct sk_buff *skb_b)
3548{
3549 u8 len_a = skb_metadata_len(skb_a);
3550 u8 len_b = skb_metadata_len(skb_b);
3551
3552 if (!(len_a | len_b))
3553 return false;
3554
3555 return len_a != len_b ?
3556 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3557}
3558
3559static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3560{
3561 skb_shinfo(skb)->meta_len = meta_len;
3562}
3563
3564static inline void skb_metadata_clear(struct sk_buff *skb)
3565{
3566 skb_metadata_set(skb, 0);
3567}
3568
62bccb8c
AD
3569struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3570
c1f19b51
RC
3571#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3572
7965bd4d
JP
3573void skb_clone_tx_timestamp(struct sk_buff *skb);
3574bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3575
3576#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3577
3578static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3579{
3580}
3581
3582static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3583{
3584 return false;
3585}
3586
3587#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3588
3589/**
3590 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3591 *
da92b194
RC
3592 * PHY drivers may accept clones of transmitted packets for
3593 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3594 * must call this function to return the skb back to the stack with a
3595 * timestamp.
da92b194 3596 *
c1f19b51 3597 * @skb: clone of the the original outgoing packet
7a76a021 3598 * @hwtstamps: hardware time stamps
c1f19b51
RC
3599 *
3600 */
3601void skb_complete_tx_timestamp(struct sk_buff *skb,
3602 struct skb_shared_hwtstamps *hwtstamps);
3603
e7fd2885
WB
3604void __skb_tstamp_tx(struct sk_buff *orig_skb,
3605 struct skb_shared_hwtstamps *hwtstamps,
3606 struct sock *sk, int tstype);
3607
ac45f602
PO
3608/**
3609 * skb_tstamp_tx - queue clone of skb with send time stamps
3610 * @orig_skb: the original outgoing packet
3611 * @hwtstamps: hardware time stamps, may be NULL if not available
3612 *
3613 * If the skb has a socket associated, then this function clones the
3614 * skb (thus sharing the actual data and optional structures), stores
3615 * the optional hardware time stamping information (if non NULL) or
3616 * generates a software time stamp (otherwise), then queues the clone
3617 * to the error queue of the socket. Errors are silently ignored.
3618 */
7965bd4d
JP
3619void skb_tstamp_tx(struct sk_buff *orig_skb,
3620 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3621
4507a715
RC
3622/**
3623 * skb_tx_timestamp() - Driver hook for transmit timestamping
3624 *
3625 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3626 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3627 *
73409f3b
DM
3628 * Specifically, one should make absolutely sure that this function is
3629 * called before TX completion of this packet can trigger. Otherwise
3630 * the packet could potentially already be freed.
3631 *
4507a715
RC
3632 * @skb: A socket buffer.
3633 */
3634static inline void skb_tx_timestamp(struct sk_buff *skb)
3635{
c1f19b51 3636 skb_clone_tx_timestamp(skb);
b50a5c70
ML
3637 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3638 skb_tstamp_tx(skb, NULL);
4507a715
RC
3639}
3640
6e3e939f
JB
3641/**
3642 * skb_complete_wifi_ack - deliver skb with wifi status
3643 *
3644 * @skb: the original outgoing packet
3645 * @acked: ack status
3646 *
3647 */
3648void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3649
7965bd4d
JP
3650__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3651__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3652
60476372
HX
3653static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3654{
6edec0e6
TH
3655 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3656 skb->csum_valid ||
3657 (skb->ip_summed == CHECKSUM_PARTIAL &&
3658 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3659}
3660
fb286bb2
HX
3661/**
3662 * skb_checksum_complete - Calculate checksum of an entire packet
3663 * @skb: packet to process
3664 *
3665 * This function calculates the checksum over the entire packet plus
3666 * the value of skb->csum. The latter can be used to supply the
3667 * checksum of a pseudo header as used by TCP/UDP. It returns the
3668 * checksum.
3669 *
3670 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3671 * this function can be used to verify that checksum on received
3672 * packets. In that case the function should return zero if the
3673 * checksum is correct. In particular, this function will return zero
3674 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3675 * hardware has already verified the correctness of the checksum.
3676 */
4381ca3c 3677static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3678{
60476372
HX
3679 return skb_csum_unnecessary(skb) ?
3680 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3681}
3682
77cffe23
TH
3683static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3684{
3685 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3686 if (skb->csum_level == 0)
3687 skb->ip_summed = CHECKSUM_NONE;
3688 else
3689 skb->csum_level--;
3690 }
3691}
3692
3693static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3694{
3695 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3696 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3697 skb->csum_level++;
3698 } else if (skb->ip_summed == CHECKSUM_NONE) {
3699 skb->ip_summed = CHECKSUM_UNNECESSARY;
3700 skb->csum_level = 0;
3701 }
3702}
3703
76ba0aae
TH
3704/* Check if we need to perform checksum complete validation.
3705 *
3706 * Returns true if checksum complete is needed, false otherwise
3707 * (either checksum is unnecessary or zero checksum is allowed).
3708 */
3709static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3710 bool zero_okay,
3711 __sum16 check)
3712{
5d0c2b95
TH
3713 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3714 skb->csum_valid = 1;
77cffe23 3715 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3716 return false;
3717 }
3718
3719 return true;
3720}
3721
da279887 3722/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
76ba0aae
TH
3723 * in checksum_init.
3724 */
3725#define CHECKSUM_BREAK 76
3726
4e18b9ad
TH
3727/* Unset checksum-complete
3728 *
3729 * Unset checksum complete can be done when packet is being modified
3730 * (uncompressed for instance) and checksum-complete value is
3731 * invalidated.
3732 */
3733static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3734{
3735 if (skb->ip_summed == CHECKSUM_COMPLETE)
3736 skb->ip_summed = CHECKSUM_NONE;
3737}
3738
76ba0aae
TH
3739/* Validate (init) checksum based on checksum complete.
3740 *
3741 * Return values:
3742 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3743 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3744 * checksum is stored in skb->csum for use in __skb_checksum_complete
3745 * non-zero: value of invalid checksum
3746 *
3747 */
3748static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3749 bool complete,
3750 __wsum psum)
3751{
3752 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3753 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3754 skb->csum_valid = 1;
76ba0aae
TH
3755 return 0;
3756 }
3757 }
3758
3759 skb->csum = psum;
3760
5d0c2b95
TH
3761 if (complete || skb->len <= CHECKSUM_BREAK) {
3762 __sum16 csum;
3763
3764 csum = __skb_checksum_complete(skb);
3765 skb->csum_valid = !csum;
3766 return csum;
3767 }
76ba0aae
TH
3768
3769 return 0;
3770}
3771
3772static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3773{
3774 return 0;
3775}
3776
3777/* Perform checksum validate (init). Note that this is a macro since we only
3778 * want to calculate the pseudo header which is an input function if necessary.
3779 * First we try to validate without any computation (checksum unnecessary) and
3780 * then calculate based on checksum complete calling the function to compute
3781 * pseudo header.
3782 *
3783 * Return values:
3784 * 0: checksum is validated or try to in skb_checksum_complete
3785 * non-zero: value of invalid checksum
3786 */
3787#define __skb_checksum_validate(skb, proto, complete, \
3788 zero_okay, check, compute_pseudo) \
3789({ \
3790 __sum16 __ret = 0; \
5d0c2b95 3791 skb->csum_valid = 0; \
76ba0aae
TH
3792 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3793 __ret = __skb_checksum_validate_complete(skb, \
3794 complete, compute_pseudo(skb, proto)); \
3795 __ret; \
3796})
3797
3798#define skb_checksum_init(skb, proto, compute_pseudo) \
3799 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3800
3801#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3802 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3803
3804#define skb_checksum_validate(skb, proto, compute_pseudo) \
3805 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3806
3807#define skb_checksum_validate_zero_check(skb, proto, check, \
3808 compute_pseudo) \
096a4cfa 3809 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3810
3811#define skb_checksum_simple_validate(skb) \
3812 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3813
d96535a1
TH
3814static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3815{
219f1d79 3816 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
3817}
3818
3819static inline void __skb_checksum_convert(struct sk_buff *skb,
3820 __sum16 check, __wsum pseudo)
3821{
3822 skb->csum = ~pseudo;
3823 skb->ip_summed = CHECKSUM_COMPLETE;
3824}
3825
3826#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3827do { \
3828 if (__skb_checksum_convert_check(skb)) \
3829 __skb_checksum_convert(skb, check, \
3830 compute_pseudo(skb, proto)); \
3831} while (0)
3832
15e2396d
TH
3833static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3834 u16 start, u16 offset)
3835{
3836 skb->ip_summed = CHECKSUM_PARTIAL;
3837 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3838 skb->csum_offset = offset - start;
3839}
3840
dcdc8994
TH
3841/* Update skbuf and packet to reflect the remote checksum offload operation.
3842 * When called, ptr indicates the starting point for skb->csum when
3843 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3844 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3845 */
3846static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3847 int start, int offset, bool nopartial)
dcdc8994
TH
3848{
3849 __wsum delta;
3850
15e2396d
TH
3851 if (!nopartial) {
3852 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3853 return;
3854 }
3855
dcdc8994
TH
3856 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3857 __skb_checksum_complete(skb);
3858 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3859 }
3860
3861 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3862
3863 /* Adjust skb->csum since we changed the packet */
3864 skb->csum = csum_add(skb->csum, delta);
3865}
3866
cb9c6836
FW
3867static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3868{
3869#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3870 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3871#else
3872 return NULL;
3873#endif
3874}
3875
5f79e0f9 3876#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3877void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3878static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3879{
3880 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3881 nf_conntrack_destroy(nfct);
1da177e4
LT
3882}
3883static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3884{
3885 if (nfct)
3886 atomic_inc(&nfct->use);
3887}
2fc72c7b 3888#endif
34666d46 3889#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3890static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3891{
53869ceb 3892 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
1da177e4
LT
3893 kfree(nf_bridge);
3894}
3895static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3896{
3897 if (nf_bridge)
53869ceb 3898 refcount_inc(&nf_bridge->use);
1da177e4
LT
3899}
3900#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3901static inline void nf_reset(struct sk_buff *skb)
3902{
5f79e0f9 3903#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3904 nf_conntrack_put(skb_nfct(skb));
3905 skb->_nfct = 0;
2fc72c7b 3906#endif
34666d46 3907#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3908 nf_bridge_put(skb->nf_bridge);
3909 skb->nf_bridge = NULL;
3910#endif
3911}
3912
124dff01
PM
3913static inline void nf_reset_trace(struct sk_buff *skb)
3914{
478b360a 3915#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3916 skb->nf_trace = 0;
3917#endif
a193a4ab
PM
3918}
3919
2b5ec1a5
YY
3920static inline void ipvs_reset(struct sk_buff *skb)
3921{
3922#if IS_ENABLED(CONFIG_IP_VS)
3923 skb->ipvs_property = 0;
3924#endif
3925}
3926
edda553c 3927/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3928static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3929 bool copy)
edda553c 3930{
5f79e0f9 3931#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3932 dst->_nfct = src->_nfct;
3933 nf_conntrack_get(skb_nfct(src));
2fc72c7b 3934#endif
34666d46 3935#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3936 dst->nf_bridge = src->nf_bridge;
3937 nf_bridge_get(src->nf_bridge);
3938#endif
478b360a 3939#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3940 if (copy)
3941 dst->nf_trace = src->nf_trace;
478b360a 3942#endif
edda553c
YK
3943}
3944
e7ac05f3
YK
3945static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3946{
e7ac05f3 3947#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 3948 nf_conntrack_put(skb_nfct(dst));
2fc72c7b 3949#endif
34666d46 3950#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3951 nf_bridge_put(dst->nf_bridge);
3952#endif
b1937227 3953 __nf_copy(dst, src, true);
e7ac05f3
YK
3954}
3955
984bc16c
JM
3956#ifdef CONFIG_NETWORK_SECMARK
3957static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3958{
3959 to->secmark = from->secmark;
3960}
3961
3962static inline void skb_init_secmark(struct sk_buff *skb)
3963{
3964 skb->secmark = 0;
3965}
3966#else
3967static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3968{ }
3969
3970static inline void skb_init_secmark(struct sk_buff *skb)
3971{ }
3972#endif
3973
574f7194
EB
3974static inline bool skb_irq_freeable(const struct sk_buff *skb)
3975{
3976 return !skb->destructor &&
3977#if IS_ENABLED(CONFIG_XFRM)
3978 !skb->sp &&
3979#endif
cb9c6836 3980 !skb_nfct(skb) &&
574f7194
EB
3981 !skb->_skb_refdst &&
3982 !skb_has_frag_list(skb);
3983}
3984
f25f4e44
PWJ
3985static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3986{
f25f4e44 3987 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3988}
3989
9247744e 3990static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3991{
4e3ab47a 3992 return skb->queue_mapping;
4e3ab47a
PE
3993}
3994
f25f4e44
PWJ
3995static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3996{
f25f4e44 3997 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3998}
3999
d5a9e24a
DM
4000static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4001{
4002 skb->queue_mapping = rx_queue + 1;
4003}
4004
9247744e 4005static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
4006{
4007 return skb->queue_mapping - 1;
4008}
4009
9247744e 4010static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 4011{
a02cec21 4012 return skb->queue_mapping != 0;
d5a9e24a
DM
4013}
4014
4ff06203
JA
4015static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4016{
4017 skb->dst_pending_confirm = val;
4018}
4019
4020static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4021{
4022 return skb->dst_pending_confirm != 0;
4023}
4024
def8b4fa
AD
4025static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
4026{
0b3d8e08 4027#ifdef CONFIG_XFRM
def8b4fa 4028 return skb->sp;
def8b4fa 4029#else
def8b4fa 4030 return NULL;
def8b4fa 4031#endif
0b3d8e08 4032}
def8b4fa 4033
68c33163
PS
4034/* Keeps track of mac header offset relative to skb->head.
4035 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4036 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
4037 * tunnel skb it points to outer mac header.
4038 * Keeps track of level of encapsulation of network headers.
4039 */
68c33163 4040struct skb_gso_cb {
802ab55a
AD
4041 union {
4042 int mac_offset;
4043 int data_offset;
4044 };
3347c960 4045 int encap_level;
76443456 4046 __wsum csum;
7e2b10c1 4047 __u16 csum_start;
68c33163 4048};
9207f9d4
KK
4049#define SKB_SGO_CB_OFFSET 32
4050#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
4051
4052static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4053{
4054 return (skb_mac_header(inner_skb) - inner_skb->head) -
4055 SKB_GSO_CB(inner_skb)->mac_offset;
4056}
4057
1e2bd517
PS
4058static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4059{
4060 int new_headroom, headroom;
4061 int ret;
4062
4063 headroom = skb_headroom(skb);
4064 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4065 if (ret)
4066 return ret;
4067
4068 new_headroom = skb_headroom(skb);
4069 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4070 return 0;
4071}
4072
08b64fcc
AD
4073static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4074{
4075 /* Do not update partial checksums if remote checksum is enabled. */
4076 if (skb->remcsum_offload)
4077 return;
4078
4079 SKB_GSO_CB(skb)->csum = res;
4080 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4081}
4082
7e2b10c1
TH
4083/* Compute the checksum for a gso segment. First compute the checksum value
4084 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4085 * then add in skb->csum (checksum from csum_start to end of packet).
4086 * skb->csum and csum_start are then updated to reflect the checksum of the
4087 * resultant packet starting from the transport header-- the resultant checksum
4088 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4089 * header.
4090 */
4091static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4092{
76443456
AD
4093 unsigned char *csum_start = skb_transport_header(skb);
4094 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4095 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 4096
76443456
AD
4097 SKB_GSO_CB(skb)->csum = res;
4098 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 4099
76443456 4100 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
4101}
4102
bdcc0924 4103static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
4104{
4105 return skb_shinfo(skb)->gso_size;
4106}
4107
36a8f39e 4108/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4109static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4110{
4111 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4112}
4113
d02f51cb
DA
4114/* Note: Should be called only if skb_is_gso(skb) is true */
4115static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4116{
4117 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4118}
4119
5293efe6
DB
4120static inline void skb_gso_reset(struct sk_buff *skb)
4121{
4122 skb_shinfo(skb)->gso_size = 0;
4123 skb_shinfo(skb)->gso_segs = 0;
4124 skb_shinfo(skb)->gso_type = 0;
4125}
4126
d02f51cb
DA
4127static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4128 u16 increment)
4129{
4130 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4131 return;
4132 shinfo->gso_size += increment;
4133}
4134
4135static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4136 u16 decrement)
4137{
4138 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4139 return;
4140 shinfo->gso_size -= decrement;
4141}
4142
7965bd4d 4143void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4144
4145static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4146{
4147 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4148 * wanted then gso_type will be set. */
05bdd2f1
ED
4149 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4150
b78462eb
AD
4151 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4152 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4153 __skb_warn_lro_forwarding(skb);
4154 return true;
4155 }
4156 return false;
4157}
4158
35fc92a9
HX
4159static inline void skb_forward_csum(struct sk_buff *skb)
4160{
4161 /* Unfortunately we don't support this one. Any brave souls? */
4162 if (skb->ip_summed == CHECKSUM_COMPLETE)
4163 skb->ip_summed = CHECKSUM_NONE;
4164}
4165
bc8acf2c
ED
4166/**
4167 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4168 * @skb: skb to check
4169 *
4170 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4171 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4172 * use this helper, to document places where we make this assertion.
4173 */
05bdd2f1 4174static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
4175{
4176#ifdef DEBUG
4177 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4178#endif
4179}
4180
f35d9d8a 4181bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4182
ed1f50c3 4183int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4184struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4185 unsigned int transport_len,
4186 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4187
3a7c1ee4
AD
4188/**
4189 * skb_head_is_locked - Determine if the skb->head is locked down
4190 * @skb: skb to check
4191 *
4192 * The head on skbs build around a head frag can be removed if they are
4193 * not cloned. This function returns true if the skb head is locked down
4194 * due to either being allocated via kmalloc, or by being a clone with
4195 * multiple references to the head.
4196 */
4197static inline bool skb_head_is_locked(const struct sk_buff *skb)
4198{
4199 return !skb->head_frag || skb_cloned(skb);
4200}
fe6cc55f 4201
179bc67f
EC
4202/* Local Checksum Offload.
4203 * Compute outer checksum based on the assumption that the
4204 * inner checksum will be offloaded later.
e8ae7b00
EC
4205 * See Documentation/networking/checksum-offloads.txt for
4206 * explanation of how this works.
179bc67f
EC
4207 * Fill in outer checksum adjustment (e.g. with sum of outer
4208 * pseudo-header) before calling.
4209 * Also ensure that inner checksum is in linear data area.
4210 */
4211static inline __wsum lco_csum(struct sk_buff *skb)
4212{
9e74a6da
AD
4213 unsigned char *csum_start = skb_checksum_start(skb);
4214 unsigned char *l4_hdr = skb_transport_header(skb);
4215 __wsum partial;
179bc67f
EC
4216
4217 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4218 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4219 skb->csum_offset));
4220
179bc67f 4221 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4222 * adjustment filled in by caller) and return result.
179bc67f 4223 */
9e74a6da 4224 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4225}
4226
1da177e4
LT
4227#endif /* __KERNEL__ */
4228#endif /* _LINUX_SKBUFF_H */