]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/skbuff.h
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-jammy-kernel.git] / include / linux / skbuff.h
CommitLineData
2874c5fd 1/* SPDX-License-Identifier: GPL-2.0-or-later */
1da177e4
LT
2/*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
1da177e4
LT
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
187f1882 16#include <linux/bug.h>
1da177e4 17#include <linux/cache.h>
56b17425 18#include <linux/rbtree.h>
51f3d02b 19#include <linux/socket.h>
c1d1b437 20#include <linux/refcount.h>
1da177e4 21
60063497 22#include <linux/atomic.h>
1da177e4
LT
23#include <asm/types.h>
24#include <linux/spinlock.h>
1da177e4 25#include <linux/net.h>
3fc7e8a6 26#include <linux/textsearch.h>
1da177e4 27#include <net/checksum.h>
a80958f4 28#include <linux/rcupdate.h>
b7aa0bf7 29#include <linux/hrtimer.h>
131ea667 30#include <linux/dma-mapping.h>
c8f44aff 31#include <linux/netdev_features.h>
363ec392 32#include <linux/sched.h>
e6017571 33#include <linux/sched/clock.h>
1bd758eb 34#include <net/flow_dissector.h>
a60e3cc7 35#include <linux/splice.h>
72b31f72 36#include <linux/in6.h>
8b10cab6 37#include <linux/if_packet.h>
f70ea018 38#include <net/flow.h>
1da177e4 39
7a6ae71b
TH
40/* The interface for checksum offload between the stack and networking drivers
41 * is as follows...
42 *
43 * A. IP checksum related features
44 *
45 * Drivers advertise checksum offload capabilities in the features of a device.
46 * From the stack's point of view these are capabilities offered by the driver,
47 * a driver typically only advertises features that it is capable of offloading
48 * to its device.
49 *
50 * The checksum related features are:
51 *
52 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
53 * IP (one's complement) checksum for any combination
54 * of protocols or protocol layering. The checksum is
55 * computed and set in a packet per the CHECKSUM_PARTIAL
56 * interface (see below).
57 *
58 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
59 * TCP or UDP packets over IPv4. These are specifically
60 * unencapsulated packets of the form IPv4|TCP or
61 * IPv4|UDP where the Protocol field in the IPv4 header
62 * is TCP or UDP. The IPv4 header may contain IP options
63 * This feature cannot be set in features for a device
64 * with NETIF_F_HW_CSUM also set. This feature is being
65 * DEPRECATED (see below).
66 *
67 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
68 * TCP or UDP packets over IPv6. These are specifically
69 * unencapsulated packets of the form IPv6|TCP or
70 * IPv4|UDP where the Next Header field in the IPv6
71 * header is either TCP or UDP. IPv6 extension headers
72 * are not supported with this feature. This feature
73 * cannot be set in features for a device with
74 * NETIF_F_HW_CSUM also set. This feature is being
75 * DEPRECATED (see below).
76 *
77 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
78 * This flag is used only used to disable the RX checksum
79 * feature for a device. The stack will accept receive
80 * checksum indication in packets received on a device
81 * regardless of whether NETIF_F_RXCSUM is set.
82 *
83 * B. Checksumming of received packets by device. Indication of checksum
84 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
85 *
86 * CHECKSUM_NONE:
87 *
7a6ae71b 88 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
89 * The packet contains full (though not verified) checksum in packet but
90 * not in skb->csum. Thus, skb->csum is undefined in this case.
91 *
92 * CHECKSUM_UNNECESSARY:
93 *
94 * The hardware you're dealing with doesn't calculate the full checksum
95 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
96 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
97 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
98 * though. A driver or device must never modify the checksum field in the
99 * packet even if checksum is verified.
77cffe23
TH
100 *
101 * CHECKSUM_UNNECESSARY is applicable to following protocols:
102 * TCP: IPv6 and IPv4.
103 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
104 * zero UDP checksum for either IPv4 or IPv6, the networking stack
105 * may perform further validation in this case.
106 * GRE: only if the checksum is present in the header.
107 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 108 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
109 *
110 * skb->csum_level indicates the number of consecutive checksums found in
111 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
112 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
113 * and a device is able to verify the checksums for UDP (possibly zero),
114 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
115 * two. If the device were only able to verify the UDP checksum and not
116 * GRE, either because it doesn't support GRE checksum of because GRE
117 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
118 * not considered in this case).
78ea85f1
DB
119 *
120 * CHECKSUM_COMPLETE:
121 *
122 * This is the most generic way. The device supplied checksum of the _whole_
123 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
124 * hardware doesn't need to parse L3/L4 headers to implement this.
125 *
b4759dcd
DC
126 * Notes:
127 * - Even if device supports only some protocols, but is able to produce
128 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
130 *
131 * CHECKSUM_PARTIAL:
132 *
6edec0e6
TH
133 * A checksum is set up to be offloaded to a device as described in the
134 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 135 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
136 * on the same host, or it may be set in the input path in GRO or remote
137 * checksum offload. For the purposes of checksum verification, the checksum
138 * referred to by skb->csum_start + skb->csum_offset and any preceding
139 * checksums in the packet are considered verified. Any checksums in the
140 * packet that are after the checksum being offloaded are not considered to
141 * be verified.
78ea85f1 142 *
7a6ae71b
TH
143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
145 *
146 * CHECKSUM_PARTIAL:
147 *
7a6ae71b 148 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 149 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
150 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
151 * csum_start and csum_offset values are valid values given the length and
152 * offset of the packet, however they should not attempt to validate that the
153 * checksum refers to a legitimate transport layer checksum-- it is the
154 * purview of the stack to validate that csum_start and csum_offset are set
155 * correctly.
156 *
157 * When the stack requests checksum offload for a packet, the driver MUST
158 * ensure that the checksum is set correctly. A driver can either offload the
159 * checksum calculation to the device, or call skb_checksum_help (in the case
160 * that the device does not support offload for a particular checksum).
161 *
162 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
164 * checksum offload capability.
165 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
166 * on network device checksumming capabilities: if a packet does not match
167 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
168 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 169 *
7a6ae71b 170 * CHECKSUM_NONE:
78ea85f1 171 *
7a6ae71b
TH
172 * The skb was already checksummed by the protocol, or a checksum is not
173 * required.
78ea85f1
DB
174 *
175 * CHECKSUM_UNNECESSARY:
176 *
7a6ae71b
TH
177 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
178 * output.
78ea85f1 179 *
7a6ae71b
TH
180 * CHECKSUM_COMPLETE:
181 * Not used in checksum output. If a driver observes a packet with this value
182 * set in skbuff, if should treat as CHECKSUM_NONE being set.
183 *
184 * D. Non-IP checksum (CRC) offloads
185 *
186 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
187 * offloading the SCTP CRC in a packet. To perform this offload the stack
dba00306
DC
188 * will set set csum_start and csum_offset accordingly, set ip_summed to
189 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
190 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
191 * A driver that supports both IP checksum offload and SCTP CRC32c offload
192 * must verify which offload is configured for a packet by testing the
193 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
194 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
195 *
196 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197 * offloading the FCOE CRC in a packet. To perform this offload the stack
198 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199 * accordingly. Note the there is no indication in the skbuff that the
200 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201 * both IP checksum offload and FCOE CRC offload must verify which offload
202 * is configured for a packet presumably by inspecting packet headers.
203 *
204 * E. Checksumming on output with GSO.
205 *
206 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209 * part of the GSO operation is implied. If a checksum is being offloaded
210 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211 * are set to refer to the outermost checksum being offload (two offloaded
212 * checksums are possible with UDP encapsulation).
78ea85f1
DB
213 */
214
60476372 215/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
216#define CHECKSUM_NONE 0
217#define CHECKSUM_UNNECESSARY 1
218#define CHECKSUM_COMPLETE 2
219#define CHECKSUM_PARTIAL 3
1da177e4 220
77cffe23
TH
221/* Maximum value in skb->csum_level */
222#define SKB_MAX_CSUM_LEVEL 3
223
0bec8c88 224#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 225#define SKB_WITH_OVERHEAD(X) \
deea84b0 226 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
227#define SKB_MAX_ORDER(X, ORDER) \
228 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
229#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
230#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
231
87fb4b7b
ED
232/* return minimum truesize of one skb containing X bytes of data */
233#define SKB_TRUESIZE(X) ((X) + \
234 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
235 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236
1da177e4 237struct net_device;
716ea3a7 238struct scatterlist;
9c55e01c 239struct pipe_inode_info;
a8f820aa 240struct iov_iter;
fd11a83d 241struct napi_struct;
d58e468b
PP
242struct bpf_prog;
243union bpf_attr;
df5042f4 244struct skb_ext;
1da177e4 245
5f79e0f9 246#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
247struct nf_conntrack {
248 atomic_t use;
1da177e4 249};
5f79e0f9 250#endif
1da177e4 251
34666d46 252#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 253struct nf_bridge_info {
3eaf4025
FW
254 enum {
255 BRNF_PROTO_UNCHANGED,
256 BRNF_PROTO_8021Q,
257 BRNF_PROTO_PPPOE
7fb48c5b 258 } orig_proto:8;
72b1e5e4
FW
259 u8 pkt_otherhost:1;
260 u8 in_prerouting:1;
261 u8 bridged_dnat:1;
411ffb4f 262 __u16 frag_max_size;
bf1ac5ca 263 struct net_device *physindev;
63cdbc06
FW
264
265 /* always valid & non-NULL from FORWARD on, for physdev match */
266 struct net_device *physoutdev;
7fb48c5b 267 union {
72b1e5e4 268 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
269 __be32 ipv4_daddr;
270 struct in6_addr ipv6_daddr;
72b1e5e4
FW
271
272 /* after prerouting + nat detected: store original source
273 * mac since neigh resolution overwrites it, only used while
274 * skb is out in neigh layer.
275 */
276 char neigh_header[8];
72b31f72 277 };
1da177e4
LT
278};
279#endif
280
1da177e4
LT
281struct sk_buff_head {
282 /* These two members must be first. */
283 struct sk_buff *next;
284 struct sk_buff *prev;
285
286 __u32 qlen;
287 spinlock_t lock;
288};
289
290struct sk_buff;
291
9d4dde52
IC
292/* To allow 64K frame to be packed as single skb without frag_list we
293 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
294 * buffers which do not start on a page boundary.
295 *
296 * Since GRO uses frags we allocate at least 16 regardless of page
297 * size.
a715dea3 298 */
9d4dde52 299#if (65536/PAGE_SIZE + 1) < 16
eec00954 300#define MAX_SKB_FRAGS 16UL
a715dea3 301#else
9d4dde52 302#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 303#endif
5f74f82e 304extern int sysctl_max_skb_frags;
1da177e4 305
3953c46c
MRL
306/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
307 * segment using its current segmentation instead.
308 */
309#define GSO_BY_FRAGS 0xFFFF
310
1da177e4
LT
311typedef struct skb_frag_struct skb_frag_t;
312
313struct skb_frag_struct {
a8605c60
IC
314 struct {
315 struct page *p;
316 } page;
cb4dfe56 317#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
318 __u32 page_offset;
319 __u32 size;
cb4dfe56
ED
320#else
321 __u16 page_offset;
322 __u16 size;
323#endif
1da177e4
LT
324};
325
161e6137
PT
326/**
327 * skb_frag_size - Returns the size of a skb fragment
328 * @frag: skb fragment
329 */
9e903e08
ED
330static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331{
332 return frag->size;
333}
334
161e6137
PT
335/**
336 * skb_frag_size_set - Sets the size of a skb fragment
337 * @frag: skb fragment
338 * @size: size of fragment
339 */
9e903e08
ED
340static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
341{
342 frag->size = size;
343}
344
161e6137
PT
345/**
346 * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
347 * @frag: skb fragment
348 * @delta: value to add
349 */
9e903e08
ED
350static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
351{
352 frag->size += delta;
353}
354
161e6137
PT
355/**
356 * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
357 * @frag: skb fragment
358 * @delta: value to subtract
359 */
9e903e08
ED
360static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
361{
362 frag->size -= delta;
363}
364
161e6137
PT
365/**
366 * skb_frag_must_loop - Test if %p is a high memory page
367 * @p: fragment's page
368 */
c613c209
WB
369static inline bool skb_frag_must_loop(struct page *p)
370{
371#if defined(CONFIG_HIGHMEM)
372 if (PageHighMem(p))
373 return true;
374#endif
375 return false;
376}
377
378/**
379 * skb_frag_foreach_page - loop over pages in a fragment
380 *
381 * @f: skb frag to operate on
382 * @f_off: offset from start of f->page.p
383 * @f_len: length from f_off to loop over
384 * @p: (temp var) current page
385 * @p_off: (temp var) offset from start of current page,
386 * non-zero only on first page.
387 * @p_len: (temp var) length in current page,
388 * < PAGE_SIZE only on first and last page.
389 * @copied: (temp var) length so far, excluding current p_len.
390 *
391 * A fragment can hold a compound page, in which case per-page
392 * operations, notably kmap_atomic, must be called for each
393 * regular page.
394 */
395#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
396 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
397 p_off = (f_off) & (PAGE_SIZE - 1), \
398 p_len = skb_frag_must_loop(p) ? \
399 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
400 copied = 0; \
401 copied < f_len; \
402 copied += p_len, p++, p_off = 0, \
403 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
404
ac45f602
PO
405#define HAVE_HW_TIME_STAMP
406
407/**
d3a21be8 408 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
409 * @hwtstamp: hardware time stamp transformed into duration
410 * since arbitrary point in time
ac45f602
PO
411 *
412 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 413 * skb->tstamp.
ac45f602
PO
414 *
415 * hwtstamps can only be compared against other hwtstamps from
416 * the same device.
417 *
418 * This structure is attached to packets as part of the
419 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
420 */
421struct skb_shared_hwtstamps {
422 ktime_t hwtstamp;
ac45f602
PO
423};
424
2244d07b
OH
425/* Definitions for tx_flags in struct skb_shared_info */
426enum {
427 /* generate hardware time stamp */
428 SKBTX_HW_TSTAMP = 1 << 0,
429
e7fd2885 430 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
431 SKBTX_SW_TSTAMP = 1 << 1,
432
433 /* device driver is going to provide hardware time stamp */
434 SKBTX_IN_PROGRESS = 1 << 2,
435
a6686f2f 436 /* device driver supports TX zero-copy buffers */
62b1a8ab 437 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
438
439 /* generate wifi status information (where possible) */
62b1a8ab 440 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
441
442 /* This indicates at least one fragment might be overwritten
443 * (as in vmsplice(), sendfile() ...)
444 * If we need to compute a TX checksum, we'll need to copy
445 * all frags to avoid possible bad checksum
446 */
447 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
448
449 /* generate software time stamp when entering packet scheduling */
450 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
451};
452
52267790 453#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
e1c8a607 454#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 455 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
456#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
457
a6686f2f
SM
458/*
459 * The callback notifies userspace to release buffers when skb DMA is done in
460 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
461 * The zerocopy_success argument is true if zero copy transmit occurred,
462 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
463 * The ctx field is used to track device context.
464 * The desc field is used to track userspace buffer index.
a6686f2f
SM
465 */
466struct ubuf_info {
e19d6763 467 void (*callback)(struct ubuf_info *, bool zerocopy_success);
4ab6c99d
WB
468 union {
469 struct {
470 unsigned long desc;
471 void *ctx;
472 };
473 struct {
474 u32 id;
475 u16 len;
476 u16 zerocopy:1;
477 u32 bytelen;
478 };
479 };
c1d1b437 480 refcount_t refcnt;
a91dbff5
WB
481
482 struct mmpin {
483 struct user_struct *user;
484 unsigned int num_pg;
485 } mmp;
ac45f602
PO
486};
487
52267790
WB
488#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
489
6f89dbce
SV
490int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
491void mm_unaccount_pinned_pages(struct mmpin *mmp);
492
52267790 493struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
4ab6c99d
WB
494struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
495 struct ubuf_info *uarg);
52267790
WB
496
497static inline void sock_zerocopy_get(struct ubuf_info *uarg)
498{
c1d1b437 499 refcount_inc(&uarg->refcnt);
52267790
WB
500}
501
502void sock_zerocopy_put(struct ubuf_info *uarg);
52900d22 503void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
52267790
WB
504
505void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
506
b5947e5d 507int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
52267790
WB
508int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
509 struct msghdr *msg, int len,
510 struct ubuf_info *uarg);
511
1da177e4
LT
512/* This data is invariant across clones and lives at
513 * the end of the header data, ie. at skb->end.
514 */
515struct skb_shared_info {
de8f3a83
DB
516 __u8 __unused;
517 __u8 meta_len;
518 __u8 nr_frags;
9f42f126 519 __u8 tx_flags;
7967168c
HX
520 unsigned short gso_size;
521 /* Warning: this field is not always filled in (UFO)! */
522 unsigned short gso_segs;
1da177e4 523 struct sk_buff *frag_list;
ac45f602 524 struct skb_shared_hwtstamps hwtstamps;
7f564528 525 unsigned int gso_type;
09c2d251 526 u32 tskey;
ec7d2f2c
ED
527
528 /*
529 * Warning : all fields before dataref are cleared in __alloc_skb()
530 */
531 atomic_t dataref;
532
69e3c75f
JB
533 /* Intermediate layers must ensure that destructor_arg
534 * remains valid until skb destructor */
535 void * destructor_arg;
a6686f2f 536
fed66381
ED
537 /* must be last field, see pskb_expand_head() */
538 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
539};
540
541/* We divide dataref into two halves. The higher 16 bits hold references
542 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
543 * the entire skb->data. A clone of a headerless skb holds the length of
544 * the header in skb->hdr_len.
1da177e4
LT
545 *
546 * All users must obey the rule that the skb->data reference count must be
547 * greater than or equal to the payload reference count.
548 *
549 * Holding a reference to the payload part means that the user does not
550 * care about modifications to the header part of skb->data.
551 */
552#define SKB_DATAREF_SHIFT 16
553#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
554
d179cd12
DM
555
556enum {
c8753d55
VS
557 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
558 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
559 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
560};
561
7967168c
HX
562enum {
563 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
564
565 /* This indicates the skb is from an untrusted source. */
d9d30adf 566 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
567
568 /* This indicates the tcp segment has CWR set. */
d9d30adf 569 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 570
d9d30adf 571 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 572
d9d30adf 573 SKB_GSO_TCPV6 = 1 << 4,
68c33163 574
d9d30adf 575 SKB_GSO_FCOE = 1 << 5,
73136267 576
d9d30adf 577 SKB_GSO_GRE = 1 << 6,
0d89d203 578
d9d30adf 579 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 580
d9d30adf 581 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 582
d9d30adf 583 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 584
d9d30adf 585 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 586
d9d30adf 587 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 588
d9d30adf 589 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 590
d9d30adf 591 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 592
d9d30adf 593 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 594
d9d30adf 595 SKB_GSO_ESP = 1 << 15,
0c19f846
WB
596
597 SKB_GSO_UDP = 1 << 16,
ee80d1eb
WB
598
599 SKB_GSO_UDP_L4 = 1 << 17,
7967168c
HX
600};
601
2e07fa9c
ACM
602#if BITS_PER_LONG > 32
603#define NET_SKBUFF_DATA_USES_OFFSET 1
604#endif
605
606#ifdef NET_SKBUFF_DATA_USES_OFFSET
607typedef unsigned int sk_buff_data_t;
608#else
609typedef unsigned char *sk_buff_data_t;
610#endif
611
161e6137 612/**
1da177e4
LT
613 * struct sk_buff - socket buffer
614 * @next: Next buffer in list
615 * @prev: Previous buffer in list
363ec392 616 * @tstamp: Time we arrived/left
56b17425 617 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 618 * @sk: Socket we are owned by
1da177e4 619 * @dev: Device we arrived on/are leaving by
d84e0bd7 620 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 621 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 622 * @sp: the security path, used for xfrm
1da177e4
LT
623 * @len: Length of actual data
624 * @data_len: Data length
625 * @mac_len: Length of link layer header
334a8132 626 * @hdr_len: writable header length of cloned skb
663ead3b
HX
627 * @csum: Checksum (must include start/offset pair)
628 * @csum_start: Offset from skb->head where checksumming should start
629 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 630 * @priority: Packet queueing priority
60ff7467 631 * @ignore_df: allow local fragmentation
1da177e4 632 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 633 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
634 * @nohdr: Payload reference only, must not modify header
635 * @pkt_type: Packet class
c83c2486 636 * @fclone: skbuff clone status
c83c2486 637 * @ipvs_property: skbuff is owned by ipvs
875e8939
IS
638 * @offload_fwd_mark: Packet was L2-forwarded in hardware
639 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
e7246e12 640 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 641 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
642 * @tc_redirected: packet was redirected by a tc action
643 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
644 * @peeked: this packet has been seen already, so stats have been
645 * done for it, don't do them again
ba9dda3a 646 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
647 * @protocol: Packet protocol from driver
648 * @destructor: Destruct function
e2080072 649 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
a9e419dc 650 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 651 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 652 * @skb_iif: ifindex of device we arrived on
1da177e4 653 * @tc_index: Traffic control index
61b905da 654 * @hash: the packet hash
d84e0bd7 655 * @queue_mapping: Queue mapping for multiqueue devices
8b700862 656 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
df5042f4 657 * @active_extensions: active extensions (skb_ext_id types)
553a5672 658 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 659 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 660 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 661 * ports.
a3b18ddb 662 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
663 * @wifi_acked_valid: wifi_acked was set
664 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 665 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
dba00306 666 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
4ff06203 667 * @dst_pending_confirm: need to confirm neighbour
a48d189e 668 * @decrypted: Decrypted SKB
161e6137 669 * @napi_id: id of the NAPI struct this skb came from
984bc16c 670 * @secmark: security marking
d84e0bd7 671 * @mark: Generic packet mark
86a9bad3 672 * @vlan_proto: vlan encapsulation protocol
6aa895b0 673 * @vlan_tci: vlan tag control information
0d89d203 674 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
675 * @inner_transport_header: Inner transport layer header (encapsulation)
676 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 677 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
678 * @transport_header: Transport layer header
679 * @network_header: Network layer header
680 * @mac_header: Link layer header
681 * @tail: Tail pointer
682 * @end: End pointer
683 * @head: Head of buffer
684 * @data: Data head pointer
685 * @truesize: Buffer size
686 * @users: User count - see {datagram,tcp}.c
df5042f4 687 * @extensions: allocated extensions, valid if active_extensions is nonzero
1da177e4
LT
688 */
689
690struct sk_buff {
363ec392 691 union {
56b17425
ED
692 struct {
693 /* These two members must be first. */
694 struct sk_buff *next;
695 struct sk_buff *prev;
696
697 union {
bffa72cf
ED
698 struct net_device *dev;
699 /* Some protocols might use this space to store information,
700 * while device pointer would be NULL.
701 * UDP receive path is one user.
702 */
703 unsigned long dev_scratch;
56b17425
ED
704 };
705 };
fa0f5273 706 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
d4546c25 707 struct list_head list;
363ec392 708 };
fa0f5273
PO
709
710 union {
711 struct sock *sk;
712 int ip_defrag_offset;
713 };
1da177e4 714
c84d9490 715 union {
bffa72cf 716 ktime_t tstamp;
d3edd06e 717 u64 skb_mstamp_ns; /* earliest departure time */
c84d9490 718 };
1da177e4
LT
719 /*
720 * This is the control buffer. It is free to use for every
721 * layer. Please put your private variables there. If you
722 * want to keep them across layers you have to do a skb_clone()
723 * first. This is owned by whoever has the skb queued ATM.
724 */
da3f5cf1 725 char cb[48] __aligned(8);
1da177e4 726
e2080072
ED
727 union {
728 struct {
729 unsigned long _skb_refdst;
730 void (*destructor)(struct sk_buff *skb);
731 };
732 struct list_head tcp_tsorted_anchor;
733 };
734
b1937227 735#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 736 unsigned long _nfct;
da3f5cf1 737#endif
1da177e4 738 unsigned int len,
334a8132
PM
739 data_len;
740 __u16 mac_len,
741 hdr_len;
b1937227
ED
742
743 /* Following fields are _not_ copied in __copy_skb_header()
744 * Note that queue_mapping is here mostly to fill a hole.
745 */
b1937227 746 __u16 queue_mapping;
36bbef52
DB
747
748/* if you move cloned around you also must adapt those constants */
749#ifdef __BIG_ENDIAN_BITFIELD
750#define CLONED_MASK (1 << 7)
751#else
752#define CLONED_MASK 1
753#endif
754#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
755
756 __u8 __cloned_offset[0];
b1937227 757 __u8 cloned:1,
6869c4d8 758 nohdr:1,
b84f4cc9 759 fclone:2,
a59322be 760 peeked:1,
b1937227 761 head_frag:1,
8b700862 762 pfmemalloc:1;
df5042f4
FW
763#ifdef CONFIG_SKB_EXTENSIONS
764 __u8 active_extensions;
765#endif
b1937227
ED
766 /* fields enclosed in headers_start/headers_end are copied
767 * using a single memcpy() in __copy_skb_header()
768 */
ebcf34f3 769 /* private: */
b1937227 770 __u32 headers_start[0];
ebcf34f3 771 /* public: */
4031ae6e 772
233577a2
HFS
773/* if you move pkt_type around you also must adapt those constants */
774#ifdef __BIG_ENDIAN_BITFIELD
775#define PKT_TYPE_MAX (7 << 5)
776#else
777#define PKT_TYPE_MAX 7
1da177e4 778#endif
233577a2 779#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 780
233577a2 781 __u8 __pkt_type_offset[0];
b1937227 782 __u8 pkt_type:3;
b1937227 783 __u8 ignore_df:1;
b1937227
ED
784 __u8 nf_trace:1;
785 __u8 ip_summed:2;
3853b584 786 __u8 ooo_okay:1;
8b700862 787
61b905da 788 __u8 l4_hash:1;
a3b18ddb 789 __u8 sw_hash:1;
6e3e939f
JB
790 __u8 wifi_acked_valid:1;
791 __u8 wifi_acked:1;
3bdc0eba 792 __u8 no_fcs:1;
77cffe23 793 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 794 __u8 encapsulation:1;
7e2b10c1 795 __u8 encap_hdr_csum:1;
5d0c2b95 796 __u8 csum_valid:1;
8b700862 797
0c4b2d37
MM
798#ifdef __BIG_ENDIAN_BITFIELD
799#define PKT_VLAN_PRESENT_BIT 7
800#else
801#define PKT_VLAN_PRESENT_BIT 0
802#endif
803#define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
804 __u8 __pkt_vlan_present_offset[0];
805 __u8 vlan_present:1;
7e3cead5 806 __u8 csum_complete_sw:1;
b1937227 807 __u8 csum_level:2;
dba00306 808 __u8 csum_not_inet:1;
4ff06203 809 __u8 dst_pending_confirm:1;
b1937227
ED
810#ifdef CONFIG_IPV6_NDISC_NODETYPE
811 __u8 ndisc_nodetype:2;
812#endif
8b700862 813
0c4b2d37 814 __u8 ipvs_property:1;
8bce6d7d 815 __u8 inner_protocol_type:1;
e585f236 816 __u8 remcsum_offload:1;
6bc506b4
IS
817#ifdef CONFIG_NET_SWITCHDEV
818 __u8 offload_fwd_mark:1;
875e8939 819 __u8 offload_l3_fwd_mark:1;
6bc506b4 820#endif
e7246e12
WB
821#ifdef CONFIG_NET_CLS_ACT
822 __u8 tc_skip_classify:1;
8dc07fdb 823 __u8 tc_at_ingress:1;
bc31c905
WB
824 __u8 tc_redirected:1;
825 __u8 tc_from_ingress:1;
e7246e12 826#endif
a48d189e
SB
827#ifdef CONFIG_TLS_DEVICE
828 __u8 decrypted:1;
829#endif
b1937227
ED
830
831#ifdef CONFIG_NET_SCHED
832 __u16 tc_index; /* traffic control index */
b1937227 833#endif
fe55f6d5 834
b1937227
ED
835 union {
836 __wsum csum;
837 struct {
838 __u16 csum_start;
839 __u16 csum_offset;
840 };
841 };
842 __u32 priority;
843 int skb_iif;
844 __u32 hash;
845 __be16 vlan_proto;
846 __u16 vlan_tci;
2bd82484
ED
847#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
848 union {
849 unsigned int napi_id;
850 unsigned int sender_cpu;
851 };
97fc2f08 852#endif
984bc16c 853#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 854 __u32 secmark;
0c4f691f 855#endif
0c4f691f 856
3b885787
NH
857 union {
858 __u32 mark;
16fad69c 859 __u32 reserved_tailroom;
3b885787 860 };
1da177e4 861
8bce6d7d
TH
862 union {
863 __be16 inner_protocol;
864 __u8 inner_ipproto;
865 };
866
1a37e412
SH
867 __u16 inner_transport_header;
868 __u16 inner_network_header;
869 __u16 inner_mac_header;
b1937227
ED
870
871 __be16 protocol;
1a37e412
SH
872 __u16 transport_header;
873 __u16 network_header;
874 __u16 mac_header;
b1937227 875
ebcf34f3 876 /* private: */
b1937227 877 __u32 headers_end[0];
ebcf34f3 878 /* public: */
b1937227 879
1da177e4 880 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 881 sk_buff_data_t tail;
4305b541 882 sk_buff_data_t end;
1da177e4 883 unsigned char *head,
4305b541 884 *data;
27a884dc 885 unsigned int truesize;
63354797 886 refcount_t users;
df5042f4
FW
887
888#ifdef CONFIG_SKB_EXTENSIONS
889 /* only useable after checking ->active_extensions != 0 */
890 struct skb_ext *extensions;
891#endif
1da177e4
LT
892};
893
894#ifdef __KERNEL__
895/*
896 * Handling routines are only of interest to the kernel
897 */
1da177e4 898
c93bdd0e
MG
899#define SKB_ALLOC_FCLONE 0x01
900#define SKB_ALLOC_RX 0x02
fd11a83d 901#define SKB_ALLOC_NAPI 0x04
c93bdd0e 902
161e6137
PT
903/**
904 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
905 * @skb: buffer
906 */
c93bdd0e
MG
907static inline bool skb_pfmemalloc(const struct sk_buff *skb)
908{
909 return unlikely(skb->pfmemalloc);
910}
911
7fee226a
ED
912/*
913 * skb might have a dst pointer attached, refcounted or not.
914 * _skb_refdst low order bit is set if refcount was _not_ taken
915 */
916#define SKB_DST_NOREF 1UL
917#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
918
a9e419dc 919#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
920/**
921 * skb_dst - returns skb dst_entry
922 * @skb: buffer
923 *
924 * Returns skb dst_entry, regardless of reference taken or not.
925 */
adf30907
ED
926static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
927{
161e6137 928 /* If refdst was not refcounted, check we still are in a
7fee226a
ED
929 * rcu_read_lock section
930 */
931 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
932 !rcu_read_lock_held() &&
933 !rcu_read_lock_bh_held());
934 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
935}
936
7fee226a
ED
937/**
938 * skb_dst_set - sets skb dst
939 * @skb: buffer
940 * @dst: dst entry
941 *
942 * Sets skb dst, assuming a reference was taken on dst and should
943 * be released by skb_dst_drop()
944 */
adf30907
ED
945static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
946{
7fee226a
ED
947 skb->_skb_refdst = (unsigned long)dst;
948}
949
932bc4d7
JA
950/**
951 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
952 * @skb: buffer
953 * @dst: dst entry
954 *
955 * Sets skb dst, assuming a reference was not taken on dst.
956 * If dst entry is cached, we do not take reference and dst_release
957 * will be avoided by refdst_drop. If dst entry is not cached, we take
958 * reference, so that last dst_release can destroy the dst immediately.
959 */
960static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
961{
dbfc4fb7
HFS
962 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
963 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 964}
7fee226a
ED
965
966/**
25985edc 967 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
968 * @skb: buffer
969 */
970static inline bool skb_dst_is_noref(const struct sk_buff *skb)
971{
972 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
973}
974
161e6137
PT
975/**
976 * skb_rtable - Returns the skb &rtable
977 * @skb: buffer
978 */
511c3f92
ED
979static inline struct rtable *skb_rtable(const struct sk_buff *skb)
980{
adf30907 981 return (struct rtable *)skb_dst(skb);
511c3f92
ED
982}
983
8b10cab6
JHS
984/* For mangling skb->pkt_type from user space side from applications
985 * such as nft, tc, etc, we only allow a conservative subset of
986 * possible pkt_types to be set.
987*/
988static inline bool skb_pkt_type_ok(u32 ptype)
989{
990 return ptype <= PACKET_OTHERHOST;
991}
992
161e6137
PT
993/**
994 * skb_napi_id - Returns the skb's NAPI id
995 * @skb: buffer
996 */
90b602f8
ML
997static inline unsigned int skb_napi_id(const struct sk_buff *skb)
998{
999#ifdef CONFIG_NET_RX_BUSY_POLL
1000 return skb->napi_id;
1001#else
1002 return 0;
1003#endif
1004}
1005
161e6137
PT
1006/**
1007 * skb_unref - decrement the skb's reference count
1008 * @skb: buffer
1009 *
1010 * Returns true if we can free the skb.
1011 */
3889a803
PA
1012static inline bool skb_unref(struct sk_buff *skb)
1013{
1014 if (unlikely(!skb))
1015 return false;
63354797 1016 if (likely(refcount_read(&skb->users) == 1))
3889a803 1017 smp_rmb();
63354797 1018 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
1019 return false;
1020
1021 return true;
1022}
1023
0a463c78 1024void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
1025void kfree_skb(struct sk_buff *skb);
1026void kfree_skb_list(struct sk_buff *segs);
6413139d 1027void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
7965bd4d
JP
1028void skb_tx_error(struct sk_buff *skb);
1029void consume_skb(struct sk_buff *skb);
ca2c1418 1030void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 1031void __kfree_skb(struct sk_buff *skb);
d7e8883c 1032extern struct kmem_cache *skbuff_head_cache;
bad43ca8 1033
7965bd4d
JP
1034void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1035bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1036 bool *fragstolen, int *delta_truesize);
bad43ca8 1037
7965bd4d
JP
1038struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1039 int node);
2ea2f62c 1040struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 1041struct sk_buff *build_skb(void *data, unsigned int frag_size);
ba0509b6
JDB
1042struct sk_buff *build_skb_around(struct sk_buff *skb,
1043 void *data, unsigned int frag_size);
161e6137
PT
1044
1045/**
1046 * alloc_skb - allocate a network buffer
1047 * @size: size to allocate
1048 * @priority: allocation mask
1049 *
1050 * This function is a convenient wrapper around __alloc_skb().
1051 */
d179cd12 1052static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 1053 gfp_t priority)
d179cd12 1054{
564824b0 1055 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
1056}
1057
2e4e4410
ED
1058struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1059 unsigned long data_len,
1060 int max_page_order,
1061 int *errcode,
1062 gfp_t gfp_mask);
da29e4b4 1063struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
2e4e4410 1064
d0bf4a9e
ED
1065/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1066struct sk_buff_fclones {
1067 struct sk_buff skb1;
1068
1069 struct sk_buff skb2;
1070
2638595a 1071 refcount_t fclone_ref;
d0bf4a9e
ED
1072};
1073
1074/**
1075 * skb_fclone_busy - check if fclone is busy
293de7de 1076 * @sk: socket
d0bf4a9e
ED
1077 * @skb: buffer
1078 *
bda13fed 1079 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1080 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1081 * so we also check that this didnt happen.
d0bf4a9e 1082 */
39bb5e62
ED
1083static inline bool skb_fclone_busy(const struct sock *sk,
1084 const struct sk_buff *skb)
d0bf4a9e
ED
1085{
1086 const struct sk_buff_fclones *fclones;
1087
1088 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1089
1090 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1091 refcount_read(&fclones->fclone_ref) > 1 &&
39bb5e62 1092 fclones->skb2.sk == sk;
d0bf4a9e
ED
1093}
1094
161e6137
PT
1095/**
1096 * alloc_skb_fclone - allocate a network buffer from fclone cache
1097 * @size: size to allocate
1098 * @priority: allocation mask
1099 *
1100 * This function is a convenient wrapper around __alloc_skb().
1101 */
d179cd12 1102static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1103 gfp_t priority)
d179cd12 1104{
c93bdd0e 1105 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1106}
1107
7965bd4d 1108struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
b0768a86 1109void skb_headers_offset_update(struct sk_buff *skb, int off);
7965bd4d
JP
1110int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1111struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
08303c18 1112void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
7965bd4d 1113struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1114struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1115 gfp_t gfp_mask, bool fclone);
1116static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1117 gfp_t gfp_mask)
1118{
1119 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1120}
7965bd4d
JP
1121
1122int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1123struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1124 unsigned int headroom);
1125struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1126 int newtailroom, gfp_t priority);
48a1df65
JD
1127int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1128 int offset, int len);
1129int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1130 int offset, int len);
7965bd4d 1131int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1132int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1133
1134/**
1135 * skb_pad - zero pad the tail of an skb
1136 * @skb: buffer to pad
1137 * @pad: space to pad
1138 *
1139 * Ensure that a buffer is followed by a padding area that is zero
1140 * filled. Used by network drivers which may DMA or transfer data
1141 * beyond the buffer end onto the wire.
1142 *
1143 * May return error in out of memory cases. The skb is freed on error.
1144 */
1145static inline int skb_pad(struct sk_buff *skb, int pad)
1146{
1147 return __skb_pad(skb, pad, true);
1148}
ead2ceb0 1149#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1150
be12a1fe
HFS
1151int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1152 int offset, size_t size);
1153
d94d9fee 1154struct skb_seq_state {
677e90ed
TG
1155 __u32 lower_offset;
1156 __u32 upper_offset;
1157 __u32 frag_idx;
1158 __u32 stepped_offset;
1159 struct sk_buff *root_skb;
1160 struct sk_buff *cur_skb;
1161 __u8 *frag_data;
1162};
1163
7965bd4d
JP
1164void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1165 unsigned int to, struct skb_seq_state *st);
1166unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1167 struct skb_seq_state *st);
1168void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1169
7965bd4d 1170unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1171 unsigned int to, struct ts_config *config);
3fc7e8a6 1172
09323cc4
TH
1173/*
1174 * Packet hash types specify the type of hash in skb_set_hash.
1175 *
1176 * Hash types refer to the protocol layer addresses which are used to
1177 * construct a packet's hash. The hashes are used to differentiate or identify
1178 * flows of the protocol layer for the hash type. Hash types are either
1179 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1180 *
1181 * Properties of hashes:
1182 *
1183 * 1) Two packets in different flows have different hash values
1184 * 2) Two packets in the same flow should have the same hash value
1185 *
1186 * A hash at a higher layer is considered to be more specific. A driver should
1187 * set the most specific hash possible.
1188 *
1189 * A driver cannot indicate a more specific hash than the layer at which a hash
1190 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1191 *
1192 * A driver may indicate a hash level which is less specific than the
1193 * actual layer the hash was computed on. For instance, a hash computed
1194 * at L4 may be considered an L3 hash. This should only be done if the
1195 * driver can't unambiguously determine that the HW computed the hash at
1196 * the higher layer. Note that the "should" in the second property above
1197 * permits this.
1198 */
1199enum pkt_hash_types {
1200 PKT_HASH_TYPE_NONE, /* Undefined type */
1201 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1202 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1203 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1204};
1205
bcc83839 1206static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1207{
bcc83839 1208 skb->hash = 0;
a3b18ddb 1209 skb->sw_hash = 0;
bcc83839
TH
1210 skb->l4_hash = 0;
1211}
1212
1213static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1214{
1215 if (!skb->l4_hash)
1216 skb_clear_hash(skb);
1217}
1218
1219static inline void
1220__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1221{
1222 skb->l4_hash = is_l4;
1223 skb->sw_hash = is_sw;
61b905da 1224 skb->hash = hash;
09323cc4
TH
1225}
1226
bcc83839
TH
1227static inline void
1228skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1229{
1230 /* Used by drivers to set hash from HW */
1231 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1232}
1233
1234static inline void
1235__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1236{
1237 __skb_set_hash(skb, hash, true, is_l4);
1238}
1239
e5276937 1240void __skb_get_hash(struct sk_buff *skb);
b917783c 1241u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1242u32 skb_get_poff(const struct sk_buff *skb);
1243u32 __skb_get_poff(const struct sk_buff *skb, void *data,
72a338bc 1244 const struct flow_keys_basic *keys, int hlen);
e5276937
TH
1245__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1246 void *data, int hlen_proto);
1247
1248static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1249 int thoff, u8 ip_proto)
1250{
1251 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1252}
1253
1254void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1255 const struct flow_dissector_key *key,
1256 unsigned int key_count);
1257
2dfd184a 1258#ifdef CONFIG_NET
118c8e9a
SF
1259int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1260 union bpf_attr __user *uattr);
d58e468b
PP
1261int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1262 struct bpf_prog *prog);
1263
1264int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
2dfd184a 1265#else
118c8e9a
SF
1266static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1267 union bpf_attr __user *uattr)
1268{
1269 return -EOPNOTSUPP;
1270}
1271
2dfd184a
WB
1272static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1273 struct bpf_prog *prog)
1274{
1275 return -EOPNOTSUPP;
1276}
1277
1278static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1279{
1280 return -EOPNOTSUPP;
1281}
1282#endif
d58e468b 1283
089b19a9
SF
1284struct bpf_flow_dissector;
1285bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1286 __be16 proto, int nhoff, int hlen);
1287
3cbf4ffb
SF
1288bool __skb_flow_dissect(const struct net *net,
1289 const struct sk_buff *skb,
e5276937
TH
1290 struct flow_dissector *flow_dissector,
1291 void *target_container,
cd79a238
TH
1292 void *data, __be16 proto, int nhoff, int hlen,
1293 unsigned int flags);
e5276937
TH
1294
1295static inline bool skb_flow_dissect(const struct sk_buff *skb,
1296 struct flow_dissector *flow_dissector,
cd79a238 1297 void *target_container, unsigned int flags)
e5276937 1298{
3cbf4ffb
SF
1299 return __skb_flow_dissect(NULL, skb, flow_dissector,
1300 target_container, NULL, 0, 0, 0, flags);
e5276937
TH
1301}
1302
1303static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1304 struct flow_keys *flow,
1305 unsigned int flags)
e5276937
TH
1306{
1307 memset(flow, 0, sizeof(*flow));
3cbf4ffb
SF
1308 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1309 flow, NULL, 0, 0, 0, flags);
e5276937
TH
1310}
1311
72a338bc 1312static inline bool
3cbf4ffb
SF
1313skb_flow_dissect_flow_keys_basic(const struct net *net,
1314 const struct sk_buff *skb,
72a338bc
PA
1315 struct flow_keys_basic *flow, void *data,
1316 __be16 proto, int nhoff, int hlen,
1317 unsigned int flags)
e5276937
TH
1318{
1319 memset(flow, 0, sizeof(*flow));
3cbf4ffb 1320 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
cd79a238 1321 data, proto, nhoff, hlen, flags);
e5276937
TH
1322}
1323
82828b88
JP
1324void skb_flow_dissect_meta(const struct sk_buff *skb,
1325 struct flow_dissector *flow_dissector,
1326 void *target_container);
1327
75a56758
PB
1328/* Gets a skb connection tracking info, ctinfo map should be a
1329 * a map of mapsize to translate enum ip_conntrack_info states
1330 * to user states.
1331 */
1332void
1333skb_flow_dissect_ct(const struct sk_buff *skb,
1334 struct flow_dissector *flow_dissector,
1335 void *target_container,
1336 u16 *ctinfo_map,
1337 size_t mapsize);
62b32379
SH
1338void
1339skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1340 struct flow_dissector *flow_dissector,
1341 void *target_container);
1342
3958afa1 1343static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1344{
a3b18ddb 1345 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1346 __skb_get_hash(skb);
bfb564e7 1347
61b905da 1348 return skb->hash;
bfb564e7
KK
1349}
1350
20a17bf6 1351static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1352{
c6cc1ca7
TH
1353 if (!skb->l4_hash && !skb->sw_hash) {
1354 struct flow_keys keys;
de4c1f8b 1355 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1356
de4c1f8b 1357 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1358 }
f70ea018
TH
1359
1360 return skb->hash;
1361}
1362
50fb7992
TH
1363__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1364
57bdf7f4
TH
1365static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1366{
61b905da 1367 return skb->hash;
57bdf7f4
TH
1368}
1369
3df7a74e
TH
1370static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1371{
61b905da 1372 to->hash = from->hash;
a3b18ddb 1373 to->sw_hash = from->sw_hash;
61b905da 1374 to->l4_hash = from->l4_hash;
3df7a74e
TH
1375};
1376
41477662
JK
1377static inline void skb_copy_decrypted(struct sk_buff *to,
1378 const struct sk_buff *from)
1379{
1380#ifdef CONFIG_TLS_DEVICE
1381 to->decrypted = from->decrypted;
1382#endif
1383}
1384
4305b541
ACM
1385#ifdef NET_SKBUFF_DATA_USES_OFFSET
1386static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1387{
1388 return skb->head + skb->end;
1389}
ec47ea82
AD
1390
1391static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1392{
1393 return skb->end;
1394}
4305b541
ACM
1395#else
1396static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1397{
1398 return skb->end;
1399}
ec47ea82
AD
1400
1401static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1402{
1403 return skb->end - skb->head;
1404}
4305b541
ACM
1405#endif
1406
1da177e4 1407/* Internal */
4305b541 1408#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1409
ac45f602
PO
1410static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1411{
1412 return &skb_shinfo(skb)->hwtstamps;
1413}
1414
52267790
WB
1415static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1416{
1417 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1418
1419 return is_zcopy ? skb_uarg(skb) : NULL;
1420}
1421
52900d22
WB
1422static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1423 bool *have_ref)
52267790
WB
1424{
1425 if (skb && uarg && !skb_zcopy(skb)) {
52900d22
WB
1426 if (unlikely(have_ref && *have_ref))
1427 *have_ref = false;
1428 else
1429 sock_zerocopy_get(uarg);
52267790
WB
1430 skb_shinfo(skb)->destructor_arg = uarg;
1431 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1432 }
1433}
1434
5cd8d46e
WB
1435static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1436{
1437 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1438 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1439}
1440
1441static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1442{
1443 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1444}
1445
1446static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1447{
1448 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1449}
1450
52267790
WB
1451/* Release a reference on a zerocopy structure */
1452static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1453{
1454 struct ubuf_info *uarg = skb_zcopy(skb);
1455
1456 if (uarg) {
185ce5c3
WB
1457 if (skb_zcopy_is_nouarg(skb)) {
1458 /* no notification callback */
1459 } else if (uarg->callback == sock_zerocopy_callback) {
0a4a060b
WB
1460 uarg->zerocopy = uarg->zerocopy && zerocopy;
1461 sock_zerocopy_put(uarg);
185ce5c3 1462 } else {
0a4a060b
WB
1463 uarg->callback(uarg, zerocopy);
1464 }
1465
52267790
WB
1466 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1467 }
1468}
1469
1470/* Abort a zerocopy operation and revert zckey on error in send syscall */
1471static inline void skb_zcopy_abort(struct sk_buff *skb)
1472{
1473 struct ubuf_info *uarg = skb_zcopy(skb);
1474
1475 if (uarg) {
52900d22 1476 sock_zerocopy_put_abort(uarg, false);
52267790
WB
1477 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1478 }
1479}
1480
a8305bff
DM
1481static inline void skb_mark_not_on_list(struct sk_buff *skb)
1482{
1483 skb->next = NULL;
1484}
1485
992cba7e
DM
1486static inline void skb_list_del_init(struct sk_buff *skb)
1487{
1488 __list_del_entry(&skb->list);
1489 skb_mark_not_on_list(skb);
1490}
1491
1da177e4
LT
1492/**
1493 * skb_queue_empty - check if a queue is empty
1494 * @list: queue head
1495 *
1496 * Returns true if the queue is empty, false otherwise.
1497 */
1498static inline int skb_queue_empty(const struct sk_buff_head *list)
1499{
fd44b93c 1500 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1501}
1502
fc7ebb21
DM
1503/**
1504 * skb_queue_is_last - check if skb is the last entry in the queue
1505 * @list: queue head
1506 * @skb: buffer
1507 *
1508 * Returns true if @skb is the last buffer on the list.
1509 */
1510static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1511 const struct sk_buff *skb)
1512{
fd44b93c 1513 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1514}
1515
832d11c5
IJ
1516/**
1517 * skb_queue_is_first - check if skb is the first entry in the queue
1518 * @list: queue head
1519 * @skb: buffer
1520 *
1521 * Returns true if @skb is the first buffer on the list.
1522 */
1523static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1524 const struct sk_buff *skb)
1525{
fd44b93c 1526 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1527}
1528
249c8b42
DM
1529/**
1530 * skb_queue_next - return the next packet in the queue
1531 * @list: queue head
1532 * @skb: current buffer
1533 *
1534 * Return the next packet in @list after @skb. It is only valid to
1535 * call this if skb_queue_is_last() evaluates to false.
1536 */
1537static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1538 const struct sk_buff *skb)
1539{
1540 /* This BUG_ON may seem severe, but if we just return then we
1541 * are going to dereference garbage.
1542 */
1543 BUG_ON(skb_queue_is_last(list, skb));
1544 return skb->next;
1545}
1546
832d11c5
IJ
1547/**
1548 * skb_queue_prev - return the prev packet in the queue
1549 * @list: queue head
1550 * @skb: current buffer
1551 *
1552 * Return the prev packet in @list before @skb. It is only valid to
1553 * call this if skb_queue_is_first() evaluates to false.
1554 */
1555static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1556 const struct sk_buff *skb)
1557{
1558 /* This BUG_ON may seem severe, but if we just return then we
1559 * are going to dereference garbage.
1560 */
1561 BUG_ON(skb_queue_is_first(list, skb));
1562 return skb->prev;
1563}
1564
1da177e4
LT
1565/**
1566 * skb_get - reference buffer
1567 * @skb: buffer to reference
1568 *
1569 * Makes another reference to a socket buffer and returns a pointer
1570 * to the buffer.
1571 */
1572static inline struct sk_buff *skb_get(struct sk_buff *skb)
1573{
63354797 1574 refcount_inc(&skb->users);
1da177e4
LT
1575 return skb;
1576}
1577
1578/*
f8821f96 1579 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1da177e4
LT
1580 */
1581
1da177e4
LT
1582/**
1583 * skb_cloned - is the buffer a clone
1584 * @skb: buffer to check
1585 *
1586 * Returns true if the buffer was generated with skb_clone() and is
1587 * one of multiple shared copies of the buffer. Cloned buffers are
1588 * shared data so must not be written to under normal circumstances.
1589 */
1590static inline int skb_cloned(const struct sk_buff *skb)
1591{
1592 return skb->cloned &&
1593 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1594}
1595
14bbd6a5
PS
1596static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1597{
d0164adc 1598 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1599
1600 if (skb_cloned(skb))
1601 return pskb_expand_head(skb, 0, 0, pri);
1602
1603 return 0;
1604}
1605
1da177e4
LT
1606/**
1607 * skb_header_cloned - is the header a clone
1608 * @skb: buffer to check
1609 *
1610 * Returns true if modifying the header part of the buffer requires
1611 * the data to be copied.
1612 */
1613static inline int skb_header_cloned(const struct sk_buff *skb)
1614{
1615 int dataref;
1616
1617 if (!skb->cloned)
1618 return 0;
1619
1620 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1621 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1622 return dataref != 1;
1623}
1624
9580bf2e
ED
1625static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1626{
1627 might_sleep_if(gfpflags_allow_blocking(pri));
1628
1629 if (skb_header_cloned(skb))
1630 return pskb_expand_head(skb, 0, 0, pri);
1631
1632 return 0;
1633}
1634
f4a775d1
ED
1635/**
1636 * __skb_header_release - release reference to header
1637 * @skb: buffer to operate on
f4a775d1
ED
1638 */
1639static inline void __skb_header_release(struct sk_buff *skb)
1640{
1641 skb->nohdr = 1;
1642 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1643}
1644
1645
1da177e4
LT
1646/**
1647 * skb_shared - is the buffer shared
1648 * @skb: buffer to check
1649 *
1650 * Returns true if more than one person has a reference to this
1651 * buffer.
1652 */
1653static inline int skb_shared(const struct sk_buff *skb)
1654{
63354797 1655 return refcount_read(&skb->users) != 1;
1da177e4
LT
1656}
1657
1658/**
1659 * skb_share_check - check if buffer is shared and if so clone it
1660 * @skb: buffer to check
1661 * @pri: priority for memory allocation
1662 *
1663 * If the buffer is shared the buffer is cloned and the old copy
1664 * drops a reference. A new clone with a single reference is returned.
1665 * If the buffer is not shared the original buffer is returned. When
1666 * being called from interrupt status or with spinlocks held pri must
1667 * be GFP_ATOMIC.
1668 *
1669 * NULL is returned on a memory allocation failure.
1670 */
47061bc4 1671static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1672{
d0164adc 1673 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1674 if (skb_shared(skb)) {
1675 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1676
1677 if (likely(nskb))
1678 consume_skb(skb);
1679 else
1680 kfree_skb(skb);
1da177e4
LT
1681 skb = nskb;
1682 }
1683 return skb;
1684}
1685
1686/*
1687 * Copy shared buffers into a new sk_buff. We effectively do COW on
1688 * packets to handle cases where we have a local reader and forward
1689 * and a couple of other messy ones. The normal one is tcpdumping
1690 * a packet thats being forwarded.
1691 */
1692
1693/**
1694 * skb_unshare - make a copy of a shared buffer
1695 * @skb: buffer to check
1696 * @pri: priority for memory allocation
1697 *
1698 * If the socket buffer is a clone then this function creates a new
1699 * copy of the data, drops a reference count on the old copy and returns
1700 * the new copy with the reference count at 1. If the buffer is not a clone
1701 * the original buffer is returned. When called with a spinlock held or
1702 * from interrupt state @pri must be %GFP_ATOMIC
1703 *
1704 * %NULL is returned on a memory allocation failure.
1705 */
e2bf521d 1706static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1707 gfp_t pri)
1da177e4 1708{
d0164adc 1709 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1710 if (skb_cloned(skb)) {
1711 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1712
1713 /* Free our shared copy */
1714 if (likely(nskb))
1715 consume_skb(skb);
1716 else
1717 kfree_skb(skb);
1da177e4
LT
1718 skb = nskb;
1719 }
1720 return skb;
1721}
1722
1723/**
1a5778aa 1724 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1725 * @list_: list to peek at
1726 *
1727 * Peek an &sk_buff. Unlike most other operations you _MUST_
1728 * be careful with this one. A peek leaves the buffer on the
1729 * list and someone else may run off with it. You must hold
1730 * the appropriate locks or have a private queue to do this.
1731 *
1732 * Returns %NULL for an empty list or a pointer to the head element.
1733 * The reference count is not incremented and the reference is therefore
1734 * volatile. Use with caution.
1735 */
05bdd2f1 1736static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1737{
18d07000
ED
1738 struct sk_buff *skb = list_->next;
1739
1740 if (skb == (struct sk_buff *)list_)
1741 skb = NULL;
1742 return skb;
1da177e4
LT
1743}
1744
8b69bd7d
DM
1745/**
1746 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1747 * @list_: list to peek at
1748 *
1749 * Like skb_peek(), but the caller knows that the list is not empty.
1750 */
1751static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1752{
1753 return list_->next;
1754}
1755
da5ef6e5
PE
1756/**
1757 * skb_peek_next - peek skb following the given one from a queue
1758 * @skb: skb to start from
1759 * @list_: list to peek at
1760 *
1761 * Returns %NULL when the end of the list is met or a pointer to the
1762 * next element. The reference count is not incremented and the
1763 * reference is therefore volatile. Use with caution.
1764 */
1765static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1766 const struct sk_buff_head *list_)
1767{
1768 struct sk_buff *next = skb->next;
18d07000 1769
da5ef6e5
PE
1770 if (next == (struct sk_buff *)list_)
1771 next = NULL;
1772 return next;
1773}
1774
1da177e4 1775/**
1a5778aa 1776 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1777 * @list_: list to peek at
1778 *
1779 * Peek an &sk_buff. Unlike most other operations you _MUST_
1780 * be careful with this one. A peek leaves the buffer on the
1781 * list and someone else may run off with it. You must hold
1782 * the appropriate locks or have a private queue to do this.
1783 *
1784 * Returns %NULL for an empty list or a pointer to the tail element.
1785 * The reference count is not incremented and the reference is therefore
1786 * volatile. Use with caution.
1787 */
05bdd2f1 1788static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1789{
18d07000
ED
1790 struct sk_buff *skb = list_->prev;
1791
1792 if (skb == (struct sk_buff *)list_)
1793 skb = NULL;
1794 return skb;
1795
1da177e4
LT
1796}
1797
1798/**
1799 * skb_queue_len - get queue length
1800 * @list_: list to measure
1801 *
1802 * Return the length of an &sk_buff queue.
1803 */
1804static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1805{
1806 return list_->qlen;
1807}
1808
67fed459
DM
1809/**
1810 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1811 * @list: queue to initialize
1812 *
1813 * This initializes only the list and queue length aspects of
1814 * an sk_buff_head object. This allows to initialize the list
1815 * aspects of an sk_buff_head without reinitializing things like
1816 * the spinlock. It can also be used for on-stack sk_buff_head
1817 * objects where the spinlock is known to not be used.
1818 */
1819static inline void __skb_queue_head_init(struct sk_buff_head *list)
1820{
1821 list->prev = list->next = (struct sk_buff *)list;
1822 list->qlen = 0;
1823}
1824
76f10ad0
AV
1825/*
1826 * This function creates a split out lock class for each invocation;
1827 * this is needed for now since a whole lot of users of the skb-queue
1828 * infrastructure in drivers have different locking usage (in hardirq)
1829 * than the networking core (in softirq only). In the long run either the
1830 * network layer or drivers should need annotation to consolidate the
1831 * main types of usage into 3 classes.
1832 */
1da177e4
LT
1833static inline void skb_queue_head_init(struct sk_buff_head *list)
1834{
1835 spin_lock_init(&list->lock);
67fed459 1836 __skb_queue_head_init(list);
1da177e4
LT
1837}
1838
c2ecba71
PE
1839static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1840 struct lock_class_key *class)
1841{
1842 skb_queue_head_init(list);
1843 lockdep_set_class(&list->lock, class);
1844}
1845
1da177e4 1846/*
bf299275 1847 * Insert an sk_buff on a list.
1da177e4
LT
1848 *
1849 * The "__skb_xxxx()" functions are the non-atomic ones that
1850 * can only be called with interrupts disabled.
1851 */
bf299275
GR
1852static inline void __skb_insert(struct sk_buff *newsk,
1853 struct sk_buff *prev, struct sk_buff *next,
1854 struct sk_buff_head *list)
1855{
1856 newsk->next = next;
1857 newsk->prev = prev;
1858 next->prev = prev->next = newsk;
1859 list->qlen++;
1860}
1da177e4 1861
67fed459
DM
1862static inline void __skb_queue_splice(const struct sk_buff_head *list,
1863 struct sk_buff *prev,
1864 struct sk_buff *next)
1865{
1866 struct sk_buff *first = list->next;
1867 struct sk_buff *last = list->prev;
1868
1869 first->prev = prev;
1870 prev->next = first;
1871
1872 last->next = next;
1873 next->prev = last;
1874}
1875
1876/**
1877 * skb_queue_splice - join two skb lists, this is designed for stacks
1878 * @list: the new list to add
1879 * @head: the place to add it in the first list
1880 */
1881static inline void skb_queue_splice(const struct sk_buff_head *list,
1882 struct sk_buff_head *head)
1883{
1884 if (!skb_queue_empty(list)) {
1885 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1886 head->qlen += list->qlen;
67fed459
DM
1887 }
1888}
1889
1890/**
d9619496 1891 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1892 * @list: the new list to add
1893 * @head: the place to add it in the first list
1894 *
1895 * The list at @list is reinitialised
1896 */
1897static inline void skb_queue_splice_init(struct sk_buff_head *list,
1898 struct sk_buff_head *head)
1899{
1900 if (!skb_queue_empty(list)) {
1901 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1902 head->qlen += list->qlen;
67fed459
DM
1903 __skb_queue_head_init(list);
1904 }
1905}
1906
1907/**
1908 * skb_queue_splice_tail - join two skb lists, each list being a queue
1909 * @list: the new list to add
1910 * @head: the place to add it in the first list
1911 */
1912static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1913 struct sk_buff_head *head)
1914{
1915 if (!skb_queue_empty(list)) {
1916 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1917 head->qlen += list->qlen;
67fed459
DM
1918 }
1919}
1920
1921/**
d9619496 1922 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1923 * @list: the new list to add
1924 * @head: the place to add it in the first list
1925 *
1926 * Each of the lists is a queue.
1927 * The list at @list is reinitialised
1928 */
1929static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1930 struct sk_buff_head *head)
1931{
1932 if (!skb_queue_empty(list)) {
1933 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1934 head->qlen += list->qlen;
67fed459
DM
1935 __skb_queue_head_init(list);
1936 }
1937}
1938
1da177e4 1939/**
300ce174 1940 * __skb_queue_after - queue a buffer at the list head
1da177e4 1941 * @list: list to use
300ce174 1942 * @prev: place after this buffer
1da177e4
LT
1943 * @newsk: buffer to queue
1944 *
300ce174 1945 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1946 * and you must therefore hold required locks before calling it.
1947 *
1948 * A buffer cannot be placed on two lists at the same time.
1949 */
300ce174
SH
1950static inline void __skb_queue_after(struct sk_buff_head *list,
1951 struct sk_buff *prev,
1952 struct sk_buff *newsk)
1da177e4 1953{
bf299275 1954 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1955}
1956
7965bd4d
JP
1957void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1958 struct sk_buff_head *list);
7de6c033 1959
f5572855
GR
1960static inline void __skb_queue_before(struct sk_buff_head *list,
1961 struct sk_buff *next,
1962 struct sk_buff *newsk)
1963{
1964 __skb_insert(newsk, next->prev, next, list);
1965}
1966
300ce174
SH
1967/**
1968 * __skb_queue_head - queue a buffer at the list head
1969 * @list: list to use
1970 * @newsk: buffer to queue
1971 *
1972 * Queue a buffer at the start of a list. This function takes no locks
1973 * and you must therefore hold required locks before calling it.
1974 *
1975 * A buffer cannot be placed on two lists at the same time.
1976 */
300ce174
SH
1977static inline void __skb_queue_head(struct sk_buff_head *list,
1978 struct sk_buff *newsk)
1979{
1980 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1981}
4ea7b0cf 1982void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174 1983
1da177e4
LT
1984/**
1985 * __skb_queue_tail - queue a buffer at the list tail
1986 * @list: list to use
1987 * @newsk: buffer to queue
1988 *
1989 * Queue a buffer at the end of a list. This function takes no locks
1990 * and you must therefore hold required locks before calling it.
1991 *
1992 * A buffer cannot be placed on two lists at the same time.
1993 */
1da177e4
LT
1994static inline void __skb_queue_tail(struct sk_buff_head *list,
1995 struct sk_buff *newsk)
1996{
f5572855 1997 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4 1998}
4ea7b0cf 1999void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4 2000
1da177e4
LT
2001/*
2002 * remove sk_buff from list. _Must_ be called atomically, and with
2003 * the list known..
2004 */
7965bd4d 2005void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
2006static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2007{
2008 struct sk_buff *next, *prev;
2009
2010 list->qlen--;
2011 next = skb->next;
2012 prev = skb->prev;
2013 skb->next = skb->prev = NULL;
1da177e4
LT
2014 next->prev = prev;
2015 prev->next = next;
2016}
2017
f525c06d
GR
2018/**
2019 * __skb_dequeue - remove from the head of the queue
2020 * @list: list to dequeue from
2021 *
2022 * Remove the head of the list. This function does not take any locks
2023 * so must be used with appropriate locks held only. The head item is
2024 * returned or %NULL if the list is empty.
2025 */
f525c06d
GR
2026static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2027{
2028 struct sk_buff *skb = skb_peek(list);
2029 if (skb)
2030 __skb_unlink(skb, list);
2031 return skb;
2032}
4ea7b0cf 2033struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1da177e4
LT
2034
2035/**
2036 * __skb_dequeue_tail - remove from the tail of the queue
2037 * @list: list to dequeue from
2038 *
2039 * Remove the tail of the list. This function does not take any locks
2040 * so must be used with appropriate locks held only. The tail item is
2041 * returned or %NULL if the list is empty.
2042 */
1da177e4
LT
2043static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2044{
2045 struct sk_buff *skb = skb_peek_tail(list);
2046 if (skb)
2047 __skb_unlink(skb, list);
2048 return skb;
2049}
4ea7b0cf 2050struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
2051
2052
bdcc0924 2053static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
2054{
2055 return skb->data_len;
2056}
2057
2058static inline unsigned int skb_headlen(const struct sk_buff *skb)
2059{
2060 return skb->len - skb->data_len;
2061}
2062
3ece7826 2063static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 2064{
c72d8cda 2065 unsigned int i, len = 0;
1da177e4 2066
c72d8cda 2067 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 2068 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
2069 return len;
2070}
2071
2072static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2073{
2074 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
2075}
2076
131ea667
IC
2077/**
2078 * __skb_fill_page_desc - initialise a paged fragment in an skb
2079 * @skb: buffer containing fragment to be initialised
2080 * @i: paged fragment index to initialise
2081 * @page: the page to use for this fragment
2082 * @off: the offset to the data with @page
2083 * @size: the length of the data
2084 *
2085 * Initialises the @i'th fragment of @skb to point to &size bytes at
2086 * offset @off within @page.
2087 *
2088 * Does not take any additional reference on the fragment.
2089 */
2090static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2091 struct page *page, int off, int size)
1da177e4
LT
2092{
2093 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2094
c48a11c7 2095 /*
2f064f34
MH
2096 * Propagate page pfmemalloc to the skb if we can. The problem is
2097 * that not all callers have unique ownership of the page but rely
2098 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 2099 */
a8605c60 2100 frag->page.p = page;
1da177e4 2101 frag->page_offset = off;
9e903e08 2102 skb_frag_size_set(frag, size);
cca7af38
PE
2103
2104 page = compound_head(page);
2f064f34 2105 if (page_is_pfmemalloc(page))
cca7af38 2106 skb->pfmemalloc = true;
131ea667
IC
2107}
2108
2109/**
2110 * skb_fill_page_desc - initialise a paged fragment in an skb
2111 * @skb: buffer containing fragment to be initialised
2112 * @i: paged fragment index to initialise
2113 * @page: the page to use for this fragment
2114 * @off: the offset to the data with @page
2115 * @size: the length of the data
2116 *
2117 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 2118 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
2119 * addition updates @skb such that @i is the last fragment.
2120 *
2121 * Does not take any additional reference on the fragment.
2122 */
2123static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2124 struct page *page, int off, int size)
2125{
2126 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
2127 skb_shinfo(skb)->nr_frags = i + 1;
2128}
2129
7965bd4d
JP
2130void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2131 int size, unsigned int truesize);
654bed16 2132
f8e617e1
JW
2133void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2134 unsigned int truesize);
2135
1da177e4
LT
2136#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2137
27a884dc
ACM
2138#ifdef NET_SKBUFF_DATA_USES_OFFSET
2139static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2140{
2141 return skb->head + skb->tail;
2142}
2143
2144static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2145{
2146 skb->tail = skb->data - skb->head;
2147}
2148
2149static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2150{
2151 skb_reset_tail_pointer(skb);
2152 skb->tail += offset;
2153}
7cc46190 2154
27a884dc
ACM
2155#else /* NET_SKBUFF_DATA_USES_OFFSET */
2156static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2157{
2158 return skb->tail;
2159}
2160
2161static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2162{
2163 skb->tail = skb->data;
2164}
2165
2166static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2167{
2168 skb->tail = skb->data + offset;
2169}
4305b541 2170
27a884dc
ACM
2171#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2172
1da177e4
LT
2173/*
2174 * Add data to an sk_buff
2175 */
4df864c1
JB
2176void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2177void *skb_put(struct sk_buff *skb, unsigned int len);
2178static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2179{
4df864c1 2180 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2181 SKB_LINEAR_ASSERT(skb);
2182 skb->tail += len;
2183 skb->len += len;
2184 return tmp;
2185}
2186
de77b966 2187static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2188{
2189 void *tmp = __skb_put(skb, len);
2190
2191 memset(tmp, 0, len);
2192 return tmp;
2193}
2194
2195static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2196 unsigned int len)
2197{
2198 void *tmp = __skb_put(skb, len);
2199
2200 memcpy(tmp, data, len);
2201 return tmp;
2202}
2203
2204static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2205{
2206 *(u8 *)__skb_put(skb, 1) = val;
2207}
2208
83ad357d 2209static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2210{
83ad357d 2211 void *tmp = skb_put(skb, len);
e45a79da
JB
2212
2213 memset(tmp, 0, len);
2214
2215 return tmp;
2216}
2217
59ae1d12
JB
2218static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2219 unsigned int len)
2220{
2221 void *tmp = skb_put(skb, len);
2222
2223 memcpy(tmp, data, len);
2224
2225 return tmp;
2226}
2227
634fef61
JB
2228static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2229{
2230 *(u8 *)skb_put(skb, 1) = val;
2231}
2232
d58ff351
JB
2233void *skb_push(struct sk_buff *skb, unsigned int len);
2234static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2235{
2236 skb->data -= len;
2237 skb->len += len;
2238 return skb->data;
2239}
2240
af72868b
JB
2241void *skb_pull(struct sk_buff *skb, unsigned int len);
2242static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2243{
2244 skb->len -= len;
2245 BUG_ON(skb->len < skb->data_len);
2246 return skb->data += len;
2247}
2248
af72868b 2249static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2250{
2251 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2252}
2253
af72868b 2254void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2255
af72868b 2256static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2257{
2258 if (len > skb_headlen(skb) &&
987c402a 2259 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2260 return NULL;
2261 skb->len -= len;
2262 return skb->data += len;
2263}
2264
af72868b 2265static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2266{
2267 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2268}
2269
2270static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2271{
2272 if (likely(len <= skb_headlen(skb)))
2273 return 1;
2274 if (unlikely(len > skb->len))
2275 return 0;
987c402a 2276 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2277}
2278
c8c8b127
ED
2279void skb_condense(struct sk_buff *skb);
2280
1da177e4
LT
2281/**
2282 * skb_headroom - bytes at buffer head
2283 * @skb: buffer to check
2284 *
2285 * Return the number of bytes of free space at the head of an &sk_buff.
2286 */
c2636b4d 2287static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2288{
2289 return skb->data - skb->head;
2290}
2291
2292/**
2293 * skb_tailroom - bytes at buffer end
2294 * @skb: buffer to check
2295 *
2296 * Return the number of bytes of free space at the tail of an sk_buff
2297 */
2298static inline int skb_tailroom(const struct sk_buff *skb)
2299{
4305b541 2300 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2301}
2302
a21d4572
ED
2303/**
2304 * skb_availroom - bytes at buffer end
2305 * @skb: buffer to check
2306 *
2307 * Return the number of bytes of free space at the tail of an sk_buff
2308 * allocated by sk_stream_alloc()
2309 */
2310static inline int skb_availroom(const struct sk_buff *skb)
2311{
16fad69c
ED
2312 if (skb_is_nonlinear(skb))
2313 return 0;
2314
2315 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2316}
2317
1da177e4
LT
2318/**
2319 * skb_reserve - adjust headroom
2320 * @skb: buffer to alter
2321 * @len: bytes to move
2322 *
2323 * Increase the headroom of an empty &sk_buff by reducing the tail
2324 * room. This is only allowed for an empty buffer.
2325 */
8243126c 2326static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2327{
2328 skb->data += len;
2329 skb->tail += len;
2330}
2331
1837b2e2
BP
2332/**
2333 * skb_tailroom_reserve - adjust reserved_tailroom
2334 * @skb: buffer to alter
2335 * @mtu: maximum amount of headlen permitted
2336 * @needed_tailroom: minimum amount of reserved_tailroom
2337 *
2338 * Set reserved_tailroom so that headlen can be as large as possible but
2339 * not larger than mtu and tailroom cannot be smaller than
2340 * needed_tailroom.
2341 * The required headroom should already have been reserved before using
2342 * this function.
2343 */
2344static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2345 unsigned int needed_tailroom)
2346{
2347 SKB_LINEAR_ASSERT(skb);
2348 if (mtu < skb_tailroom(skb) - needed_tailroom)
2349 /* use at most mtu */
2350 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2351 else
2352 /* use up to all available space */
2353 skb->reserved_tailroom = needed_tailroom;
2354}
2355
8bce6d7d
TH
2356#define ENCAP_TYPE_ETHER 0
2357#define ENCAP_TYPE_IPPROTO 1
2358
2359static inline void skb_set_inner_protocol(struct sk_buff *skb,
2360 __be16 protocol)
2361{
2362 skb->inner_protocol = protocol;
2363 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2364}
2365
2366static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2367 __u8 ipproto)
2368{
2369 skb->inner_ipproto = ipproto;
2370 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2371}
2372
6a674e9c
JG
2373static inline void skb_reset_inner_headers(struct sk_buff *skb)
2374{
aefbd2b3 2375 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2376 skb->inner_network_header = skb->network_header;
2377 skb->inner_transport_header = skb->transport_header;
2378}
2379
0b5c9db1
JP
2380static inline void skb_reset_mac_len(struct sk_buff *skb)
2381{
2382 skb->mac_len = skb->network_header - skb->mac_header;
2383}
2384
6a674e9c
JG
2385static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2386 *skb)
2387{
2388 return skb->head + skb->inner_transport_header;
2389}
2390
55dc5a9f
TH
2391static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2392{
2393 return skb_inner_transport_header(skb) - skb->data;
2394}
2395
6a674e9c
JG
2396static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2397{
2398 skb->inner_transport_header = skb->data - skb->head;
2399}
2400
2401static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2402 const int offset)
2403{
2404 skb_reset_inner_transport_header(skb);
2405 skb->inner_transport_header += offset;
2406}
2407
2408static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2409{
2410 return skb->head + skb->inner_network_header;
2411}
2412
2413static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2414{
2415 skb->inner_network_header = skb->data - skb->head;
2416}
2417
2418static inline void skb_set_inner_network_header(struct sk_buff *skb,
2419 const int offset)
2420{
2421 skb_reset_inner_network_header(skb);
2422 skb->inner_network_header += offset;
2423}
2424
aefbd2b3
PS
2425static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2426{
2427 return skb->head + skb->inner_mac_header;
2428}
2429
2430static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2431{
2432 skb->inner_mac_header = skb->data - skb->head;
2433}
2434
2435static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2436 const int offset)
2437{
2438 skb_reset_inner_mac_header(skb);
2439 skb->inner_mac_header += offset;
2440}
fda55eca
ED
2441static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2442{
35d04610 2443 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2444}
2445
9c70220b
ACM
2446static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2447{
2e07fa9c 2448 return skb->head + skb->transport_header;
9c70220b
ACM
2449}
2450
badff6d0
ACM
2451static inline void skb_reset_transport_header(struct sk_buff *skb)
2452{
2e07fa9c 2453 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2454}
2455
967b05f6
ACM
2456static inline void skb_set_transport_header(struct sk_buff *skb,
2457 const int offset)
2458{
2e07fa9c
ACM
2459 skb_reset_transport_header(skb);
2460 skb->transport_header += offset;
ea2ae17d
ACM
2461}
2462
d56f90a7
ACM
2463static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2464{
2e07fa9c 2465 return skb->head + skb->network_header;
d56f90a7
ACM
2466}
2467
c1d2bbe1
ACM
2468static inline void skb_reset_network_header(struct sk_buff *skb)
2469{
2e07fa9c 2470 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2471}
2472
c14d2450
ACM
2473static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2474{
2e07fa9c
ACM
2475 skb_reset_network_header(skb);
2476 skb->network_header += offset;
c14d2450
ACM
2477}
2478
2e07fa9c 2479static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2480{
2e07fa9c 2481 return skb->head + skb->mac_header;
bbe735e4
ACM
2482}
2483
ea6da4fd
AV
2484static inline int skb_mac_offset(const struct sk_buff *skb)
2485{
2486 return skb_mac_header(skb) - skb->data;
2487}
2488
0daf4349
DB
2489static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2490{
2491 return skb->network_header - skb->mac_header;
2492}
2493
2e07fa9c 2494static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2495{
35d04610 2496 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2497}
2498
2499static inline void skb_reset_mac_header(struct sk_buff *skb)
2500{
2501 skb->mac_header = skb->data - skb->head;
2502}
2503
2504static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2505{
2506 skb_reset_mac_header(skb);
2507 skb->mac_header += offset;
2508}
2509
0e3da5bb
TT
2510static inline void skb_pop_mac_header(struct sk_buff *skb)
2511{
2512 skb->mac_header = skb->network_header;
2513}
2514
d2aa125d 2515static inline void skb_probe_transport_header(struct sk_buff *skb)
fbbdb8f0 2516{
72a338bc 2517 struct flow_keys_basic keys;
fbbdb8f0
YX
2518
2519 if (skb_transport_header_was_set(skb))
2520 return;
72a338bc 2521
3cbf4ffb
SF
2522 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2523 NULL, 0, 0, 0, 0))
42aecaa9 2524 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2525}
2526
03606895
ED
2527static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2528{
2529 if (skb_mac_header_was_set(skb)) {
2530 const unsigned char *old_mac = skb_mac_header(skb);
2531
2532 skb_set_mac_header(skb, -skb->mac_len);
2533 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2534 }
2535}
2536
04fb451e
MM
2537static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2538{
2539 return skb->csum_start - skb_headroom(skb);
2540}
2541
08b64fcc
AD
2542static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2543{
2544 return skb->head + skb->csum_start;
2545}
2546
2e07fa9c
ACM
2547static inline int skb_transport_offset(const struct sk_buff *skb)
2548{
2549 return skb_transport_header(skb) - skb->data;
2550}
2551
2552static inline u32 skb_network_header_len(const struct sk_buff *skb)
2553{
2554 return skb->transport_header - skb->network_header;
2555}
2556
6a674e9c
JG
2557static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2558{
2559 return skb->inner_transport_header - skb->inner_network_header;
2560}
2561
2e07fa9c
ACM
2562static inline int skb_network_offset(const struct sk_buff *skb)
2563{
2564 return skb_network_header(skb) - skb->data;
2565}
48d49d0c 2566
6a674e9c
JG
2567static inline int skb_inner_network_offset(const struct sk_buff *skb)
2568{
2569 return skb_inner_network_header(skb) - skb->data;
2570}
2571
f9599ce1
CG
2572static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2573{
2574 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2575}
2576
1da177e4
LT
2577/*
2578 * CPUs often take a performance hit when accessing unaligned memory
2579 * locations. The actual performance hit varies, it can be small if the
2580 * hardware handles it or large if we have to take an exception and fix it
2581 * in software.
2582 *
2583 * Since an ethernet header is 14 bytes network drivers often end up with
2584 * the IP header at an unaligned offset. The IP header can be aligned by
2585 * shifting the start of the packet by 2 bytes. Drivers should do this
2586 * with:
2587 *
8660c124 2588 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2589 *
2590 * The downside to this alignment of the IP header is that the DMA is now
2591 * unaligned. On some architectures the cost of an unaligned DMA is high
2592 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2593 *
1da177e4
LT
2594 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2595 * to be overridden.
2596 */
2597#ifndef NET_IP_ALIGN
2598#define NET_IP_ALIGN 2
2599#endif
2600
025be81e
AB
2601/*
2602 * The networking layer reserves some headroom in skb data (via
2603 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2604 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2605 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2606 *
2607 * Unfortunately this headroom changes the DMA alignment of the resulting
2608 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2609 * on some architectures. An architecture can override this value,
2610 * perhaps setting it to a cacheline in size (since that will maintain
2611 * cacheline alignment of the DMA). It must be a power of 2.
2612 *
d6301d3d 2613 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2614 * headroom, you should not reduce this.
5933dd2f
ED
2615 *
2616 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2617 * to reduce average number of cache lines per packet.
2618 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2619 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2620 */
2621#ifndef NET_SKB_PAD
5933dd2f 2622#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2623#endif
2624
7965bd4d 2625int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2626
5293efe6 2627static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2628{
5e1abdc3 2629 if (WARN_ON(skb_is_nonlinear(skb)))
3cc0e873 2630 return;
27a884dc
ACM
2631 skb->len = len;
2632 skb_set_tail_pointer(skb, len);
1da177e4
LT
2633}
2634
5293efe6
DB
2635static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2636{
2637 __skb_set_length(skb, len);
2638}
2639
7965bd4d 2640void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2641
2642static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2643{
3cc0e873
HX
2644 if (skb->data_len)
2645 return ___pskb_trim(skb, len);
2646 __skb_trim(skb, len);
2647 return 0;
1da177e4
LT
2648}
2649
2650static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2651{
2652 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2653}
2654
e9fa4f7b
HX
2655/**
2656 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2657 * @skb: buffer to alter
2658 * @len: new length
2659 *
2660 * This is identical to pskb_trim except that the caller knows that
2661 * the skb is not cloned so we should never get an error due to out-
2662 * of-memory.
2663 */
2664static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2665{
2666 int err = pskb_trim(skb, len);
2667 BUG_ON(err);
2668}
2669
5293efe6
DB
2670static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2671{
2672 unsigned int diff = len - skb->len;
2673
2674 if (skb_tailroom(skb) < diff) {
2675 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2676 GFP_ATOMIC);
2677 if (ret)
2678 return ret;
2679 }
2680 __skb_set_length(skb, len);
2681 return 0;
2682}
2683
1da177e4
LT
2684/**
2685 * skb_orphan - orphan a buffer
2686 * @skb: buffer to orphan
2687 *
2688 * If a buffer currently has an owner then we call the owner's
2689 * destructor function and make the @skb unowned. The buffer continues
2690 * to exist but is no longer charged to its former owner.
2691 */
2692static inline void skb_orphan(struct sk_buff *skb)
2693{
c34a7612 2694 if (skb->destructor) {
1da177e4 2695 skb->destructor(skb);
c34a7612
ED
2696 skb->destructor = NULL;
2697 skb->sk = NULL;
376c7311
ED
2698 } else {
2699 BUG_ON(skb->sk);
c34a7612 2700 }
1da177e4
LT
2701}
2702
a353e0ce
MT
2703/**
2704 * skb_orphan_frags - orphan the frags contained in a buffer
2705 * @skb: buffer to orphan frags from
2706 * @gfp_mask: allocation mask for replacement pages
2707 *
2708 * For each frag in the SKB which needs a destructor (i.e. has an
2709 * owner) create a copy of that frag and release the original
2710 * page by calling the destructor.
2711 */
2712static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2713{
1f8b977a
WB
2714 if (likely(!skb_zcopy(skb)))
2715 return 0;
185ce5c3
WB
2716 if (!skb_zcopy_is_nouarg(skb) &&
2717 skb_uarg(skb)->callback == sock_zerocopy_callback)
1f8b977a
WB
2718 return 0;
2719 return skb_copy_ubufs(skb, gfp_mask);
2720}
2721
2722/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2723static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2724{
2725 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2726 return 0;
2727 return skb_copy_ubufs(skb, gfp_mask);
2728}
2729
1da177e4
LT
2730/**
2731 * __skb_queue_purge - empty a list
2732 * @list: list to empty
2733 *
2734 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2735 * the list and one reference dropped. This function does not take the
2736 * list lock and the caller must hold the relevant locks to use it.
2737 */
1da177e4
LT
2738static inline void __skb_queue_purge(struct sk_buff_head *list)
2739{
2740 struct sk_buff *skb;
2741 while ((skb = __skb_dequeue(list)) != NULL)
2742 kfree_skb(skb);
2743}
4ea7b0cf 2744void skb_queue_purge(struct sk_buff_head *list);
1da177e4 2745
385114de 2746unsigned int skb_rbtree_purge(struct rb_root *root);
9f5afeae 2747
7965bd4d 2748void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2749
7965bd4d
JP
2750struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2751 gfp_t gfp_mask);
8af27456
CH
2752
2753/**
2754 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2755 * @dev: network device to receive on
2756 * @length: length to allocate
2757 *
2758 * Allocate a new &sk_buff and assign it a usage count of one. The
2759 * buffer has unspecified headroom built in. Users should allocate
2760 * the headroom they think they need without accounting for the
2761 * built in space. The built in space is used for optimisations.
2762 *
2763 * %NULL is returned if there is no free memory. Although this function
2764 * allocates memory it can be called from an interrupt.
2765 */
2766static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2767 unsigned int length)
8af27456
CH
2768{
2769 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2770}
2771
6f532612
ED
2772/* legacy helper around __netdev_alloc_skb() */
2773static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2774 gfp_t gfp_mask)
2775{
2776 return __netdev_alloc_skb(NULL, length, gfp_mask);
2777}
2778
2779/* legacy helper around netdev_alloc_skb() */
2780static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2781{
2782 return netdev_alloc_skb(NULL, length);
2783}
2784
2785
4915a0de
ED
2786static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2787 unsigned int length, gfp_t gfp)
61321bbd 2788{
4915a0de 2789 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2790
2791 if (NET_IP_ALIGN && skb)
2792 skb_reserve(skb, NET_IP_ALIGN);
2793 return skb;
2794}
2795
4915a0de
ED
2796static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2797 unsigned int length)
2798{
2799 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2800}
2801
181edb2b
AD
2802static inline void skb_free_frag(void *addr)
2803{
8c2dd3e4 2804 page_frag_free(addr);
181edb2b
AD
2805}
2806
ffde7328 2807void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2808struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2809 unsigned int length, gfp_t gfp_mask);
2810static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2811 unsigned int length)
2812{
2813 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2814}
795bb1c0
JDB
2815void napi_consume_skb(struct sk_buff *skb, int budget);
2816
2817void __kfree_skb_flush(void);
15fad714 2818void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2819
71dfda58
AD
2820/**
2821 * __dev_alloc_pages - allocate page for network Rx
2822 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2823 * @order: size of the allocation
2824 *
2825 * Allocate a new page.
2826 *
2827 * %NULL is returned if there is no free memory.
2828*/
2829static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2830 unsigned int order)
2831{
2832 /* This piece of code contains several assumptions.
2833 * 1. This is for device Rx, therefor a cold page is preferred.
2834 * 2. The expectation is the user wants a compound page.
2835 * 3. If requesting a order 0 page it will not be compound
2836 * due to the check to see if order has a value in prep_new_page
2837 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2838 * code in gfp_to_alloc_flags that should be enforcing this.
2839 */
453f85d4 2840 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
71dfda58
AD
2841
2842 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2843}
2844
2845static inline struct page *dev_alloc_pages(unsigned int order)
2846{
95829b3a 2847 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2848}
2849
2850/**
2851 * __dev_alloc_page - allocate a page for network Rx
2852 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2853 *
2854 * Allocate a new page.
2855 *
2856 * %NULL is returned if there is no free memory.
2857 */
2858static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2859{
2860 return __dev_alloc_pages(gfp_mask, 0);
2861}
2862
2863static inline struct page *dev_alloc_page(void)
2864{
95829b3a 2865 return dev_alloc_pages(0);
71dfda58
AD
2866}
2867
0614002b
MG
2868/**
2869 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2870 * @page: The page that was allocated from skb_alloc_page
2871 * @skb: The skb that may need pfmemalloc set
2872 */
2873static inline void skb_propagate_pfmemalloc(struct page *page,
2874 struct sk_buff *skb)
2875{
2f064f34 2876 if (page_is_pfmemalloc(page))
0614002b
MG
2877 skb->pfmemalloc = true;
2878}
2879
131ea667 2880/**
e227867f 2881 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2882 * @frag: the paged fragment
2883 *
2884 * Returns the &struct page associated with @frag.
2885 */
2886static inline struct page *skb_frag_page(const skb_frag_t *frag)
2887{
a8605c60 2888 return frag->page.p;
131ea667
IC
2889}
2890
2891/**
2892 * __skb_frag_ref - take an addition reference on a paged fragment.
2893 * @frag: the paged fragment
2894 *
2895 * Takes an additional reference on the paged fragment @frag.
2896 */
2897static inline void __skb_frag_ref(skb_frag_t *frag)
2898{
2899 get_page(skb_frag_page(frag));
2900}
2901
2902/**
2903 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2904 * @skb: the buffer
2905 * @f: the fragment offset.
2906 *
2907 * Takes an additional reference on the @f'th paged fragment of @skb.
2908 */
2909static inline void skb_frag_ref(struct sk_buff *skb, int f)
2910{
2911 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2912}
2913
2914/**
2915 * __skb_frag_unref - release a reference on a paged fragment.
2916 * @frag: the paged fragment
2917 *
2918 * Releases a reference on the paged fragment @frag.
2919 */
2920static inline void __skb_frag_unref(skb_frag_t *frag)
2921{
2922 put_page(skb_frag_page(frag));
2923}
2924
2925/**
2926 * skb_frag_unref - release a reference on a paged fragment of an skb.
2927 * @skb: the buffer
2928 * @f: the fragment offset
2929 *
2930 * Releases a reference on the @f'th paged fragment of @skb.
2931 */
2932static inline void skb_frag_unref(struct sk_buff *skb, int f)
2933{
2934 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2935}
2936
2937/**
2938 * skb_frag_address - gets the address of the data contained in a paged fragment
2939 * @frag: the paged fragment buffer
2940 *
2941 * Returns the address of the data within @frag. The page must already
2942 * be mapped.
2943 */
2944static inline void *skb_frag_address(const skb_frag_t *frag)
2945{
2946 return page_address(skb_frag_page(frag)) + frag->page_offset;
2947}
2948
2949/**
2950 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2951 * @frag: the paged fragment buffer
2952 *
2953 * Returns the address of the data within @frag. Checks that the page
2954 * is mapped and returns %NULL otherwise.
2955 */
2956static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2957{
2958 void *ptr = page_address(skb_frag_page(frag));
2959 if (unlikely(!ptr))
2960 return NULL;
2961
2962 return ptr + frag->page_offset;
2963}
2964
2965/**
2966 * __skb_frag_set_page - sets the page contained in a paged fragment
2967 * @frag: the paged fragment
2968 * @page: the page to set
2969 *
2970 * Sets the fragment @frag to contain @page.
2971 */
2972static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2973{
a8605c60 2974 frag->page.p = page;
131ea667
IC
2975}
2976
2977/**
2978 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2979 * @skb: the buffer
2980 * @f: the fragment offset
2981 * @page: the page to set
2982 *
2983 * Sets the @f'th fragment of @skb to contain @page.
2984 */
2985static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2986 struct page *page)
2987{
2988 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2989}
2990
400dfd3a
ED
2991bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2992
131ea667
IC
2993/**
2994 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2995 * @dev: the device to map the fragment to
131ea667
IC
2996 * @frag: the paged fragment to map
2997 * @offset: the offset within the fragment (starting at the
2998 * fragment's own offset)
2999 * @size: the number of bytes to map
771b00a8 3000 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
3001 *
3002 * Maps the page associated with @frag to @device.
3003 */
3004static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3005 const skb_frag_t *frag,
3006 size_t offset, size_t size,
3007 enum dma_data_direction dir)
3008{
3009 return dma_map_page(dev, skb_frag_page(frag),
3010 frag->page_offset + offset, size, dir);
3011}
3012
117632e6
ED
3013static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3014 gfp_t gfp_mask)
3015{
3016 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3017}
3018
bad93e9d
OP
3019
3020static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3021 gfp_t gfp_mask)
3022{
3023 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3024}
3025
3026
334a8132
PM
3027/**
3028 * skb_clone_writable - is the header of a clone writable
3029 * @skb: buffer to check
3030 * @len: length up to which to write
3031 *
3032 * Returns true if modifying the header part of the cloned buffer
3033 * does not requires the data to be copied.
3034 */
05bdd2f1 3035static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
3036{
3037 return !skb_header_cloned(skb) &&
3038 skb_headroom(skb) + len <= skb->hdr_len;
3039}
3040
3697649f
DB
3041static inline int skb_try_make_writable(struct sk_buff *skb,
3042 unsigned int write_len)
3043{
3044 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3045 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3046}
3047
d9cc2048
HX
3048static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3049 int cloned)
3050{
3051 int delta = 0;
3052
d9cc2048
HX
3053 if (headroom > skb_headroom(skb))
3054 delta = headroom - skb_headroom(skb);
3055
3056 if (delta || cloned)
3057 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3058 GFP_ATOMIC);
3059 return 0;
3060}
3061
1da177e4
LT
3062/**
3063 * skb_cow - copy header of skb when it is required
3064 * @skb: buffer to cow
3065 * @headroom: needed headroom
3066 *
3067 * If the skb passed lacks sufficient headroom or its data part
3068 * is shared, data is reallocated. If reallocation fails, an error
3069 * is returned and original skb is not changed.
3070 *
3071 * The result is skb with writable area skb->head...skb->tail
3072 * and at least @headroom of space at head.
3073 */
3074static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3075{
d9cc2048
HX
3076 return __skb_cow(skb, headroom, skb_cloned(skb));
3077}
1da177e4 3078
d9cc2048
HX
3079/**
3080 * skb_cow_head - skb_cow but only making the head writable
3081 * @skb: buffer to cow
3082 * @headroom: needed headroom
3083 *
3084 * This function is identical to skb_cow except that we replace the
3085 * skb_cloned check by skb_header_cloned. It should be used when
3086 * you only need to push on some header and do not need to modify
3087 * the data.
3088 */
3089static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3090{
3091 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
3092}
3093
3094/**
3095 * skb_padto - pad an skbuff up to a minimal size
3096 * @skb: buffer to pad
3097 * @len: minimal length
3098 *
3099 * Pads up a buffer to ensure the trailing bytes exist and are
3100 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
3101 * is untouched. Otherwise it is extended. Returns zero on
3102 * success. The skb is freed on error.
1da177e4 3103 */
5b057c6b 3104static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
3105{
3106 unsigned int size = skb->len;
3107 if (likely(size >= len))
5b057c6b 3108 return 0;
987c402a 3109 return skb_pad(skb, len - size);
1da177e4
LT
3110}
3111
9c0c1124 3112/**
4ea7b0cf 3113 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
9c0c1124
AD
3114 * @skb: buffer to pad
3115 * @len: minimal length
cd0a137a 3116 * @free_on_error: free buffer on error
9c0c1124
AD
3117 *
3118 * Pads up a buffer to ensure the trailing bytes exist and are
3119 * blanked. If the buffer already contains sufficient data it
3120 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 3121 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 3122 */
cd0a137a
FF
3123static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3124 bool free_on_error)
9c0c1124
AD
3125{
3126 unsigned int size = skb->len;
3127
3128 if (unlikely(size < len)) {
3129 len -= size;
cd0a137a 3130 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
3131 return -ENOMEM;
3132 __skb_put(skb, len);
3133 }
3134 return 0;
3135}
3136
cd0a137a
FF
3137/**
3138 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3139 * @skb: buffer to pad
3140 * @len: minimal length
3141 *
3142 * Pads up a buffer to ensure the trailing bytes exist and are
3143 * blanked. If the buffer already contains sufficient data it
3144 * is untouched. Otherwise it is extended. Returns zero on
3145 * success. The skb is freed on error.
3146 */
3147static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3148{
3149 return __skb_put_padto(skb, len, true);
3150}
3151
1da177e4 3152static inline int skb_add_data(struct sk_buff *skb,
af2b040e 3153 struct iov_iter *from, int copy)
1da177e4
LT
3154{
3155 const int off = skb->len;
3156
3157 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 3158 __wsum csum = 0;
15e6cb46
AV
3159 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3160 &csum, from)) {
1da177e4
LT
3161 skb->csum = csum_block_add(skb->csum, csum, off);
3162 return 0;
3163 }
15e6cb46 3164 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3165 return 0;
3166
3167 __skb_trim(skb, off);
3168 return -EFAULT;
3169}
3170
38ba0a65
ED
3171static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3172 const struct page *page, int off)
1da177e4 3173{
1f8b977a
WB
3174 if (skb_zcopy(skb))
3175 return false;
1da177e4 3176 if (i) {
9e903e08 3177 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3178
ea2ab693 3179 return page == skb_frag_page(frag) &&
9e903e08 3180 off == frag->page_offset + skb_frag_size(frag);
1da177e4 3181 }
38ba0a65 3182 return false;
1da177e4
LT
3183}
3184
364c6bad
HX
3185static inline int __skb_linearize(struct sk_buff *skb)
3186{
3187 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3188}
3189
1da177e4
LT
3190/**
3191 * skb_linearize - convert paged skb to linear one
3192 * @skb: buffer to linarize
1da177e4
LT
3193 *
3194 * If there is no free memory -ENOMEM is returned, otherwise zero
3195 * is returned and the old skb data released.
3196 */
364c6bad
HX
3197static inline int skb_linearize(struct sk_buff *skb)
3198{
3199 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3200}
3201
cef401de
ED
3202/**
3203 * skb_has_shared_frag - can any frag be overwritten
3204 * @skb: buffer to test
3205 *
3206 * Return true if the skb has at least one frag that might be modified
3207 * by an external entity (as in vmsplice()/sendfile())
3208 */
3209static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3210{
c9af6db4
PS
3211 return skb_is_nonlinear(skb) &&
3212 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
3213}
3214
364c6bad
HX
3215/**
3216 * skb_linearize_cow - make sure skb is linear and writable
3217 * @skb: buffer to process
3218 *
3219 * If there is no free memory -ENOMEM is returned, otherwise zero
3220 * is returned and the old skb data released.
3221 */
3222static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3223{
364c6bad
HX
3224 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3225 __skb_linearize(skb) : 0;
1da177e4
LT
3226}
3227
479ffccc
DB
3228static __always_inline void
3229__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3230 unsigned int off)
3231{
3232 if (skb->ip_summed == CHECKSUM_COMPLETE)
3233 skb->csum = csum_block_sub(skb->csum,
3234 csum_partial(start, len, 0), off);
3235 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3236 skb_checksum_start_offset(skb) < 0)
3237 skb->ip_summed = CHECKSUM_NONE;
3238}
3239
1da177e4
LT
3240/**
3241 * skb_postpull_rcsum - update checksum for received skb after pull
3242 * @skb: buffer to update
3243 * @start: start of data before pull
3244 * @len: length of data pulled
3245 *
3246 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3247 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3248 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3249 */
1da177e4 3250static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3251 const void *start, unsigned int len)
1da177e4 3252{
479ffccc 3253 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
3254}
3255
479ffccc
DB
3256static __always_inline void
3257__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3258 unsigned int off)
3259{
3260 if (skb->ip_summed == CHECKSUM_COMPLETE)
3261 skb->csum = csum_block_add(skb->csum,
3262 csum_partial(start, len, 0), off);
3263}
cbb042f9 3264
479ffccc
DB
3265/**
3266 * skb_postpush_rcsum - update checksum for received skb after push
3267 * @skb: buffer to update
3268 * @start: start of data after push
3269 * @len: length of data pushed
3270 *
3271 * After doing a push on a received packet, you need to call this to
3272 * update the CHECKSUM_COMPLETE checksum.
3273 */
f8ffad69
DB
3274static inline void skb_postpush_rcsum(struct sk_buff *skb,
3275 const void *start, unsigned int len)
3276{
479ffccc 3277 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3278}
3279
af72868b 3280void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3281
82a31b92
WC
3282/**
3283 * skb_push_rcsum - push skb and update receive checksum
3284 * @skb: buffer to update
3285 * @len: length of data pulled
3286 *
3287 * This function performs an skb_push on the packet and updates
3288 * the CHECKSUM_COMPLETE checksum. It should be used on
3289 * receive path processing instead of skb_push unless you know
3290 * that the checksum difference is zero (e.g., a valid IP header)
3291 * or you are setting ip_summed to CHECKSUM_NONE.
3292 */
d58ff351 3293static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3294{
3295 skb_push(skb, len);
3296 skb_postpush_rcsum(skb, skb->data, len);
3297 return skb->data;
3298}
3299
88078d98 3300int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
7ce5a27f
DM
3301/**
3302 * pskb_trim_rcsum - trim received skb and update checksum
3303 * @skb: buffer to trim
3304 * @len: new length
3305 *
3306 * This is exactly the same as pskb_trim except that it ensures the
3307 * checksum of received packets are still valid after the operation.
6c57f045 3308 * It can change skb pointers.
7ce5a27f
DM
3309 */
3310
3311static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3312{
3313 if (likely(len >= skb->len))
3314 return 0;
88078d98 3315 return pskb_trim_rcsum_slow(skb, len);
7ce5a27f
DM
3316}
3317
5293efe6
DB
3318static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3319{
3320 if (skb->ip_summed == CHECKSUM_COMPLETE)
3321 skb->ip_summed = CHECKSUM_NONE;
3322 __skb_trim(skb, len);
3323 return 0;
3324}
3325
3326static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3327{
3328 if (skb->ip_summed == CHECKSUM_COMPLETE)
3329 skb->ip_summed = CHECKSUM_NONE;
3330 return __skb_grow(skb, len);
3331}
3332
18a4c0ea
ED
3333#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3334#define skb_rb_first(root) rb_to_skb(rb_first(root))
3335#define skb_rb_last(root) rb_to_skb(rb_last(root))
3336#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3337#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3338
1da177e4
LT
3339#define skb_queue_walk(queue, skb) \
3340 for (skb = (queue)->next; \
a1e4891f 3341 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3342 skb = skb->next)
3343
46f8914e
JC
3344#define skb_queue_walk_safe(queue, skb, tmp) \
3345 for (skb = (queue)->next, tmp = skb->next; \
3346 skb != (struct sk_buff *)(queue); \
3347 skb = tmp, tmp = skb->next)
3348
1164f52a 3349#define skb_queue_walk_from(queue, skb) \
a1e4891f 3350 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3351 skb = skb->next)
3352
18a4c0ea
ED
3353#define skb_rbtree_walk(skb, root) \
3354 for (skb = skb_rb_first(root); skb != NULL; \
3355 skb = skb_rb_next(skb))
3356
3357#define skb_rbtree_walk_from(skb) \
3358 for (; skb != NULL; \
3359 skb = skb_rb_next(skb))
3360
3361#define skb_rbtree_walk_from_safe(skb, tmp) \
3362 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3363 skb = tmp)
3364
1164f52a
DM
3365#define skb_queue_walk_from_safe(queue, skb, tmp) \
3366 for (tmp = skb->next; \
3367 skb != (struct sk_buff *)(queue); \
3368 skb = tmp, tmp = skb->next)
3369
300ce174
SH
3370#define skb_queue_reverse_walk(queue, skb) \
3371 for (skb = (queue)->prev; \
a1e4891f 3372 skb != (struct sk_buff *)(queue); \
300ce174
SH
3373 skb = skb->prev)
3374
686a2955
DM
3375#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3376 for (skb = (queue)->prev, tmp = skb->prev; \
3377 skb != (struct sk_buff *)(queue); \
3378 skb = tmp, tmp = skb->prev)
3379
3380#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3381 for (tmp = skb->prev; \
3382 skb != (struct sk_buff *)(queue); \
3383 skb = tmp, tmp = skb->prev)
1da177e4 3384
21dc3301 3385static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3386{
3387 return skb_shinfo(skb)->frag_list != NULL;
3388}
3389
3390static inline void skb_frag_list_init(struct sk_buff *skb)
3391{
3392 skb_shinfo(skb)->frag_list = NULL;
3393}
3394
ee039871
DM
3395#define skb_walk_frags(skb, iter) \
3396 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3397
ea3793ee
RW
3398
3399int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3400 const struct sk_buff *skb);
65101aec
PA
3401struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3402 struct sk_buff_head *queue,
3403 unsigned int flags,
3404 void (*destructor)(struct sock *sk,
3405 struct sk_buff *skb),
fd69c399 3406 int *off, int *err,
65101aec 3407 struct sk_buff **last);
ea3793ee 3408struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3409 void (*destructor)(struct sock *sk,
3410 struct sk_buff *skb),
fd69c399 3411 int *off, int *err,
ea3793ee 3412 struct sk_buff **last);
7965bd4d 3413struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3414 void (*destructor)(struct sock *sk,
3415 struct sk_buff *skb),
fd69c399 3416 int *off, int *err);
7965bd4d
JP
3417struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3418 int *err);
a11e1d43
LT
3419__poll_t datagram_poll(struct file *file, struct socket *sock,
3420 struct poll_table_struct *wait);
c0371da6
AV
3421int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3422 struct iov_iter *to, int size);
51f3d02b
DM
3423static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3424 struct msghdr *msg, int size)
3425{
e5a4b0bb 3426 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3427}
e5a4b0bb
AV
3428int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3429 struct msghdr *msg);
65d69e25
SG
3430int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3431 struct iov_iter *to, int len,
3432 struct ahash_request *hash);
3a654f97
AV
3433int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3434 struct iov_iter *from, int len);
3a654f97 3435int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3436void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3437void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3438static inline void skb_free_datagram_locked(struct sock *sk,
3439 struct sk_buff *skb)
3440{
3441 __skb_free_datagram_locked(sk, skb, 0);
3442}
7965bd4d 3443int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3444int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3445int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3446__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3447 int len, __wsum csum);
a60e3cc7 3448int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3449 struct pipe_inode_info *pipe, unsigned int len,
25869262 3450 unsigned int flags);
20bf50de
TH
3451int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3452 int len);
7965bd4d 3453void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3454unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3455int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3456 int len, int hlen);
7965bd4d
JP
3457void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3458int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3459void skb_scrub_packet(struct sk_buff *skb, bool xnet);
779b7931 3460bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
2b16f048 3461bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
7965bd4d 3462struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3463struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3464int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3465int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3466int skb_vlan_pop(struct sk_buff *skb);
3467int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
8822e270 3468int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto);
ed246cee 3469int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto);
d27cf5c5 3470int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
2a2ea508 3471int skb_mpls_dec_ttl(struct sk_buff *skb);
6fa01ccd
SV
3472struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3473 gfp_t gfp);
20380731 3474
6ce8e9ce
AV
3475static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3476{
3073f070 3477 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3478}
3479
7eab8d9e
AV
3480static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3481{
e5a4b0bb 3482 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3483}
3484
2817a336
DB
3485struct skb_checksum_ops {
3486 __wsum (*update)(const void *mem, int len, __wsum wsum);
3487 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3488};
3489
9617813d
DC
3490extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3491
2817a336
DB
3492__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3493 __wsum csum, const struct skb_checksum_ops *ops);
3494__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3495 __wsum csum);
3496
1e98a0f0
ED
3497static inline void * __must_check
3498__skb_header_pointer(const struct sk_buff *skb, int offset,
3499 int len, void *data, int hlen, void *buffer)
1da177e4 3500{
55820ee2 3501 if (hlen - offset >= len)
690e36e7 3502 return data + offset;
1da177e4 3503
690e36e7
DM
3504 if (!skb ||
3505 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3506 return NULL;
3507
3508 return buffer;
3509}
3510
1e98a0f0
ED
3511static inline void * __must_check
3512skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3513{
3514 return __skb_header_pointer(skb, offset, len, skb->data,
3515 skb_headlen(skb), buffer);
3516}
3517
4262e5cc
DB
3518/**
3519 * skb_needs_linearize - check if we need to linearize a given skb
3520 * depending on the given device features.
3521 * @skb: socket buffer to check
3522 * @features: net device features
3523 *
3524 * Returns true if either:
3525 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3526 * 2. skb is fragmented and the device does not support SG.
3527 */
3528static inline bool skb_needs_linearize(struct sk_buff *skb,
3529 netdev_features_t features)
3530{
3531 return skb_is_nonlinear(skb) &&
3532 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3533 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3534}
3535
d626f62b
ACM
3536static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3537 void *to,
3538 const unsigned int len)
3539{
3540 memcpy(to, skb->data, len);
3541}
3542
3543static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3544 const int offset, void *to,
3545 const unsigned int len)
3546{
3547 memcpy(to, skb->data + offset, len);
3548}
3549
27d7ff46
ACM
3550static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3551 const void *from,
3552 const unsigned int len)
3553{
3554 memcpy(skb->data, from, len);
3555}
3556
3557static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3558 const int offset,
3559 const void *from,
3560 const unsigned int len)
3561{
3562 memcpy(skb->data + offset, from, len);
3563}
3564
7965bd4d 3565void skb_init(void);
1da177e4 3566
ac45f602
PO
3567static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3568{
3569 return skb->tstamp;
3570}
3571
a61bbcf2
PM
3572/**
3573 * skb_get_timestamp - get timestamp from a skb
3574 * @skb: skb to get stamp from
13c6ee2a 3575 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
a61bbcf2
PM
3576 *
3577 * Timestamps are stored in the skb as offsets to a base timestamp.
3578 * This function converts the offset back to a struct timeval and stores
3579 * it in stamp.
3580 */
ac45f602 3581static inline void skb_get_timestamp(const struct sk_buff *skb,
13c6ee2a 3582 struct __kernel_old_timeval *stamp)
a61bbcf2 3583{
13c6ee2a 3584 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
a61bbcf2
PM
3585}
3586
887feae3
DD
3587static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3588 struct __kernel_sock_timeval *stamp)
3589{
3590 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3591
3592 stamp->tv_sec = ts.tv_sec;
3593 stamp->tv_usec = ts.tv_nsec / 1000;
3594}
3595
ac45f602
PO
3596static inline void skb_get_timestampns(const struct sk_buff *skb,
3597 struct timespec *stamp)
3598{
3599 *stamp = ktime_to_timespec(skb->tstamp);
3600}
3601
887feae3
DD
3602static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3603 struct __kernel_timespec *stamp)
3604{
3605 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3606
3607 stamp->tv_sec = ts.tv_sec;
3608 stamp->tv_nsec = ts.tv_nsec;
3609}
3610
b7aa0bf7 3611static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3612{
b7aa0bf7 3613 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3614}
3615
164891aa
SH
3616static inline ktime_t net_timedelta(ktime_t t)
3617{
3618 return ktime_sub(ktime_get_real(), t);
3619}
3620
b9ce204f
IJ
3621static inline ktime_t net_invalid_timestamp(void)
3622{
8b0e1953 3623 return 0;
b9ce204f 3624}
a61bbcf2 3625
de8f3a83
DB
3626static inline u8 skb_metadata_len(const struct sk_buff *skb)
3627{
3628 return skb_shinfo(skb)->meta_len;
3629}
3630
3631static inline void *skb_metadata_end(const struct sk_buff *skb)
3632{
3633 return skb_mac_header(skb);
3634}
3635
3636static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3637 const struct sk_buff *skb_b,
3638 u8 meta_len)
3639{
3640 const void *a = skb_metadata_end(skb_a);
3641 const void *b = skb_metadata_end(skb_b);
3642 /* Using more efficient varaiant than plain call to memcmp(). */
3643#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3644 u64 diffs = 0;
3645
3646 switch (meta_len) {
3647#define __it(x, op) (x -= sizeof(u##op))
3648#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3649 case 32: diffs |= __it_diff(a, b, 64);
82385b0d 3650 /* fall through */
de8f3a83 3651 case 24: diffs |= __it_diff(a, b, 64);
82385b0d 3652 /* fall through */
de8f3a83 3653 case 16: diffs |= __it_diff(a, b, 64);
82385b0d 3654 /* fall through */
de8f3a83
DB
3655 case 8: diffs |= __it_diff(a, b, 64);
3656 break;
3657 case 28: diffs |= __it_diff(a, b, 64);
82385b0d 3658 /* fall through */
de8f3a83 3659 case 20: diffs |= __it_diff(a, b, 64);
82385b0d 3660 /* fall through */
de8f3a83 3661 case 12: diffs |= __it_diff(a, b, 64);
82385b0d 3662 /* fall through */
de8f3a83
DB
3663 case 4: diffs |= __it_diff(a, b, 32);
3664 break;
3665 }
3666 return diffs;
3667#else
3668 return memcmp(a - meta_len, b - meta_len, meta_len);
3669#endif
3670}
3671
3672static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3673 const struct sk_buff *skb_b)
3674{
3675 u8 len_a = skb_metadata_len(skb_a);
3676 u8 len_b = skb_metadata_len(skb_b);
3677
3678 if (!(len_a | len_b))
3679 return false;
3680
3681 return len_a != len_b ?
3682 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3683}
3684
3685static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3686{
3687 skb_shinfo(skb)->meta_len = meta_len;
3688}
3689
3690static inline void skb_metadata_clear(struct sk_buff *skb)
3691{
3692 skb_metadata_set(skb, 0);
3693}
3694
62bccb8c
AD
3695struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3696
c1f19b51
RC
3697#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3698
7965bd4d
JP
3699void skb_clone_tx_timestamp(struct sk_buff *skb);
3700bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3701
3702#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3703
3704static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3705{
3706}
3707
3708static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3709{
3710 return false;
3711}
3712
3713#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3714
3715/**
3716 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3717 *
da92b194
RC
3718 * PHY drivers may accept clones of transmitted packets for
3719 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3720 * must call this function to return the skb back to the stack with a
3721 * timestamp.
da92b194 3722 *
c1f19b51 3723 * @skb: clone of the the original outgoing packet
7a76a021 3724 * @hwtstamps: hardware time stamps
c1f19b51
RC
3725 *
3726 */
3727void skb_complete_tx_timestamp(struct sk_buff *skb,
3728 struct skb_shared_hwtstamps *hwtstamps);
3729
e7fd2885
WB
3730void __skb_tstamp_tx(struct sk_buff *orig_skb,
3731 struct skb_shared_hwtstamps *hwtstamps,
3732 struct sock *sk, int tstype);
3733
ac45f602
PO
3734/**
3735 * skb_tstamp_tx - queue clone of skb with send time stamps
3736 * @orig_skb: the original outgoing packet
3737 * @hwtstamps: hardware time stamps, may be NULL if not available
3738 *
3739 * If the skb has a socket associated, then this function clones the
3740 * skb (thus sharing the actual data and optional structures), stores
3741 * the optional hardware time stamping information (if non NULL) or
3742 * generates a software time stamp (otherwise), then queues the clone
3743 * to the error queue of the socket. Errors are silently ignored.
3744 */
7965bd4d
JP
3745void skb_tstamp_tx(struct sk_buff *orig_skb,
3746 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3747
4507a715
RC
3748/**
3749 * skb_tx_timestamp() - Driver hook for transmit timestamping
3750 *
3751 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3752 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3753 *
73409f3b
DM
3754 * Specifically, one should make absolutely sure that this function is
3755 * called before TX completion of this packet can trigger. Otherwise
3756 * the packet could potentially already be freed.
3757 *
4507a715
RC
3758 * @skb: A socket buffer.
3759 */
3760static inline void skb_tx_timestamp(struct sk_buff *skb)
3761{
c1f19b51 3762 skb_clone_tx_timestamp(skb);
b50a5c70
ML
3763 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3764 skb_tstamp_tx(skb, NULL);
4507a715
RC
3765}
3766
6e3e939f
JB
3767/**
3768 * skb_complete_wifi_ack - deliver skb with wifi status
3769 *
3770 * @skb: the original outgoing packet
3771 * @acked: ack status
3772 *
3773 */
3774void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3775
7965bd4d
JP
3776__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3777__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3778
60476372
HX
3779static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3780{
6edec0e6
TH
3781 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3782 skb->csum_valid ||
3783 (skb->ip_summed == CHECKSUM_PARTIAL &&
3784 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3785}
3786
fb286bb2
HX
3787/**
3788 * skb_checksum_complete - Calculate checksum of an entire packet
3789 * @skb: packet to process
3790 *
3791 * This function calculates the checksum over the entire packet plus
3792 * the value of skb->csum. The latter can be used to supply the
3793 * checksum of a pseudo header as used by TCP/UDP. It returns the
3794 * checksum.
3795 *
3796 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3797 * this function can be used to verify that checksum on received
3798 * packets. In that case the function should return zero if the
3799 * checksum is correct. In particular, this function will return zero
3800 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3801 * hardware has already verified the correctness of the checksum.
3802 */
4381ca3c 3803static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3804{
60476372
HX
3805 return skb_csum_unnecessary(skb) ?
3806 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3807}
3808
77cffe23
TH
3809static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3810{
3811 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3812 if (skb->csum_level == 0)
3813 skb->ip_summed = CHECKSUM_NONE;
3814 else
3815 skb->csum_level--;
3816 }
3817}
3818
3819static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3820{
3821 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3822 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3823 skb->csum_level++;
3824 } else if (skb->ip_summed == CHECKSUM_NONE) {
3825 skb->ip_summed = CHECKSUM_UNNECESSARY;
3826 skb->csum_level = 0;
3827 }
3828}
3829
76ba0aae
TH
3830/* Check if we need to perform checksum complete validation.
3831 *
3832 * Returns true if checksum complete is needed, false otherwise
3833 * (either checksum is unnecessary or zero checksum is allowed).
3834 */
3835static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3836 bool zero_okay,
3837 __sum16 check)
3838{
5d0c2b95
TH
3839 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3840 skb->csum_valid = 1;
77cffe23 3841 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3842 return false;
3843 }
3844
3845 return true;
3846}
3847
da279887 3848/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
76ba0aae
TH
3849 * in checksum_init.
3850 */
3851#define CHECKSUM_BREAK 76
3852
4e18b9ad
TH
3853/* Unset checksum-complete
3854 *
3855 * Unset checksum complete can be done when packet is being modified
3856 * (uncompressed for instance) and checksum-complete value is
3857 * invalidated.
3858 */
3859static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3860{
3861 if (skb->ip_summed == CHECKSUM_COMPLETE)
3862 skb->ip_summed = CHECKSUM_NONE;
3863}
3864
76ba0aae
TH
3865/* Validate (init) checksum based on checksum complete.
3866 *
3867 * Return values:
3868 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3869 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3870 * checksum is stored in skb->csum for use in __skb_checksum_complete
3871 * non-zero: value of invalid checksum
3872 *
3873 */
3874static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3875 bool complete,
3876 __wsum psum)
3877{
3878 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3879 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3880 skb->csum_valid = 1;
76ba0aae
TH
3881 return 0;
3882 }
3883 }
3884
3885 skb->csum = psum;
3886
5d0c2b95
TH
3887 if (complete || skb->len <= CHECKSUM_BREAK) {
3888 __sum16 csum;
3889
3890 csum = __skb_checksum_complete(skb);
3891 skb->csum_valid = !csum;
3892 return csum;
3893 }
76ba0aae
TH
3894
3895 return 0;
3896}
3897
3898static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3899{
3900 return 0;
3901}
3902
3903/* Perform checksum validate (init). Note that this is a macro since we only
3904 * want to calculate the pseudo header which is an input function if necessary.
3905 * First we try to validate without any computation (checksum unnecessary) and
3906 * then calculate based on checksum complete calling the function to compute
3907 * pseudo header.
3908 *
3909 * Return values:
3910 * 0: checksum is validated or try to in skb_checksum_complete
3911 * non-zero: value of invalid checksum
3912 */
3913#define __skb_checksum_validate(skb, proto, complete, \
3914 zero_okay, check, compute_pseudo) \
3915({ \
3916 __sum16 __ret = 0; \
5d0c2b95 3917 skb->csum_valid = 0; \
76ba0aae
TH
3918 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3919 __ret = __skb_checksum_validate_complete(skb, \
3920 complete, compute_pseudo(skb, proto)); \
3921 __ret; \
3922})
3923
3924#define skb_checksum_init(skb, proto, compute_pseudo) \
3925 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3926
3927#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3928 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3929
3930#define skb_checksum_validate(skb, proto, compute_pseudo) \
3931 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3932
3933#define skb_checksum_validate_zero_check(skb, proto, check, \
3934 compute_pseudo) \
096a4cfa 3935 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3936
3937#define skb_checksum_simple_validate(skb) \
3938 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3939
d96535a1
TH
3940static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3941{
219f1d79 3942 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
3943}
3944
e4aa33ad 3945static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
d96535a1
TH
3946{
3947 skb->csum = ~pseudo;
3948 skb->ip_summed = CHECKSUM_COMPLETE;
3949}
3950
e4aa33ad 3951#define skb_checksum_try_convert(skb, proto, compute_pseudo) \
d96535a1
TH
3952do { \
3953 if (__skb_checksum_convert_check(skb)) \
e4aa33ad 3954 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
d96535a1
TH
3955} while (0)
3956
15e2396d
TH
3957static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3958 u16 start, u16 offset)
3959{
3960 skb->ip_summed = CHECKSUM_PARTIAL;
3961 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3962 skb->csum_offset = offset - start;
3963}
3964
dcdc8994
TH
3965/* Update skbuf and packet to reflect the remote checksum offload operation.
3966 * When called, ptr indicates the starting point for skb->csum when
3967 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3968 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3969 */
3970static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3971 int start, int offset, bool nopartial)
dcdc8994
TH
3972{
3973 __wsum delta;
3974
15e2396d
TH
3975 if (!nopartial) {
3976 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3977 return;
3978 }
3979
dcdc8994
TH
3980 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3981 __skb_checksum_complete(skb);
3982 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3983 }
3984
3985 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3986
3987 /* Adjust skb->csum since we changed the packet */
3988 skb->csum = csum_add(skb->csum, delta);
3989}
3990
cb9c6836
FW
3991static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3992{
3993#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3994 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3995#else
3996 return NULL;
3997#endif
3998}
3999
5f79e0f9 4000#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 4001void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
4002static inline void nf_conntrack_put(struct nf_conntrack *nfct)
4003{
4004 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 4005 nf_conntrack_destroy(nfct);
1da177e4
LT
4006}
4007static inline void nf_conntrack_get(struct nf_conntrack *nfct)
4008{
4009 if (nfct)
4010 atomic_inc(&nfct->use);
4011}
2fc72c7b 4012#endif
df5042f4
FW
4013
4014#ifdef CONFIG_SKB_EXTENSIONS
4015enum skb_ext_id {
4016#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4017 SKB_EXT_BRIDGE_NF,
4165079b
FW
4018#endif
4019#ifdef CONFIG_XFRM
4020 SKB_EXT_SEC_PATH,
df5042f4
FW
4021#endif
4022 SKB_EXT_NUM, /* must be last */
4023};
4024
4025/**
4026 * struct skb_ext - sk_buff extensions
4027 * @refcnt: 1 on allocation, deallocated on 0
4028 * @offset: offset to add to @data to obtain extension address
4029 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4030 * @data: start of extension data, variable sized
4031 *
4032 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4033 * to use 'u8' types while allowing up to 2kb worth of extension data.
4034 */
4035struct skb_ext {
4036 refcount_t refcnt;
4037 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4038 u8 chunks; /* same */
4039 char data[0] __aligned(8);
4040};
4041
4042void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4043void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4044void __skb_ext_put(struct skb_ext *ext);
4045
4046static inline void skb_ext_put(struct sk_buff *skb)
4047{
4048 if (skb->active_extensions)
4049 __skb_ext_put(skb->extensions);
4050}
4051
df5042f4
FW
4052static inline void __skb_ext_copy(struct sk_buff *dst,
4053 const struct sk_buff *src)
4054{
4055 dst->active_extensions = src->active_extensions;
4056
4057 if (src->active_extensions) {
4058 struct skb_ext *ext = src->extensions;
4059
4060 refcount_inc(&ext->refcnt);
4061 dst->extensions = ext;
4062 }
4063}
4064
4065static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4066{
4067 skb_ext_put(dst);
4068 __skb_ext_copy(dst, src);
4069}
4070
4071static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4072{
4073 return !!ext->offset[i];
4074}
4075
4076static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4077{
4078 return skb->active_extensions & (1 << id);
4079}
4080
4081static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4082{
4083 if (skb_ext_exist(skb, id))
4084 __skb_ext_del(skb, id);
4085}
4086
4087static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4088{
4089 if (skb_ext_exist(skb, id)) {
4090 struct skb_ext *ext = skb->extensions;
4091
4092 return (void *)ext + (ext->offset[id] << 3);
4093 }
4094
4095 return NULL;
4096}
4097#else
4098static inline void skb_ext_put(struct sk_buff *skb) {}
df5042f4
FW
4099static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4100static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4101static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4102#endif /* CONFIG_SKB_EXTENSIONS */
4103
a193a4ab
PM
4104static inline void nf_reset(struct sk_buff *skb)
4105{
5f79e0f9 4106#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4107 nf_conntrack_put(skb_nfct(skb));
4108 skb->_nfct = 0;
2fc72c7b 4109#endif
34666d46 4110#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
de8bda1d 4111 skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
a193a4ab
PM
4112#endif
4113}
4114
124dff01
PM
4115static inline void nf_reset_trace(struct sk_buff *skb)
4116{
478b360a 4117#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
4118 skb->nf_trace = 0;
4119#endif
a193a4ab
PM
4120}
4121
2b5ec1a5
YY
4122static inline void ipvs_reset(struct sk_buff *skb)
4123{
4124#if IS_ENABLED(CONFIG_IP_VS)
4125 skb->ipvs_property = 0;
4126#endif
4127}
4128
de8bda1d 4129/* Note: This doesn't put any conntrack info in dst. */
b1937227
ED
4130static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4131 bool copy)
edda553c 4132{
5f79e0f9 4133#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4134 dst->_nfct = src->_nfct;
4135 nf_conntrack_get(skb_nfct(src));
2fc72c7b 4136#endif
478b360a 4137#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
4138 if (copy)
4139 dst->nf_trace = src->nf_trace;
478b360a 4140#endif
edda553c
YK
4141}
4142
e7ac05f3
YK
4143static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4144{
e7ac05f3 4145#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 4146 nf_conntrack_put(skb_nfct(dst));
e7ac05f3 4147#endif
b1937227 4148 __nf_copy(dst, src, true);
e7ac05f3
YK
4149}
4150
984bc16c
JM
4151#ifdef CONFIG_NETWORK_SECMARK
4152static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4153{
4154 to->secmark = from->secmark;
4155}
4156
4157static inline void skb_init_secmark(struct sk_buff *skb)
4158{
4159 skb->secmark = 0;
4160}
4161#else
4162static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4163{ }
4164
4165static inline void skb_init_secmark(struct sk_buff *skb)
4166{ }
4167#endif
4168
7af8f4ca
FW
4169static inline int secpath_exists(const struct sk_buff *skb)
4170{
4171#ifdef CONFIG_XFRM
4165079b 4172 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
7af8f4ca
FW
4173#else
4174 return 0;
4175#endif
4176}
4177
574f7194
EB
4178static inline bool skb_irq_freeable(const struct sk_buff *skb)
4179{
4180 return !skb->destructor &&
7af8f4ca 4181 !secpath_exists(skb) &&
cb9c6836 4182 !skb_nfct(skb) &&
574f7194
EB
4183 !skb->_skb_refdst &&
4184 !skb_has_frag_list(skb);
4185}
4186
f25f4e44
PWJ
4187static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4188{
f25f4e44 4189 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
4190}
4191
9247744e 4192static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 4193{
4e3ab47a 4194 return skb->queue_mapping;
4e3ab47a
PE
4195}
4196
f25f4e44
PWJ
4197static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4198{
f25f4e44 4199 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
4200}
4201
d5a9e24a
DM
4202static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4203{
4204 skb->queue_mapping = rx_queue + 1;
4205}
4206
9247744e 4207static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
4208{
4209 return skb->queue_mapping - 1;
4210}
4211
9247744e 4212static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 4213{
a02cec21 4214 return skb->queue_mapping != 0;
d5a9e24a
DM
4215}
4216
4ff06203
JA
4217static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4218{
4219 skb->dst_pending_confirm = val;
4220}
4221
4222static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4223{
4224 return skb->dst_pending_confirm != 0;
4225}
4226
2294be0f 4227static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
def8b4fa 4228{
0b3d8e08 4229#ifdef CONFIG_XFRM
4165079b 4230 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
def8b4fa 4231#else
def8b4fa 4232 return NULL;
def8b4fa 4233#endif
0b3d8e08 4234}
def8b4fa 4235
68c33163
PS
4236/* Keeps track of mac header offset relative to skb->head.
4237 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4238 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
4239 * tunnel skb it points to outer mac header.
4240 * Keeps track of level of encapsulation of network headers.
4241 */
68c33163 4242struct skb_gso_cb {
802ab55a
AD
4243 union {
4244 int mac_offset;
4245 int data_offset;
4246 };
3347c960 4247 int encap_level;
76443456 4248 __wsum csum;
7e2b10c1 4249 __u16 csum_start;
68c33163 4250};
9207f9d4
KK
4251#define SKB_SGO_CB_OFFSET 32
4252#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
4253
4254static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4255{
4256 return (skb_mac_header(inner_skb) - inner_skb->head) -
4257 SKB_GSO_CB(inner_skb)->mac_offset;
4258}
4259
1e2bd517
PS
4260static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4261{
4262 int new_headroom, headroom;
4263 int ret;
4264
4265 headroom = skb_headroom(skb);
4266 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4267 if (ret)
4268 return ret;
4269
4270 new_headroom = skb_headroom(skb);
4271 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4272 return 0;
4273}
4274
08b64fcc
AD
4275static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4276{
4277 /* Do not update partial checksums if remote checksum is enabled. */
4278 if (skb->remcsum_offload)
4279 return;
4280
4281 SKB_GSO_CB(skb)->csum = res;
4282 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4283}
4284
7e2b10c1
TH
4285/* Compute the checksum for a gso segment. First compute the checksum value
4286 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4287 * then add in skb->csum (checksum from csum_start to end of packet).
4288 * skb->csum and csum_start are then updated to reflect the checksum of the
4289 * resultant packet starting from the transport header-- the resultant checksum
4290 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4291 * header.
4292 */
4293static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4294{
76443456
AD
4295 unsigned char *csum_start = skb_transport_header(skb);
4296 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4297 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 4298
76443456
AD
4299 SKB_GSO_CB(skb)->csum = res;
4300 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 4301
76443456 4302 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
4303}
4304
bdcc0924 4305static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
4306{
4307 return skb_shinfo(skb)->gso_size;
4308}
4309
36a8f39e 4310/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4311static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4312{
4313 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4314}
4315
d02f51cb
DA
4316/* Note: Should be called only if skb_is_gso(skb) is true */
4317static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4318{
4319 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4320}
4321
4c3024de 4322/* Note: Should be called only if skb_is_gso(skb) is true */
b90efd22
WB
4323static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4324{
4c3024de 4325 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
b90efd22
WB
4326}
4327
5293efe6
DB
4328static inline void skb_gso_reset(struct sk_buff *skb)
4329{
4330 skb_shinfo(skb)->gso_size = 0;
4331 skb_shinfo(skb)->gso_segs = 0;
4332 skb_shinfo(skb)->gso_type = 0;
4333}
4334
d02f51cb
DA
4335static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4336 u16 increment)
4337{
4338 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4339 return;
4340 shinfo->gso_size += increment;
4341}
4342
4343static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4344 u16 decrement)
4345{
4346 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4347 return;
4348 shinfo->gso_size -= decrement;
4349}
4350
7965bd4d 4351void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4352
4353static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4354{
4355 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4356 * wanted then gso_type will be set. */
05bdd2f1
ED
4357 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4358
b78462eb
AD
4359 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4360 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4361 __skb_warn_lro_forwarding(skb);
4362 return true;
4363 }
4364 return false;
4365}
4366
35fc92a9
HX
4367static inline void skb_forward_csum(struct sk_buff *skb)
4368{
4369 /* Unfortunately we don't support this one. Any brave souls? */
4370 if (skb->ip_summed == CHECKSUM_COMPLETE)
4371 skb->ip_summed = CHECKSUM_NONE;
4372}
4373
bc8acf2c
ED
4374/**
4375 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4376 * @skb: skb to check
4377 *
4378 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4379 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4380 * use this helper, to document places where we make this assertion.
4381 */
05bdd2f1 4382static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
4383{
4384#ifdef DEBUG
4385 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4386#endif
4387}
4388
f35d9d8a 4389bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4390
ed1f50c3 4391int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4392struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4393 unsigned int transport_len,
4394 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4395
3a7c1ee4
AD
4396/**
4397 * skb_head_is_locked - Determine if the skb->head is locked down
4398 * @skb: skb to check
4399 *
4400 * The head on skbs build around a head frag can be removed if they are
4401 * not cloned. This function returns true if the skb head is locked down
4402 * due to either being allocated via kmalloc, or by being a clone with
4403 * multiple references to the head.
4404 */
4405static inline bool skb_head_is_locked(const struct sk_buff *skb)
4406{
4407 return !skb->head_frag || skb_cloned(skb);
4408}
fe6cc55f 4409
179bc67f
EC
4410/* Local Checksum Offload.
4411 * Compute outer checksum based on the assumption that the
4412 * inner checksum will be offloaded later.
d0dcde64 4413 * See Documentation/networking/checksum-offloads.rst for
e8ae7b00 4414 * explanation of how this works.
179bc67f
EC
4415 * Fill in outer checksum adjustment (e.g. with sum of outer
4416 * pseudo-header) before calling.
4417 * Also ensure that inner checksum is in linear data area.
4418 */
4419static inline __wsum lco_csum(struct sk_buff *skb)
4420{
9e74a6da
AD
4421 unsigned char *csum_start = skb_checksum_start(skb);
4422 unsigned char *l4_hdr = skb_transport_header(skb);
4423 __wsum partial;
179bc67f
EC
4424
4425 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4426 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4427 skb->csum_offset));
4428
179bc67f 4429 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4430 * adjustment filled in by caller) and return result.
179bc67f 4431 */
9e74a6da 4432 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4433}
4434
1da177e4
LT
4435#endif /* __KERNEL__ */
4436#endif /* _LINUX_SKBUFF_H */