]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/skbuff.h
mm/hotplug: invalid PFNs from pfn_to_online_page()
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4
LT
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
187f1882 20#include <linux/bug.h>
1da177e4 21#include <linux/cache.h>
56b17425 22#include <linux/rbtree.h>
51f3d02b 23#include <linux/socket.h>
c1d1b437 24#include <linux/refcount.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1bd758eb 38#include <net/flow_dissector.h>
a60e3cc7 39#include <linux/splice.h>
72b31f72 40#include <linux/in6.h>
8b10cab6 41#include <linux/if_packet.h>
f70ea018 42#include <net/flow.h>
1da177e4 43
7a6ae71b
TH
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
89 *
90 * CHECKSUM_NONE:
91 *
7a6ae71b 92 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
77cffe23
TH
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 112 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
78ea85f1
DB
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
b4759dcd
DC
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
134 *
135 * CHECKSUM_PARTIAL:
136 *
6edec0e6
TH
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
78ea85f1 146 *
7a6ae71b
TH
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
149 *
150 * CHECKSUM_PARTIAL:
151 *
7a6ae71b 152 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 153 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 173 *
7a6ae71b 174 * CHECKSUM_NONE:
78ea85f1 175 *
7a6ae71b
TH
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
78ea85f1
DB
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
7a6ae71b
TH
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
78ea85f1 183 *
7a6ae71b
TH
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
dba00306
DC
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
78ea85f1
DB
217 */
218
60476372 219/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
1da177e4 224
77cffe23
TH
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
0bec8c88 228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 229#define SKB_WITH_OVERHEAD(X) \
deea84b0 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
87fb4b7b
ED
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
1da177e4 241struct net_device;
716ea3a7 242struct scatterlist;
9c55e01c 243struct pipe_inode_info;
a8f820aa 244struct iov_iter;
fd11a83d 245struct napi_struct;
1da177e4 246
5f79e0f9 247#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
248struct nf_conntrack {
249 atomic_t use;
1da177e4 250};
5f79e0f9 251#endif
1da177e4 252
34666d46 253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 254struct nf_bridge_info {
53869ceb 255 refcount_t use;
3eaf4025
FW
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
7fb48c5b 260 } orig_proto:8;
72b1e5e4
FW
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
411ffb4f 264 __u16 frag_max_size;
bf1ac5ca 265 struct net_device *physindev;
63cdbc06
FW
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
7fb48c5b 269 union {
72b1e5e4 270 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
72b1e5e4
FW
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
72b31f72 279 };
1da177e4
LT
280};
281#endif
282
1da177e4
LT
283struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
287
288 __u32 qlen;
289 spinlock_t lock;
290};
291
292struct sk_buff;
293
9d4dde52
IC
294/* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
297 *
298 * Since GRO uses frags we allocate at least 16 regardless of page
299 * size.
a715dea3 300 */
9d4dde52 301#if (65536/PAGE_SIZE + 1) < 16
eec00954 302#define MAX_SKB_FRAGS 16UL
a715dea3 303#else
9d4dde52 304#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 305#endif
5f74f82e 306extern int sysctl_max_skb_frags;
1da177e4 307
3953c46c
MRL
308/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
310 */
311#define GSO_BY_FRAGS 0xFFFF
312
1da177e4
LT
313typedef struct skb_frag_struct skb_frag_t;
314
315struct skb_frag_struct {
a8605c60
IC
316 struct {
317 struct page *p;
318 } page;
cb4dfe56 319#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
320 __u32 page_offset;
321 __u32 size;
cb4dfe56
ED
322#else
323 __u16 page_offset;
324 __u16 size;
325#endif
1da177e4
LT
326};
327
9e903e08
ED
328static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329{
330 return frag->size;
331}
332
333static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334{
335 frag->size = size;
336}
337
338static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339{
340 frag->size += delta;
341}
342
343static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344{
345 frag->size -= delta;
346}
347
c613c209
WB
348static inline bool skb_frag_must_loop(struct page *p)
349{
350#if defined(CONFIG_HIGHMEM)
351 if (PageHighMem(p))
352 return true;
353#endif
354 return false;
355}
356
357/**
358 * skb_frag_foreach_page - loop over pages in a fragment
359 *
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
369 *
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
372 * regular page.
373 */
374#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
379 copied = 0; \
380 copied < f_len; \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
383
ac45f602
PO
384#define HAVE_HW_TIME_STAMP
385
386/**
d3a21be8 387 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
ac45f602
PO
390 *
391 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 392 * skb->tstamp.
ac45f602
PO
393 *
394 * hwtstamps can only be compared against other hwtstamps from
395 * the same device.
396 *
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399 */
400struct skb_shared_hwtstamps {
401 ktime_t hwtstamp;
ac45f602
PO
402};
403
2244d07b
OH
404/* Definitions for tx_flags in struct skb_shared_info */
405enum {
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
408
e7fd2885 409 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
410 SKBTX_SW_TSTAMP = 1 << 1,
411
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
414
a6686f2f 415 /* device driver supports TX zero-copy buffers */
62b1a8ab 416 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
417
418 /* generate wifi status information (where possible) */
62b1a8ab 419 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
420
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
425 */
426 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
427
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
430};
431
52267790 432#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
e1c8a607 433#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 434 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
435#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436
a6686f2f
SM
437/*
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
a6686f2f
SM
444 */
445struct ubuf_info {
e19d6763 446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
4ab6c99d
WB
447 union {
448 struct {
449 unsigned long desc;
450 void *ctx;
451 };
452 struct {
453 u32 id;
454 u16 len;
455 u16 zerocopy:1;
456 u32 bytelen;
457 };
458 };
c1d1b437 459 refcount_t refcnt;
a91dbff5
WB
460
461 struct mmpin {
462 struct user_struct *user;
463 unsigned int num_pg;
464 } mmp;
ac45f602
PO
465};
466
52267790
WB
467#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468
469struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
4ab6c99d
WB
470struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
471 struct ubuf_info *uarg);
52267790
WB
472
473static inline void sock_zerocopy_get(struct ubuf_info *uarg)
474{
c1d1b437 475 refcount_inc(&uarg->refcnt);
52267790
WB
476}
477
478void sock_zerocopy_put(struct ubuf_info *uarg);
479void sock_zerocopy_put_abort(struct ubuf_info *uarg);
480
481void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
482
483int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
484 struct msghdr *msg, int len,
485 struct ubuf_info *uarg);
486
1da177e4
LT
487/* This data is invariant across clones and lives at
488 * the end of the header data, ie. at skb->end.
489 */
490struct skb_shared_info {
de8f3a83
DB
491 __u8 __unused;
492 __u8 meta_len;
493 __u8 nr_frags;
9f42f126 494 __u8 tx_flags;
7967168c
HX
495 unsigned short gso_size;
496 /* Warning: this field is not always filled in (UFO)! */
497 unsigned short gso_segs;
1da177e4 498 struct sk_buff *frag_list;
ac45f602 499 struct skb_shared_hwtstamps hwtstamps;
7f564528 500 unsigned int gso_type;
09c2d251 501 u32 tskey;
ec7d2f2c
ED
502
503 /*
504 * Warning : all fields before dataref are cleared in __alloc_skb()
505 */
506 atomic_t dataref;
507
69e3c75f
JB
508 /* Intermediate layers must ensure that destructor_arg
509 * remains valid until skb destructor */
510 void * destructor_arg;
a6686f2f 511
fed66381
ED
512 /* must be last field, see pskb_expand_head() */
513 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
514};
515
516/* We divide dataref into two halves. The higher 16 bits hold references
517 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
518 * the entire skb->data. A clone of a headerless skb holds the length of
519 * the header in skb->hdr_len.
1da177e4
LT
520 *
521 * All users must obey the rule that the skb->data reference count must be
522 * greater than or equal to the payload reference count.
523 *
524 * Holding a reference to the payload part means that the user does not
525 * care about modifications to the header part of skb->data.
526 */
527#define SKB_DATAREF_SHIFT 16
528#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
529
d179cd12
DM
530
531enum {
c8753d55
VS
532 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
533 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
534 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
535};
536
7967168c
HX
537enum {
538 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
539
540 /* This indicates the skb is from an untrusted source. */
d9d30adf 541 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
542
543 /* This indicates the tcp segment has CWR set. */
d9d30adf 544 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 545
d9d30adf 546 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 547
d9d30adf 548 SKB_GSO_TCPV6 = 1 << 4,
68c33163 549
d9d30adf 550 SKB_GSO_FCOE = 1 << 5,
73136267 551
d9d30adf 552 SKB_GSO_GRE = 1 << 6,
0d89d203 553
d9d30adf 554 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 555
d9d30adf 556 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 557
d9d30adf 558 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 559
d9d30adf 560 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 561
d9d30adf 562 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 563
d9d30adf 564 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 565
d9d30adf 566 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 567
d9d30adf 568 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 569
d9d30adf 570 SKB_GSO_ESP = 1 << 15,
0c19f846
WB
571
572 SKB_GSO_UDP = 1 << 16,
7967168c
HX
573};
574
2e07fa9c
ACM
575#if BITS_PER_LONG > 32
576#define NET_SKBUFF_DATA_USES_OFFSET 1
577#endif
578
579#ifdef NET_SKBUFF_DATA_USES_OFFSET
580typedef unsigned int sk_buff_data_t;
581#else
582typedef unsigned char *sk_buff_data_t;
583#endif
584
1da177e4
LT
585/**
586 * struct sk_buff - socket buffer
587 * @next: Next buffer in list
588 * @prev: Previous buffer in list
363ec392 589 * @tstamp: Time we arrived/left
56b17425 590 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 591 * @sk: Socket we are owned by
1da177e4 592 * @dev: Device we arrived on/are leaving by
d84e0bd7 593 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 594 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 595 * @sp: the security path, used for xfrm
1da177e4
LT
596 * @len: Length of actual data
597 * @data_len: Data length
598 * @mac_len: Length of link layer header
334a8132 599 * @hdr_len: writable header length of cloned skb
663ead3b
HX
600 * @csum: Checksum (must include start/offset pair)
601 * @csum_start: Offset from skb->head where checksumming should start
602 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 603 * @priority: Packet queueing priority
60ff7467 604 * @ignore_df: allow local fragmentation
1da177e4 605 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 606 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
607 * @nohdr: Payload reference only, must not modify header
608 * @pkt_type: Packet class
c83c2486 609 * @fclone: skbuff clone status
c83c2486 610 * @ipvs_property: skbuff is owned by ipvs
e7246e12 611 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 612 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
613 * @tc_redirected: packet was redirected by a tc action
614 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
615 * @peeked: this packet has been seen already, so stats have been
616 * done for it, don't do them again
ba9dda3a 617 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
618 * @protocol: Packet protocol from driver
619 * @destructor: Destruct function
e2080072 620 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
a9e419dc 621 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 622 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 623 * @skb_iif: ifindex of device we arrived on
1da177e4 624 * @tc_index: Traffic control index
61b905da 625 * @hash: the packet hash
d84e0bd7 626 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 627 * @xmit_more: More SKBs are pending for this queue
a4d9a27d 628 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
553a5672 629 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 630 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 631 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 632 * ports.
a3b18ddb 633 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
634 * @wifi_acked_valid: wifi_acked was set
635 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 636 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
dba00306 637 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
4ff06203 638 * @dst_pending_confirm: need to confirm neighbour
06021292 639 * @napi_id: id of the NAPI struct this skb came from
984bc16c 640 * @secmark: security marking
d84e0bd7 641 * @mark: Generic packet mark
86a9bad3 642 * @vlan_proto: vlan encapsulation protocol
6aa895b0 643 * @vlan_tci: vlan tag control information
0d89d203 644 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
645 * @inner_transport_header: Inner transport layer header (encapsulation)
646 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 647 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
648 * @transport_header: Transport layer header
649 * @network_header: Network layer header
650 * @mac_header: Link layer header
651 * @tail: Tail pointer
652 * @end: End pointer
653 * @head: Head of buffer
654 * @data: Data head pointer
655 * @truesize: Buffer size
656 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
657 */
658
659struct sk_buff {
363ec392 660 union {
56b17425
ED
661 struct {
662 /* These two members must be first. */
663 struct sk_buff *next;
664 struct sk_buff *prev;
665
666 union {
bffa72cf
ED
667 struct net_device *dev;
668 /* Some protocols might use this space to store information,
669 * while device pointer would be NULL.
670 * UDP receive path is one user.
671 */
672 unsigned long dev_scratch;
56b17425
ED
673 };
674 };
4faadabc
PO
675 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
676 struct list_head list;
677 };
678
679 union {
680 struct sock *sk;
681 int ip_defrag_offset;
363ec392 682 };
1da177e4 683
c84d9490 684 union {
bffa72cf
ED
685 ktime_t tstamp;
686 u64 skb_mstamp;
c84d9490 687 };
1da177e4
LT
688 /*
689 * This is the control buffer. It is free to use for every
690 * layer. Please put your private variables there. If you
691 * want to keep them across layers you have to do a skb_clone()
692 * first. This is owned by whoever has the skb queued ATM.
693 */
da3f5cf1 694 char cb[48] __aligned(8);
1da177e4 695
e2080072
ED
696 union {
697 struct {
698 unsigned long _skb_refdst;
699 void (*destructor)(struct sk_buff *skb);
700 };
701 struct list_head tcp_tsorted_anchor;
702 };
703
da3f5cf1
FF
704#ifdef CONFIG_XFRM
705 struct sec_path *sp;
b1937227
ED
706#endif
707#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 708 unsigned long _nfct;
b1937227 709#endif
85224844 710#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 711 struct nf_bridge_info *nf_bridge;
da3f5cf1 712#endif
1da177e4 713 unsigned int len,
334a8132
PM
714 data_len;
715 __u16 mac_len,
716 hdr_len;
b1937227
ED
717
718 /* Following fields are _not_ copied in __copy_skb_header()
719 * Note that queue_mapping is here mostly to fill a hole.
720 */
b1937227 721 __u16 queue_mapping;
36bbef52
DB
722
723/* if you move cloned around you also must adapt those constants */
724#ifdef __BIG_ENDIAN_BITFIELD
725#define CLONED_MASK (1 << 7)
726#else
727#define CLONED_MASK 1
728#endif
729#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
730
731 __u8 __cloned_offset[0];
b1937227 732 __u8 cloned:1,
6869c4d8 733 nohdr:1,
b84f4cc9 734 fclone:2,
a59322be 735 peeked:1,
b1937227 736 head_frag:1,
36bbef52 737 xmit_more:1,
a4d9a27d 738 pfmemalloc:1;
4031ae6e 739
b1937227
ED
740 /* fields enclosed in headers_start/headers_end are copied
741 * using a single memcpy() in __copy_skb_header()
742 */
ebcf34f3 743 /* private: */
b1937227 744 __u32 headers_start[0];
ebcf34f3 745 /* public: */
4031ae6e 746
233577a2
HFS
747/* if you move pkt_type around you also must adapt those constants */
748#ifdef __BIG_ENDIAN_BITFIELD
749#define PKT_TYPE_MAX (7 << 5)
750#else
751#define PKT_TYPE_MAX 7
1da177e4 752#endif
233577a2 753#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 754
233577a2 755 __u8 __pkt_type_offset[0];
b1937227 756 __u8 pkt_type:3;
b1937227 757 __u8 ignore_df:1;
b1937227
ED
758 __u8 nf_trace:1;
759 __u8 ip_summed:2;
3853b584 760 __u8 ooo_okay:1;
a4d9a27d 761
61b905da 762 __u8 l4_hash:1;
a3b18ddb 763 __u8 sw_hash:1;
6e3e939f
JB
764 __u8 wifi_acked_valid:1;
765 __u8 wifi_acked:1;
3bdc0eba 766 __u8 no_fcs:1;
77cffe23 767 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 768 __u8 encapsulation:1;
7e2b10c1 769 __u8 encap_hdr_csum:1;
5d0c2b95 770 __u8 csum_valid:1;
a4d9a27d 771
7e3cead5 772 __u8 csum_complete_sw:1;
b1937227 773 __u8 csum_level:2;
dba00306 774 __u8 csum_not_inet:1;
4ff06203 775 __u8 dst_pending_confirm:1;
b1937227
ED
776#ifdef CONFIG_IPV6_NDISC_NODETYPE
777 __u8 ndisc_nodetype:2;
778#endif
779 __u8 ipvs_property:1;
a4d9a27d 780
8bce6d7d 781 __u8 inner_protocol_type:1;
e585f236 782 __u8 remcsum_offload:1;
6bc506b4
IS
783#ifdef CONFIG_NET_SWITCHDEV
784 __u8 offload_fwd_mark:1;
abf4bb6b 785 __u8 offload_mr_fwd_mark:1;
6bc506b4 786#endif
e7246e12
WB
787#ifdef CONFIG_NET_CLS_ACT
788 __u8 tc_skip_classify:1;
8dc07fdb 789 __u8 tc_at_ingress:1;
bc31c905
WB
790 __u8 tc_redirected:1;
791 __u8 tc_from_ingress:1;
e7246e12 792#endif
b1937227
ED
793
794#ifdef CONFIG_NET_SCHED
795 __u16 tc_index; /* traffic control index */
b1937227 796#endif
fe55f6d5 797
b1937227
ED
798 union {
799 __wsum csum;
800 struct {
801 __u16 csum_start;
802 __u16 csum_offset;
803 };
804 };
805 __u32 priority;
806 int skb_iif;
807 __u32 hash;
808 __be16 vlan_proto;
809 __u16 vlan_tci;
2bd82484
ED
810#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
811 union {
812 unsigned int napi_id;
813 unsigned int sender_cpu;
814 };
97fc2f08 815#endif
984bc16c 816#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 817 __u32 secmark;
0c4f691f 818#endif
0c4f691f 819
3b885787
NH
820 union {
821 __u32 mark;
16fad69c 822 __u32 reserved_tailroom;
3b885787 823 };
1da177e4 824
8bce6d7d
TH
825 union {
826 __be16 inner_protocol;
827 __u8 inner_ipproto;
828 };
829
1a37e412
SH
830 __u16 inner_transport_header;
831 __u16 inner_network_header;
832 __u16 inner_mac_header;
b1937227
ED
833
834 __be16 protocol;
1a37e412
SH
835 __u16 transport_header;
836 __u16 network_header;
837 __u16 mac_header;
b1937227 838
ebcf34f3 839 /* private: */
b1937227 840 __u32 headers_end[0];
ebcf34f3 841 /* public: */
b1937227 842
1da177e4 843 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 844 sk_buff_data_t tail;
4305b541 845 sk_buff_data_t end;
1da177e4 846 unsigned char *head,
4305b541 847 *data;
27a884dc 848 unsigned int truesize;
63354797 849 refcount_t users;
1da177e4
LT
850};
851
852#ifdef __KERNEL__
853/*
854 * Handling routines are only of interest to the kernel
855 */
856#include <linux/slab.h>
857
1da177e4 858
c93bdd0e
MG
859#define SKB_ALLOC_FCLONE 0x01
860#define SKB_ALLOC_RX 0x02
fd11a83d 861#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
862
863/* Returns true if the skb was allocated from PFMEMALLOC reserves */
864static inline bool skb_pfmemalloc(const struct sk_buff *skb)
865{
866 return unlikely(skb->pfmemalloc);
867}
868
7fee226a
ED
869/*
870 * skb might have a dst pointer attached, refcounted or not.
871 * _skb_refdst low order bit is set if refcount was _not_ taken
872 */
873#define SKB_DST_NOREF 1UL
874#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
875
a9e419dc 876#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
877/**
878 * skb_dst - returns skb dst_entry
879 * @skb: buffer
880 *
881 * Returns skb dst_entry, regardless of reference taken or not.
882 */
adf30907
ED
883static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
884{
7fee226a
ED
885 /* If refdst was not refcounted, check we still are in a
886 * rcu_read_lock section
887 */
888 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
889 !rcu_read_lock_held() &&
890 !rcu_read_lock_bh_held());
891 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
892}
893
7fee226a
ED
894/**
895 * skb_dst_set - sets skb dst
896 * @skb: buffer
897 * @dst: dst entry
898 *
899 * Sets skb dst, assuming a reference was taken on dst and should
900 * be released by skb_dst_drop()
901 */
adf30907
ED
902static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
903{
7fee226a
ED
904 skb->_skb_refdst = (unsigned long)dst;
905}
906
932bc4d7
JA
907/**
908 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
909 * @skb: buffer
910 * @dst: dst entry
911 *
912 * Sets skb dst, assuming a reference was not taken on dst.
913 * If dst entry is cached, we do not take reference and dst_release
914 * will be avoided by refdst_drop. If dst entry is not cached, we take
915 * reference, so that last dst_release can destroy the dst immediately.
916 */
917static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
918{
dbfc4fb7
HFS
919 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
920 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 921}
7fee226a
ED
922
923/**
25985edc 924 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
925 * @skb: buffer
926 */
927static inline bool skb_dst_is_noref(const struct sk_buff *skb)
928{
929 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
930}
931
511c3f92
ED
932static inline struct rtable *skb_rtable(const struct sk_buff *skb)
933{
adf30907 934 return (struct rtable *)skb_dst(skb);
511c3f92
ED
935}
936
8b10cab6
JHS
937/* For mangling skb->pkt_type from user space side from applications
938 * such as nft, tc, etc, we only allow a conservative subset of
939 * possible pkt_types to be set.
940*/
941static inline bool skb_pkt_type_ok(u32 ptype)
942{
943 return ptype <= PACKET_OTHERHOST;
944}
945
90b602f8
ML
946static inline unsigned int skb_napi_id(const struct sk_buff *skb)
947{
948#ifdef CONFIG_NET_RX_BUSY_POLL
949 return skb->napi_id;
950#else
951 return 0;
952#endif
953}
954
3889a803
PA
955/* decrement the reference count and return true if we can free the skb */
956static inline bool skb_unref(struct sk_buff *skb)
957{
958 if (unlikely(!skb))
959 return false;
63354797 960 if (likely(refcount_read(&skb->users) == 1))
3889a803 961 smp_rmb();
63354797 962 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
963 return false;
964
965 return true;
966}
967
0a463c78 968void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
969void kfree_skb(struct sk_buff *skb);
970void kfree_skb_list(struct sk_buff *segs);
971void skb_tx_error(struct sk_buff *skb);
972void consume_skb(struct sk_buff *skb);
ca2c1418 973void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 974void __kfree_skb(struct sk_buff *skb);
d7e8883c 975extern struct kmem_cache *skbuff_head_cache;
bad43ca8 976
7965bd4d
JP
977void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
978bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
979 bool *fragstolen, int *delta_truesize);
bad43ca8 980
7965bd4d
JP
981struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
982 int node);
2ea2f62c 983struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 984struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 985static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 986 gfp_t priority)
d179cd12 987{
564824b0 988 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
989}
990
2e4e4410
ED
991struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
992 unsigned long data_len,
993 int max_page_order,
994 int *errcode,
995 gfp_t gfp_mask);
996
d0bf4a9e
ED
997/* Layout of fast clones : [skb1][skb2][fclone_ref] */
998struct sk_buff_fclones {
999 struct sk_buff skb1;
1000
1001 struct sk_buff skb2;
1002
2638595a 1003 refcount_t fclone_ref;
d0bf4a9e
ED
1004};
1005
1006/**
1007 * skb_fclone_busy - check if fclone is busy
293de7de 1008 * @sk: socket
d0bf4a9e
ED
1009 * @skb: buffer
1010 *
bda13fed 1011 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1012 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1013 * so we also check that this didnt happen.
d0bf4a9e 1014 */
39bb5e62
ED
1015static inline bool skb_fclone_busy(const struct sock *sk,
1016 const struct sk_buff *skb)
d0bf4a9e
ED
1017{
1018 const struct sk_buff_fclones *fclones;
1019
1020 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1021
1022 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1023 refcount_read(&fclones->fclone_ref) > 1 &&
39bb5e62 1024 fclones->skb2.sk == sk;
d0bf4a9e
ED
1025}
1026
d179cd12 1027static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1028 gfp_t priority)
d179cd12 1029{
c93bdd0e 1030 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1031}
1032
7965bd4d
JP
1033struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1034int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1035struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1036struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1037struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1038 gfp_t gfp_mask, bool fclone);
1039static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1040 gfp_t gfp_mask)
1041{
1042 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1043}
7965bd4d
JP
1044
1045int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1046struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1047 unsigned int headroom);
1048struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1049 int newtailroom, gfp_t priority);
48a1df65
JD
1050int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1051 int offset, int len);
1052int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1053 int offset, int len);
7965bd4d 1054int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1055int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1056
1057/**
1058 * skb_pad - zero pad the tail of an skb
1059 * @skb: buffer to pad
1060 * @pad: space to pad
1061 *
1062 * Ensure that a buffer is followed by a padding area that is zero
1063 * filled. Used by network drivers which may DMA or transfer data
1064 * beyond the buffer end onto the wire.
1065 *
1066 * May return error in out of memory cases. The skb is freed on error.
1067 */
1068static inline int skb_pad(struct sk_buff *skb, int pad)
1069{
1070 return __skb_pad(skb, pad, true);
1071}
ead2ceb0 1072#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1073
7965bd4d
JP
1074int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1075 int getfrag(void *from, char *to, int offset,
1076 int len, int odd, struct sk_buff *skb),
1077 void *from, int length);
e89e9cf5 1078
be12a1fe
HFS
1079int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1080 int offset, size_t size);
1081
d94d9fee 1082struct skb_seq_state {
677e90ed
TG
1083 __u32 lower_offset;
1084 __u32 upper_offset;
1085 __u32 frag_idx;
1086 __u32 stepped_offset;
1087 struct sk_buff *root_skb;
1088 struct sk_buff *cur_skb;
1089 __u8 *frag_data;
1090};
1091
7965bd4d
JP
1092void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1093 unsigned int to, struct skb_seq_state *st);
1094unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1095 struct skb_seq_state *st);
1096void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1097
7965bd4d 1098unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1099 unsigned int to, struct ts_config *config);
3fc7e8a6 1100
09323cc4
TH
1101/*
1102 * Packet hash types specify the type of hash in skb_set_hash.
1103 *
1104 * Hash types refer to the protocol layer addresses which are used to
1105 * construct a packet's hash. The hashes are used to differentiate or identify
1106 * flows of the protocol layer for the hash type. Hash types are either
1107 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1108 *
1109 * Properties of hashes:
1110 *
1111 * 1) Two packets in different flows have different hash values
1112 * 2) Two packets in the same flow should have the same hash value
1113 *
1114 * A hash at a higher layer is considered to be more specific. A driver should
1115 * set the most specific hash possible.
1116 *
1117 * A driver cannot indicate a more specific hash than the layer at which a hash
1118 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1119 *
1120 * A driver may indicate a hash level which is less specific than the
1121 * actual layer the hash was computed on. For instance, a hash computed
1122 * at L4 may be considered an L3 hash. This should only be done if the
1123 * driver can't unambiguously determine that the HW computed the hash at
1124 * the higher layer. Note that the "should" in the second property above
1125 * permits this.
1126 */
1127enum pkt_hash_types {
1128 PKT_HASH_TYPE_NONE, /* Undefined type */
1129 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1130 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1131 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1132};
1133
bcc83839 1134static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1135{
bcc83839 1136 skb->hash = 0;
a3b18ddb 1137 skb->sw_hash = 0;
bcc83839
TH
1138 skb->l4_hash = 0;
1139}
1140
1141static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1142{
1143 if (!skb->l4_hash)
1144 skb_clear_hash(skb);
1145}
1146
1147static inline void
1148__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1149{
1150 skb->l4_hash = is_l4;
1151 skb->sw_hash = is_sw;
61b905da 1152 skb->hash = hash;
09323cc4
TH
1153}
1154
bcc83839
TH
1155static inline void
1156skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1157{
1158 /* Used by drivers to set hash from HW */
1159 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1160}
1161
1162static inline void
1163__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1164{
1165 __skb_set_hash(skb, hash, true, is_l4);
1166}
1167
e5276937 1168void __skb_get_hash(struct sk_buff *skb);
b917783c 1169u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1170u32 skb_get_poff(const struct sk_buff *skb);
1171u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1172 const struct flow_keys *keys, int hlen);
1173__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1174 void *data, int hlen_proto);
1175
1176static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1177 int thoff, u8 ip_proto)
1178{
1179 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1180}
1181
1182void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1183 const struct flow_dissector_key *key,
1184 unsigned int key_count);
1185
1186bool __skb_flow_dissect(const struct sk_buff *skb,
1187 struct flow_dissector *flow_dissector,
1188 void *target_container,
cd79a238
TH
1189 void *data, __be16 proto, int nhoff, int hlen,
1190 unsigned int flags);
e5276937
TH
1191
1192static inline bool skb_flow_dissect(const struct sk_buff *skb,
1193 struct flow_dissector *flow_dissector,
cd79a238 1194 void *target_container, unsigned int flags)
e5276937
TH
1195{
1196 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1197 NULL, 0, 0, 0, flags);
e5276937
TH
1198}
1199
1200static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1201 struct flow_keys *flow,
1202 unsigned int flags)
e5276937
TH
1203{
1204 memset(flow, 0, sizeof(*flow));
1205 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1206 NULL, 0, 0, 0, flags);
e5276937
TH
1207}
1208
1209static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1210 void *data, __be16 proto,
cd79a238
TH
1211 int nhoff, int hlen,
1212 unsigned int flags)
e5276937
TH
1213{
1214 memset(flow, 0, sizeof(*flow));
1215 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
cd79a238 1216 data, proto, nhoff, hlen, flags);
e5276937
TH
1217}
1218
3958afa1 1219static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1220{
a3b18ddb 1221 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1222 __skb_get_hash(skb);
bfb564e7 1223
61b905da 1224 return skb->hash;
bfb564e7
KK
1225}
1226
20a17bf6 1227static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1228{
c6cc1ca7
TH
1229 if (!skb->l4_hash && !skb->sw_hash) {
1230 struct flow_keys keys;
de4c1f8b 1231 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1232
de4c1f8b 1233 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1234 }
f70ea018
TH
1235
1236 return skb->hash;
1237}
1238
d0d453f2
ED
1239__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1240 const siphash_key_t *perturb);
50fb7992 1241
57bdf7f4
TH
1242static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1243{
61b905da 1244 return skb->hash;
57bdf7f4
TH
1245}
1246
3df7a74e
TH
1247static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1248{
61b905da 1249 to->hash = from->hash;
a3b18ddb 1250 to->sw_hash = from->sw_hash;
61b905da 1251 to->l4_hash = from->l4_hash;
3df7a74e
TH
1252};
1253
4305b541
ACM
1254#ifdef NET_SKBUFF_DATA_USES_OFFSET
1255static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1256{
1257 return skb->head + skb->end;
1258}
ec47ea82
AD
1259
1260static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1261{
1262 return skb->end;
1263}
4305b541
ACM
1264#else
1265static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1266{
1267 return skb->end;
1268}
ec47ea82
AD
1269
1270static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1271{
1272 return skb->end - skb->head;
1273}
4305b541
ACM
1274#endif
1275
1da177e4 1276/* Internal */
4305b541 1277#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1278
ac45f602
PO
1279static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1280{
1281 return &skb_shinfo(skb)->hwtstamps;
1282}
1283
52267790
WB
1284static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1285{
1286 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1287
1288 return is_zcopy ? skb_uarg(skb) : NULL;
1289}
1290
1291static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1292{
1293 if (skb && uarg && !skb_zcopy(skb)) {
1294 sock_zerocopy_get(uarg);
1295 skb_shinfo(skb)->destructor_arg = uarg;
1296 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1297 }
1298}
1299
95ece2e0
WB
1300static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1301{
1302 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1303 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1304}
1305
1306static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1307{
1308 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1309}
1310
1311static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1312{
1313 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1314}
1315
52267790
WB
1316/* Release a reference on a zerocopy structure */
1317static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1318{
1319 struct ubuf_info *uarg = skb_zcopy(skb);
1320
1321 if (uarg) {
99a86317
WB
1322 if (skb_zcopy_is_nouarg(skb)) {
1323 /* no notification callback */
1324 } else if (uarg->callback == sock_zerocopy_callback) {
0a4a060b
WB
1325 uarg->zerocopy = uarg->zerocopy && zerocopy;
1326 sock_zerocopy_put(uarg);
99a86317 1327 } else {
0a4a060b
WB
1328 uarg->callback(uarg, zerocopy);
1329 }
1330
52267790
WB
1331 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1332 }
1333}
1334
1335/* Abort a zerocopy operation and revert zckey on error in send syscall */
1336static inline void skb_zcopy_abort(struct sk_buff *skb)
1337{
1338 struct ubuf_info *uarg = skb_zcopy(skb);
1339
1340 if (uarg) {
1341 sock_zerocopy_put_abort(uarg);
1342 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1343 }
1344}
1345
1da177e4
LT
1346/**
1347 * skb_queue_empty - check if a queue is empty
1348 * @list: queue head
1349 *
1350 * Returns true if the queue is empty, false otherwise.
1351 */
1352static inline int skb_queue_empty(const struct sk_buff_head *list)
1353{
fd44b93c 1354 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1355}
1356
4b27877d
ED
1357/**
1358 * skb_queue_empty_lockless - check if a queue is empty
1359 * @list: queue head
1360 *
1361 * Returns true if the queue is empty, false otherwise.
1362 * This variant can be used in lockless contexts.
1363 */
1364static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1365{
1366 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1367}
1368
1369
fc7ebb21
DM
1370/**
1371 * skb_queue_is_last - check if skb is the last entry in the queue
1372 * @list: queue head
1373 * @skb: buffer
1374 *
1375 * Returns true if @skb is the last buffer on the list.
1376 */
1377static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1378 const struct sk_buff *skb)
1379{
fd44b93c 1380 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1381}
1382
832d11c5
IJ
1383/**
1384 * skb_queue_is_first - check if skb is the first entry in the queue
1385 * @list: queue head
1386 * @skb: buffer
1387 *
1388 * Returns true if @skb is the first buffer on the list.
1389 */
1390static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1391 const struct sk_buff *skb)
1392{
fd44b93c 1393 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1394}
1395
249c8b42
DM
1396/**
1397 * skb_queue_next - return the next packet in the queue
1398 * @list: queue head
1399 * @skb: current buffer
1400 *
1401 * Return the next packet in @list after @skb. It is only valid to
1402 * call this if skb_queue_is_last() evaluates to false.
1403 */
1404static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1405 const struct sk_buff *skb)
1406{
1407 /* This BUG_ON may seem severe, but if we just return then we
1408 * are going to dereference garbage.
1409 */
1410 BUG_ON(skb_queue_is_last(list, skb));
1411 return skb->next;
1412}
1413
832d11c5
IJ
1414/**
1415 * skb_queue_prev - return the prev packet in the queue
1416 * @list: queue head
1417 * @skb: current buffer
1418 *
1419 * Return the prev packet in @list before @skb. It is only valid to
1420 * call this if skb_queue_is_first() evaluates to false.
1421 */
1422static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1423 const struct sk_buff *skb)
1424{
1425 /* This BUG_ON may seem severe, but if we just return then we
1426 * are going to dereference garbage.
1427 */
1428 BUG_ON(skb_queue_is_first(list, skb));
1429 return skb->prev;
1430}
1431
1da177e4
LT
1432/**
1433 * skb_get - reference buffer
1434 * @skb: buffer to reference
1435 *
1436 * Makes another reference to a socket buffer and returns a pointer
1437 * to the buffer.
1438 */
1439static inline struct sk_buff *skb_get(struct sk_buff *skb)
1440{
63354797 1441 refcount_inc(&skb->users);
1da177e4
LT
1442 return skb;
1443}
1444
1445/*
f8821f96 1446 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1da177e4
LT
1447 */
1448
1da177e4
LT
1449/**
1450 * skb_cloned - is the buffer a clone
1451 * @skb: buffer to check
1452 *
1453 * Returns true if the buffer was generated with skb_clone() and is
1454 * one of multiple shared copies of the buffer. Cloned buffers are
1455 * shared data so must not be written to under normal circumstances.
1456 */
1457static inline int skb_cloned(const struct sk_buff *skb)
1458{
1459 return skb->cloned &&
1460 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1461}
1462
14bbd6a5
PS
1463static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1464{
d0164adc 1465 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1466
1467 if (skb_cloned(skb))
1468 return pskb_expand_head(skb, 0, 0, pri);
1469
1470 return 0;
1471}
1472
1da177e4
LT
1473/**
1474 * skb_header_cloned - is the header a clone
1475 * @skb: buffer to check
1476 *
1477 * Returns true if modifying the header part of the buffer requires
1478 * the data to be copied.
1479 */
1480static inline int skb_header_cloned(const struct sk_buff *skb)
1481{
1482 int dataref;
1483
1484 if (!skb->cloned)
1485 return 0;
1486
1487 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1488 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1489 return dataref != 1;
1490}
1491
9580bf2e
ED
1492static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1493{
1494 might_sleep_if(gfpflags_allow_blocking(pri));
1495
1496 if (skb_header_cloned(skb))
1497 return pskb_expand_head(skb, 0, 0, pri);
1498
1499 return 0;
1500}
1501
f4a775d1
ED
1502/**
1503 * __skb_header_release - release reference to header
1504 * @skb: buffer to operate on
f4a775d1
ED
1505 */
1506static inline void __skb_header_release(struct sk_buff *skb)
1507{
1508 skb->nohdr = 1;
1509 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1510}
1511
1512
1da177e4
LT
1513/**
1514 * skb_shared - is the buffer shared
1515 * @skb: buffer to check
1516 *
1517 * Returns true if more than one person has a reference to this
1518 * buffer.
1519 */
1520static inline int skb_shared(const struct sk_buff *skb)
1521{
63354797 1522 return refcount_read(&skb->users) != 1;
1da177e4
LT
1523}
1524
1525/**
1526 * skb_share_check - check if buffer is shared and if so clone it
1527 * @skb: buffer to check
1528 * @pri: priority for memory allocation
1529 *
1530 * If the buffer is shared the buffer is cloned and the old copy
1531 * drops a reference. A new clone with a single reference is returned.
1532 * If the buffer is not shared the original buffer is returned. When
1533 * being called from interrupt status or with spinlocks held pri must
1534 * be GFP_ATOMIC.
1535 *
1536 * NULL is returned on a memory allocation failure.
1537 */
47061bc4 1538static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1539{
d0164adc 1540 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1541 if (skb_shared(skb)) {
1542 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1543
1544 if (likely(nskb))
1545 consume_skb(skb);
1546 else
1547 kfree_skb(skb);
1da177e4
LT
1548 skb = nskb;
1549 }
1550 return skb;
1551}
1552
1553/*
1554 * Copy shared buffers into a new sk_buff. We effectively do COW on
1555 * packets to handle cases where we have a local reader and forward
1556 * and a couple of other messy ones. The normal one is tcpdumping
1557 * a packet thats being forwarded.
1558 */
1559
1560/**
1561 * skb_unshare - make a copy of a shared buffer
1562 * @skb: buffer to check
1563 * @pri: priority for memory allocation
1564 *
1565 * If the socket buffer is a clone then this function creates a new
1566 * copy of the data, drops a reference count on the old copy and returns
1567 * the new copy with the reference count at 1. If the buffer is not a clone
1568 * the original buffer is returned. When called with a spinlock held or
1569 * from interrupt state @pri must be %GFP_ATOMIC
1570 *
1571 * %NULL is returned on a memory allocation failure.
1572 */
e2bf521d 1573static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1574 gfp_t pri)
1da177e4 1575{
d0164adc 1576 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1577 if (skb_cloned(skb)) {
1578 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1579
1580 /* Free our shared copy */
1581 if (likely(nskb))
1582 consume_skb(skb);
1583 else
1584 kfree_skb(skb);
1da177e4
LT
1585 skb = nskb;
1586 }
1587 return skb;
1588}
1589
1590/**
1a5778aa 1591 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1592 * @list_: list to peek at
1593 *
1594 * Peek an &sk_buff. Unlike most other operations you _MUST_
1595 * be careful with this one. A peek leaves the buffer on the
1596 * list and someone else may run off with it. You must hold
1597 * the appropriate locks or have a private queue to do this.
1598 *
1599 * Returns %NULL for an empty list or a pointer to the head element.
1600 * The reference count is not incremented and the reference is therefore
1601 * volatile. Use with caution.
1602 */
05bdd2f1 1603static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1604{
18d07000
ED
1605 struct sk_buff *skb = list_->next;
1606
1607 if (skb == (struct sk_buff *)list_)
1608 skb = NULL;
1609 return skb;
1da177e4
LT
1610}
1611
da5ef6e5
PE
1612/**
1613 * skb_peek_next - peek skb following the given one from a queue
1614 * @skb: skb to start from
1615 * @list_: list to peek at
1616 *
1617 * Returns %NULL when the end of the list is met or a pointer to the
1618 * next element. The reference count is not incremented and the
1619 * reference is therefore volatile. Use with caution.
1620 */
1621static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1622 const struct sk_buff_head *list_)
1623{
1624 struct sk_buff *next = skb->next;
18d07000 1625
da5ef6e5
PE
1626 if (next == (struct sk_buff *)list_)
1627 next = NULL;
1628 return next;
1629}
1630
1da177e4 1631/**
1a5778aa 1632 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1633 * @list_: list to peek at
1634 *
1635 * Peek an &sk_buff. Unlike most other operations you _MUST_
1636 * be careful with this one. A peek leaves the buffer on the
1637 * list and someone else may run off with it. You must hold
1638 * the appropriate locks or have a private queue to do this.
1639 *
1640 * Returns %NULL for an empty list or a pointer to the tail element.
1641 * The reference count is not incremented and the reference is therefore
1642 * volatile. Use with caution.
1643 */
05bdd2f1 1644static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1645{
18d07000
ED
1646 struct sk_buff *skb = list_->prev;
1647
1648 if (skb == (struct sk_buff *)list_)
1649 skb = NULL;
1650 return skb;
1651
1da177e4
LT
1652}
1653
1654/**
1655 * skb_queue_len - get queue length
1656 * @list_: list to measure
1657 *
1658 * Return the length of an &sk_buff queue.
1659 */
1660static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1661{
1662 return list_->qlen;
1663}
1664
67fed459
DM
1665/**
1666 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1667 * @list: queue to initialize
1668 *
1669 * This initializes only the list and queue length aspects of
1670 * an sk_buff_head object. This allows to initialize the list
1671 * aspects of an sk_buff_head without reinitializing things like
1672 * the spinlock. It can also be used for on-stack sk_buff_head
1673 * objects where the spinlock is known to not be used.
1674 */
1675static inline void __skb_queue_head_init(struct sk_buff_head *list)
1676{
1677 list->prev = list->next = (struct sk_buff *)list;
1678 list->qlen = 0;
1679}
1680
76f10ad0
AV
1681/*
1682 * This function creates a split out lock class for each invocation;
1683 * this is needed for now since a whole lot of users of the skb-queue
1684 * infrastructure in drivers have different locking usage (in hardirq)
1685 * than the networking core (in softirq only). In the long run either the
1686 * network layer or drivers should need annotation to consolidate the
1687 * main types of usage into 3 classes.
1688 */
1da177e4
LT
1689static inline void skb_queue_head_init(struct sk_buff_head *list)
1690{
1691 spin_lock_init(&list->lock);
67fed459 1692 __skb_queue_head_init(list);
1da177e4
LT
1693}
1694
c2ecba71
PE
1695static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1696 struct lock_class_key *class)
1697{
1698 skb_queue_head_init(list);
1699 lockdep_set_class(&list->lock, class);
1700}
1701
1da177e4 1702/*
bf299275 1703 * Insert an sk_buff on a list.
1da177e4
LT
1704 *
1705 * The "__skb_xxxx()" functions are the non-atomic ones that
1706 * can only be called with interrupts disabled.
1707 */
7965bd4d
JP
1708void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1709 struct sk_buff_head *list);
bf299275
GR
1710static inline void __skb_insert(struct sk_buff *newsk,
1711 struct sk_buff *prev, struct sk_buff *next,
1712 struct sk_buff_head *list)
1713{
4b27877d
ED
1714 /* see skb_queue_empty_lockless() for the opposite READ_ONCE() */
1715 WRITE_ONCE(newsk->next, next);
1716 WRITE_ONCE(newsk->prev, prev);
1717 WRITE_ONCE(next->prev, newsk);
1718 WRITE_ONCE(prev->next, newsk);
bf299275
GR
1719 list->qlen++;
1720}
1da177e4 1721
67fed459
DM
1722static inline void __skb_queue_splice(const struct sk_buff_head *list,
1723 struct sk_buff *prev,
1724 struct sk_buff *next)
1725{
1726 struct sk_buff *first = list->next;
1727 struct sk_buff *last = list->prev;
1728
4b27877d
ED
1729 WRITE_ONCE(first->prev, prev);
1730 WRITE_ONCE(prev->next, first);
67fed459 1731
4b27877d
ED
1732 WRITE_ONCE(last->next, next);
1733 WRITE_ONCE(next->prev, last);
67fed459
DM
1734}
1735
1736/**
1737 * skb_queue_splice - join two skb lists, this is designed for stacks
1738 * @list: the new list to add
1739 * @head: the place to add it in the first list
1740 */
1741static inline void skb_queue_splice(const struct sk_buff_head *list,
1742 struct sk_buff_head *head)
1743{
1744 if (!skb_queue_empty(list)) {
1745 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1746 head->qlen += list->qlen;
67fed459
DM
1747 }
1748}
1749
1750/**
d9619496 1751 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1752 * @list: the new list to add
1753 * @head: the place to add it in the first list
1754 *
1755 * The list at @list is reinitialised
1756 */
1757static inline void skb_queue_splice_init(struct sk_buff_head *list,
1758 struct sk_buff_head *head)
1759{
1760 if (!skb_queue_empty(list)) {
1761 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1762 head->qlen += list->qlen;
67fed459
DM
1763 __skb_queue_head_init(list);
1764 }
1765}
1766
1767/**
1768 * skb_queue_splice_tail - join two skb lists, each list being a queue
1769 * @list: the new list to add
1770 * @head: the place to add it in the first list
1771 */
1772static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1773 struct sk_buff_head *head)
1774{
1775 if (!skb_queue_empty(list)) {
1776 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1777 head->qlen += list->qlen;
67fed459
DM
1778 }
1779}
1780
1781/**
d9619496 1782 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1783 * @list: the new list to add
1784 * @head: the place to add it in the first list
1785 *
1786 * Each of the lists is a queue.
1787 * The list at @list is reinitialised
1788 */
1789static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1790 struct sk_buff_head *head)
1791{
1792 if (!skb_queue_empty(list)) {
1793 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1794 head->qlen += list->qlen;
67fed459
DM
1795 __skb_queue_head_init(list);
1796 }
1797}
1798
1da177e4 1799/**
300ce174 1800 * __skb_queue_after - queue a buffer at the list head
1da177e4 1801 * @list: list to use
300ce174 1802 * @prev: place after this buffer
1da177e4
LT
1803 * @newsk: buffer to queue
1804 *
300ce174 1805 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1806 * and you must therefore hold required locks before calling it.
1807 *
1808 * A buffer cannot be placed on two lists at the same time.
1809 */
300ce174
SH
1810static inline void __skb_queue_after(struct sk_buff_head *list,
1811 struct sk_buff *prev,
1812 struct sk_buff *newsk)
1da177e4 1813{
bf299275 1814 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1815}
1816
7965bd4d
JP
1817void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1818 struct sk_buff_head *list);
7de6c033 1819
f5572855
GR
1820static inline void __skb_queue_before(struct sk_buff_head *list,
1821 struct sk_buff *next,
1822 struct sk_buff *newsk)
1823{
1824 __skb_insert(newsk, next->prev, next, list);
1825}
1826
300ce174
SH
1827/**
1828 * __skb_queue_head - queue a buffer at the list head
1829 * @list: list to use
1830 * @newsk: buffer to queue
1831 *
1832 * Queue a buffer at the start of a list. This function takes no locks
1833 * and you must therefore hold required locks before calling it.
1834 *
1835 * A buffer cannot be placed on two lists at the same time.
1836 */
7965bd4d 1837void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1838static inline void __skb_queue_head(struct sk_buff_head *list,
1839 struct sk_buff *newsk)
1840{
1841 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1842}
1843
1da177e4
LT
1844/**
1845 * __skb_queue_tail - queue a buffer at the list tail
1846 * @list: list to use
1847 * @newsk: buffer to queue
1848 *
1849 * Queue a buffer at the end of a list. This function takes no locks
1850 * and you must therefore hold required locks before calling it.
1851 *
1852 * A buffer cannot be placed on two lists at the same time.
1853 */
7965bd4d 1854void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1855static inline void __skb_queue_tail(struct sk_buff_head *list,
1856 struct sk_buff *newsk)
1857{
f5572855 1858 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1859}
1860
1da177e4
LT
1861/*
1862 * remove sk_buff from list. _Must_ be called atomically, and with
1863 * the list known..
1864 */
7965bd4d 1865void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1866static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1867{
1868 struct sk_buff *next, *prev;
1869
1870 list->qlen--;
1871 next = skb->next;
1872 prev = skb->prev;
1873 skb->next = skb->prev = NULL;
4b27877d
ED
1874 WRITE_ONCE(next->prev, prev);
1875 WRITE_ONCE(prev->next, next);
1da177e4
LT
1876}
1877
f525c06d
GR
1878/**
1879 * __skb_dequeue - remove from the head of the queue
1880 * @list: list to dequeue from
1881 *
1882 * Remove the head of the list. This function does not take any locks
1883 * so must be used with appropriate locks held only. The head item is
1884 * returned or %NULL if the list is empty.
1885 */
7965bd4d 1886struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1887static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1888{
1889 struct sk_buff *skb = skb_peek(list);
1890 if (skb)
1891 __skb_unlink(skb, list);
1892 return skb;
1893}
1da177e4
LT
1894
1895/**
1896 * __skb_dequeue_tail - remove from the tail of the queue
1897 * @list: list to dequeue from
1898 *
1899 * Remove the tail of the list. This function does not take any locks
1900 * so must be used with appropriate locks held only. The tail item is
1901 * returned or %NULL if the list is empty.
1902 */
7965bd4d 1903struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1904static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1905{
1906 struct sk_buff *skb = skb_peek_tail(list);
1907 if (skb)
1908 __skb_unlink(skb, list);
1909 return skb;
1910}
1911
1912
bdcc0924 1913static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1914{
1915 return skb->data_len;
1916}
1917
1918static inline unsigned int skb_headlen(const struct sk_buff *skb)
1919{
1920 return skb->len - skb->data_len;
1921}
1922
3ece7826 1923static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 1924{
c72d8cda 1925 unsigned int i, len = 0;
1da177e4 1926
c72d8cda 1927 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 1928 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
1929 return len;
1930}
1931
1932static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1933{
1934 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
1935}
1936
131ea667
IC
1937/**
1938 * __skb_fill_page_desc - initialise a paged fragment in an skb
1939 * @skb: buffer containing fragment to be initialised
1940 * @i: paged fragment index to initialise
1941 * @page: the page to use for this fragment
1942 * @off: the offset to the data with @page
1943 * @size: the length of the data
1944 *
1945 * Initialises the @i'th fragment of @skb to point to &size bytes at
1946 * offset @off within @page.
1947 *
1948 * Does not take any additional reference on the fragment.
1949 */
1950static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1951 struct page *page, int off, int size)
1da177e4
LT
1952{
1953 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1954
c48a11c7 1955 /*
2f064f34
MH
1956 * Propagate page pfmemalloc to the skb if we can. The problem is
1957 * that not all callers have unique ownership of the page but rely
1958 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1959 */
a8605c60 1960 frag->page.p = page;
1da177e4 1961 frag->page_offset = off;
9e903e08 1962 skb_frag_size_set(frag, size);
cca7af38
PE
1963
1964 page = compound_head(page);
2f064f34 1965 if (page_is_pfmemalloc(page))
cca7af38 1966 skb->pfmemalloc = true;
131ea667
IC
1967}
1968
1969/**
1970 * skb_fill_page_desc - initialise a paged fragment in an skb
1971 * @skb: buffer containing fragment to be initialised
1972 * @i: paged fragment index to initialise
1973 * @page: the page to use for this fragment
1974 * @off: the offset to the data with @page
1975 * @size: the length of the data
1976 *
1977 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1978 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1979 * addition updates @skb such that @i is the last fragment.
1980 *
1981 * Does not take any additional reference on the fragment.
1982 */
1983static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1984 struct page *page, int off, int size)
1985{
1986 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1987 skb_shinfo(skb)->nr_frags = i + 1;
1988}
1989
7965bd4d
JP
1990void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1991 int size, unsigned int truesize);
654bed16 1992
f8e617e1
JW
1993void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1994 unsigned int truesize);
1995
1da177e4 1996#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1997#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1998#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1999
27a884dc
ACM
2000#ifdef NET_SKBUFF_DATA_USES_OFFSET
2001static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2002{
2003 return skb->head + skb->tail;
2004}
2005
2006static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2007{
2008 skb->tail = skb->data - skb->head;
2009}
2010
2011static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2012{
2013 skb_reset_tail_pointer(skb);
2014 skb->tail += offset;
2015}
7cc46190 2016
27a884dc
ACM
2017#else /* NET_SKBUFF_DATA_USES_OFFSET */
2018static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2019{
2020 return skb->tail;
2021}
2022
2023static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2024{
2025 skb->tail = skb->data;
2026}
2027
2028static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2029{
2030 skb->tail = skb->data + offset;
2031}
4305b541 2032
27a884dc
ACM
2033#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2034
1da177e4
LT
2035/*
2036 * Add data to an sk_buff
2037 */
4df864c1
JB
2038void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2039void *skb_put(struct sk_buff *skb, unsigned int len);
2040static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2041{
4df864c1 2042 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2043 SKB_LINEAR_ASSERT(skb);
2044 skb->tail += len;
2045 skb->len += len;
2046 return tmp;
2047}
2048
de77b966 2049static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2050{
2051 void *tmp = __skb_put(skb, len);
2052
2053 memset(tmp, 0, len);
2054 return tmp;
2055}
2056
2057static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2058 unsigned int len)
2059{
2060 void *tmp = __skb_put(skb, len);
2061
2062 memcpy(tmp, data, len);
2063 return tmp;
2064}
2065
2066static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2067{
2068 *(u8 *)__skb_put(skb, 1) = val;
2069}
2070
83ad357d 2071static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2072{
83ad357d 2073 void *tmp = skb_put(skb, len);
e45a79da
JB
2074
2075 memset(tmp, 0, len);
2076
2077 return tmp;
2078}
2079
59ae1d12
JB
2080static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2081 unsigned int len)
2082{
2083 void *tmp = skb_put(skb, len);
2084
2085 memcpy(tmp, data, len);
2086
2087 return tmp;
2088}
2089
634fef61
JB
2090static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2091{
2092 *(u8 *)skb_put(skb, 1) = val;
2093}
2094
d58ff351
JB
2095void *skb_push(struct sk_buff *skb, unsigned int len);
2096static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2097{
2098 skb->data -= len;
2099 skb->len += len;
2100 return skb->data;
2101}
2102
af72868b
JB
2103void *skb_pull(struct sk_buff *skb, unsigned int len);
2104static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2105{
2106 skb->len -= len;
2107 BUG_ON(skb->len < skb->data_len);
2108 return skb->data += len;
2109}
2110
af72868b 2111static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2112{
2113 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2114}
2115
af72868b 2116void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2117
af72868b 2118static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2119{
2120 if (len > skb_headlen(skb) &&
987c402a 2121 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2122 return NULL;
2123 skb->len -= len;
2124 return skb->data += len;
2125}
2126
af72868b 2127static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2128{
2129 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2130}
2131
2132static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2133{
2134 if (likely(len <= skb_headlen(skb)))
2135 return 1;
2136 if (unlikely(len > skb->len))
2137 return 0;
987c402a 2138 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2139}
2140
c8c8b127
ED
2141void skb_condense(struct sk_buff *skb);
2142
1da177e4
LT
2143/**
2144 * skb_headroom - bytes at buffer head
2145 * @skb: buffer to check
2146 *
2147 * Return the number of bytes of free space at the head of an &sk_buff.
2148 */
c2636b4d 2149static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2150{
2151 return skb->data - skb->head;
2152}
2153
2154/**
2155 * skb_tailroom - bytes at buffer end
2156 * @skb: buffer to check
2157 *
2158 * Return the number of bytes of free space at the tail of an sk_buff
2159 */
2160static inline int skb_tailroom(const struct sk_buff *skb)
2161{
4305b541 2162 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2163}
2164
a21d4572
ED
2165/**
2166 * skb_availroom - bytes at buffer end
2167 * @skb: buffer to check
2168 *
2169 * Return the number of bytes of free space at the tail of an sk_buff
2170 * allocated by sk_stream_alloc()
2171 */
2172static inline int skb_availroom(const struct sk_buff *skb)
2173{
16fad69c
ED
2174 if (skb_is_nonlinear(skb))
2175 return 0;
2176
2177 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2178}
2179
1da177e4
LT
2180/**
2181 * skb_reserve - adjust headroom
2182 * @skb: buffer to alter
2183 * @len: bytes to move
2184 *
2185 * Increase the headroom of an empty &sk_buff by reducing the tail
2186 * room. This is only allowed for an empty buffer.
2187 */
8243126c 2188static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2189{
2190 skb->data += len;
2191 skb->tail += len;
2192}
2193
1837b2e2
BP
2194/**
2195 * skb_tailroom_reserve - adjust reserved_tailroom
2196 * @skb: buffer to alter
2197 * @mtu: maximum amount of headlen permitted
2198 * @needed_tailroom: minimum amount of reserved_tailroom
2199 *
2200 * Set reserved_tailroom so that headlen can be as large as possible but
2201 * not larger than mtu and tailroom cannot be smaller than
2202 * needed_tailroom.
2203 * The required headroom should already have been reserved before using
2204 * this function.
2205 */
2206static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2207 unsigned int needed_tailroom)
2208{
2209 SKB_LINEAR_ASSERT(skb);
2210 if (mtu < skb_tailroom(skb) - needed_tailroom)
2211 /* use at most mtu */
2212 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2213 else
2214 /* use up to all available space */
2215 skb->reserved_tailroom = needed_tailroom;
2216}
2217
8bce6d7d
TH
2218#define ENCAP_TYPE_ETHER 0
2219#define ENCAP_TYPE_IPPROTO 1
2220
2221static inline void skb_set_inner_protocol(struct sk_buff *skb,
2222 __be16 protocol)
2223{
2224 skb->inner_protocol = protocol;
2225 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2226}
2227
2228static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2229 __u8 ipproto)
2230{
2231 skb->inner_ipproto = ipproto;
2232 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2233}
2234
6a674e9c
JG
2235static inline void skb_reset_inner_headers(struct sk_buff *skb)
2236{
aefbd2b3 2237 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2238 skb->inner_network_header = skb->network_header;
2239 skb->inner_transport_header = skb->transport_header;
2240}
2241
0b5c9db1
JP
2242static inline void skb_reset_mac_len(struct sk_buff *skb)
2243{
2244 skb->mac_len = skb->network_header - skb->mac_header;
2245}
2246
6a674e9c
JG
2247static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2248 *skb)
2249{
2250 return skb->head + skb->inner_transport_header;
2251}
2252
55dc5a9f
TH
2253static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2254{
2255 return skb_inner_transport_header(skb) - skb->data;
2256}
2257
6a674e9c
JG
2258static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2259{
2260 skb->inner_transport_header = skb->data - skb->head;
2261}
2262
2263static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2264 const int offset)
2265{
2266 skb_reset_inner_transport_header(skb);
2267 skb->inner_transport_header += offset;
2268}
2269
2270static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2271{
2272 return skb->head + skb->inner_network_header;
2273}
2274
2275static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2276{
2277 skb->inner_network_header = skb->data - skb->head;
2278}
2279
2280static inline void skb_set_inner_network_header(struct sk_buff *skb,
2281 const int offset)
2282{
2283 skb_reset_inner_network_header(skb);
2284 skb->inner_network_header += offset;
2285}
2286
aefbd2b3
PS
2287static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2288{
2289 return skb->head + skb->inner_mac_header;
2290}
2291
2292static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2293{
2294 skb->inner_mac_header = skb->data - skb->head;
2295}
2296
2297static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2298 const int offset)
2299{
2300 skb_reset_inner_mac_header(skb);
2301 skb->inner_mac_header += offset;
2302}
fda55eca
ED
2303static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2304{
35d04610 2305 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2306}
2307
9c70220b
ACM
2308static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2309{
2e07fa9c 2310 return skb->head + skb->transport_header;
9c70220b
ACM
2311}
2312
badff6d0
ACM
2313static inline void skb_reset_transport_header(struct sk_buff *skb)
2314{
2e07fa9c 2315 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2316}
2317
967b05f6
ACM
2318static inline void skb_set_transport_header(struct sk_buff *skb,
2319 const int offset)
2320{
2e07fa9c
ACM
2321 skb_reset_transport_header(skb);
2322 skb->transport_header += offset;
ea2ae17d
ACM
2323}
2324
d56f90a7
ACM
2325static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2326{
2e07fa9c 2327 return skb->head + skb->network_header;
d56f90a7
ACM
2328}
2329
c1d2bbe1
ACM
2330static inline void skb_reset_network_header(struct sk_buff *skb)
2331{
2e07fa9c 2332 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2333}
2334
c14d2450
ACM
2335static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2336{
2e07fa9c
ACM
2337 skb_reset_network_header(skb);
2338 skb->network_header += offset;
c14d2450
ACM
2339}
2340
2e07fa9c 2341static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2342{
2e07fa9c 2343 return skb->head + skb->mac_header;
bbe735e4
ACM
2344}
2345
ea6da4fd
AV
2346static inline int skb_mac_offset(const struct sk_buff *skb)
2347{
2348 return skb_mac_header(skb) - skb->data;
2349}
2350
0daf4349
DB
2351static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2352{
2353 return skb->network_header - skb->mac_header;
2354}
2355
2e07fa9c 2356static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2357{
35d04610 2358 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2359}
2360
2361static inline void skb_reset_mac_header(struct sk_buff *skb)
2362{
2363 skb->mac_header = skb->data - skb->head;
2364}
2365
2366static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2367{
2368 skb_reset_mac_header(skb);
2369 skb->mac_header += offset;
2370}
2371
0e3da5bb
TT
2372static inline void skb_pop_mac_header(struct sk_buff *skb)
2373{
2374 skb->mac_header = skb->network_header;
2375}
2376
fbbdb8f0
YX
2377static inline void skb_probe_transport_header(struct sk_buff *skb,
2378 const int offset_hint)
2379{
2380 struct flow_keys keys;
2381
2382 if (skb_transport_header_was_set(skb))
2383 return;
cd79a238 2384 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
42aecaa9 2385 skb_set_transport_header(skb, keys.control.thoff);
7ab88f32 2386 else if (offset_hint >= 0)
fbbdb8f0
YX
2387 skb_set_transport_header(skb, offset_hint);
2388}
2389
03606895
ED
2390static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2391{
2392 if (skb_mac_header_was_set(skb)) {
2393 const unsigned char *old_mac = skb_mac_header(skb);
2394
2395 skb_set_mac_header(skb, -skb->mac_len);
2396 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2397 }
2398}
2399
04fb451e
MM
2400static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2401{
2402 return skb->csum_start - skb_headroom(skb);
2403}
2404
08b64fcc
AD
2405static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2406{
2407 return skb->head + skb->csum_start;
2408}
2409
2e07fa9c
ACM
2410static inline int skb_transport_offset(const struct sk_buff *skb)
2411{
2412 return skb_transport_header(skb) - skb->data;
2413}
2414
2415static inline u32 skb_network_header_len(const struct sk_buff *skb)
2416{
2417 return skb->transport_header - skb->network_header;
2418}
2419
6a674e9c
JG
2420static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2421{
2422 return skb->inner_transport_header - skb->inner_network_header;
2423}
2424
2e07fa9c
ACM
2425static inline int skb_network_offset(const struct sk_buff *skb)
2426{
2427 return skb_network_header(skb) - skb->data;
2428}
48d49d0c 2429
6a674e9c
JG
2430static inline int skb_inner_network_offset(const struct sk_buff *skb)
2431{
2432 return skb_inner_network_header(skb) - skb->data;
2433}
2434
f9599ce1
CG
2435static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2436{
2437 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2438}
2439
1da177e4
LT
2440/*
2441 * CPUs often take a performance hit when accessing unaligned memory
2442 * locations. The actual performance hit varies, it can be small if the
2443 * hardware handles it or large if we have to take an exception and fix it
2444 * in software.
2445 *
2446 * Since an ethernet header is 14 bytes network drivers often end up with
2447 * the IP header at an unaligned offset. The IP header can be aligned by
2448 * shifting the start of the packet by 2 bytes. Drivers should do this
2449 * with:
2450 *
8660c124 2451 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2452 *
2453 * The downside to this alignment of the IP header is that the DMA is now
2454 * unaligned. On some architectures the cost of an unaligned DMA is high
2455 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2456 *
1da177e4
LT
2457 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2458 * to be overridden.
2459 */
2460#ifndef NET_IP_ALIGN
2461#define NET_IP_ALIGN 2
2462#endif
2463
025be81e
AB
2464/*
2465 * The networking layer reserves some headroom in skb data (via
2466 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2467 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2468 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2469 *
2470 * Unfortunately this headroom changes the DMA alignment of the resulting
2471 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2472 * on some architectures. An architecture can override this value,
2473 * perhaps setting it to a cacheline in size (since that will maintain
2474 * cacheline alignment of the DMA). It must be a power of 2.
2475 *
d6301d3d 2476 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2477 * headroom, you should not reduce this.
5933dd2f
ED
2478 *
2479 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2480 * to reduce average number of cache lines per packet.
2481 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2482 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2483 */
2484#ifndef NET_SKB_PAD
5933dd2f 2485#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2486#endif
2487
7965bd4d 2488int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2489
5293efe6 2490static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2491{
c4264f27 2492 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2493 WARN_ON(1);
2494 return;
2495 }
27a884dc
ACM
2496 skb->len = len;
2497 skb_set_tail_pointer(skb, len);
1da177e4
LT
2498}
2499
5293efe6
DB
2500static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2501{
2502 __skb_set_length(skb, len);
2503}
2504
7965bd4d 2505void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2506
2507static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2508{
3cc0e873
HX
2509 if (skb->data_len)
2510 return ___pskb_trim(skb, len);
2511 __skb_trim(skb, len);
2512 return 0;
1da177e4
LT
2513}
2514
2515static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2516{
2517 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2518}
2519
e9fa4f7b
HX
2520/**
2521 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2522 * @skb: buffer to alter
2523 * @len: new length
2524 *
2525 * This is identical to pskb_trim except that the caller knows that
2526 * the skb is not cloned so we should never get an error due to out-
2527 * of-memory.
2528 */
2529static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2530{
2531 int err = pskb_trim(skb, len);
2532 BUG_ON(err);
2533}
2534
5293efe6
DB
2535static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2536{
2537 unsigned int diff = len - skb->len;
2538
2539 if (skb_tailroom(skb) < diff) {
2540 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2541 GFP_ATOMIC);
2542 if (ret)
2543 return ret;
2544 }
2545 __skb_set_length(skb, len);
2546 return 0;
2547}
2548
1da177e4
LT
2549/**
2550 * skb_orphan - orphan a buffer
2551 * @skb: buffer to orphan
2552 *
2553 * If a buffer currently has an owner then we call the owner's
2554 * destructor function and make the @skb unowned. The buffer continues
2555 * to exist but is no longer charged to its former owner.
2556 */
2557static inline void skb_orphan(struct sk_buff *skb)
2558{
c34a7612 2559 if (skb->destructor) {
1da177e4 2560 skb->destructor(skb);
c34a7612
ED
2561 skb->destructor = NULL;
2562 skb->sk = NULL;
376c7311
ED
2563 } else {
2564 BUG_ON(skb->sk);
c34a7612 2565 }
1da177e4
LT
2566}
2567
a353e0ce
MT
2568/**
2569 * skb_orphan_frags - orphan the frags contained in a buffer
2570 * @skb: buffer to orphan frags from
2571 * @gfp_mask: allocation mask for replacement pages
2572 *
2573 * For each frag in the SKB which needs a destructor (i.e. has an
2574 * owner) create a copy of that frag and release the original
2575 * page by calling the destructor.
2576 */
2577static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2578{
1f8b977a
WB
2579 if (likely(!skb_zcopy(skb)))
2580 return 0;
99a86317
WB
2581 if (!skb_zcopy_is_nouarg(skb) &&
2582 skb_uarg(skb)->callback == sock_zerocopy_callback)
1f8b977a
WB
2583 return 0;
2584 return skb_copy_ubufs(skb, gfp_mask);
2585}
2586
2587/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2588static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2589{
2590 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2591 return 0;
2592 return skb_copy_ubufs(skb, gfp_mask);
2593}
2594
1da177e4
LT
2595/**
2596 * __skb_queue_purge - empty a list
2597 * @list: list to empty
2598 *
2599 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2600 * the list and one reference dropped. This function does not take the
2601 * list lock and the caller must hold the relevant locks to use it.
2602 */
7965bd4d 2603void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2604static inline void __skb_queue_purge(struct sk_buff_head *list)
2605{
2606 struct sk_buff *skb;
2607 while ((skb = __skb_dequeue(list)) != NULL)
2608 kfree_skb(skb);
2609}
2610
3c7d5142 2611unsigned int skb_rbtree_purge(struct rb_root *root);
9f5afeae 2612
7965bd4d 2613void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2614
7965bd4d
JP
2615struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2616 gfp_t gfp_mask);
8af27456
CH
2617
2618/**
2619 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2620 * @dev: network device to receive on
2621 * @length: length to allocate
2622 *
2623 * Allocate a new &sk_buff and assign it a usage count of one. The
2624 * buffer has unspecified headroom built in. Users should allocate
2625 * the headroom they think they need without accounting for the
2626 * built in space. The built in space is used for optimisations.
2627 *
2628 * %NULL is returned if there is no free memory. Although this function
2629 * allocates memory it can be called from an interrupt.
2630 */
2631static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2632 unsigned int length)
8af27456
CH
2633{
2634 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2635}
2636
6f532612
ED
2637/* legacy helper around __netdev_alloc_skb() */
2638static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2639 gfp_t gfp_mask)
2640{
2641 return __netdev_alloc_skb(NULL, length, gfp_mask);
2642}
2643
2644/* legacy helper around netdev_alloc_skb() */
2645static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2646{
2647 return netdev_alloc_skb(NULL, length);
2648}
2649
2650
4915a0de
ED
2651static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2652 unsigned int length, gfp_t gfp)
61321bbd 2653{
4915a0de 2654 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2655
2656 if (NET_IP_ALIGN && skb)
2657 skb_reserve(skb, NET_IP_ALIGN);
2658 return skb;
2659}
2660
4915a0de
ED
2661static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2662 unsigned int length)
2663{
2664 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2665}
2666
181edb2b
AD
2667static inline void skb_free_frag(void *addr)
2668{
8c2dd3e4 2669 page_frag_free(addr);
181edb2b
AD
2670}
2671
ffde7328 2672void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2673struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2674 unsigned int length, gfp_t gfp_mask);
2675static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2676 unsigned int length)
2677{
2678 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2679}
795bb1c0
JDB
2680void napi_consume_skb(struct sk_buff *skb, int budget);
2681
2682void __kfree_skb_flush(void);
15fad714 2683void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2684
71dfda58
AD
2685/**
2686 * __dev_alloc_pages - allocate page for network Rx
2687 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2688 * @order: size of the allocation
2689 *
2690 * Allocate a new page.
2691 *
2692 * %NULL is returned if there is no free memory.
2693*/
2694static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2695 unsigned int order)
2696{
2697 /* This piece of code contains several assumptions.
2698 * 1. This is for device Rx, therefor a cold page is preferred.
2699 * 2. The expectation is the user wants a compound page.
2700 * 3. If requesting a order 0 page it will not be compound
2701 * due to the check to see if order has a value in prep_new_page
2702 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2703 * code in gfp_to_alloc_flags that should be enforcing this.
2704 */
453f85d4 2705 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
71dfda58
AD
2706
2707 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2708}
2709
2710static inline struct page *dev_alloc_pages(unsigned int order)
2711{
95829b3a 2712 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2713}
2714
2715/**
2716 * __dev_alloc_page - allocate a page for network Rx
2717 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2718 *
2719 * Allocate a new page.
2720 *
2721 * %NULL is returned if there is no free memory.
2722 */
2723static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2724{
2725 return __dev_alloc_pages(gfp_mask, 0);
2726}
2727
2728static inline struct page *dev_alloc_page(void)
2729{
95829b3a 2730 return dev_alloc_pages(0);
71dfda58
AD
2731}
2732
0614002b
MG
2733/**
2734 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2735 * @page: The page that was allocated from skb_alloc_page
2736 * @skb: The skb that may need pfmemalloc set
2737 */
2738static inline void skb_propagate_pfmemalloc(struct page *page,
2739 struct sk_buff *skb)
2740{
2f064f34 2741 if (page_is_pfmemalloc(page))
0614002b
MG
2742 skb->pfmemalloc = true;
2743}
2744
131ea667 2745/**
e227867f 2746 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2747 * @frag: the paged fragment
2748 *
2749 * Returns the &struct page associated with @frag.
2750 */
2751static inline struct page *skb_frag_page(const skb_frag_t *frag)
2752{
a8605c60 2753 return frag->page.p;
131ea667
IC
2754}
2755
2756/**
2757 * __skb_frag_ref - take an addition reference on a paged fragment.
2758 * @frag: the paged fragment
2759 *
2760 * Takes an additional reference on the paged fragment @frag.
2761 */
2762static inline void __skb_frag_ref(skb_frag_t *frag)
2763{
2764 get_page(skb_frag_page(frag));
2765}
2766
2767/**
2768 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2769 * @skb: the buffer
2770 * @f: the fragment offset.
2771 *
2772 * Takes an additional reference on the @f'th paged fragment of @skb.
2773 */
2774static inline void skb_frag_ref(struct sk_buff *skb, int f)
2775{
2776 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2777}
2778
2779/**
2780 * __skb_frag_unref - release a reference on a paged fragment.
2781 * @frag: the paged fragment
2782 *
2783 * Releases a reference on the paged fragment @frag.
2784 */
2785static inline void __skb_frag_unref(skb_frag_t *frag)
2786{
2787 put_page(skb_frag_page(frag));
2788}
2789
2790/**
2791 * skb_frag_unref - release a reference on a paged fragment of an skb.
2792 * @skb: the buffer
2793 * @f: the fragment offset
2794 *
2795 * Releases a reference on the @f'th paged fragment of @skb.
2796 */
2797static inline void skb_frag_unref(struct sk_buff *skb, int f)
2798{
2799 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2800}
2801
2802/**
2803 * skb_frag_address - gets the address of the data contained in a paged fragment
2804 * @frag: the paged fragment buffer
2805 *
2806 * Returns the address of the data within @frag. The page must already
2807 * be mapped.
2808 */
2809static inline void *skb_frag_address(const skb_frag_t *frag)
2810{
2811 return page_address(skb_frag_page(frag)) + frag->page_offset;
2812}
2813
2814/**
2815 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2816 * @frag: the paged fragment buffer
2817 *
2818 * Returns the address of the data within @frag. Checks that the page
2819 * is mapped and returns %NULL otherwise.
2820 */
2821static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2822{
2823 void *ptr = page_address(skb_frag_page(frag));
2824 if (unlikely(!ptr))
2825 return NULL;
2826
2827 return ptr + frag->page_offset;
2828}
2829
2830/**
2831 * __skb_frag_set_page - sets the page contained in a paged fragment
2832 * @frag: the paged fragment
2833 * @page: the page to set
2834 *
2835 * Sets the fragment @frag to contain @page.
2836 */
2837static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2838{
a8605c60 2839 frag->page.p = page;
131ea667
IC
2840}
2841
2842/**
2843 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2844 * @skb: the buffer
2845 * @f: the fragment offset
2846 * @page: the page to set
2847 *
2848 * Sets the @f'th fragment of @skb to contain @page.
2849 */
2850static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2851 struct page *page)
2852{
2853 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2854}
2855
400dfd3a
ED
2856bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2857
131ea667
IC
2858/**
2859 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2860 * @dev: the device to map the fragment to
131ea667
IC
2861 * @frag: the paged fragment to map
2862 * @offset: the offset within the fragment (starting at the
2863 * fragment's own offset)
2864 * @size: the number of bytes to map
771b00a8 2865 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
2866 *
2867 * Maps the page associated with @frag to @device.
2868 */
2869static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2870 const skb_frag_t *frag,
2871 size_t offset, size_t size,
2872 enum dma_data_direction dir)
2873{
2874 return dma_map_page(dev, skb_frag_page(frag),
2875 frag->page_offset + offset, size, dir);
2876}
2877
117632e6
ED
2878static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2879 gfp_t gfp_mask)
2880{
2881 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2882}
2883
bad93e9d
OP
2884
2885static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2886 gfp_t gfp_mask)
2887{
2888 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2889}
2890
2891
334a8132
PM
2892/**
2893 * skb_clone_writable - is the header of a clone writable
2894 * @skb: buffer to check
2895 * @len: length up to which to write
2896 *
2897 * Returns true if modifying the header part of the cloned buffer
2898 * does not requires the data to be copied.
2899 */
05bdd2f1 2900static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2901{
2902 return !skb_header_cloned(skb) &&
2903 skb_headroom(skb) + len <= skb->hdr_len;
2904}
2905
3697649f
DB
2906static inline int skb_try_make_writable(struct sk_buff *skb,
2907 unsigned int write_len)
2908{
2909 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2910 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2911}
2912
d9cc2048
HX
2913static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2914 int cloned)
2915{
2916 int delta = 0;
2917
d9cc2048
HX
2918 if (headroom > skb_headroom(skb))
2919 delta = headroom - skb_headroom(skb);
2920
2921 if (delta || cloned)
2922 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2923 GFP_ATOMIC);
2924 return 0;
2925}
2926
1da177e4
LT
2927/**
2928 * skb_cow - copy header of skb when it is required
2929 * @skb: buffer to cow
2930 * @headroom: needed headroom
2931 *
2932 * If the skb passed lacks sufficient headroom or its data part
2933 * is shared, data is reallocated. If reallocation fails, an error
2934 * is returned and original skb is not changed.
2935 *
2936 * The result is skb with writable area skb->head...skb->tail
2937 * and at least @headroom of space at head.
2938 */
2939static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2940{
d9cc2048
HX
2941 return __skb_cow(skb, headroom, skb_cloned(skb));
2942}
1da177e4 2943
d9cc2048
HX
2944/**
2945 * skb_cow_head - skb_cow but only making the head writable
2946 * @skb: buffer to cow
2947 * @headroom: needed headroom
2948 *
2949 * This function is identical to skb_cow except that we replace the
2950 * skb_cloned check by skb_header_cloned. It should be used when
2951 * you only need to push on some header and do not need to modify
2952 * the data.
2953 */
2954static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2955{
2956 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2957}
2958
2959/**
2960 * skb_padto - pad an skbuff up to a minimal size
2961 * @skb: buffer to pad
2962 * @len: minimal length
2963 *
2964 * Pads up a buffer to ensure the trailing bytes exist and are
2965 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2966 * is untouched. Otherwise it is extended. Returns zero on
2967 * success. The skb is freed on error.
1da177e4 2968 */
5b057c6b 2969static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2970{
2971 unsigned int size = skb->len;
2972 if (likely(size >= len))
5b057c6b 2973 return 0;
987c402a 2974 return skb_pad(skb, len - size);
1da177e4
LT
2975}
2976
9c0c1124
AD
2977/**
2978 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2979 * @skb: buffer to pad
2980 * @len: minimal length
cd0a137a 2981 * @free_on_error: free buffer on error
9c0c1124
AD
2982 *
2983 * Pads up a buffer to ensure the trailing bytes exist and are
2984 * blanked. If the buffer already contains sufficient data it
2985 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 2986 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 2987 */
cd0a137a
FF
2988static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2989 bool free_on_error)
9c0c1124
AD
2990{
2991 unsigned int size = skb->len;
2992
2993 if (unlikely(size < len)) {
2994 len -= size;
cd0a137a 2995 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
2996 return -ENOMEM;
2997 __skb_put(skb, len);
2998 }
2999 return 0;
3000}
3001
cd0a137a
FF
3002/**
3003 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3004 * @skb: buffer to pad
3005 * @len: minimal length
3006 *
3007 * Pads up a buffer to ensure the trailing bytes exist and are
3008 * blanked. If the buffer already contains sufficient data it
3009 * is untouched. Otherwise it is extended. Returns zero on
3010 * success. The skb is freed on error.
3011 */
3012static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3013{
3014 return __skb_put_padto(skb, len, true);
3015}
3016
1da177e4 3017static inline int skb_add_data(struct sk_buff *skb,
af2b040e 3018 struct iov_iter *from, int copy)
1da177e4
LT
3019{
3020 const int off = skb->len;
3021
3022 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 3023 __wsum csum = 0;
15e6cb46
AV
3024 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3025 &csum, from)) {
1da177e4
LT
3026 skb->csum = csum_block_add(skb->csum, csum, off);
3027 return 0;
3028 }
15e6cb46 3029 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3030 return 0;
3031
3032 __skb_trim(skb, off);
3033 return -EFAULT;
3034}
3035
38ba0a65
ED
3036static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3037 const struct page *page, int off)
1da177e4 3038{
1f8b977a
WB
3039 if (skb_zcopy(skb))
3040 return false;
1da177e4 3041 if (i) {
9e903e08 3042 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3043
ea2ab693 3044 return page == skb_frag_page(frag) &&
9e903e08 3045 off == frag->page_offset + skb_frag_size(frag);
1da177e4 3046 }
38ba0a65 3047 return false;
1da177e4
LT
3048}
3049
364c6bad
HX
3050static inline int __skb_linearize(struct sk_buff *skb)
3051{
3052 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3053}
3054
1da177e4
LT
3055/**
3056 * skb_linearize - convert paged skb to linear one
3057 * @skb: buffer to linarize
1da177e4
LT
3058 *
3059 * If there is no free memory -ENOMEM is returned, otherwise zero
3060 * is returned and the old skb data released.
3061 */
364c6bad
HX
3062static inline int skb_linearize(struct sk_buff *skb)
3063{
3064 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3065}
3066
cef401de
ED
3067/**
3068 * skb_has_shared_frag - can any frag be overwritten
3069 * @skb: buffer to test
3070 *
3071 * Return true if the skb has at least one frag that might be modified
3072 * by an external entity (as in vmsplice()/sendfile())
3073 */
3074static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3075{
c9af6db4
PS
3076 return skb_is_nonlinear(skb) &&
3077 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
3078}
3079
364c6bad
HX
3080/**
3081 * skb_linearize_cow - make sure skb is linear and writable
3082 * @skb: buffer to process
3083 *
3084 * If there is no free memory -ENOMEM is returned, otherwise zero
3085 * is returned and the old skb data released.
3086 */
3087static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3088{
364c6bad
HX
3089 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3090 __skb_linearize(skb) : 0;
1da177e4
LT
3091}
3092
479ffccc
DB
3093static __always_inline void
3094__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3095 unsigned int off)
3096{
3097 if (skb->ip_summed == CHECKSUM_COMPLETE)
3098 skb->csum = csum_block_sub(skb->csum,
3099 csum_partial(start, len, 0), off);
3100 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3101 skb_checksum_start_offset(skb) < 0)
3102 skb->ip_summed = CHECKSUM_NONE;
3103}
3104
1da177e4
LT
3105/**
3106 * skb_postpull_rcsum - update checksum for received skb after pull
3107 * @skb: buffer to update
3108 * @start: start of data before pull
3109 * @len: length of data pulled
3110 *
3111 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3112 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3113 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3114 */
1da177e4 3115static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3116 const void *start, unsigned int len)
1da177e4 3117{
479ffccc 3118 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
3119}
3120
479ffccc
DB
3121static __always_inline void
3122__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3123 unsigned int off)
3124{
3125 if (skb->ip_summed == CHECKSUM_COMPLETE)
3126 skb->csum = csum_block_add(skb->csum,
3127 csum_partial(start, len, 0), off);
3128}
cbb042f9 3129
479ffccc
DB
3130/**
3131 * skb_postpush_rcsum - update checksum for received skb after push
3132 * @skb: buffer to update
3133 * @start: start of data after push
3134 * @len: length of data pushed
3135 *
3136 * After doing a push on a received packet, you need to call this to
3137 * update the CHECKSUM_COMPLETE checksum.
3138 */
f8ffad69
DB
3139static inline void skb_postpush_rcsum(struct sk_buff *skb,
3140 const void *start, unsigned int len)
3141{
479ffccc 3142 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3143}
3144
af72868b 3145void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3146
82a31b92
WC
3147/**
3148 * skb_push_rcsum - push skb and update receive checksum
3149 * @skb: buffer to update
3150 * @len: length of data pulled
3151 *
3152 * This function performs an skb_push on the packet and updates
3153 * the CHECKSUM_COMPLETE checksum. It should be used on
3154 * receive path processing instead of skb_push unless you know
3155 * that the checksum difference is zero (e.g., a valid IP header)
3156 * or you are setting ip_summed to CHECKSUM_NONE.
3157 */
d58ff351 3158static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3159{
3160 skb_push(skb, len);
3161 skb_postpush_rcsum(skb, skb->data, len);
3162 return skb->data;
3163}
3164
119e56ab 3165int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
7ce5a27f
DM
3166/**
3167 * pskb_trim_rcsum - trim received skb and update checksum
3168 * @skb: buffer to trim
3169 * @len: new length
3170 *
3171 * This is exactly the same as pskb_trim except that it ensures the
3172 * checksum of received packets are still valid after the operation.
fc4dee53 3173 * It can change skb pointers.
7ce5a27f
DM
3174 */
3175
3176static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3177{
3178 if (likely(len >= skb->len))
3179 return 0;
119e56ab 3180 return pskb_trim_rcsum_slow(skb, len);
7ce5a27f
DM
3181}
3182
5293efe6
DB
3183static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3184{
3185 if (skb->ip_summed == CHECKSUM_COMPLETE)
3186 skb->ip_summed = CHECKSUM_NONE;
3187 __skb_trim(skb, len);
3188 return 0;
3189}
3190
3191static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3192{
3193 if (skb->ip_summed == CHECKSUM_COMPLETE)
3194 skb->ip_summed = CHECKSUM_NONE;
3195 return __skb_grow(skb, len);
3196}
3197
18a4c0ea
ED
3198#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3199#define skb_rb_first(root) rb_to_skb(rb_first(root))
3200#define skb_rb_last(root) rb_to_skb(rb_last(root))
3201#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3202#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3203
1da177e4
LT
3204#define skb_queue_walk(queue, skb) \
3205 for (skb = (queue)->next; \
a1e4891f 3206 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3207 skb = skb->next)
3208
46f8914e
JC
3209#define skb_queue_walk_safe(queue, skb, tmp) \
3210 for (skb = (queue)->next, tmp = skb->next; \
3211 skb != (struct sk_buff *)(queue); \
3212 skb = tmp, tmp = skb->next)
3213
1164f52a 3214#define skb_queue_walk_from(queue, skb) \
a1e4891f 3215 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3216 skb = skb->next)
3217
18a4c0ea
ED
3218#define skb_rbtree_walk(skb, root) \
3219 for (skb = skb_rb_first(root); skb != NULL; \
3220 skb = skb_rb_next(skb))
3221
3222#define skb_rbtree_walk_from(skb) \
3223 for (; skb != NULL; \
3224 skb = skb_rb_next(skb))
3225
3226#define skb_rbtree_walk_from_safe(skb, tmp) \
3227 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3228 skb = tmp)
3229
1164f52a
DM
3230#define skb_queue_walk_from_safe(queue, skb, tmp) \
3231 for (tmp = skb->next; \
3232 skb != (struct sk_buff *)(queue); \
3233 skb = tmp, tmp = skb->next)
3234
300ce174
SH
3235#define skb_queue_reverse_walk(queue, skb) \
3236 for (skb = (queue)->prev; \
a1e4891f 3237 skb != (struct sk_buff *)(queue); \
300ce174
SH
3238 skb = skb->prev)
3239
686a2955
DM
3240#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3241 for (skb = (queue)->prev, tmp = skb->prev; \
3242 skb != (struct sk_buff *)(queue); \
3243 skb = tmp, tmp = skb->prev)
3244
3245#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3246 for (tmp = skb->prev; \
3247 skb != (struct sk_buff *)(queue); \
3248 skb = tmp, tmp = skb->prev)
1da177e4 3249
21dc3301 3250static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3251{
3252 return skb_shinfo(skb)->frag_list != NULL;
3253}
3254
3255static inline void skb_frag_list_init(struct sk_buff *skb)
3256{
3257 skb_shinfo(skb)->frag_list = NULL;
3258}
3259
ee039871
DM
3260#define skb_walk_frags(skb, iter) \
3261 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3262
ea3793ee
RW
3263
3264int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3265 const struct sk_buff *skb);
65101aec
PA
3266struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3267 struct sk_buff_head *queue,
3268 unsigned int flags,
3269 void (*destructor)(struct sock *sk,
3270 struct sk_buff *skb),
3271 int *peeked, int *off, int *err,
3272 struct sk_buff **last);
ea3793ee 3273struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3274 void (*destructor)(struct sock *sk,
3275 struct sk_buff *skb),
ea3793ee
RW
3276 int *peeked, int *off, int *err,
3277 struct sk_buff **last);
7965bd4d 3278struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3279 void (*destructor)(struct sock *sk,
3280 struct sk_buff *skb),
7965bd4d
JP
3281 int *peeked, int *off, int *err);
3282struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3283 int *err);
3284unsigned int datagram_poll(struct file *file, struct socket *sock,
3285 struct poll_table_struct *wait);
c0371da6
AV
3286int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3287 struct iov_iter *to, int size);
51f3d02b
DM
3288static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3289 struct msghdr *msg, int size)
3290{
e5a4b0bb 3291 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3292}
e5a4b0bb
AV
3293int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3294 struct msghdr *msg);
3a654f97
AV
3295int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3296 struct iov_iter *from, int len);
3a654f97 3297int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3298void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3299void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3300static inline void skb_free_datagram_locked(struct sock *sk,
3301 struct sk_buff *skb)
3302{
3303 __skb_free_datagram_locked(sk, skb, 0);
3304}
7965bd4d 3305int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3306int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3307int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3308__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3309 int len, __wsum csum);
a60e3cc7 3310int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3311 struct pipe_inode_info *pipe, unsigned int len,
25869262 3312 unsigned int flags);
20bf50de
TH
3313int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3314 int len);
3315int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
7965bd4d 3316void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3317unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3318int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3319 int len, int hlen);
7965bd4d
JP
3320void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3321int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3322void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 3323unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
ae7ef81e 3324bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
9f4e2543 3325bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
7965bd4d 3326struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3327struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3328int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3329int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3330int skb_vlan_pop(struct sk_buff *skb);
3331int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3332struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3333 gfp_t gfp);
20380731 3334
6ce8e9ce
AV
3335static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3336{
3073f070 3337 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3338}
3339
7eab8d9e
AV
3340static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3341{
e5a4b0bb 3342 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3343}
3344
2817a336
DB
3345struct skb_checksum_ops {
3346 __wsum (*update)(const void *mem, int len, __wsum wsum);
3347 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3348};
3349
9617813d
DC
3350extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3351
2817a336
DB
3352__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3353 __wsum csum, const struct skb_checksum_ops *ops);
3354__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3355 __wsum csum);
3356
1e98a0f0
ED
3357static inline void * __must_check
3358__skb_header_pointer(const struct sk_buff *skb, int offset,
3359 int len, void *data, int hlen, void *buffer)
1da177e4 3360{
55820ee2 3361 if (hlen - offset >= len)
690e36e7 3362 return data + offset;
1da177e4 3363
690e36e7
DM
3364 if (!skb ||
3365 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3366 return NULL;
3367
3368 return buffer;
3369}
3370
1e98a0f0
ED
3371static inline void * __must_check
3372skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3373{
3374 return __skb_header_pointer(skb, offset, len, skb->data,
3375 skb_headlen(skb), buffer);
3376}
3377
4262e5cc
DB
3378/**
3379 * skb_needs_linearize - check if we need to linearize a given skb
3380 * depending on the given device features.
3381 * @skb: socket buffer to check
3382 * @features: net device features
3383 *
3384 * Returns true if either:
3385 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3386 * 2. skb is fragmented and the device does not support SG.
3387 */
3388static inline bool skb_needs_linearize(struct sk_buff *skb,
3389 netdev_features_t features)
3390{
3391 return skb_is_nonlinear(skb) &&
3392 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3393 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3394}
3395
d626f62b
ACM
3396static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3397 void *to,
3398 const unsigned int len)
3399{
3400 memcpy(to, skb->data, len);
3401}
3402
3403static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3404 const int offset, void *to,
3405 const unsigned int len)
3406{
3407 memcpy(to, skb->data + offset, len);
3408}
3409
27d7ff46
ACM
3410static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3411 const void *from,
3412 const unsigned int len)
3413{
3414 memcpy(skb->data, from, len);
3415}
3416
3417static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3418 const int offset,
3419 const void *from,
3420 const unsigned int len)
3421{
3422 memcpy(skb->data + offset, from, len);
3423}
3424
7965bd4d 3425void skb_init(void);
1da177e4 3426
ac45f602
PO
3427static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3428{
3429 return skb->tstamp;
3430}
3431
a61bbcf2
PM
3432/**
3433 * skb_get_timestamp - get timestamp from a skb
3434 * @skb: skb to get stamp from
3435 * @stamp: pointer to struct timeval to store stamp in
3436 *
3437 * Timestamps are stored in the skb as offsets to a base timestamp.
3438 * This function converts the offset back to a struct timeval and stores
3439 * it in stamp.
3440 */
ac45f602
PO
3441static inline void skb_get_timestamp(const struct sk_buff *skb,
3442 struct timeval *stamp)
a61bbcf2 3443{
b7aa0bf7 3444 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3445}
3446
ac45f602
PO
3447static inline void skb_get_timestampns(const struct sk_buff *skb,
3448 struct timespec *stamp)
3449{
3450 *stamp = ktime_to_timespec(skb->tstamp);
3451}
3452
b7aa0bf7 3453static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3454{
b7aa0bf7 3455 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3456}
3457
164891aa
SH
3458static inline ktime_t net_timedelta(ktime_t t)
3459{
3460 return ktime_sub(ktime_get_real(), t);
3461}
3462
b9ce204f
IJ
3463static inline ktime_t net_invalid_timestamp(void)
3464{
8b0e1953 3465 return 0;
b9ce204f 3466}
a61bbcf2 3467
de8f3a83
DB
3468static inline u8 skb_metadata_len(const struct sk_buff *skb)
3469{
3470 return skb_shinfo(skb)->meta_len;
3471}
3472
3473static inline void *skb_metadata_end(const struct sk_buff *skb)
3474{
3475 return skb_mac_header(skb);
3476}
3477
3478static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3479 const struct sk_buff *skb_b,
3480 u8 meta_len)
3481{
3482 const void *a = skb_metadata_end(skb_a);
3483 const void *b = skb_metadata_end(skb_b);
3484 /* Using more efficient varaiant than plain call to memcmp(). */
3485#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3486 u64 diffs = 0;
3487
3488 switch (meta_len) {
3489#define __it(x, op) (x -= sizeof(u##op))
3490#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3491 case 32: diffs |= __it_diff(a, b, 64);
3492 case 24: diffs |= __it_diff(a, b, 64);
3493 case 16: diffs |= __it_diff(a, b, 64);
3494 case 8: diffs |= __it_diff(a, b, 64);
3495 break;
3496 case 28: diffs |= __it_diff(a, b, 64);
3497 case 20: diffs |= __it_diff(a, b, 64);
3498 case 12: diffs |= __it_diff(a, b, 64);
3499 case 4: diffs |= __it_diff(a, b, 32);
3500 break;
3501 }
3502 return diffs;
3503#else
3504 return memcmp(a - meta_len, b - meta_len, meta_len);
3505#endif
3506}
3507
3508static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3509 const struct sk_buff *skb_b)
3510{
3511 u8 len_a = skb_metadata_len(skb_a);
3512 u8 len_b = skb_metadata_len(skb_b);
3513
3514 if (!(len_a | len_b))
3515 return false;
3516
3517 return len_a != len_b ?
3518 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3519}
3520
3521static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3522{
3523 skb_shinfo(skb)->meta_len = meta_len;
3524}
3525
3526static inline void skb_metadata_clear(struct sk_buff *skb)
3527{
3528 skb_metadata_set(skb, 0);
3529}
3530
62bccb8c
AD
3531struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3532
c1f19b51
RC
3533#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3534
7965bd4d
JP
3535void skb_clone_tx_timestamp(struct sk_buff *skb);
3536bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3537
3538#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3539
3540static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3541{
3542}
3543
3544static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3545{
3546 return false;
3547}
3548
3549#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3550
3551/**
3552 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3553 *
da92b194
RC
3554 * PHY drivers may accept clones of transmitted packets for
3555 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3556 * must call this function to return the skb back to the stack with a
3557 * timestamp.
da92b194 3558 *
c1f19b51 3559 * @skb: clone of the the original outgoing packet
7a76a021 3560 * @hwtstamps: hardware time stamps
c1f19b51
RC
3561 *
3562 */
3563void skb_complete_tx_timestamp(struct sk_buff *skb,
3564 struct skb_shared_hwtstamps *hwtstamps);
3565
e7fd2885
WB
3566void __skb_tstamp_tx(struct sk_buff *orig_skb,
3567 struct skb_shared_hwtstamps *hwtstamps,
3568 struct sock *sk, int tstype);
3569
ac45f602
PO
3570/**
3571 * skb_tstamp_tx - queue clone of skb with send time stamps
3572 * @orig_skb: the original outgoing packet
3573 * @hwtstamps: hardware time stamps, may be NULL if not available
3574 *
3575 * If the skb has a socket associated, then this function clones the
3576 * skb (thus sharing the actual data and optional structures), stores
3577 * the optional hardware time stamping information (if non NULL) or
3578 * generates a software time stamp (otherwise), then queues the clone
3579 * to the error queue of the socket. Errors are silently ignored.
3580 */
7965bd4d
JP
3581void skb_tstamp_tx(struct sk_buff *orig_skb,
3582 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3583
4507a715
RC
3584/**
3585 * skb_tx_timestamp() - Driver hook for transmit timestamping
3586 *
3587 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3588 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3589 *
73409f3b
DM
3590 * Specifically, one should make absolutely sure that this function is
3591 * called before TX completion of this packet can trigger. Otherwise
3592 * the packet could potentially already be freed.
3593 *
4507a715
RC
3594 * @skb: A socket buffer.
3595 */
3596static inline void skb_tx_timestamp(struct sk_buff *skb)
3597{
c1f19b51 3598 skb_clone_tx_timestamp(skb);
b50a5c70
ML
3599 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3600 skb_tstamp_tx(skb, NULL);
4507a715
RC
3601}
3602
6e3e939f
JB
3603/**
3604 * skb_complete_wifi_ack - deliver skb with wifi status
3605 *
3606 * @skb: the original outgoing packet
3607 * @acked: ack status
3608 *
3609 */
3610void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3611
7965bd4d
JP
3612__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3613__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3614
60476372
HX
3615static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3616{
6edec0e6
TH
3617 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3618 skb->csum_valid ||
3619 (skb->ip_summed == CHECKSUM_PARTIAL &&
3620 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3621}
3622
fb286bb2
HX
3623/**
3624 * skb_checksum_complete - Calculate checksum of an entire packet
3625 * @skb: packet to process
3626 *
3627 * This function calculates the checksum over the entire packet plus
3628 * the value of skb->csum. The latter can be used to supply the
3629 * checksum of a pseudo header as used by TCP/UDP. It returns the
3630 * checksum.
3631 *
3632 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3633 * this function can be used to verify that checksum on received
3634 * packets. In that case the function should return zero if the
3635 * checksum is correct. In particular, this function will return zero
3636 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3637 * hardware has already verified the correctness of the checksum.
3638 */
4381ca3c 3639static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3640{
60476372
HX
3641 return skb_csum_unnecessary(skb) ?
3642 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3643}
3644
77cffe23
TH
3645static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3646{
3647 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3648 if (skb->csum_level == 0)
3649 skb->ip_summed = CHECKSUM_NONE;
3650 else
3651 skb->csum_level--;
3652 }
3653}
3654
3655static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3656{
3657 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3658 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3659 skb->csum_level++;
3660 } else if (skb->ip_summed == CHECKSUM_NONE) {
3661 skb->ip_summed = CHECKSUM_UNNECESSARY;
3662 skb->csum_level = 0;
3663 }
3664}
3665
76ba0aae
TH
3666/* Check if we need to perform checksum complete validation.
3667 *
3668 * Returns true if checksum complete is needed, false otherwise
3669 * (either checksum is unnecessary or zero checksum is allowed).
3670 */
3671static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3672 bool zero_okay,
3673 __sum16 check)
3674{
5d0c2b95
TH
3675 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3676 skb->csum_valid = 1;
77cffe23 3677 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3678 return false;
3679 }
3680
3681 return true;
3682}
3683
3684/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3685 * in checksum_init.
3686 */
3687#define CHECKSUM_BREAK 76
3688
4e18b9ad
TH
3689/* Unset checksum-complete
3690 *
3691 * Unset checksum complete can be done when packet is being modified
3692 * (uncompressed for instance) and checksum-complete value is
3693 * invalidated.
3694 */
3695static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3696{
3697 if (skb->ip_summed == CHECKSUM_COMPLETE)
3698 skb->ip_summed = CHECKSUM_NONE;
3699}
3700
76ba0aae
TH
3701/* Validate (init) checksum based on checksum complete.
3702 *
3703 * Return values:
3704 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3705 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3706 * checksum is stored in skb->csum for use in __skb_checksum_complete
3707 * non-zero: value of invalid checksum
3708 *
3709 */
3710static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3711 bool complete,
3712 __wsum psum)
3713{
3714 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3715 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3716 skb->csum_valid = 1;
76ba0aae
TH
3717 return 0;
3718 }
3719 }
3720
3721 skb->csum = psum;
3722
5d0c2b95
TH
3723 if (complete || skb->len <= CHECKSUM_BREAK) {
3724 __sum16 csum;
3725
3726 csum = __skb_checksum_complete(skb);
3727 skb->csum_valid = !csum;
3728 return csum;
3729 }
76ba0aae
TH
3730
3731 return 0;
3732}
3733
3734static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3735{
3736 return 0;
3737}
3738
3739/* Perform checksum validate (init). Note that this is a macro since we only
3740 * want to calculate the pseudo header which is an input function if necessary.
3741 * First we try to validate without any computation (checksum unnecessary) and
3742 * then calculate based on checksum complete calling the function to compute
3743 * pseudo header.
3744 *
3745 * Return values:
3746 * 0: checksum is validated or try to in skb_checksum_complete
3747 * non-zero: value of invalid checksum
3748 */
3749#define __skb_checksum_validate(skb, proto, complete, \
3750 zero_okay, check, compute_pseudo) \
3751({ \
3752 __sum16 __ret = 0; \
5d0c2b95 3753 skb->csum_valid = 0; \
76ba0aae
TH
3754 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3755 __ret = __skb_checksum_validate_complete(skb, \
3756 complete, compute_pseudo(skb, proto)); \
3757 __ret; \
3758})
3759
3760#define skb_checksum_init(skb, proto, compute_pseudo) \
3761 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3762
3763#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3764 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3765
3766#define skb_checksum_validate(skb, proto, compute_pseudo) \
3767 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3768
3769#define skb_checksum_validate_zero_check(skb, proto, check, \
3770 compute_pseudo) \
096a4cfa 3771 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3772
3773#define skb_checksum_simple_validate(skb) \
3774 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3775
d96535a1
TH
3776static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3777{
219f1d79 3778 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
3779}
3780
3781static inline void __skb_checksum_convert(struct sk_buff *skb,
3782 __sum16 check, __wsum pseudo)
3783{
3784 skb->csum = ~pseudo;
3785 skb->ip_summed = CHECKSUM_COMPLETE;
3786}
3787
3788#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3789do { \
3790 if (__skb_checksum_convert_check(skb)) \
3791 __skb_checksum_convert(skb, check, \
3792 compute_pseudo(skb, proto)); \
3793} while (0)
3794
15e2396d
TH
3795static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3796 u16 start, u16 offset)
3797{
3798 skb->ip_summed = CHECKSUM_PARTIAL;
3799 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3800 skb->csum_offset = offset - start;
3801}
3802
dcdc8994
TH
3803/* Update skbuf and packet to reflect the remote checksum offload operation.
3804 * When called, ptr indicates the starting point for skb->csum when
3805 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3806 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3807 */
3808static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3809 int start, int offset, bool nopartial)
dcdc8994
TH
3810{
3811 __wsum delta;
3812
15e2396d
TH
3813 if (!nopartial) {
3814 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3815 return;
3816 }
3817
dcdc8994
TH
3818 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3819 __skb_checksum_complete(skb);
3820 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3821 }
3822
3823 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3824
3825 /* Adjust skb->csum since we changed the packet */
3826 skb->csum = csum_add(skb->csum, delta);
3827}
3828
cb9c6836
FW
3829static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3830{
3831#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3832 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3833#else
3834 return NULL;
3835#endif
3836}
3837
5f79e0f9 3838#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3839void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3840static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3841{
3842 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3843 nf_conntrack_destroy(nfct);
1da177e4
LT
3844}
3845static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3846{
3847 if (nfct)
3848 atomic_inc(&nfct->use);
3849}
2fc72c7b 3850#endif
34666d46 3851#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3852static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3853{
53869ceb 3854 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
1da177e4
LT
3855 kfree(nf_bridge);
3856}
3857static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3858{
3859 if (nf_bridge)
53869ceb 3860 refcount_inc(&nf_bridge->use);
1da177e4
LT
3861}
3862#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3863static inline void nf_reset(struct sk_buff *skb)
3864{
5f79e0f9 3865#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3866 nf_conntrack_put(skb_nfct(skb));
3867 skb->_nfct = 0;
2fc72c7b 3868#endif
34666d46 3869#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3870 nf_bridge_put(skb->nf_bridge);
3871 skb->nf_bridge = NULL;
3872#endif
3873}
3874
124dff01
PM
3875static inline void nf_reset_trace(struct sk_buff *skb)
3876{
478b360a 3877#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3878 skb->nf_trace = 0;
3879#endif
a193a4ab
PM
3880}
3881
2b5ec1a5
YY
3882static inline void ipvs_reset(struct sk_buff *skb)
3883{
3884#if IS_ENABLED(CONFIG_IP_VS)
3885 skb->ipvs_property = 0;
3886#endif
3887}
3888
edda553c 3889/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3890static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3891 bool copy)
edda553c 3892{
5f79e0f9 3893#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3894 dst->_nfct = src->_nfct;
3895 nf_conntrack_get(skb_nfct(src));
2fc72c7b 3896#endif
34666d46 3897#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3898 dst->nf_bridge = src->nf_bridge;
3899 nf_bridge_get(src->nf_bridge);
3900#endif
478b360a 3901#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3902 if (copy)
3903 dst->nf_trace = src->nf_trace;
478b360a 3904#endif
edda553c
YK
3905}
3906
e7ac05f3
YK
3907static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3908{
e7ac05f3 3909#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 3910 nf_conntrack_put(skb_nfct(dst));
2fc72c7b 3911#endif
34666d46 3912#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3913 nf_bridge_put(dst->nf_bridge);
3914#endif
b1937227 3915 __nf_copy(dst, src, true);
e7ac05f3
YK
3916}
3917
984bc16c
JM
3918#ifdef CONFIG_NETWORK_SECMARK
3919static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3920{
3921 to->secmark = from->secmark;
3922}
3923
3924static inline void skb_init_secmark(struct sk_buff *skb)
3925{
3926 skb->secmark = 0;
3927}
3928#else
3929static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3930{ }
3931
3932static inline void skb_init_secmark(struct sk_buff *skb)
3933{ }
3934#endif
3935
574f7194
EB
3936static inline bool skb_irq_freeable(const struct sk_buff *skb)
3937{
3938 return !skb->destructor &&
3939#if IS_ENABLED(CONFIG_XFRM)
3940 !skb->sp &&
3941#endif
cb9c6836 3942 !skb_nfct(skb) &&
574f7194
EB
3943 !skb->_skb_refdst &&
3944 !skb_has_frag_list(skb);
3945}
3946
f25f4e44
PWJ
3947static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3948{
f25f4e44 3949 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3950}
3951
9247744e 3952static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3953{
4e3ab47a 3954 return skb->queue_mapping;
4e3ab47a
PE
3955}
3956
f25f4e44
PWJ
3957static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3958{
f25f4e44 3959 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3960}
3961
d5a9e24a
DM
3962static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3963{
3964 skb->queue_mapping = rx_queue + 1;
3965}
3966
9247744e 3967static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3968{
3969 return skb->queue_mapping - 1;
3970}
3971
9247744e 3972static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3973{
a02cec21 3974 return skb->queue_mapping != 0;
d5a9e24a
DM
3975}
3976
4ff06203
JA
3977static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3978{
3979 skb->dst_pending_confirm = val;
3980}
3981
3982static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3983{
3984 return skb->dst_pending_confirm != 0;
3985}
3986
def8b4fa
AD
3987static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3988{
0b3d8e08 3989#ifdef CONFIG_XFRM
def8b4fa 3990 return skb->sp;
def8b4fa 3991#else
def8b4fa 3992 return NULL;
def8b4fa 3993#endif
0b3d8e08 3994}
def8b4fa 3995
68c33163
PS
3996/* Keeps track of mac header offset relative to skb->head.
3997 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3998 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3999 * tunnel skb it points to outer mac header.
4000 * Keeps track of level of encapsulation of network headers.
4001 */
68c33163 4002struct skb_gso_cb {
802ab55a
AD
4003 union {
4004 int mac_offset;
4005 int data_offset;
4006 };
3347c960 4007 int encap_level;
76443456 4008 __wsum csum;
7e2b10c1 4009 __u16 csum_start;
68c33163 4010};
9207f9d4
KK
4011#define SKB_SGO_CB_OFFSET 32
4012#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
4013
4014static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4015{
4016 return (skb_mac_header(inner_skb) - inner_skb->head) -
4017 SKB_GSO_CB(inner_skb)->mac_offset;
4018}
4019
1e2bd517
PS
4020static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4021{
4022 int new_headroom, headroom;
4023 int ret;
4024
4025 headroom = skb_headroom(skb);
4026 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4027 if (ret)
4028 return ret;
4029
4030 new_headroom = skb_headroom(skb);
4031 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4032 return 0;
4033}
4034
08b64fcc
AD
4035static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4036{
4037 /* Do not update partial checksums if remote checksum is enabled. */
4038 if (skb->remcsum_offload)
4039 return;
4040
4041 SKB_GSO_CB(skb)->csum = res;
4042 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4043}
4044
7e2b10c1
TH
4045/* Compute the checksum for a gso segment. First compute the checksum value
4046 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4047 * then add in skb->csum (checksum from csum_start to end of packet).
4048 * skb->csum and csum_start are then updated to reflect the checksum of the
4049 * resultant packet starting from the transport header-- the resultant checksum
4050 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4051 * header.
4052 */
4053static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4054{
76443456
AD
4055 unsigned char *csum_start = skb_transport_header(skb);
4056 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4057 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 4058
76443456
AD
4059 SKB_GSO_CB(skb)->csum = res;
4060 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 4061
76443456 4062 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
4063}
4064
bdcc0924 4065static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
4066{
4067 return skb_shinfo(skb)->gso_size;
4068}
4069
36a8f39e 4070/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4071static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4072{
4073 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4074}
4075
5293efe6
DB
4076static inline void skb_gso_reset(struct sk_buff *skb)
4077{
4078 skb_shinfo(skb)->gso_size = 0;
4079 skb_shinfo(skb)->gso_segs = 0;
4080 skb_shinfo(skb)->gso_type = 0;
4081}
4082
7965bd4d 4083void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4084
4085static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4086{
4087 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4088 * wanted then gso_type will be set. */
05bdd2f1
ED
4089 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4090
b78462eb
AD
4091 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4092 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4093 __skb_warn_lro_forwarding(skb);
4094 return true;
4095 }
4096 return false;
4097}
4098
35fc92a9
HX
4099static inline void skb_forward_csum(struct sk_buff *skb)
4100{
4101 /* Unfortunately we don't support this one. Any brave souls? */
4102 if (skb->ip_summed == CHECKSUM_COMPLETE)
4103 skb->ip_summed = CHECKSUM_NONE;
4104}
4105
bc8acf2c
ED
4106/**
4107 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4108 * @skb: skb to check
4109 *
4110 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4111 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4112 * use this helper, to document places where we make this assertion.
4113 */
05bdd2f1 4114static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
4115{
4116#ifdef DEBUG
4117 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4118#endif
4119}
4120
f35d9d8a 4121bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4122
ed1f50c3 4123int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4124struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4125 unsigned int transport_len,
4126 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4127
3a7c1ee4
AD
4128/**
4129 * skb_head_is_locked - Determine if the skb->head is locked down
4130 * @skb: skb to check
4131 *
4132 * The head on skbs build around a head frag can be removed if they are
4133 * not cloned. This function returns true if the skb head is locked down
4134 * due to either being allocated via kmalloc, or by being a clone with
4135 * multiple references to the head.
4136 */
4137static inline bool skb_head_is_locked(const struct sk_buff *skb)
4138{
4139 return !skb->head_frag || skb_cloned(skb);
4140}
fe6cc55f
FW
4141
4142/**
4143 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4144 *
4145 * @skb: GSO skb
4146 *
4147 * skb_gso_network_seglen is used to determine the real size of the
4148 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4149 *
4150 * The MAC/L2 header is not accounted for.
4151 */
4152static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4153{
4154 unsigned int hdr_len = skb_transport_header(skb) -
4155 skb_network_header(skb);
4156 return hdr_len + skb_gso_transport_seglen(skb);
4157}
ee122c79 4158
9f4e2543
DA
4159/**
4160 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4161 *
4162 * @skb: GSO skb
4163 *
4164 * skb_gso_mac_seglen is used to determine the real size of the
4165 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4166 * headers (TCP/UDP).
4167 */
4168static inline unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4169{
4170 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4171 return hdr_len + skb_gso_transport_seglen(skb);
4172}
4173
179bc67f
EC
4174/* Local Checksum Offload.
4175 * Compute outer checksum based on the assumption that the
4176 * inner checksum will be offloaded later.
e8ae7b00
EC
4177 * See Documentation/networking/checksum-offloads.txt for
4178 * explanation of how this works.
179bc67f
EC
4179 * Fill in outer checksum adjustment (e.g. with sum of outer
4180 * pseudo-header) before calling.
4181 * Also ensure that inner checksum is in linear data area.
4182 */
4183static inline __wsum lco_csum(struct sk_buff *skb)
4184{
9e74a6da
AD
4185 unsigned char *csum_start = skb_checksum_start(skb);
4186 unsigned char *l4_hdr = skb_transport_header(skb);
4187 __wsum partial;
179bc67f
EC
4188
4189 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4190 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4191 skb->csum_offset));
4192
179bc67f 4193 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4194 * adjustment filled in by caller) and return result.
179bc67f 4195 */
9e74a6da 4196 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4197}
4198
1da177e4
LT
4199#endif /* __KERNEL__ */
4200#endif /* _LINUX_SKBUFF_H */