]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/skbuff.h
gre: Call gso_make_checksum
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4
LT
22#include <linux/cache.h>
23
60063497 24#include <linux/atomic.h>
1da177e4
LT
25#include <asm/types.h>
26#include <linux/spinlock.h>
1da177e4 27#include <linux/net.h>
3fc7e8a6 28#include <linux/textsearch.h>
1da177e4 29#include <net/checksum.h>
a80958f4 30#include <linux/rcupdate.h>
97fc2f08 31#include <linux/dmaengine.h>
b7aa0bf7 32#include <linux/hrtimer.h>
131ea667 33#include <linux/dma-mapping.h>
c8f44aff 34#include <linux/netdev_features.h>
363ec392 35#include <linux/sched.h>
5203cd28 36#include <net/flow_keys.h>
1da177e4 37
78ea85f1
DB
38/* A. Checksumming of received packets by device.
39 *
40 * CHECKSUM_NONE:
41 *
42 * Device failed to checksum this packet e.g. due to lack of capabilities.
43 * The packet contains full (though not verified) checksum in packet but
44 * not in skb->csum. Thus, skb->csum is undefined in this case.
45 *
46 * CHECKSUM_UNNECESSARY:
47 *
48 * The hardware you're dealing with doesn't calculate the full checksum
49 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
50 * for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will
51 * set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still
52 * undefined in this case though. It is a bad option, but, unfortunately,
53 * nowadays most vendors do this. Apparently with the secret goal to sell
54 * you new devices, when you will add new protocol to your host, f.e. IPv6 8)
55 *
56 * CHECKSUM_COMPLETE:
57 *
58 * This is the most generic way. The device supplied checksum of the _whole_
59 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
60 * hardware doesn't need to parse L3/L4 headers to implement this.
61 *
62 * Note: Even if device supports only some protocols, but is able to produce
63 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
64 *
65 * CHECKSUM_PARTIAL:
66 *
67 * This is identical to the case for output below. This may occur on a packet
68 * received directly from another Linux OS, e.g., a virtualized Linux kernel
69 * on the same host. The packet can be treated in the same way as
70 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
71 * checksum must be filled in by the OS or the hardware.
72 *
73 * B. Checksumming on output.
74 *
75 * CHECKSUM_NONE:
76 *
77 * The skb was already checksummed by the protocol, or a checksum is not
78 * required.
79 *
80 * CHECKSUM_PARTIAL:
81 *
82 * The device is required to checksum the packet as seen by hard_start_xmit()
83 * from skb->csum_start up to the end, and to record/write the checksum at
84 * offset skb->csum_start + skb->csum_offset.
85 *
86 * The device must show its capabilities in dev->features, set up at device
87 * setup time, e.g. netdev_features.h:
88 *
89 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
90 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
91 * IPv4. Sigh. Vendors like this way for an unknown reason.
92 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
93 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
94 * NETIF_F_... - Well, you get the picture.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * Normally, the device will do per protocol specific checksumming. Protocol
99 * implementations that do not want the NIC to perform the checksum
100 * calculation should use this flag in their outgoing skbs.
101 *
102 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
103 * offload. Correspondingly, the FCoE protocol driver
104 * stack should use CHECKSUM_UNNECESSARY.
105 *
106 * Any questions? No questions, good. --ANK
107 */
108
60476372 109/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
110#define CHECKSUM_NONE 0
111#define CHECKSUM_UNNECESSARY 1
112#define CHECKSUM_COMPLETE 2
113#define CHECKSUM_PARTIAL 3
1da177e4
LT
114
115#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
116 ~(SMP_CACHE_BYTES - 1))
fc910a27 117#define SKB_WITH_OVERHEAD(X) \
deea84b0 118 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
119#define SKB_MAX_ORDER(X, ORDER) \
120 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
121#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
122#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
123
87fb4b7b
ED
124/* return minimum truesize of one skb containing X bytes of data */
125#define SKB_TRUESIZE(X) ((X) + \
126 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
127 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
128
1da177e4 129struct net_device;
716ea3a7 130struct scatterlist;
9c55e01c 131struct pipe_inode_info;
1da177e4 132
5f79e0f9 133#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
134struct nf_conntrack {
135 atomic_t use;
1da177e4 136};
5f79e0f9 137#endif
1da177e4
LT
138
139#ifdef CONFIG_BRIDGE_NETFILTER
140struct nf_bridge_info {
bf1ac5ca
ED
141 atomic_t use;
142 unsigned int mask;
143 struct net_device *physindev;
144 struct net_device *physoutdev;
145 unsigned long data[32 / sizeof(unsigned long)];
1da177e4
LT
146};
147#endif
148
1da177e4
LT
149struct sk_buff_head {
150 /* These two members must be first. */
151 struct sk_buff *next;
152 struct sk_buff *prev;
153
154 __u32 qlen;
155 spinlock_t lock;
156};
157
158struct sk_buff;
159
9d4dde52
IC
160/* To allow 64K frame to be packed as single skb without frag_list we
161 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
162 * buffers which do not start on a page boundary.
163 *
164 * Since GRO uses frags we allocate at least 16 regardless of page
165 * size.
a715dea3 166 */
9d4dde52 167#if (65536/PAGE_SIZE + 1) < 16
eec00954 168#define MAX_SKB_FRAGS 16UL
a715dea3 169#else
9d4dde52 170#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 171#endif
1da177e4
LT
172
173typedef struct skb_frag_struct skb_frag_t;
174
175struct skb_frag_struct {
a8605c60
IC
176 struct {
177 struct page *p;
178 } page;
cb4dfe56 179#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
180 __u32 page_offset;
181 __u32 size;
cb4dfe56
ED
182#else
183 __u16 page_offset;
184 __u16 size;
185#endif
1da177e4
LT
186};
187
9e903e08
ED
188static inline unsigned int skb_frag_size(const skb_frag_t *frag)
189{
190 return frag->size;
191}
192
193static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
194{
195 frag->size = size;
196}
197
198static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
199{
200 frag->size += delta;
201}
202
203static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
204{
205 frag->size -= delta;
206}
207
ac45f602
PO
208#define HAVE_HW_TIME_STAMP
209
210/**
d3a21be8 211 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
212 * @hwtstamp: hardware time stamp transformed into duration
213 * since arbitrary point in time
214 * @syststamp: hwtstamp transformed to system time base
215 *
216 * Software time stamps generated by ktime_get_real() are stored in
217 * skb->tstamp. The relation between the different kinds of time
218 * stamps is as follows:
219 *
220 * syststamp and tstamp can be compared against each other in
221 * arbitrary combinations. The accuracy of a
222 * syststamp/tstamp/"syststamp from other device" comparison is
223 * limited by the accuracy of the transformation into system time
224 * base. This depends on the device driver and its underlying
225 * hardware.
226 *
227 * hwtstamps can only be compared against other hwtstamps from
228 * the same device.
229 *
230 * This structure is attached to packets as part of the
231 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
232 */
233struct skb_shared_hwtstamps {
234 ktime_t hwtstamp;
235 ktime_t syststamp;
236};
237
2244d07b
OH
238/* Definitions for tx_flags in struct skb_shared_info */
239enum {
240 /* generate hardware time stamp */
241 SKBTX_HW_TSTAMP = 1 << 0,
242
243 /* generate software time stamp */
244 SKBTX_SW_TSTAMP = 1 << 1,
245
246 /* device driver is going to provide hardware time stamp */
247 SKBTX_IN_PROGRESS = 1 << 2,
248
a6686f2f 249 /* device driver supports TX zero-copy buffers */
62b1a8ab 250 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
251
252 /* generate wifi status information (where possible) */
62b1a8ab 253 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
254
255 /* This indicates at least one fragment might be overwritten
256 * (as in vmsplice(), sendfile() ...)
257 * If we need to compute a TX checksum, we'll need to copy
258 * all frags to avoid possible bad checksum
259 */
260 SKBTX_SHARED_FRAG = 1 << 5,
a6686f2f
SM
261};
262
263/*
264 * The callback notifies userspace to release buffers when skb DMA is done in
265 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
266 * The zerocopy_success argument is true if zero copy transmit occurred,
267 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
268 * The ctx field is used to track device context.
269 * The desc field is used to track userspace buffer index.
a6686f2f
SM
270 */
271struct ubuf_info {
e19d6763 272 void (*callback)(struct ubuf_info *, bool zerocopy_success);
ca8f4fb2 273 void *ctx;
a6686f2f 274 unsigned long desc;
ac45f602
PO
275};
276
1da177e4
LT
277/* This data is invariant across clones and lives at
278 * the end of the header data, ie. at skb->end.
279 */
280struct skb_shared_info {
9f42f126
IC
281 unsigned char nr_frags;
282 __u8 tx_flags;
7967168c
HX
283 unsigned short gso_size;
284 /* Warning: this field is not always filled in (UFO)! */
285 unsigned short gso_segs;
286 unsigned short gso_type;
1da177e4 287 struct sk_buff *frag_list;
ac45f602 288 struct skb_shared_hwtstamps hwtstamps;
9f42f126 289 __be32 ip6_frag_id;
ec7d2f2c
ED
290
291 /*
292 * Warning : all fields before dataref are cleared in __alloc_skb()
293 */
294 atomic_t dataref;
295
69e3c75f
JB
296 /* Intermediate layers must ensure that destructor_arg
297 * remains valid until skb destructor */
298 void * destructor_arg;
a6686f2f 299
fed66381
ED
300 /* must be last field, see pskb_expand_head() */
301 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
302};
303
304/* We divide dataref into two halves. The higher 16 bits hold references
305 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
306 * the entire skb->data. A clone of a headerless skb holds the length of
307 * the header in skb->hdr_len.
1da177e4
LT
308 *
309 * All users must obey the rule that the skb->data reference count must be
310 * greater than or equal to the payload reference count.
311 *
312 * Holding a reference to the payload part means that the user does not
313 * care about modifications to the header part of skb->data.
314 */
315#define SKB_DATAREF_SHIFT 16
316#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
317
d179cd12
DM
318
319enum {
320 SKB_FCLONE_UNAVAILABLE,
321 SKB_FCLONE_ORIG,
322 SKB_FCLONE_CLONE,
323};
324
7967168c
HX
325enum {
326 SKB_GSO_TCPV4 = 1 << 0,
f83ef8c0 327 SKB_GSO_UDP = 1 << 1,
576a30eb
HX
328
329 /* This indicates the skb is from an untrusted source. */
330 SKB_GSO_DODGY = 1 << 2,
b0da8537
MC
331
332 /* This indicates the tcp segment has CWR set. */
f83ef8c0
HX
333 SKB_GSO_TCP_ECN = 1 << 3,
334
335 SKB_GSO_TCPV6 = 1 << 4,
01d5b2fc
CL
336
337 SKB_GSO_FCOE = 1 << 5,
68c33163
PS
338
339 SKB_GSO_GRE = 1 << 6,
73136267 340
cb32f511 341 SKB_GSO_IPIP = 1 << 7,
0d89d203 342
61c1db7f 343 SKB_GSO_SIT = 1 << 8,
cb32f511 344
61c1db7f
ED
345 SKB_GSO_UDP_TUNNEL = 1 << 9,
346
347 SKB_GSO_MPLS = 1 << 10,
0f4f4ffa
TH
348
349 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
4749c09c
TH
350
351 SKB_GSO_GRE_CSUM = 1 << 12,
7967168c
HX
352};
353
2e07fa9c
ACM
354#if BITS_PER_LONG > 32
355#define NET_SKBUFF_DATA_USES_OFFSET 1
356#endif
357
358#ifdef NET_SKBUFF_DATA_USES_OFFSET
359typedef unsigned int sk_buff_data_t;
360#else
361typedef unsigned char *sk_buff_data_t;
362#endif
363
363ec392
ED
364/**
365 * struct skb_mstamp - multi resolution time stamps
366 * @stamp_us: timestamp in us resolution
367 * @stamp_jiffies: timestamp in jiffies
368 */
369struct skb_mstamp {
370 union {
371 u64 v64;
372 struct {
373 u32 stamp_us;
374 u32 stamp_jiffies;
375 };
376 };
377};
378
379/**
380 * skb_mstamp_get - get current timestamp
381 * @cl: place to store timestamps
382 */
383static inline void skb_mstamp_get(struct skb_mstamp *cl)
384{
385 u64 val = local_clock();
386
387 do_div(val, NSEC_PER_USEC);
388 cl->stamp_us = (u32)val;
389 cl->stamp_jiffies = (u32)jiffies;
390}
391
392/**
393 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
394 * @t1: pointer to newest sample
395 * @t0: pointer to oldest sample
396 */
397static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
398 const struct skb_mstamp *t0)
399{
400 s32 delta_us = t1->stamp_us - t0->stamp_us;
401 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
402
403 /* If delta_us is negative, this might be because interval is too big,
404 * or local_clock() drift is too big : fallback using jiffies.
405 */
406 if (delta_us <= 0 ||
407 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
408
409 delta_us = jiffies_to_usecs(delta_jiffies);
410
411 return delta_us;
412}
413
414
1da177e4
LT
415/**
416 * struct sk_buff - socket buffer
417 * @next: Next buffer in list
418 * @prev: Previous buffer in list
363ec392 419 * @tstamp: Time we arrived/left
d84e0bd7 420 * @sk: Socket we are owned by
1da177e4 421 * @dev: Device we arrived on/are leaving by
d84e0bd7 422 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 423 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 424 * @sp: the security path, used for xfrm
1da177e4
LT
425 * @len: Length of actual data
426 * @data_len: Data length
427 * @mac_len: Length of link layer header
334a8132 428 * @hdr_len: writable header length of cloned skb
663ead3b
HX
429 * @csum: Checksum (must include start/offset pair)
430 * @csum_start: Offset from skb->head where checksumming should start
431 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 432 * @priority: Packet queueing priority
60ff7467 433 * @ignore_df: allow local fragmentation
1da177e4 434 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 435 * @ip_summed: Driver fed us an IP checksum
1da177e4 436 * @nohdr: Payload reference only, must not modify header
d84e0bd7 437 * @nfctinfo: Relationship of this skb to the connection
1da177e4 438 * @pkt_type: Packet class
c83c2486 439 * @fclone: skbuff clone status
c83c2486 440 * @ipvs_property: skbuff is owned by ipvs
31729363
RD
441 * @peeked: this packet has been seen already, so stats have been
442 * done for it, don't do them again
ba9dda3a 443 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
444 * @protocol: Packet protocol from driver
445 * @destructor: Destruct function
446 * @nfct: Associated connection, if any
1da177e4 447 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 448 * @skb_iif: ifindex of device we arrived on
1da177e4
LT
449 * @tc_index: Traffic control index
450 * @tc_verd: traffic control verdict
61b905da 451 * @hash: the packet hash
d84e0bd7 452 * @queue_mapping: Queue mapping for multiqueue devices
553a5672 453 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 454 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 455 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 456 * ports.
6e3e939f
JB
457 * @wifi_acked_valid: wifi_acked was set
458 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 459 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
f4b8ea78
RD
460 * @dma_cookie: a cookie to one of several possible DMA operations
461 * done by skb DMA functions
06021292 462 * @napi_id: id of the NAPI struct this skb came from
984bc16c 463 * @secmark: security marking
d84e0bd7
DB
464 * @mark: Generic packet mark
465 * @dropcount: total number of sk_receive_queue overflows
86a9bad3 466 * @vlan_proto: vlan encapsulation protocol
6aa895b0 467 * @vlan_tci: vlan tag control information
0d89d203 468 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
469 * @inner_transport_header: Inner transport layer header (encapsulation)
470 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 471 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
472 * @transport_header: Transport layer header
473 * @network_header: Network layer header
474 * @mac_header: Link layer header
475 * @tail: Tail pointer
476 * @end: End pointer
477 * @head: Head of buffer
478 * @data: Data head pointer
479 * @truesize: Buffer size
480 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
481 */
482
483struct sk_buff {
484 /* These two members must be first. */
485 struct sk_buff *next;
486 struct sk_buff *prev;
487
363ec392
ED
488 union {
489 ktime_t tstamp;
490 struct skb_mstamp skb_mstamp;
491 };
da3f5cf1
FF
492
493 struct sock *sk;
1da177e4 494 struct net_device *dev;
1da177e4 495
1da177e4
LT
496 /*
497 * This is the control buffer. It is free to use for every
498 * layer. Please put your private variables there. If you
499 * want to keep them across layers you have to do a skb_clone()
500 * first. This is owned by whoever has the skb queued ATM.
501 */
da3f5cf1 502 char cb[48] __aligned(8);
1da177e4 503
7fee226a 504 unsigned long _skb_refdst;
da3f5cf1
FF
505#ifdef CONFIG_XFRM
506 struct sec_path *sp;
507#endif
1da177e4 508 unsigned int len,
334a8132
PM
509 data_len;
510 __u16 mac_len,
511 hdr_len;
ff1dcadb
AV
512 union {
513 __wsum csum;
663ead3b
HX
514 struct {
515 __u16 csum_start;
516 __u16 csum_offset;
517 };
ff1dcadb 518 };
1da177e4 519 __u32 priority;
fe55f6d5 520 kmemcheck_bitfield_begin(flags1);
60ff7467 521 __u8 ignore_df:1,
1cbb3380
TG
522 cloned:1,
523 ip_summed:2,
6869c4d8
HW
524 nohdr:1,
525 nfctinfo:3;
d179cd12 526 __u8 pkt_type:3,
b84f4cc9 527 fclone:2,
ba9dda3a 528 ipvs_property:1,
a59322be 529 peeked:1,
ba9dda3a 530 nf_trace:1;
fe55f6d5 531 kmemcheck_bitfield_end(flags1);
4ab408de 532 __be16 protocol;
1da177e4
LT
533
534 void (*destructor)(struct sk_buff *skb);
9fb9cbb1 535#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 536 struct nf_conntrack *nfct;
2fc72c7b 537#endif
1da177e4
LT
538#ifdef CONFIG_BRIDGE_NETFILTER
539 struct nf_bridge_info *nf_bridge;
540#endif
f25f4e44 541
8964be4a 542 int skb_iif;
4031ae6e 543
61b905da 544 __u32 hash;
4031ae6e 545
86a9bad3 546 __be16 vlan_proto;
4031ae6e
AD
547 __u16 vlan_tci;
548
1da177e4 549#ifdef CONFIG_NET_SCHED
b6b99eb5 550 __u16 tc_index; /* traffic control index */
1da177e4 551#ifdef CONFIG_NET_CLS_ACT
b6b99eb5 552 __u16 tc_verd; /* traffic control verdict */
1da177e4 553#endif
1da177e4 554#endif
fe55f6d5 555
0a14842f 556 __u16 queue_mapping;
fe55f6d5 557 kmemcheck_bitfield_begin(flags2);
de357cc0 558#ifdef CONFIG_IPV6_NDISC_NODETYPE
8a4eb573 559 __u8 ndisc_nodetype:2;
d0f09804 560#endif
c93bdd0e 561 __u8 pfmemalloc:1;
3853b584 562 __u8 ooo_okay:1;
61b905da 563 __u8 l4_hash:1;
6e3e939f
JB
564 __u8 wifi_acked_valid:1;
565 __u8 wifi_acked:1;
3bdc0eba 566 __u8 no_fcs:1;
d3836f21 567 __u8 head_frag:1;
6a674e9c
JG
568 /* Encapsulation protocol and NIC drivers should use
569 * this flag to indicate to each other if the skb contains
570 * encapsulated packet or not and maybe use the inner packet
571 * headers if needed
572 */
573 __u8 encapsulation:1;
7e2b10c1
TH
574 __u8 encap_hdr_csum:1;
575 /* 5/7 bit hole (depending on ndisc_nodetype presence) */
fe55f6d5
VN
576 kmemcheck_bitfield_end(flags2);
577
e0d1095a 578#if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
06021292
ET
579 union {
580 unsigned int napi_id;
581 dma_cookie_t dma_cookie;
582 };
97fc2f08 583#endif
984bc16c
JM
584#ifdef CONFIG_NETWORK_SECMARK
585 __u32 secmark;
586#endif
3b885787
NH
587 union {
588 __u32 mark;
589 __u32 dropcount;
16fad69c 590 __u32 reserved_tailroom;
3b885787 591 };
1da177e4 592
0d89d203 593 __be16 inner_protocol;
1a37e412
SH
594 __u16 inner_transport_header;
595 __u16 inner_network_header;
596 __u16 inner_mac_header;
597 __u16 transport_header;
598 __u16 network_header;
599 __u16 mac_header;
1da177e4 600 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 601 sk_buff_data_t tail;
4305b541 602 sk_buff_data_t end;
1da177e4 603 unsigned char *head,
4305b541 604 *data;
27a884dc
ACM
605 unsigned int truesize;
606 atomic_t users;
1da177e4
LT
607};
608
609#ifdef __KERNEL__
610/*
611 * Handling routines are only of interest to the kernel
612 */
613#include <linux/slab.h>
614
1da177e4 615
c93bdd0e
MG
616#define SKB_ALLOC_FCLONE 0x01
617#define SKB_ALLOC_RX 0x02
618
619/* Returns true if the skb was allocated from PFMEMALLOC reserves */
620static inline bool skb_pfmemalloc(const struct sk_buff *skb)
621{
622 return unlikely(skb->pfmemalloc);
623}
624
7fee226a
ED
625/*
626 * skb might have a dst pointer attached, refcounted or not.
627 * _skb_refdst low order bit is set if refcount was _not_ taken
628 */
629#define SKB_DST_NOREF 1UL
630#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
631
632/**
633 * skb_dst - returns skb dst_entry
634 * @skb: buffer
635 *
636 * Returns skb dst_entry, regardless of reference taken or not.
637 */
adf30907
ED
638static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
639{
7fee226a
ED
640 /* If refdst was not refcounted, check we still are in a
641 * rcu_read_lock section
642 */
643 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
644 !rcu_read_lock_held() &&
645 !rcu_read_lock_bh_held());
646 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
647}
648
7fee226a
ED
649/**
650 * skb_dst_set - sets skb dst
651 * @skb: buffer
652 * @dst: dst entry
653 *
654 * Sets skb dst, assuming a reference was taken on dst and should
655 * be released by skb_dst_drop()
656 */
adf30907
ED
657static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
658{
7fee226a
ED
659 skb->_skb_refdst = (unsigned long)dst;
660}
661
7965bd4d
JP
662void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
663 bool force);
932bc4d7
JA
664
665/**
666 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
667 * @skb: buffer
668 * @dst: dst entry
669 *
670 * Sets skb dst, assuming a reference was not taken on dst.
671 * If dst entry is cached, we do not take reference and dst_release
672 * will be avoided by refdst_drop. If dst entry is not cached, we take
673 * reference, so that last dst_release can destroy the dst immediately.
674 */
675static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
676{
677 __skb_dst_set_noref(skb, dst, false);
678}
679
680/**
681 * skb_dst_set_noref_force - sets skb dst, without taking reference
682 * @skb: buffer
683 * @dst: dst entry
684 *
685 * Sets skb dst, assuming a reference was not taken on dst.
686 * No reference is taken and no dst_release will be called. While for
687 * cached dsts deferred reclaim is a basic feature, for entries that are
688 * not cached it is caller's job to guarantee that last dst_release for
689 * provided dst happens when nobody uses it, eg. after a RCU grace period.
690 */
691static inline void skb_dst_set_noref_force(struct sk_buff *skb,
692 struct dst_entry *dst)
693{
694 __skb_dst_set_noref(skb, dst, true);
695}
7fee226a
ED
696
697/**
25985edc 698 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
699 * @skb: buffer
700 */
701static inline bool skb_dst_is_noref(const struct sk_buff *skb)
702{
703 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
704}
705
511c3f92
ED
706static inline struct rtable *skb_rtable(const struct sk_buff *skb)
707{
adf30907 708 return (struct rtable *)skb_dst(skb);
511c3f92
ED
709}
710
7965bd4d
JP
711void kfree_skb(struct sk_buff *skb);
712void kfree_skb_list(struct sk_buff *segs);
713void skb_tx_error(struct sk_buff *skb);
714void consume_skb(struct sk_buff *skb);
715void __kfree_skb(struct sk_buff *skb);
d7e8883c 716extern struct kmem_cache *skbuff_head_cache;
bad43ca8 717
7965bd4d
JP
718void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
719bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
720 bool *fragstolen, int *delta_truesize);
bad43ca8 721
7965bd4d
JP
722struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
723 int node);
724struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 725static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 726 gfp_t priority)
d179cd12 727{
564824b0 728 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
729}
730
731static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 732 gfp_t priority)
d179cd12 733{
c93bdd0e 734 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
735}
736
7965bd4d 737struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
0ebd0ac5
PM
738static inline struct sk_buff *alloc_skb_head(gfp_t priority)
739{
740 return __alloc_skb_head(priority, -1);
741}
742
7965bd4d
JP
743struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
744int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
745struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
746struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
747struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask);
748
749int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
750struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
751 unsigned int headroom);
752struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
753 int newtailroom, gfp_t priority);
25a91d8d
FD
754int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
755 int offset, int len);
7965bd4d
JP
756int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
757 int len);
758int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
759int skb_pad(struct sk_buff *skb, int pad);
ead2ceb0 760#define dev_kfree_skb(a) consume_skb(a)
1da177e4 761
7965bd4d
JP
762int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
763 int getfrag(void *from, char *to, int offset,
764 int len, int odd, struct sk_buff *skb),
765 void *from, int length);
e89e9cf5 766
d94d9fee 767struct skb_seq_state {
677e90ed
TG
768 __u32 lower_offset;
769 __u32 upper_offset;
770 __u32 frag_idx;
771 __u32 stepped_offset;
772 struct sk_buff *root_skb;
773 struct sk_buff *cur_skb;
774 __u8 *frag_data;
775};
776
7965bd4d
JP
777void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
778 unsigned int to, struct skb_seq_state *st);
779unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
780 struct skb_seq_state *st);
781void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 782
7965bd4d
JP
783unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
784 unsigned int to, struct ts_config *config,
785 struct ts_state *state);
3fc7e8a6 786
09323cc4
TH
787/*
788 * Packet hash types specify the type of hash in skb_set_hash.
789 *
790 * Hash types refer to the protocol layer addresses which are used to
791 * construct a packet's hash. The hashes are used to differentiate or identify
792 * flows of the protocol layer for the hash type. Hash types are either
793 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
794 *
795 * Properties of hashes:
796 *
797 * 1) Two packets in different flows have different hash values
798 * 2) Two packets in the same flow should have the same hash value
799 *
800 * A hash at a higher layer is considered to be more specific. A driver should
801 * set the most specific hash possible.
802 *
803 * A driver cannot indicate a more specific hash than the layer at which a hash
804 * was computed. For instance an L3 hash cannot be set as an L4 hash.
805 *
806 * A driver may indicate a hash level which is less specific than the
807 * actual layer the hash was computed on. For instance, a hash computed
808 * at L4 may be considered an L3 hash. This should only be done if the
809 * driver can't unambiguously determine that the HW computed the hash at
810 * the higher layer. Note that the "should" in the second property above
811 * permits this.
812 */
813enum pkt_hash_types {
814 PKT_HASH_TYPE_NONE, /* Undefined type */
815 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
816 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
817 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
818};
819
820static inline void
821skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
822{
61b905da
TH
823 skb->l4_hash = (type == PKT_HASH_TYPE_L4);
824 skb->hash = hash;
09323cc4
TH
825}
826
3958afa1
TH
827void __skb_get_hash(struct sk_buff *skb);
828static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 829{
61b905da 830 if (!skb->l4_hash)
3958afa1 831 __skb_get_hash(skb);
bfb564e7 832
61b905da 833 return skb->hash;
bfb564e7
KK
834}
835
57bdf7f4
TH
836static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
837{
61b905da 838 return skb->hash;
57bdf7f4
TH
839}
840
7539fadc
TH
841static inline void skb_clear_hash(struct sk_buff *skb)
842{
61b905da
TH
843 skb->hash = 0;
844 skb->l4_hash = 0;
7539fadc
TH
845}
846
847static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
848{
61b905da 849 if (!skb->l4_hash)
7539fadc
TH
850 skb_clear_hash(skb);
851}
852
3df7a74e
TH
853static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
854{
61b905da
TH
855 to->hash = from->hash;
856 to->l4_hash = from->l4_hash;
3df7a74e
TH
857};
858
4305b541
ACM
859#ifdef NET_SKBUFF_DATA_USES_OFFSET
860static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
861{
862 return skb->head + skb->end;
863}
ec47ea82
AD
864
865static inline unsigned int skb_end_offset(const struct sk_buff *skb)
866{
867 return skb->end;
868}
4305b541
ACM
869#else
870static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
871{
872 return skb->end;
873}
ec47ea82
AD
874
875static inline unsigned int skb_end_offset(const struct sk_buff *skb)
876{
877 return skb->end - skb->head;
878}
4305b541
ACM
879#endif
880
1da177e4 881/* Internal */
4305b541 882#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 883
ac45f602
PO
884static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
885{
886 return &skb_shinfo(skb)->hwtstamps;
887}
888
1da177e4
LT
889/**
890 * skb_queue_empty - check if a queue is empty
891 * @list: queue head
892 *
893 * Returns true if the queue is empty, false otherwise.
894 */
895static inline int skb_queue_empty(const struct sk_buff_head *list)
896{
fd44b93c 897 return list->next == (const struct sk_buff *) list;
1da177e4
LT
898}
899
fc7ebb21
DM
900/**
901 * skb_queue_is_last - check if skb is the last entry in the queue
902 * @list: queue head
903 * @skb: buffer
904 *
905 * Returns true if @skb is the last buffer on the list.
906 */
907static inline bool skb_queue_is_last(const struct sk_buff_head *list,
908 const struct sk_buff *skb)
909{
fd44b93c 910 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
911}
912
832d11c5
IJ
913/**
914 * skb_queue_is_first - check if skb is the first entry in the queue
915 * @list: queue head
916 * @skb: buffer
917 *
918 * Returns true if @skb is the first buffer on the list.
919 */
920static inline bool skb_queue_is_first(const struct sk_buff_head *list,
921 const struct sk_buff *skb)
922{
fd44b93c 923 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
924}
925
249c8b42
DM
926/**
927 * skb_queue_next - return the next packet in the queue
928 * @list: queue head
929 * @skb: current buffer
930 *
931 * Return the next packet in @list after @skb. It is only valid to
932 * call this if skb_queue_is_last() evaluates to false.
933 */
934static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
935 const struct sk_buff *skb)
936{
937 /* This BUG_ON may seem severe, but if we just return then we
938 * are going to dereference garbage.
939 */
940 BUG_ON(skb_queue_is_last(list, skb));
941 return skb->next;
942}
943
832d11c5
IJ
944/**
945 * skb_queue_prev - return the prev packet in the queue
946 * @list: queue head
947 * @skb: current buffer
948 *
949 * Return the prev packet in @list before @skb. It is only valid to
950 * call this if skb_queue_is_first() evaluates to false.
951 */
952static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
953 const struct sk_buff *skb)
954{
955 /* This BUG_ON may seem severe, but if we just return then we
956 * are going to dereference garbage.
957 */
958 BUG_ON(skb_queue_is_first(list, skb));
959 return skb->prev;
960}
961
1da177e4
LT
962/**
963 * skb_get - reference buffer
964 * @skb: buffer to reference
965 *
966 * Makes another reference to a socket buffer and returns a pointer
967 * to the buffer.
968 */
969static inline struct sk_buff *skb_get(struct sk_buff *skb)
970{
971 atomic_inc(&skb->users);
972 return skb;
973}
974
975/*
976 * If users == 1, we are the only owner and are can avoid redundant
977 * atomic change.
978 */
979
1da177e4
LT
980/**
981 * skb_cloned - is the buffer a clone
982 * @skb: buffer to check
983 *
984 * Returns true if the buffer was generated with skb_clone() and is
985 * one of multiple shared copies of the buffer. Cloned buffers are
986 * shared data so must not be written to under normal circumstances.
987 */
988static inline int skb_cloned(const struct sk_buff *skb)
989{
990 return skb->cloned &&
991 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
992}
993
14bbd6a5
PS
994static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
995{
996 might_sleep_if(pri & __GFP_WAIT);
997
998 if (skb_cloned(skb))
999 return pskb_expand_head(skb, 0, 0, pri);
1000
1001 return 0;
1002}
1003
1da177e4
LT
1004/**
1005 * skb_header_cloned - is the header a clone
1006 * @skb: buffer to check
1007 *
1008 * Returns true if modifying the header part of the buffer requires
1009 * the data to be copied.
1010 */
1011static inline int skb_header_cloned(const struct sk_buff *skb)
1012{
1013 int dataref;
1014
1015 if (!skb->cloned)
1016 return 0;
1017
1018 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1019 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1020 return dataref != 1;
1021}
1022
1023/**
1024 * skb_header_release - release reference to header
1025 * @skb: buffer to operate on
1026 *
1027 * Drop a reference to the header part of the buffer. This is done
1028 * by acquiring a payload reference. You must not read from the header
1029 * part of skb->data after this.
1030 */
1031static inline void skb_header_release(struct sk_buff *skb)
1032{
1033 BUG_ON(skb->nohdr);
1034 skb->nohdr = 1;
1035 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1036}
1037
1038/**
1039 * skb_shared - is the buffer shared
1040 * @skb: buffer to check
1041 *
1042 * Returns true if more than one person has a reference to this
1043 * buffer.
1044 */
1045static inline int skb_shared(const struct sk_buff *skb)
1046{
1047 return atomic_read(&skb->users) != 1;
1048}
1049
1050/**
1051 * skb_share_check - check if buffer is shared and if so clone it
1052 * @skb: buffer to check
1053 * @pri: priority for memory allocation
1054 *
1055 * If the buffer is shared the buffer is cloned and the old copy
1056 * drops a reference. A new clone with a single reference is returned.
1057 * If the buffer is not shared the original buffer is returned. When
1058 * being called from interrupt status or with spinlocks held pri must
1059 * be GFP_ATOMIC.
1060 *
1061 * NULL is returned on a memory allocation failure.
1062 */
47061bc4 1063static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4
LT
1064{
1065 might_sleep_if(pri & __GFP_WAIT);
1066 if (skb_shared(skb)) {
1067 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1068
1069 if (likely(nskb))
1070 consume_skb(skb);
1071 else
1072 kfree_skb(skb);
1da177e4
LT
1073 skb = nskb;
1074 }
1075 return skb;
1076}
1077
1078/*
1079 * Copy shared buffers into a new sk_buff. We effectively do COW on
1080 * packets to handle cases where we have a local reader and forward
1081 * and a couple of other messy ones. The normal one is tcpdumping
1082 * a packet thats being forwarded.
1083 */
1084
1085/**
1086 * skb_unshare - make a copy of a shared buffer
1087 * @skb: buffer to check
1088 * @pri: priority for memory allocation
1089 *
1090 * If the socket buffer is a clone then this function creates a new
1091 * copy of the data, drops a reference count on the old copy and returns
1092 * the new copy with the reference count at 1. If the buffer is not a clone
1093 * the original buffer is returned. When called with a spinlock held or
1094 * from interrupt state @pri must be %GFP_ATOMIC
1095 *
1096 * %NULL is returned on a memory allocation failure.
1097 */
e2bf521d 1098static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1099 gfp_t pri)
1da177e4
LT
1100{
1101 might_sleep_if(pri & __GFP_WAIT);
1102 if (skb_cloned(skb)) {
1103 struct sk_buff *nskb = skb_copy(skb, pri);
1104 kfree_skb(skb); /* Free our shared copy */
1105 skb = nskb;
1106 }
1107 return skb;
1108}
1109
1110/**
1a5778aa 1111 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1112 * @list_: list to peek at
1113 *
1114 * Peek an &sk_buff. Unlike most other operations you _MUST_
1115 * be careful with this one. A peek leaves the buffer on the
1116 * list and someone else may run off with it. You must hold
1117 * the appropriate locks or have a private queue to do this.
1118 *
1119 * Returns %NULL for an empty list or a pointer to the head element.
1120 * The reference count is not incremented and the reference is therefore
1121 * volatile. Use with caution.
1122 */
05bdd2f1 1123static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1124{
18d07000
ED
1125 struct sk_buff *skb = list_->next;
1126
1127 if (skb == (struct sk_buff *)list_)
1128 skb = NULL;
1129 return skb;
1da177e4
LT
1130}
1131
da5ef6e5
PE
1132/**
1133 * skb_peek_next - peek skb following the given one from a queue
1134 * @skb: skb to start from
1135 * @list_: list to peek at
1136 *
1137 * Returns %NULL when the end of the list is met or a pointer to the
1138 * next element. The reference count is not incremented and the
1139 * reference is therefore volatile. Use with caution.
1140 */
1141static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1142 const struct sk_buff_head *list_)
1143{
1144 struct sk_buff *next = skb->next;
18d07000 1145
da5ef6e5
PE
1146 if (next == (struct sk_buff *)list_)
1147 next = NULL;
1148 return next;
1149}
1150
1da177e4 1151/**
1a5778aa 1152 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1153 * @list_: list to peek at
1154 *
1155 * Peek an &sk_buff. Unlike most other operations you _MUST_
1156 * be careful with this one. A peek leaves the buffer on the
1157 * list and someone else may run off with it. You must hold
1158 * the appropriate locks or have a private queue to do this.
1159 *
1160 * Returns %NULL for an empty list or a pointer to the tail element.
1161 * The reference count is not incremented and the reference is therefore
1162 * volatile. Use with caution.
1163 */
05bdd2f1 1164static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1165{
18d07000
ED
1166 struct sk_buff *skb = list_->prev;
1167
1168 if (skb == (struct sk_buff *)list_)
1169 skb = NULL;
1170 return skb;
1171
1da177e4
LT
1172}
1173
1174/**
1175 * skb_queue_len - get queue length
1176 * @list_: list to measure
1177 *
1178 * Return the length of an &sk_buff queue.
1179 */
1180static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1181{
1182 return list_->qlen;
1183}
1184
67fed459
DM
1185/**
1186 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1187 * @list: queue to initialize
1188 *
1189 * This initializes only the list and queue length aspects of
1190 * an sk_buff_head object. This allows to initialize the list
1191 * aspects of an sk_buff_head without reinitializing things like
1192 * the spinlock. It can also be used for on-stack sk_buff_head
1193 * objects where the spinlock is known to not be used.
1194 */
1195static inline void __skb_queue_head_init(struct sk_buff_head *list)
1196{
1197 list->prev = list->next = (struct sk_buff *)list;
1198 list->qlen = 0;
1199}
1200
76f10ad0
AV
1201/*
1202 * This function creates a split out lock class for each invocation;
1203 * this is needed for now since a whole lot of users of the skb-queue
1204 * infrastructure in drivers have different locking usage (in hardirq)
1205 * than the networking core (in softirq only). In the long run either the
1206 * network layer or drivers should need annotation to consolidate the
1207 * main types of usage into 3 classes.
1208 */
1da177e4
LT
1209static inline void skb_queue_head_init(struct sk_buff_head *list)
1210{
1211 spin_lock_init(&list->lock);
67fed459 1212 __skb_queue_head_init(list);
1da177e4
LT
1213}
1214
c2ecba71
PE
1215static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1216 struct lock_class_key *class)
1217{
1218 skb_queue_head_init(list);
1219 lockdep_set_class(&list->lock, class);
1220}
1221
1da177e4 1222/*
bf299275 1223 * Insert an sk_buff on a list.
1da177e4
LT
1224 *
1225 * The "__skb_xxxx()" functions are the non-atomic ones that
1226 * can only be called with interrupts disabled.
1227 */
7965bd4d
JP
1228void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1229 struct sk_buff_head *list);
bf299275
GR
1230static inline void __skb_insert(struct sk_buff *newsk,
1231 struct sk_buff *prev, struct sk_buff *next,
1232 struct sk_buff_head *list)
1233{
1234 newsk->next = next;
1235 newsk->prev = prev;
1236 next->prev = prev->next = newsk;
1237 list->qlen++;
1238}
1da177e4 1239
67fed459
DM
1240static inline void __skb_queue_splice(const struct sk_buff_head *list,
1241 struct sk_buff *prev,
1242 struct sk_buff *next)
1243{
1244 struct sk_buff *first = list->next;
1245 struct sk_buff *last = list->prev;
1246
1247 first->prev = prev;
1248 prev->next = first;
1249
1250 last->next = next;
1251 next->prev = last;
1252}
1253
1254/**
1255 * skb_queue_splice - join two skb lists, this is designed for stacks
1256 * @list: the new list to add
1257 * @head: the place to add it in the first list
1258 */
1259static inline void skb_queue_splice(const struct sk_buff_head *list,
1260 struct sk_buff_head *head)
1261{
1262 if (!skb_queue_empty(list)) {
1263 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1264 head->qlen += list->qlen;
67fed459
DM
1265 }
1266}
1267
1268/**
d9619496 1269 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1270 * @list: the new list to add
1271 * @head: the place to add it in the first list
1272 *
1273 * The list at @list is reinitialised
1274 */
1275static inline void skb_queue_splice_init(struct sk_buff_head *list,
1276 struct sk_buff_head *head)
1277{
1278 if (!skb_queue_empty(list)) {
1279 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1280 head->qlen += list->qlen;
67fed459
DM
1281 __skb_queue_head_init(list);
1282 }
1283}
1284
1285/**
1286 * skb_queue_splice_tail - join two skb lists, each list being a queue
1287 * @list: the new list to add
1288 * @head: the place to add it in the first list
1289 */
1290static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1291 struct sk_buff_head *head)
1292{
1293 if (!skb_queue_empty(list)) {
1294 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1295 head->qlen += list->qlen;
67fed459
DM
1296 }
1297}
1298
1299/**
d9619496 1300 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1301 * @list: the new list to add
1302 * @head: the place to add it in the first list
1303 *
1304 * Each of the lists is a queue.
1305 * The list at @list is reinitialised
1306 */
1307static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1308 struct sk_buff_head *head)
1309{
1310 if (!skb_queue_empty(list)) {
1311 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1312 head->qlen += list->qlen;
67fed459
DM
1313 __skb_queue_head_init(list);
1314 }
1315}
1316
1da177e4 1317/**
300ce174 1318 * __skb_queue_after - queue a buffer at the list head
1da177e4 1319 * @list: list to use
300ce174 1320 * @prev: place after this buffer
1da177e4
LT
1321 * @newsk: buffer to queue
1322 *
300ce174 1323 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1324 * and you must therefore hold required locks before calling it.
1325 *
1326 * A buffer cannot be placed on two lists at the same time.
1327 */
300ce174
SH
1328static inline void __skb_queue_after(struct sk_buff_head *list,
1329 struct sk_buff *prev,
1330 struct sk_buff *newsk)
1da177e4 1331{
bf299275 1332 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1333}
1334
7965bd4d
JP
1335void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1336 struct sk_buff_head *list);
7de6c033 1337
f5572855
GR
1338static inline void __skb_queue_before(struct sk_buff_head *list,
1339 struct sk_buff *next,
1340 struct sk_buff *newsk)
1341{
1342 __skb_insert(newsk, next->prev, next, list);
1343}
1344
300ce174
SH
1345/**
1346 * __skb_queue_head - queue a buffer at the list head
1347 * @list: list to use
1348 * @newsk: buffer to queue
1349 *
1350 * Queue a buffer at the start of a list. This function takes no locks
1351 * and you must therefore hold required locks before calling it.
1352 *
1353 * A buffer cannot be placed on two lists at the same time.
1354 */
7965bd4d 1355void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1356static inline void __skb_queue_head(struct sk_buff_head *list,
1357 struct sk_buff *newsk)
1358{
1359 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1360}
1361
1da177e4
LT
1362/**
1363 * __skb_queue_tail - queue a buffer at the list tail
1364 * @list: list to use
1365 * @newsk: buffer to queue
1366 *
1367 * Queue a buffer at the end of a list. This function takes no locks
1368 * and you must therefore hold required locks before calling it.
1369 *
1370 * A buffer cannot be placed on two lists at the same time.
1371 */
7965bd4d 1372void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1373static inline void __skb_queue_tail(struct sk_buff_head *list,
1374 struct sk_buff *newsk)
1375{
f5572855 1376 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1377}
1378
1da177e4
LT
1379/*
1380 * remove sk_buff from list. _Must_ be called atomically, and with
1381 * the list known..
1382 */
7965bd4d 1383void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1384static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1385{
1386 struct sk_buff *next, *prev;
1387
1388 list->qlen--;
1389 next = skb->next;
1390 prev = skb->prev;
1391 skb->next = skb->prev = NULL;
1da177e4
LT
1392 next->prev = prev;
1393 prev->next = next;
1394}
1395
f525c06d
GR
1396/**
1397 * __skb_dequeue - remove from the head of the queue
1398 * @list: list to dequeue from
1399 *
1400 * Remove the head of the list. This function does not take any locks
1401 * so must be used with appropriate locks held only. The head item is
1402 * returned or %NULL if the list is empty.
1403 */
7965bd4d 1404struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1405static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1406{
1407 struct sk_buff *skb = skb_peek(list);
1408 if (skb)
1409 __skb_unlink(skb, list);
1410 return skb;
1411}
1da177e4
LT
1412
1413/**
1414 * __skb_dequeue_tail - remove from the tail of the queue
1415 * @list: list to dequeue from
1416 *
1417 * Remove the tail of the list. This function does not take any locks
1418 * so must be used with appropriate locks held only. The tail item is
1419 * returned or %NULL if the list is empty.
1420 */
7965bd4d 1421struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1422static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1423{
1424 struct sk_buff *skb = skb_peek_tail(list);
1425 if (skb)
1426 __skb_unlink(skb, list);
1427 return skb;
1428}
1429
1430
bdcc0924 1431static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1432{
1433 return skb->data_len;
1434}
1435
1436static inline unsigned int skb_headlen(const struct sk_buff *skb)
1437{
1438 return skb->len - skb->data_len;
1439}
1440
1441static inline int skb_pagelen(const struct sk_buff *skb)
1442{
1443 int i, len = 0;
1444
1445 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
9e903e08 1446 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1da177e4
LT
1447 return len + skb_headlen(skb);
1448}
1449
131ea667
IC
1450/**
1451 * __skb_fill_page_desc - initialise a paged fragment in an skb
1452 * @skb: buffer containing fragment to be initialised
1453 * @i: paged fragment index to initialise
1454 * @page: the page to use for this fragment
1455 * @off: the offset to the data with @page
1456 * @size: the length of the data
1457 *
1458 * Initialises the @i'th fragment of @skb to point to &size bytes at
1459 * offset @off within @page.
1460 *
1461 * Does not take any additional reference on the fragment.
1462 */
1463static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1464 struct page *page, int off, int size)
1da177e4
LT
1465{
1466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1467
c48a11c7
MG
1468 /*
1469 * Propagate page->pfmemalloc to the skb if we can. The problem is
1470 * that not all callers have unique ownership of the page. If
1471 * pfmemalloc is set, we check the mapping as a mapping implies
1472 * page->index is set (index and pfmemalloc share space).
1473 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1474 * do not lose pfmemalloc information as the pages would not be
1475 * allocated using __GFP_MEMALLOC.
1476 */
a8605c60 1477 frag->page.p = page;
1da177e4 1478 frag->page_offset = off;
9e903e08 1479 skb_frag_size_set(frag, size);
cca7af38
PE
1480
1481 page = compound_head(page);
1482 if (page->pfmemalloc && !page->mapping)
1483 skb->pfmemalloc = true;
131ea667
IC
1484}
1485
1486/**
1487 * skb_fill_page_desc - initialise a paged fragment in an skb
1488 * @skb: buffer containing fragment to be initialised
1489 * @i: paged fragment index to initialise
1490 * @page: the page to use for this fragment
1491 * @off: the offset to the data with @page
1492 * @size: the length of the data
1493 *
1494 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1495 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1496 * addition updates @skb such that @i is the last fragment.
1497 *
1498 * Does not take any additional reference on the fragment.
1499 */
1500static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1501 struct page *page, int off, int size)
1502{
1503 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1504 skb_shinfo(skb)->nr_frags = i + 1;
1505}
1506
7965bd4d
JP
1507void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1508 int size, unsigned int truesize);
654bed16 1509
f8e617e1
JW
1510void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1511 unsigned int truesize);
1512
1da177e4 1513#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1514#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1515#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1516
27a884dc
ACM
1517#ifdef NET_SKBUFF_DATA_USES_OFFSET
1518static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1519{
1520 return skb->head + skb->tail;
1521}
1522
1523static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1524{
1525 skb->tail = skb->data - skb->head;
1526}
1527
1528static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1529{
1530 skb_reset_tail_pointer(skb);
1531 skb->tail += offset;
1532}
7cc46190 1533
27a884dc
ACM
1534#else /* NET_SKBUFF_DATA_USES_OFFSET */
1535static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1536{
1537 return skb->tail;
1538}
1539
1540static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1541{
1542 skb->tail = skb->data;
1543}
1544
1545static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1546{
1547 skb->tail = skb->data + offset;
1548}
4305b541 1549
27a884dc
ACM
1550#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1551
1da177e4
LT
1552/*
1553 * Add data to an sk_buff
1554 */
0c7ddf36 1555unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
7965bd4d 1556unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1557static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1558{
27a884dc 1559 unsigned char *tmp = skb_tail_pointer(skb);
1da177e4
LT
1560 SKB_LINEAR_ASSERT(skb);
1561 skb->tail += len;
1562 skb->len += len;
1563 return tmp;
1564}
1565
7965bd4d 1566unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1567static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1568{
1569 skb->data -= len;
1570 skb->len += len;
1571 return skb->data;
1572}
1573
7965bd4d 1574unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1575static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1576{
1577 skb->len -= len;
1578 BUG_ON(skb->len < skb->data_len);
1579 return skb->data += len;
1580}
1581
47d29646
DM
1582static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1583{
1584 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1585}
1586
7965bd4d 1587unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4
LT
1588
1589static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1590{
1591 if (len > skb_headlen(skb) &&
987c402a 1592 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
1593 return NULL;
1594 skb->len -= len;
1595 return skb->data += len;
1596}
1597
1598static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1599{
1600 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1601}
1602
1603static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1604{
1605 if (likely(len <= skb_headlen(skb)))
1606 return 1;
1607 if (unlikely(len > skb->len))
1608 return 0;
987c402a 1609 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
1610}
1611
1612/**
1613 * skb_headroom - bytes at buffer head
1614 * @skb: buffer to check
1615 *
1616 * Return the number of bytes of free space at the head of an &sk_buff.
1617 */
c2636b4d 1618static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
1619{
1620 return skb->data - skb->head;
1621}
1622
1623/**
1624 * skb_tailroom - bytes at buffer end
1625 * @skb: buffer to check
1626 *
1627 * Return the number of bytes of free space at the tail of an sk_buff
1628 */
1629static inline int skb_tailroom(const struct sk_buff *skb)
1630{
4305b541 1631 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
1632}
1633
a21d4572
ED
1634/**
1635 * skb_availroom - bytes at buffer end
1636 * @skb: buffer to check
1637 *
1638 * Return the number of bytes of free space at the tail of an sk_buff
1639 * allocated by sk_stream_alloc()
1640 */
1641static inline int skb_availroom(const struct sk_buff *skb)
1642{
16fad69c
ED
1643 if (skb_is_nonlinear(skb))
1644 return 0;
1645
1646 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
1647}
1648
1da177e4
LT
1649/**
1650 * skb_reserve - adjust headroom
1651 * @skb: buffer to alter
1652 * @len: bytes to move
1653 *
1654 * Increase the headroom of an empty &sk_buff by reducing the tail
1655 * room. This is only allowed for an empty buffer.
1656 */
8243126c 1657static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
1658{
1659 skb->data += len;
1660 skb->tail += len;
1661}
1662
6a674e9c
JG
1663static inline void skb_reset_inner_headers(struct sk_buff *skb)
1664{
aefbd2b3 1665 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
1666 skb->inner_network_header = skb->network_header;
1667 skb->inner_transport_header = skb->transport_header;
1668}
1669
0b5c9db1
JP
1670static inline void skb_reset_mac_len(struct sk_buff *skb)
1671{
1672 skb->mac_len = skb->network_header - skb->mac_header;
1673}
1674
6a674e9c
JG
1675static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1676 *skb)
1677{
1678 return skb->head + skb->inner_transport_header;
1679}
1680
1681static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1682{
1683 skb->inner_transport_header = skb->data - skb->head;
1684}
1685
1686static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1687 const int offset)
1688{
1689 skb_reset_inner_transport_header(skb);
1690 skb->inner_transport_header += offset;
1691}
1692
1693static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1694{
1695 return skb->head + skb->inner_network_header;
1696}
1697
1698static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1699{
1700 skb->inner_network_header = skb->data - skb->head;
1701}
1702
1703static inline void skb_set_inner_network_header(struct sk_buff *skb,
1704 const int offset)
1705{
1706 skb_reset_inner_network_header(skb);
1707 skb->inner_network_header += offset;
1708}
1709
aefbd2b3
PS
1710static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1711{
1712 return skb->head + skb->inner_mac_header;
1713}
1714
1715static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1716{
1717 skb->inner_mac_header = skb->data - skb->head;
1718}
1719
1720static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1721 const int offset)
1722{
1723 skb_reset_inner_mac_header(skb);
1724 skb->inner_mac_header += offset;
1725}
fda55eca
ED
1726static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1727{
35d04610 1728 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
1729}
1730
9c70220b
ACM
1731static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1732{
2e07fa9c 1733 return skb->head + skb->transport_header;
9c70220b
ACM
1734}
1735
badff6d0
ACM
1736static inline void skb_reset_transport_header(struct sk_buff *skb)
1737{
2e07fa9c 1738 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
1739}
1740
967b05f6
ACM
1741static inline void skb_set_transport_header(struct sk_buff *skb,
1742 const int offset)
1743{
2e07fa9c
ACM
1744 skb_reset_transport_header(skb);
1745 skb->transport_header += offset;
ea2ae17d
ACM
1746}
1747
d56f90a7
ACM
1748static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1749{
2e07fa9c 1750 return skb->head + skb->network_header;
d56f90a7
ACM
1751}
1752
c1d2bbe1
ACM
1753static inline void skb_reset_network_header(struct sk_buff *skb)
1754{
2e07fa9c 1755 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
1756}
1757
c14d2450
ACM
1758static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1759{
2e07fa9c
ACM
1760 skb_reset_network_header(skb);
1761 skb->network_header += offset;
c14d2450
ACM
1762}
1763
2e07fa9c 1764static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 1765{
2e07fa9c 1766 return skb->head + skb->mac_header;
bbe735e4
ACM
1767}
1768
2e07fa9c 1769static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 1770{
35d04610 1771 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
1772}
1773
1774static inline void skb_reset_mac_header(struct sk_buff *skb)
1775{
1776 skb->mac_header = skb->data - skb->head;
1777}
1778
1779static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1780{
1781 skb_reset_mac_header(skb);
1782 skb->mac_header += offset;
1783}
1784
0e3da5bb
TT
1785static inline void skb_pop_mac_header(struct sk_buff *skb)
1786{
1787 skb->mac_header = skb->network_header;
1788}
1789
fbbdb8f0
YX
1790static inline void skb_probe_transport_header(struct sk_buff *skb,
1791 const int offset_hint)
1792{
1793 struct flow_keys keys;
1794
1795 if (skb_transport_header_was_set(skb))
1796 return;
1797 else if (skb_flow_dissect(skb, &keys))
1798 skb_set_transport_header(skb, keys.thoff);
1799 else
1800 skb_set_transport_header(skb, offset_hint);
1801}
1802
03606895
ED
1803static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1804{
1805 if (skb_mac_header_was_set(skb)) {
1806 const unsigned char *old_mac = skb_mac_header(skb);
1807
1808 skb_set_mac_header(skb, -skb->mac_len);
1809 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1810 }
1811}
1812
04fb451e
MM
1813static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1814{
1815 return skb->csum_start - skb_headroom(skb);
1816}
1817
2e07fa9c
ACM
1818static inline int skb_transport_offset(const struct sk_buff *skb)
1819{
1820 return skb_transport_header(skb) - skb->data;
1821}
1822
1823static inline u32 skb_network_header_len(const struct sk_buff *skb)
1824{
1825 return skb->transport_header - skb->network_header;
1826}
1827
6a674e9c
JG
1828static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1829{
1830 return skb->inner_transport_header - skb->inner_network_header;
1831}
1832
2e07fa9c
ACM
1833static inline int skb_network_offset(const struct sk_buff *skb)
1834{
1835 return skb_network_header(skb) - skb->data;
1836}
48d49d0c 1837
6a674e9c
JG
1838static inline int skb_inner_network_offset(const struct sk_buff *skb)
1839{
1840 return skb_inner_network_header(skb) - skb->data;
1841}
1842
f9599ce1
CG
1843static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1844{
1845 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1846}
1847
1da177e4
LT
1848/*
1849 * CPUs often take a performance hit when accessing unaligned memory
1850 * locations. The actual performance hit varies, it can be small if the
1851 * hardware handles it or large if we have to take an exception and fix it
1852 * in software.
1853 *
1854 * Since an ethernet header is 14 bytes network drivers often end up with
1855 * the IP header at an unaligned offset. The IP header can be aligned by
1856 * shifting the start of the packet by 2 bytes. Drivers should do this
1857 * with:
1858 *
8660c124 1859 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
1860 *
1861 * The downside to this alignment of the IP header is that the DMA is now
1862 * unaligned. On some architectures the cost of an unaligned DMA is high
1863 * and this cost outweighs the gains made by aligning the IP header.
8660c124 1864 *
1da177e4
LT
1865 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1866 * to be overridden.
1867 */
1868#ifndef NET_IP_ALIGN
1869#define NET_IP_ALIGN 2
1870#endif
1871
025be81e
AB
1872/*
1873 * The networking layer reserves some headroom in skb data (via
1874 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1875 * the header has to grow. In the default case, if the header has to grow
d6301d3d 1876 * 32 bytes or less we avoid the reallocation.
025be81e
AB
1877 *
1878 * Unfortunately this headroom changes the DMA alignment of the resulting
1879 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1880 * on some architectures. An architecture can override this value,
1881 * perhaps setting it to a cacheline in size (since that will maintain
1882 * cacheline alignment of the DMA). It must be a power of 2.
1883 *
d6301d3d 1884 * Various parts of the networking layer expect at least 32 bytes of
025be81e 1885 * headroom, you should not reduce this.
5933dd2f
ED
1886 *
1887 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1888 * to reduce average number of cache lines per packet.
1889 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 1890 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
1891 */
1892#ifndef NET_SKB_PAD
5933dd2f 1893#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
1894#endif
1895
7965bd4d 1896int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1897
1898static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1899{
c4264f27 1900 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
1901 WARN_ON(1);
1902 return;
1903 }
27a884dc
ACM
1904 skb->len = len;
1905 skb_set_tail_pointer(skb, len);
1da177e4
LT
1906}
1907
7965bd4d 1908void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1909
1910static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1911{
3cc0e873
HX
1912 if (skb->data_len)
1913 return ___pskb_trim(skb, len);
1914 __skb_trim(skb, len);
1915 return 0;
1da177e4
LT
1916}
1917
1918static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1919{
1920 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1921}
1922
e9fa4f7b
HX
1923/**
1924 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1925 * @skb: buffer to alter
1926 * @len: new length
1927 *
1928 * This is identical to pskb_trim except that the caller knows that
1929 * the skb is not cloned so we should never get an error due to out-
1930 * of-memory.
1931 */
1932static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1933{
1934 int err = pskb_trim(skb, len);
1935 BUG_ON(err);
1936}
1937
1da177e4
LT
1938/**
1939 * skb_orphan - orphan a buffer
1940 * @skb: buffer to orphan
1941 *
1942 * If a buffer currently has an owner then we call the owner's
1943 * destructor function and make the @skb unowned. The buffer continues
1944 * to exist but is no longer charged to its former owner.
1945 */
1946static inline void skb_orphan(struct sk_buff *skb)
1947{
c34a7612 1948 if (skb->destructor) {
1da177e4 1949 skb->destructor(skb);
c34a7612
ED
1950 skb->destructor = NULL;
1951 skb->sk = NULL;
376c7311
ED
1952 } else {
1953 BUG_ON(skb->sk);
c34a7612 1954 }
1da177e4
LT
1955}
1956
a353e0ce
MT
1957/**
1958 * skb_orphan_frags - orphan the frags contained in a buffer
1959 * @skb: buffer to orphan frags from
1960 * @gfp_mask: allocation mask for replacement pages
1961 *
1962 * For each frag in the SKB which needs a destructor (i.e. has an
1963 * owner) create a copy of that frag and release the original
1964 * page by calling the destructor.
1965 */
1966static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1967{
1968 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1969 return 0;
1970 return skb_copy_ubufs(skb, gfp_mask);
1971}
1972
1da177e4
LT
1973/**
1974 * __skb_queue_purge - empty a list
1975 * @list: list to empty
1976 *
1977 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1978 * the list and one reference dropped. This function does not take the
1979 * list lock and the caller must hold the relevant locks to use it.
1980 */
7965bd4d 1981void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
1982static inline void __skb_queue_purge(struct sk_buff_head *list)
1983{
1984 struct sk_buff *skb;
1985 while ((skb = __skb_dequeue(list)) != NULL)
1986 kfree_skb(skb);
1987}
1988
e5e67305
AD
1989#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
1990#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
1991#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
1992
7965bd4d 1993void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 1994
7965bd4d
JP
1995struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
1996 gfp_t gfp_mask);
8af27456
CH
1997
1998/**
1999 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2000 * @dev: network device to receive on
2001 * @length: length to allocate
2002 *
2003 * Allocate a new &sk_buff and assign it a usage count of one. The
2004 * buffer has unspecified headroom built in. Users should allocate
2005 * the headroom they think they need without accounting for the
2006 * built in space. The built in space is used for optimisations.
2007 *
2008 * %NULL is returned if there is no free memory. Although this function
2009 * allocates memory it can be called from an interrupt.
2010 */
2011static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2012 unsigned int length)
8af27456
CH
2013{
2014 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2015}
2016
6f532612
ED
2017/* legacy helper around __netdev_alloc_skb() */
2018static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2019 gfp_t gfp_mask)
2020{
2021 return __netdev_alloc_skb(NULL, length, gfp_mask);
2022}
2023
2024/* legacy helper around netdev_alloc_skb() */
2025static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2026{
2027 return netdev_alloc_skb(NULL, length);
2028}
2029
2030
4915a0de
ED
2031static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2032 unsigned int length, gfp_t gfp)
61321bbd 2033{
4915a0de 2034 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2035
2036 if (NET_IP_ALIGN && skb)
2037 skb_reserve(skb, NET_IP_ALIGN);
2038 return skb;
2039}
2040
4915a0de
ED
2041static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2042 unsigned int length)
2043{
2044 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2045}
2046
bc6fc9fa
FF
2047/**
2048 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
0614002b
MG
2049 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2050 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2051 * @order: size of the allocation
2052 *
2053 * Allocate a new page.
2054 *
2055 * %NULL is returned if there is no free memory.
2056*/
2057static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2058 struct sk_buff *skb,
2059 unsigned int order)
2060{
2061 struct page *page;
2062
2063 gfp_mask |= __GFP_COLD;
2064
2065 if (!(gfp_mask & __GFP_NOMEMALLOC))
2066 gfp_mask |= __GFP_MEMALLOC;
2067
2068 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2069 if (skb && page && page->pfmemalloc)
2070 skb->pfmemalloc = true;
2071
2072 return page;
2073}
2074
2075/**
2076 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2077 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2078 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2079 *
2080 * Allocate a new page.
2081 *
2082 * %NULL is returned if there is no free memory.
2083 */
2084static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2085 struct sk_buff *skb)
2086{
2087 return __skb_alloc_pages(gfp_mask, skb, 0);
2088}
2089
2090/**
2091 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2092 * @page: The page that was allocated from skb_alloc_page
2093 * @skb: The skb that may need pfmemalloc set
2094 */
2095static inline void skb_propagate_pfmemalloc(struct page *page,
2096 struct sk_buff *skb)
2097{
2098 if (page && page->pfmemalloc)
2099 skb->pfmemalloc = true;
2100}
2101
131ea667 2102/**
e227867f 2103 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2104 * @frag: the paged fragment
2105 *
2106 * Returns the &struct page associated with @frag.
2107 */
2108static inline struct page *skb_frag_page(const skb_frag_t *frag)
2109{
a8605c60 2110 return frag->page.p;
131ea667
IC
2111}
2112
2113/**
2114 * __skb_frag_ref - take an addition reference on a paged fragment.
2115 * @frag: the paged fragment
2116 *
2117 * Takes an additional reference on the paged fragment @frag.
2118 */
2119static inline void __skb_frag_ref(skb_frag_t *frag)
2120{
2121 get_page(skb_frag_page(frag));
2122}
2123
2124/**
2125 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2126 * @skb: the buffer
2127 * @f: the fragment offset.
2128 *
2129 * Takes an additional reference on the @f'th paged fragment of @skb.
2130 */
2131static inline void skb_frag_ref(struct sk_buff *skb, int f)
2132{
2133 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2134}
2135
2136/**
2137 * __skb_frag_unref - release a reference on a paged fragment.
2138 * @frag: the paged fragment
2139 *
2140 * Releases a reference on the paged fragment @frag.
2141 */
2142static inline void __skb_frag_unref(skb_frag_t *frag)
2143{
2144 put_page(skb_frag_page(frag));
2145}
2146
2147/**
2148 * skb_frag_unref - release a reference on a paged fragment of an skb.
2149 * @skb: the buffer
2150 * @f: the fragment offset
2151 *
2152 * Releases a reference on the @f'th paged fragment of @skb.
2153 */
2154static inline void skb_frag_unref(struct sk_buff *skb, int f)
2155{
2156 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2157}
2158
2159/**
2160 * skb_frag_address - gets the address of the data contained in a paged fragment
2161 * @frag: the paged fragment buffer
2162 *
2163 * Returns the address of the data within @frag. The page must already
2164 * be mapped.
2165 */
2166static inline void *skb_frag_address(const skb_frag_t *frag)
2167{
2168 return page_address(skb_frag_page(frag)) + frag->page_offset;
2169}
2170
2171/**
2172 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2173 * @frag: the paged fragment buffer
2174 *
2175 * Returns the address of the data within @frag. Checks that the page
2176 * is mapped and returns %NULL otherwise.
2177 */
2178static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2179{
2180 void *ptr = page_address(skb_frag_page(frag));
2181 if (unlikely(!ptr))
2182 return NULL;
2183
2184 return ptr + frag->page_offset;
2185}
2186
2187/**
2188 * __skb_frag_set_page - sets the page contained in a paged fragment
2189 * @frag: the paged fragment
2190 * @page: the page to set
2191 *
2192 * Sets the fragment @frag to contain @page.
2193 */
2194static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2195{
a8605c60 2196 frag->page.p = page;
131ea667
IC
2197}
2198
2199/**
2200 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2201 * @skb: the buffer
2202 * @f: the fragment offset
2203 * @page: the page to set
2204 *
2205 * Sets the @f'th fragment of @skb to contain @page.
2206 */
2207static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2208 struct page *page)
2209{
2210 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2211}
2212
400dfd3a
ED
2213bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2214
131ea667
IC
2215/**
2216 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2217 * @dev: the device to map the fragment to
131ea667
IC
2218 * @frag: the paged fragment to map
2219 * @offset: the offset within the fragment (starting at the
2220 * fragment's own offset)
2221 * @size: the number of bytes to map
f83347df 2222 * @dir: the direction of the mapping (%PCI_DMA_*)
131ea667
IC
2223 *
2224 * Maps the page associated with @frag to @device.
2225 */
2226static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2227 const skb_frag_t *frag,
2228 size_t offset, size_t size,
2229 enum dma_data_direction dir)
2230{
2231 return dma_map_page(dev, skb_frag_page(frag),
2232 frag->page_offset + offset, size, dir);
2233}
2234
117632e6
ED
2235static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2236 gfp_t gfp_mask)
2237{
2238 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2239}
2240
334a8132
PM
2241/**
2242 * skb_clone_writable - is the header of a clone writable
2243 * @skb: buffer to check
2244 * @len: length up to which to write
2245 *
2246 * Returns true if modifying the header part of the cloned buffer
2247 * does not requires the data to be copied.
2248 */
05bdd2f1 2249static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2250{
2251 return !skb_header_cloned(skb) &&
2252 skb_headroom(skb) + len <= skb->hdr_len;
2253}
2254
d9cc2048
HX
2255static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2256 int cloned)
2257{
2258 int delta = 0;
2259
d9cc2048
HX
2260 if (headroom > skb_headroom(skb))
2261 delta = headroom - skb_headroom(skb);
2262
2263 if (delta || cloned)
2264 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2265 GFP_ATOMIC);
2266 return 0;
2267}
2268
1da177e4
LT
2269/**
2270 * skb_cow - copy header of skb when it is required
2271 * @skb: buffer to cow
2272 * @headroom: needed headroom
2273 *
2274 * If the skb passed lacks sufficient headroom or its data part
2275 * is shared, data is reallocated. If reallocation fails, an error
2276 * is returned and original skb is not changed.
2277 *
2278 * The result is skb with writable area skb->head...skb->tail
2279 * and at least @headroom of space at head.
2280 */
2281static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2282{
d9cc2048
HX
2283 return __skb_cow(skb, headroom, skb_cloned(skb));
2284}
1da177e4 2285
d9cc2048
HX
2286/**
2287 * skb_cow_head - skb_cow but only making the head writable
2288 * @skb: buffer to cow
2289 * @headroom: needed headroom
2290 *
2291 * This function is identical to skb_cow except that we replace the
2292 * skb_cloned check by skb_header_cloned. It should be used when
2293 * you only need to push on some header and do not need to modify
2294 * the data.
2295 */
2296static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2297{
2298 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2299}
2300
2301/**
2302 * skb_padto - pad an skbuff up to a minimal size
2303 * @skb: buffer to pad
2304 * @len: minimal length
2305 *
2306 * Pads up a buffer to ensure the trailing bytes exist and are
2307 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2308 * is untouched. Otherwise it is extended. Returns zero on
2309 * success. The skb is freed on error.
1da177e4
LT
2310 */
2311
5b057c6b 2312static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2313{
2314 unsigned int size = skb->len;
2315 if (likely(size >= len))
5b057c6b 2316 return 0;
987c402a 2317 return skb_pad(skb, len - size);
1da177e4
LT
2318}
2319
2320static inline int skb_add_data(struct sk_buff *skb,
2321 char __user *from, int copy)
2322{
2323 const int off = skb->len;
2324
2325 if (skb->ip_summed == CHECKSUM_NONE) {
2326 int err = 0;
5084205f 2327 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1da177e4
LT
2328 copy, 0, &err);
2329 if (!err) {
2330 skb->csum = csum_block_add(skb->csum, csum, off);
2331 return 0;
2332 }
2333 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2334 return 0;
2335
2336 __skb_trim(skb, off);
2337 return -EFAULT;
2338}
2339
38ba0a65
ED
2340static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2341 const struct page *page, int off)
1da177e4
LT
2342{
2343 if (i) {
9e903e08 2344 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 2345
ea2ab693 2346 return page == skb_frag_page(frag) &&
9e903e08 2347 off == frag->page_offset + skb_frag_size(frag);
1da177e4 2348 }
38ba0a65 2349 return false;
1da177e4
LT
2350}
2351
364c6bad
HX
2352static inline int __skb_linearize(struct sk_buff *skb)
2353{
2354 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2355}
2356
1da177e4
LT
2357/**
2358 * skb_linearize - convert paged skb to linear one
2359 * @skb: buffer to linarize
1da177e4
LT
2360 *
2361 * If there is no free memory -ENOMEM is returned, otherwise zero
2362 * is returned and the old skb data released.
2363 */
364c6bad
HX
2364static inline int skb_linearize(struct sk_buff *skb)
2365{
2366 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2367}
2368
cef401de
ED
2369/**
2370 * skb_has_shared_frag - can any frag be overwritten
2371 * @skb: buffer to test
2372 *
2373 * Return true if the skb has at least one frag that might be modified
2374 * by an external entity (as in vmsplice()/sendfile())
2375 */
2376static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2377{
c9af6db4
PS
2378 return skb_is_nonlinear(skb) &&
2379 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
2380}
2381
364c6bad
HX
2382/**
2383 * skb_linearize_cow - make sure skb is linear and writable
2384 * @skb: buffer to process
2385 *
2386 * If there is no free memory -ENOMEM is returned, otherwise zero
2387 * is returned and the old skb data released.
2388 */
2389static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 2390{
364c6bad
HX
2391 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2392 __skb_linearize(skb) : 0;
1da177e4
LT
2393}
2394
2395/**
2396 * skb_postpull_rcsum - update checksum for received skb after pull
2397 * @skb: buffer to update
2398 * @start: start of data before pull
2399 * @len: length of data pulled
2400 *
2401 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
2402 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2403 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4
LT
2404 */
2405
2406static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 2407 const void *start, unsigned int len)
1da177e4 2408{
84fa7933 2409 if (skb->ip_summed == CHECKSUM_COMPLETE)
1da177e4
LT
2410 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2411}
2412
cbb042f9
HX
2413unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2414
7ce5a27f
DM
2415/**
2416 * pskb_trim_rcsum - trim received skb and update checksum
2417 * @skb: buffer to trim
2418 * @len: new length
2419 *
2420 * This is exactly the same as pskb_trim except that it ensures the
2421 * checksum of received packets are still valid after the operation.
2422 */
2423
2424static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2425{
2426 if (likely(len >= skb->len))
2427 return 0;
2428 if (skb->ip_summed == CHECKSUM_COMPLETE)
2429 skb->ip_summed = CHECKSUM_NONE;
2430 return __pskb_trim(skb, len);
2431}
2432
1da177e4
LT
2433#define skb_queue_walk(queue, skb) \
2434 for (skb = (queue)->next; \
a1e4891f 2435 skb != (struct sk_buff *)(queue); \
1da177e4
LT
2436 skb = skb->next)
2437
46f8914e
JC
2438#define skb_queue_walk_safe(queue, skb, tmp) \
2439 for (skb = (queue)->next, tmp = skb->next; \
2440 skb != (struct sk_buff *)(queue); \
2441 skb = tmp, tmp = skb->next)
2442
1164f52a 2443#define skb_queue_walk_from(queue, skb) \
a1e4891f 2444 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
2445 skb = skb->next)
2446
2447#define skb_queue_walk_from_safe(queue, skb, tmp) \
2448 for (tmp = skb->next; \
2449 skb != (struct sk_buff *)(queue); \
2450 skb = tmp, tmp = skb->next)
2451
300ce174
SH
2452#define skb_queue_reverse_walk(queue, skb) \
2453 for (skb = (queue)->prev; \
a1e4891f 2454 skb != (struct sk_buff *)(queue); \
300ce174
SH
2455 skb = skb->prev)
2456
686a2955
DM
2457#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2458 for (skb = (queue)->prev, tmp = skb->prev; \
2459 skb != (struct sk_buff *)(queue); \
2460 skb = tmp, tmp = skb->prev)
2461
2462#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2463 for (tmp = skb->prev; \
2464 skb != (struct sk_buff *)(queue); \
2465 skb = tmp, tmp = skb->prev)
1da177e4 2466
21dc3301 2467static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
2468{
2469 return skb_shinfo(skb)->frag_list != NULL;
2470}
2471
2472static inline void skb_frag_list_init(struct sk_buff *skb)
2473{
2474 skb_shinfo(skb)->frag_list = NULL;
2475}
2476
2477static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2478{
2479 frag->next = skb_shinfo(skb)->frag_list;
2480 skb_shinfo(skb)->frag_list = frag;
2481}
2482
2483#define skb_walk_frags(skb, iter) \
2484 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2485
7965bd4d
JP
2486struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2487 int *peeked, int *off, int *err);
2488struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2489 int *err);
2490unsigned int datagram_poll(struct file *file, struct socket *sock,
2491 struct poll_table_struct *wait);
2492int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
2493 struct iovec *to, int size);
2494int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
2495 struct iovec *iov);
2496int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
2497 const struct iovec *from, int from_offset,
2498 int len);
2499int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
2500 int offset, size_t count);
2501int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
2502 const struct iovec *to, int to_offset,
2503 int size);
2504void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2505void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2506int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
2507int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2508int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2509__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2510 int len, __wsum csum);
2511int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2512 struct pipe_inode_info *pipe, unsigned int len,
2513 unsigned int flags);
2514void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 2515unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
2516int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2517 int len, int hlen);
7965bd4d
JP
2518void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2519int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2520void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 2521unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
7965bd4d 2522struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
20380731 2523
2817a336
DB
2524struct skb_checksum_ops {
2525 __wsum (*update)(const void *mem, int len, __wsum wsum);
2526 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2527};
2528
2529__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2530 __wsum csum, const struct skb_checksum_ops *ops);
2531__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2532 __wsum csum);
2533
1da177e4
LT
2534static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2535 int len, void *buffer)
2536{
2537 int hlen = skb_headlen(skb);
2538
55820ee2 2539 if (hlen - offset >= len)
1da177e4
LT
2540 return skb->data + offset;
2541
2542 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2543 return NULL;
2544
2545 return buffer;
2546}
2547
4262e5cc
DB
2548/**
2549 * skb_needs_linearize - check if we need to linearize a given skb
2550 * depending on the given device features.
2551 * @skb: socket buffer to check
2552 * @features: net device features
2553 *
2554 * Returns true if either:
2555 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2556 * 2. skb is fragmented and the device does not support SG.
2557 */
2558static inline bool skb_needs_linearize(struct sk_buff *skb,
2559 netdev_features_t features)
2560{
2561 return skb_is_nonlinear(skb) &&
2562 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2563 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2564}
2565
d626f62b
ACM
2566static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2567 void *to,
2568 const unsigned int len)
2569{
2570 memcpy(to, skb->data, len);
2571}
2572
2573static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2574 const int offset, void *to,
2575 const unsigned int len)
2576{
2577 memcpy(to, skb->data + offset, len);
2578}
2579
27d7ff46
ACM
2580static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2581 const void *from,
2582 const unsigned int len)
2583{
2584 memcpy(skb->data, from, len);
2585}
2586
2587static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2588 const int offset,
2589 const void *from,
2590 const unsigned int len)
2591{
2592 memcpy(skb->data + offset, from, len);
2593}
2594
7965bd4d 2595void skb_init(void);
1da177e4 2596
ac45f602
PO
2597static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2598{
2599 return skb->tstamp;
2600}
2601
a61bbcf2
PM
2602/**
2603 * skb_get_timestamp - get timestamp from a skb
2604 * @skb: skb to get stamp from
2605 * @stamp: pointer to struct timeval to store stamp in
2606 *
2607 * Timestamps are stored in the skb as offsets to a base timestamp.
2608 * This function converts the offset back to a struct timeval and stores
2609 * it in stamp.
2610 */
ac45f602
PO
2611static inline void skb_get_timestamp(const struct sk_buff *skb,
2612 struct timeval *stamp)
a61bbcf2 2613{
b7aa0bf7 2614 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
2615}
2616
ac45f602
PO
2617static inline void skb_get_timestampns(const struct sk_buff *skb,
2618 struct timespec *stamp)
2619{
2620 *stamp = ktime_to_timespec(skb->tstamp);
2621}
2622
b7aa0bf7 2623static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 2624{
b7aa0bf7 2625 skb->tstamp = ktime_get_real();
a61bbcf2
PM
2626}
2627
164891aa
SH
2628static inline ktime_t net_timedelta(ktime_t t)
2629{
2630 return ktime_sub(ktime_get_real(), t);
2631}
2632
b9ce204f
IJ
2633static inline ktime_t net_invalid_timestamp(void)
2634{
2635 return ktime_set(0, 0);
2636}
a61bbcf2 2637
c1f19b51
RC
2638#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2639
7965bd4d
JP
2640void skb_clone_tx_timestamp(struct sk_buff *skb);
2641bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
2642
2643#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2644
2645static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2646{
2647}
2648
2649static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2650{
2651 return false;
2652}
2653
2654#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2655
2656/**
2657 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2658 *
da92b194
RC
2659 * PHY drivers may accept clones of transmitted packets for
2660 * timestamping via their phy_driver.txtstamp method. These drivers
2661 * must call this function to return the skb back to the stack, with
2662 * or without a timestamp.
2663 *
c1f19b51 2664 * @skb: clone of the the original outgoing packet
da92b194 2665 * @hwtstamps: hardware time stamps, may be NULL if not available
c1f19b51
RC
2666 *
2667 */
2668void skb_complete_tx_timestamp(struct sk_buff *skb,
2669 struct skb_shared_hwtstamps *hwtstamps);
2670
ac45f602
PO
2671/**
2672 * skb_tstamp_tx - queue clone of skb with send time stamps
2673 * @orig_skb: the original outgoing packet
2674 * @hwtstamps: hardware time stamps, may be NULL if not available
2675 *
2676 * If the skb has a socket associated, then this function clones the
2677 * skb (thus sharing the actual data and optional structures), stores
2678 * the optional hardware time stamping information (if non NULL) or
2679 * generates a software time stamp (otherwise), then queues the clone
2680 * to the error queue of the socket. Errors are silently ignored.
2681 */
7965bd4d
JP
2682void skb_tstamp_tx(struct sk_buff *orig_skb,
2683 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 2684
4507a715
RC
2685static inline void sw_tx_timestamp(struct sk_buff *skb)
2686{
2244d07b
OH
2687 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2688 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
4507a715
RC
2689 skb_tstamp_tx(skb, NULL);
2690}
2691
2692/**
2693 * skb_tx_timestamp() - Driver hook for transmit timestamping
2694 *
2695 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 2696 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 2697 *
73409f3b
DM
2698 * Specifically, one should make absolutely sure that this function is
2699 * called before TX completion of this packet can trigger. Otherwise
2700 * the packet could potentially already be freed.
2701 *
4507a715
RC
2702 * @skb: A socket buffer.
2703 */
2704static inline void skb_tx_timestamp(struct sk_buff *skb)
2705{
c1f19b51 2706 skb_clone_tx_timestamp(skb);
4507a715
RC
2707 sw_tx_timestamp(skb);
2708}
2709
6e3e939f
JB
2710/**
2711 * skb_complete_wifi_ack - deliver skb with wifi status
2712 *
2713 * @skb: the original outgoing packet
2714 * @acked: ack status
2715 *
2716 */
2717void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2718
7965bd4d
JP
2719__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2720__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 2721
60476372
HX
2722static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2723{
2724 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2725}
2726
fb286bb2
HX
2727/**
2728 * skb_checksum_complete - Calculate checksum of an entire packet
2729 * @skb: packet to process
2730 *
2731 * This function calculates the checksum over the entire packet plus
2732 * the value of skb->csum. The latter can be used to supply the
2733 * checksum of a pseudo header as used by TCP/UDP. It returns the
2734 * checksum.
2735 *
2736 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2737 * this function can be used to verify that checksum on received
2738 * packets. In that case the function should return zero if the
2739 * checksum is correct. In particular, this function will return zero
2740 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2741 * hardware has already verified the correctness of the checksum.
2742 */
4381ca3c 2743static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 2744{
60476372
HX
2745 return skb_csum_unnecessary(skb) ?
2746 0 : __skb_checksum_complete(skb);
fb286bb2
HX
2747}
2748
76ba0aae
TH
2749/* Check if we need to perform checksum complete validation.
2750 *
2751 * Returns true if checksum complete is needed, false otherwise
2752 * (either checksum is unnecessary or zero checksum is allowed).
2753 */
2754static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
2755 bool zero_okay,
2756 __sum16 check)
2757{
2758 if (skb_csum_unnecessary(skb)) {
2759 return false;
2760 } else if (zero_okay && !check) {
2761 skb->ip_summed = CHECKSUM_UNNECESSARY;
2762 return false;
2763 }
2764
2765 return true;
2766}
2767
2768/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
2769 * in checksum_init.
2770 */
2771#define CHECKSUM_BREAK 76
2772
2773/* Validate (init) checksum based on checksum complete.
2774 *
2775 * Return values:
2776 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
2777 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
2778 * checksum is stored in skb->csum for use in __skb_checksum_complete
2779 * non-zero: value of invalid checksum
2780 *
2781 */
2782static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
2783 bool complete,
2784 __wsum psum)
2785{
2786 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2787 if (!csum_fold(csum_add(psum, skb->csum))) {
2788 skb->ip_summed = CHECKSUM_UNNECESSARY;
2789 return 0;
2790 }
2791 }
2792
2793 skb->csum = psum;
2794
2795 if (complete || skb->len <= CHECKSUM_BREAK)
2796 return __skb_checksum_complete(skb);
2797
2798 return 0;
2799}
2800
2801static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
2802{
2803 return 0;
2804}
2805
2806/* Perform checksum validate (init). Note that this is a macro since we only
2807 * want to calculate the pseudo header which is an input function if necessary.
2808 * First we try to validate without any computation (checksum unnecessary) and
2809 * then calculate based on checksum complete calling the function to compute
2810 * pseudo header.
2811 *
2812 * Return values:
2813 * 0: checksum is validated or try to in skb_checksum_complete
2814 * non-zero: value of invalid checksum
2815 */
2816#define __skb_checksum_validate(skb, proto, complete, \
2817 zero_okay, check, compute_pseudo) \
2818({ \
2819 __sum16 __ret = 0; \
2820 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
2821 __ret = __skb_checksum_validate_complete(skb, \
2822 complete, compute_pseudo(skb, proto)); \
2823 __ret; \
2824})
2825
2826#define skb_checksum_init(skb, proto, compute_pseudo) \
2827 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
2828
2829#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
2830 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
2831
2832#define skb_checksum_validate(skb, proto, compute_pseudo) \
2833 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
2834
2835#define skb_checksum_validate_zero_check(skb, proto, check, \
2836 compute_pseudo) \
2837 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
2838
2839#define skb_checksum_simple_validate(skb) \
2840 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
2841
5f79e0f9 2842#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 2843void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
2844static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2845{
2846 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 2847 nf_conntrack_destroy(nfct);
1da177e4
LT
2848}
2849static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2850{
2851 if (nfct)
2852 atomic_inc(&nfct->use);
2853}
2fc72c7b 2854#endif
1da177e4
LT
2855#ifdef CONFIG_BRIDGE_NETFILTER
2856static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2857{
2858 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2859 kfree(nf_bridge);
2860}
2861static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2862{
2863 if (nf_bridge)
2864 atomic_inc(&nf_bridge->use);
2865}
2866#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
2867static inline void nf_reset(struct sk_buff *skb)
2868{
5f79e0f9 2869#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a193a4ab
PM
2870 nf_conntrack_put(skb->nfct);
2871 skb->nfct = NULL;
2fc72c7b 2872#endif
a193a4ab
PM
2873#ifdef CONFIG_BRIDGE_NETFILTER
2874 nf_bridge_put(skb->nf_bridge);
2875 skb->nf_bridge = NULL;
2876#endif
2877}
2878
124dff01
PM
2879static inline void nf_reset_trace(struct sk_buff *skb)
2880{
478b360a 2881#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
2882 skb->nf_trace = 0;
2883#endif
a193a4ab
PM
2884}
2885
edda553c
YK
2886/* Note: This doesn't put any conntrack and bridge info in dst. */
2887static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2888{
5f79e0f9 2889#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
edda553c
YK
2890 dst->nfct = src->nfct;
2891 nf_conntrack_get(src->nfct);
2892 dst->nfctinfo = src->nfctinfo;
2fc72c7b 2893#endif
edda553c
YK
2894#ifdef CONFIG_BRIDGE_NETFILTER
2895 dst->nf_bridge = src->nf_bridge;
2896 nf_bridge_get(src->nf_bridge);
2897#endif
478b360a
FW
2898#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
2899 dst->nf_trace = src->nf_trace;
2900#endif
edda553c
YK
2901}
2902
e7ac05f3
YK
2903static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2904{
e7ac05f3 2905#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 2906 nf_conntrack_put(dst->nfct);
2fc72c7b 2907#endif
e7ac05f3
YK
2908#ifdef CONFIG_BRIDGE_NETFILTER
2909 nf_bridge_put(dst->nf_bridge);
2910#endif
2911 __nf_copy(dst, src);
2912}
2913
984bc16c
JM
2914#ifdef CONFIG_NETWORK_SECMARK
2915static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2916{
2917 to->secmark = from->secmark;
2918}
2919
2920static inline void skb_init_secmark(struct sk_buff *skb)
2921{
2922 skb->secmark = 0;
2923}
2924#else
2925static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2926{ }
2927
2928static inline void skb_init_secmark(struct sk_buff *skb)
2929{ }
2930#endif
2931
574f7194
EB
2932static inline bool skb_irq_freeable(const struct sk_buff *skb)
2933{
2934 return !skb->destructor &&
2935#if IS_ENABLED(CONFIG_XFRM)
2936 !skb->sp &&
2937#endif
2938#if IS_ENABLED(CONFIG_NF_CONNTRACK)
2939 !skb->nfct &&
2940#endif
2941 !skb->_skb_refdst &&
2942 !skb_has_frag_list(skb);
2943}
2944
f25f4e44
PWJ
2945static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2946{
f25f4e44 2947 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
2948}
2949
9247744e 2950static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 2951{
4e3ab47a 2952 return skb->queue_mapping;
4e3ab47a
PE
2953}
2954
f25f4e44
PWJ
2955static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2956{
f25f4e44 2957 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
2958}
2959
d5a9e24a
DM
2960static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2961{
2962 skb->queue_mapping = rx_queue + 1;
2963}
2964
9247744e 2965static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
2966{
2967 return skb->queue_mapping - 1;
2968}
2969
9247744e 2970static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 2971{
a02cec21 2972 return skb->queue_mapping != 0;
d5a9e24a
DM
2973}
2974
7965bd4d
JP
2975u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2976 unsigned int num_tx_queues);
9247744e 2977
def8b4fa
AD
2978static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2979{
0b3d8e08 2980#ifdef CONFIG_XFRM
def8b4fa 2981 return skb->sp;
def8b4fa 2982#else
def8b4fa 2983 return NULL;
def8b4fa 2984#endif
0b3d8e08 2985}
def8b4fa 2986
68c33163
PS
2987/* Keeps track of mac header offset relative to skb->head.
2988 * It is useful for TSO of Tunneling protocol. e.g. GRE.
2989 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
2990 * tunnel skb it points to outer mac header.
2991 * Keeps track of level of encapsulation of network headers.
2992 */
68c33163 2993struct skb_gso_cb {
3347c960
ED
2994 int mac_offset;
2995 int encap_level;
7e2b10c1 2996 __u16 csum_start;
68c33163
PS
2997};
2998#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
2999
3000static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3001{
3002 return (skb_mac_header(inner_skb) - inner_skb->head) -
3003 SKB_GSO_CB(inner_skb)->mac_offset;
3004}
3005
1e2bd517
PS
3006static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3007{
3008 int new_headroom, headroom;
3009 int ret;
3010
3011 headroom = skb_headroom(skb);
3012 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3013 if (ret)
3014 return ret;
3015
3016 new_headroom = skb_headroom(skb);
3017 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3018 return 0;
3019}
3020
7e2b10c1
TH
3021/* Compute the checksum for a gso segment. First compute the checksum value
3022 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3023 * then add in skb->csum (checksum from csum_start to end of packet).
3024 * skb->csum and csum_start are then updated to reflect the checksum of the
3025 * resultant packet starting from the transport header-- the resultant checksum
3026 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3027 * header.
3028 */
3029static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3030{
3031 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3032 skb_transport_offset(skb);
3033 __u16 csum;
3034
3035 csum = csum_fold(csum_partial(skb_transport_header(skb),
3036 plen, skb->csum));
3037 skb->csum = res;
3038 SKB_GSO_CB(skb)->csum_start -= plen;
3039
3040 return csum;
3041}
3042
bdcc0924 3043static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3044{
3045 return skb_shinfo(skb)->gso_size;
3046}
3047
36a8f39e 3048/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 3049static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
3050{
3051 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3052}
3053
7965bd4d 3054void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
3055
3056static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3057{
3058 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3059 * wanted then gso_type will be set. */
05bdd2f1
ED
3060 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3061
b78462eb
AD
3062 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3063 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
3064 __skb_warn_lro_forwarding(skb);
3065 return true;
3066 }
3067 return false;
3068}
3069
35fc92a9
HX
3070static inline void skb_forward_csum(struct sk_buff *skb)
3071{
3072 /* Unfortunately we don't support this one. Any brave souls? */
3073 if (skb->ip_summed == CHECKSUM_COMPLETE)
3074 skb->ip_summed = CHECKSUM_NONE;
3075}
3076
bc8acf2c
ED
3077/**
3078 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3079 * @skb: skb to check
3080 *
3081 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3082 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3083 * use this helper, to document places where we make this assertion.
3084 */
05bdd2f1 3085static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
3086{
3087#ifdef DEBUG
3088 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3089#endif
3090}
3091
f35d9d8a 3092bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 3093
ed1f50c3
PD
3094int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3095
f77668dc
DB
3096u32 __skb_get_poff(const struct sk_buff *skb);
3097
3a7c1ee4
AD
3098/**
3099 * skb_head_is_locked - Determine if the skb->head is locked down
3100 * @skb: skb to check
3101 *
3102 * The head on skbs build around a head frag can be removed if they are
3103 * not cloned. This function returns true if the skb head is locked down
3104 * due to either being allocated via kmalloc, or by being a clone with
3105 * multiple references to the head.
3106 */
3107static inline bool skb_head_is_locked(const struct sk_buff *skb)
3108{
3109 return !skb->head_frag || skb_cloned(skb);
3110}
fe6cc55f
FW
3111
3112/**
3113 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3114 *
3115 * @skb: GSO skb
3116 *
3117 * skb_gso_network_seglen is used to determine the real size of the
3118 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3119 *
3120 * The MAC/L2 header is not accounted for.
3121 */
3122static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3123{
3124 unsigned int hdr_len = skb_transport_header(skb) -
3125 skb_network_header(skb);
3126 return hdr_len + skb_gso_transport_seglen(skb);
3127}
1da177e4
LT
3128#endif /* __KERNEL__ */
3129#endif /* _LINUX_SKBUFF_H */