]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/skbuff.h
sctp: delay as much as possible skb_linearize
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4 22#include <linux/cache.h>
56b17425 23#include <linux/rbtree.h>
51f3d02b 24#include <linux/socket.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
1bd758eb 37#include <net/flow_dissector.h>
a60e3cc7 38#include <linux/splice.h>
72b31f72 39#include <linux/in6.h>
f70ea018 40#include <net/flow.h>
1da177e4 41
7a6ae71b
TH
42/* The interface for checksum offload between the stack and networking drivers
43 * is as follows...
44 *
45 * A. IP checksum related features
46 *
47 * Drivers advertise checksum offload capabilities in the features of a device.
48 * From the stack's point of view these are capabilities offered by the driver,
49 * a driver typically only advertises features that it is capable of offloading
50 * to its device.
51 *
52 * The checksum related features are:
53 *
54 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
55 * IP (one's complement) checksum for any combination
56 * of protocols or protocol layering. The checksum is
57 * computed and set in a packet per the CHECKSUM_PARTIAL
58 * interface (see below).
59 *
60 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
61 * TCP or UDP packets over IPv4. These are specifically
62 * unencapsulated packets of the form IPv4|TCP or
63 * IPv4|UDP where the Protocol field in the IPv4 header
64 * is TCP or UDP. The IPv4 header may contain IP options
65 * This feature cannot be set in features for a device
66 * with NETIF_F_HW_CSUM also set. This feature is being
67 * DEPRECATED (see below).
68 *
69 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
70 * TCP or UDP packets over IPv6. These are specifically
71 * unencapsulated packets of the form IPv6|TCP or
72 * IPv4|UDP where the Next Header field in the IPv6
73 * header is either TCP or UDP. IPv6 extension headers
74 * are not supported with this feature. This feature
75 * cannot be set in features for a device with
76 * NETIF_F_HW_CSUM also set. This feature is being
77 * DEPRECATED (see below).
78 *
79 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
80 * This flag is used only used to disable the RX checksum
81 * feature for a device. The stack will accept receive
82 * checksum indication in packets received on a device
83 * regardless of whether NETIF_F_RXCSUM is set.
84 *
85 * B. Checksumming of received packets by device. Indication of checksum
86 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
87 *
88 * CHECKSUM_NONE:
89 *
7a6ae71b 90 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
91 * The packet contains full (though not verified) checksum in packet but
92 * not in skb->csum. Thus, skb->csum is undefined in this case.
93 *
94 * CHECKSUM_UNNECESSARY:
95 *
96 * The hardware you're dealing with doesn't calculate the full checksum
97 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
98 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
99 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
100 * though. A driver or device must never modify the checksum field in the
101 * packet even if checksum is verified.
77cffe23
TH
102 *
103 * CHECKSUM_UNNECESSARY is applicable to following protocols:
104 * TCP: IPv6 and IPv4.
105 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
106 * zero UDP checksum for either IPv4 or IPv6, the networking stack
107 * may perform further validation in this case.
108 * GRE: only if the checksum is present in the header.
109 * SCTP: indicates the CRC in SCTP header has been validated.
110 *
111 * skb->csum_level indicates the number of consecutive checksums found in
112 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
113 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
114 * and a device is able to verify the checksums for UDP (possibly zero),
115 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
116 * two. If the device were only able to verify the UDP checksum and not
117 * GRE, either because it doesn't support GRE checksum of because GRE
118 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
119 * not considered in this case).
78ea85f1
DB
120 *
121 * CHECKSUM_COMPLETE:
122 *
123 * This is the most generic way. The device supplied checksum of the _whole_
124 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
125 * hardware doesn't need to parse L3/L4 headers to implement this.
126 *
127 * Note: Even if device supports only some protocols, but is able to produce
128 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129 *
130 * CHECKSUM_PARTIAL:
131 *
6edec0e6
TH
132 * A checksum is set up to be offloaded to a device as described in the
133 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 134 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
135 * on the same host, or it may be set in the input path in GRO or remote
136 * checksum offload. For the purposes of checksum verification, the checksum
137 * referred to by skb->csum_start + skb->csum_offset and any preceding
138 * checksums in the packet are considered verified. Any checksums in the
139 * packet that are after the checksum being offloaded are not considered to
140 * be verified.
78ea85f1 141 *
7a6ae71b
TH
142 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
143 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
144 *
145 * CHECKSUM_PARTIAL:
146 *
7a6ae71b 147 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 148 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
149 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
150 * csum_start and csum_offset values are valid values given the length and
151 * offset of the packet, however they should not attempt to validate that the
152 * checksum refers to a legitimate transport layer checksum-- it is the
153 * purview of the stack to validate that csum_start and csum_offset are set
154 * correctly.
155 *
156 * When the stack requests checksum offload for a packet, the driver MUST
157 * ensure that the checksum is set correctly. A driver can either offload the
158 * checksum calculation to the device, or call skb_checksum_help (in the case
159 * that the device does not support offload for a particular checksum).
160 *
161 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
162 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
163 * checksum offload capability. If a device has limited checksum capabilities
164 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
165 * described above) a helper function can be called to resolve
166 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
167 * function takes a spec argument that describes the protocol layer that is
168 * supported for checksum offload and can be called for each packet. If a
169 * packet does not match the specification for offload, skb_checksum_help
170 * is called to resolve the checksum.
78ea85f1 171 *
7a6ae71b 172 * CHECKSUM_NONE:
78ea85f1 173 *
7a6ae71b
TH
174 * The skb was already checksummed by the protocol, or a checksum is not
175 * required.
78ea85f1
DB
176 *
177 * CHECKSUM_UNNECESSARY:
178 *
7a6ae71b
TH
179 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
180 * output.
78ea85f1 181 *
7a6ae71b
TH
182 * CHECKSUM_COMPLETE:
183 * Not used in checksum output. If a driver observes a packet with this value
184 * set in skbuff, if should treat as CHECKSUM_NONE being set.
185 *
186 * D. Non-IP checksum (CRC) offloads
187 *
188 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
189 * offloading the SCTP CRC in a packet. To perform this offload the stack
190 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
191 * accordingly. Note the there is no indication in the skbuff that the
192 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
193 * both IP checksum offload and SCTP CRC offload must verify which offload
194 * is configured for a packet presumably by inspecting packet headers.
195 *
196 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197 * offloading the FCOE CRC in a packet. To perform this offload the stack
198 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199 * accordingly. Note the there is no indication in the skbuff that the
200 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201 * both IP checksum offload and FCOE CRC offload must verify which offload
202 * is configured for a packet presumably by inspecting packet headers.
203 *
204 * E. Checksumming on output with GSO.
205 *
206 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209 * part of the GSO operation is implied. If a checksum is being offloaded
210 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211 * are set to refer to the outermost checksum being offload (two offloaded
212 * checksums are possible with UDP encapsulation).
78ea85f1
DB
213 */
214
60476372 215/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
216#define CHECKSUM_NONE 0
217#define CHECKSUM_UNNECESSARY 1
218#define CHECKSUM_COMPLETE 2
219#define CHECKSUM_PARTIAL 3
1da177e4 220
77cffe23
TH
221/* Maximum value in skb->csum_level */
222#define SKB_MAX_CSUM_LEVEL 3
223
0bec8c88 224#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 225#define SKB_WITH_OVERHEAD(X) \
deea84b0 226 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
227#define SKB_MAX_ORDER(X, ORDER) \
228 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
229#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
230#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
231
87fb4b7b
ED
232/* return minimum truesize of one skb containing X bytes of data */
233#define SKB_TRUESIZE(X) ((X) + \
234 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
235 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236
1da177e4 237struct net_device;
716ea3a7 238struct scatterlist;
9c55e01c 239struct pipe_inode_info;
a8f820aa 240struct iov_iter;
fd11a83d 241struct napi_struct;
1da177e4 242
5f79e0f9 243#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
244struct nf_conntrack {
245 atomic_t use;
1da177e4 246};
5f79e0f9 247#endif
1da177e4 248
34666d46 249#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 250struct nf_bridge_info {
bf1ac5ca 251 atomic_t use;
3eaf4025
FW
252 enum {
253 BRNF_PROTO_UNCHANGED,
254 BRNF_PROTO_8021Q,
255 BRNF_PROTO_PPPOE
7fb48c5b 256 } orig_proto:8;
72b1e5e4
FW
257 u8 pkt_otherhost:1;
258 u8 in_prerouting:1;
259 u8 bridged_dnat:1;
411ffb4f 260 __u16 frag_max_size;
bf1ac5ca 261 struct net_device *physindev;
63cdbc06
FW
262
263 /* always valid & non-NULL from FORWARD on, for physdev match */
264 struct net_device *physoutdev;
7fb48c5b 265 union {
72b1e5e4 266 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
267 __be32 ipv4_daddr;
268 struct in6_addr ipv6_daddr;
72b1e5e4
FW
269
270 /* after prerouting + nat detected: store original source
271 * mac since neigh resolution overwrites it, only used while
272 * skb is out in neigh layer.
273 */
274 char neigh_header[8];
72b31f72 275 };
1da177e4
LT
276};
277#endif
278
1da177e4
LT
279struct sk_buff_head {
280 /* These two members must be first. */
281 struct sk_buff *next;
282 struct sk_buff *prev;
283
284 __u32 qlen;
285 spinlock_t lock;
286};
287
288struct sk_buff;
289
9d4dde52
IC
290/* To allow 64K frame to be packed as single skb without frag_list we
291 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
292 * buffers which do not start on a page boundary.
293 *
294 * Since GRO uses frags we allocate at least 16 regardless of page
295 * size.
a715dea3 296 */
9d4dde52 297#if (65536/PAGE_SIZE + 1) < 16
eec00954 298#define MAX_SKB_FRAGS 16UL
a715dea3 299#else
9d4dde52 300#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 301#endif
5f74f82e 302extern int sysctl_max_skb_frags;
1da177e4 303
3953c46c
MRL
304/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
305 * segment using its current segmentation instead.
306 */
307#define GSO_BY_FRAGS 0xFFFF
308
1da177e4
LT
309typedef struct skb_frag_struct skb_frag_t;
310
311struct skb_frag_struct {
a8605c60
IC
312 struct {
313 struct page *p;
314 } page;
cb4dfe56 315#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
316 __u32 page_offset;
317 __u32 size;
cb4dfe56
ED
318#else
319 __u16 page_offset;
320 __u16 size;
321#endif
1da177e4
LT
322};
323
9e903e08
ED
324static inline unsigned int skb_frag_size(const skb_frag_t *frag)
325{
326 return frag->size;
327}
328
329static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
330{
331 frag->size = size;
332}
333
334static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
335{
336 frag->size += delta;
337}
338
339static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
340{
341 frag->size -= delta;
342}
343
ac45f602
PO
344#define HAVE_HW_TIME_STAMP
345
346/**
d3a21be8 347 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
348 * @hwtstamp: hardware time stamp transformed into duration
349 * since arbitrary point in time
ac45f602
PO
350 *
351 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 352 * skb->tstamp.
ac45f602
PO
353 *
354 * hwtstamps can only be compared against other hwtstamps from
355 * the same device.
356 *
357 * This structure is attached to packets as part of the
358 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
359 */
360struct skb_shared_hwtstamps {
361 ktime_t hwtstamp;
ac45f602
PO
362};
363
2244d07b
OH
364/* Definitions for tx_flags in struct skb_shared_info */
365enum {
366 /* generate hardware time stamp */
367 SKBTX_HW_TSTAMP = 1 << 0,
368
e7fd2885 369 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
370 SKBTX_SW_TSTAMP = 1 << 1,
371
372 /* device driver is going to provide hardware time stamp */
373 SKBTX_IN_PROGRESS = 1 << 2,
374
a6686f2f 375 /* device driver supports TX zero-copy buffers */
62b1a8ab 376 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
377
378 /* generate wifi status information (where possible) */
62b1a8ab 379 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
380
381 /* This indicates at least one fragment might be overwritten
382 * (as in vmsplice(), sendfile() ...)
383 * If we need to compute a TX checksum, we'll need to copy
384 * all frags to avoid possible bad checksum
385 */
386 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
387
388 /* generate software time stamp when entering packet scheduling */
389 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
390};
391
e1c8a607 392#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 393 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
394#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
395
a6686f2f
SM
396/*
397 * The callback notifies userspace to release buffers when skb DMA is done in
398 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
399 * The zerocopy_success argument is true if zero copy transmit occurred,
400 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
401 * The ctx field is used to track device context.
402 * The desc field is used to track userspace buffer index.
a6686f2f
SM
403 */
404struct ubuf_info {
e19d6763 405 void (*callback)(struct ubuf_info *, bool zerocopy_success);
ca8f4fb2 406 void *ctx;
a6686f2f 407 unsigned long desc;
ac45f602
PO
408};
409
1da177e4
LT
410/* This data is invariant across clones and lives at
411 * the end of the header data, ie. at skb->end.
412 */
413struct skb_shared_info {
9f42f126
IC
414 unsigned char nr_frags;
415 __u8 tx_flags;
7967168c
HX
416 unsigned short gso_size;
417 /* Warning: this field is not always filled in (UFO)! */
418 unsigned short gso_segs;
419 unsigned short gso_type;
1da177e4 420 struct sk_buff *frag_list;
ac45f602 421 struct skb_shared_hwtstamps hwtstamps;
09c2d251 422 u32 tskey;
9f42f126 423 __be32 ip6_frag_id;
ec7d2f2c
ED
424
425 /*
426 * Warning : all fields before dataref are cleared in __alloc_skb()
427 */
428 atomic_t dataref;
429
69e3c75f
JB
430 /* Intermediate layers must ensure that destructor_arg
431 * remains valid until skb destructor */
432 void * destructor_arg;
a6686f2f 433
fed66381
ED
434 /* must be last field, see pskb_expand_head() */
435 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
436};
437
438/* We divide dataref into two halves. The higher 16 bits hold references
439 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
440 * the entire skb->data. A clone of a headerless skb holds the length of
441 * the header in skb->hdr_len.
1da177e4
LT
442 *
443 * All users must obey the rule that the skb->data reference count must be
444 * greater than or equal to the payload reference count.
445 *
446 * Holding a reference to the payload part means that the user does not
447 * care about modifications to the header part of skb->data.
448 */
449#define SKB_DATAREF_SHIFT 16
450#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
451
d179cd12
DM
452
453enum {
c8753d55
VS
454 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
455 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
456 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
457};
458
7967168c
HX
459enum {
460 SKB_GSO_TCPV4 = 1 << 0,
f83ef8c0 461 SKB_GSO_UDP = 1 << 1,
576a30eb
HX
462
463 /* This indicates the skb is from an untrusted source. */
464 SKB_GSO_DODGY = 1 << 2,
b0da8537
MC
465
466 /* This indicates the tcp segment has CWR set. */
f83ef8c0
HX
467 SKB_GSO_TCP_ECN = 1 << 3,
468
cbc53e08 469 SKB_GSO_TCP_FIXEDID = 1 << 4,
01d5b2fc 470
cbc53e08 471 SKB_GSO_TCPV6 = 1 << 5,
68c33163 472
cbc53e08 473 SKB_GSO_FCOE = 1 << 6,
73136267 474
cbc53e08 475 SKB_GSO_GRE = 1 << 7,
0d89d203 476
cbc53e08 477 SKB_GSO_GRE_CSUM = 1 << 8,
cb32f511 478
7e13318d 479 SKB_GSO_IPXIP4 = 1 << 9,
61c1db7f 480
7e13318d 481 SKB_GSO_IPXIP6 = 1 << 10,
0f4f4ffa 482
cbc53e08 483 SKB_GSO_UDP_TUNNEL = 1 << 11,
4749c09c 484
cbc53e08
AD
485 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
486
802ab55a
AD
487 SKB_GSO_PARTIAL = 1 << 13,
488
489 SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
7967168c
HX
490};
491
2e07fa9c
ACM
492#if BITS_PER_LONG > 32
493#define NET_SKBUFF_DATA_USES_OFFSET 1
494#endif
495
496#ifdef NET_SKBUFF_DATA_USES_OFFSET
497typedef unsigned int sk_buff_data_t;
498#else
499typedef unsigned char *sk_buff_data_t;
500#endif
501
363ec392
ED
502/**
503 * struct skb_mstamp - multi resolution time stamps
504 * @stamp_us: timestamp in us resolution
505 * @stamp_jiffies: timestamp in jiffies
506 */
507struct skb_mstamp {
508 union {
509 u64 v64;
510 struct {
511 u32 stamp_us;
512 u32 stamp_jiffies;
513 };
514 };
515};
516
517/**
518 * skb_mstamp_get - get current timestamp
519 * @cl: place to store timestamps
520 */
521static inline void skb_mstamp_get(struct skb_mstamp *cl)
522{
523 u64 val = local_clock();
524
525 do_div(val, NSEC_PER_USEC);
526 cl->stamp_us = (u32)val;
527 cl->stamp_jiffies = (u32)jiffies;
528}
529
530/**
531 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
532 * @t1: pointer to newest sample
533 * @t0: pointer to oldest sample
534 */
535static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
536 const struct skb_mstamp *t0)
537{
538 s32 delta_us = t1->stamp_us - t0->stamp_us;
539 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
540
541 /* If delta_us is negative, this might be because interval is too big,
542 * or local_clock() drift is too big : fallback using jiffies.
543 */
544 if (delta_us <= 0 ||
545 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
546
547 delta_us = jiffies_to_usecs(delta_jiffies);
548
549 return delta_us;
550}
551
625a5e10
YC
552static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
553 const struct skb_mstamp *t0)
554{
555 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
556
557 if (!diff)
558 diff = t1->stamp_us - t0->stamp_us;
559 return diff > 0;
560}
363ec392 561
1da177e4
LT
562/**
563 * struct sk_buff - socket buffer
564 * @next: Next buffer in list
565 * @prev: Previous buffer in list
363ec392 566 * @tstamp: Time we arrived/left
56b17425 567 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 568 * @sk: Socket we are owned by
1da177e4 569 * @dev: Device we arrived on/are leaving by
d84e0bd7 570 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 571 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 572 * @sp: the security path, used for xfrm
1da177e4
LT
573 * @len: Length of actual data
574 * @data_len: Data length
575 * @mac_len: Length of link layer header
334a8132 576 * @hdr_len: writable header length of cloned skb
663ead3b
HX
577 * @csum: Checksum (must include start/offset pair)
578 * @csum_start: Offset from skb->head where checksumming should start
579 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 580 * @priority: Packet queueing priority
60ff7467 581 * @ignore_df: allow local fragmentation
1da177e4 582 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 583 * @ip_summed: Driver fed us an IP checksum
1da177e4 584 * @nohdr: Payload reference only, must not modify header
d84e0bd7 585 * @nfctinfo: Relationship of this skb to the connection
1da177e4 586 * @pkt_type: Packet class
c83c2486 587 * @fclone: skbuff clone status
c83c2486 588 * @ipvs_property: skbuff is owned by ipvs
31729363
RD
589 * @peeked: this packet has been seen already, so stats have been
590 * done for it, don't do them again
ba9dda3a 591 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
592 * @protocol: Packet protocol from driver
593 * @destructor: Destruct function
594 * @nfct: Associated connection, if any
1da177e4 595 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 596 * @skb_iif: ifindex of device we arrived on
1da177e4
LT
597 * @tc_index: Traffic control index
598 * @tc_verd: traffic control verdict
61b905da 599 * @hash: the packet hash
d84e0bd7 600 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 601 * @xmit_more: More SKBs are pending for this queue
553a5672 602 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 603 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 604 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 605 * ports.
a3b18ddb 606 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
607 * @wifi_acked_valid: wifi_acked was set
608 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 609 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
06021292 610 * @napi_id: id of the NAPI struct this skb came from
984bc16c 611 * @secmark: security marking
0c4f691f 612 * @offload_fwd_mark: fwding offload mark
d84e0bd7 613 * @mark: Generic packet mark
86a9bad3 614 * @vlan_proto: vlan encapsulation protocol
6aa895b0 615 * @vlan_tci: vlan tag control information
0d89d203 616 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
617 * @inner_transport_header: Inner transport layer header (encapsulation)
618 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 619 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
620 * @transport_header: Transport layer header
621 * @network_header: Network layer header
622 * @mac_header: Link layer header
623 * @tail: Tail pointer
624 * @end: End pointer
625 * @head: Head of buffer
626 * @data: Data head pointer
627 * @truesize: Buffer size
628 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
629 */
630
631struct sk_buff {
363ec392 632 union {
56b17425
ED
633 struct {
634 /* These two members must be first. */
635 struct sk_buff *next;
636 struct sk_buff *prev;
637
638 union {
639 ktime_t tstamp;
640 struct skb_mstamp skb_mstamp;
641 };
642 };
643 struct rb_node rbnode; /* used in netem & tcp stack */
363ec392 644 };
da3f5cf1 645 struct sock *sk;
1da177e4 646 struct net_device *dev;
1da177e4 647
1da177e4
LT
648 /*
649 * This is the control buffer. It is free to use for every
650 * layer. Please put your private variables there. If you
651 * want to keep them across layers you have to do a skb_clone()
652 * first. This is owned by whoever has the skb queued ATM.
653 */
da3f5cf1 654 char cb[48] __aligned(8);
1da177e4 655
7fee226a 656 unsigned long _skb_refdst;
b1937227 657 void (*destructor)(struct sk_buff *skb);
da3f5cf1
FF
658#ifdef CONFIG_XFRM
659 struct sec_path *sp;
b1937227
ED
660#endif
661#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
662 struct nf_conntrack *nfct;
663#endif
85224844 664#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 665 struct nf_bridge_info *nf_bridge;
da3f5cf1 666#endif
1da177e4 667 unsigned int len,
334a8132
PM
668 data_len;
669 __u16 mac_len,
670 hdr_len;
b1937227
ED
671
672 /* Following fields are _not_ copied in __copy_skb_header()
673 * Note that queue_mapping is here mostly to fill a hole.
674 */
fe55f6d5 675 kmemcheck_bitfield_begin(flags1);
b1937227
ED
676 __u16 queue_mapping;
677 __u8 cloned:1,
6869c4d8 678 nohdr:1,
b84f4cc9 679 fclone:2,
a59322be 680 peeked:1,
b1937227
ED
681 head_frag:1,
682 xmit_more:1;
683 /* one bit hole */
fe55f6d5 684 kmemcheck_bitfield_end(flags1);
4031ae6e 685
b1937227
ED
686 /* fields enclosed in headers_start/headers_end are copied
687 * using a single memcpy() in __copy_skb_header()
688 */
ebcf34f3 689 /* private: */
b1937227 690 __u32 headers_start[0];
ebcf34f3 691 /* public: */
4031ae6e 692
233577a2
HFS
693/* if you move pkt_type around you also must adapt those constants */
694#ifdef __BIG_ENDIAN_BITFIELD
695#define PKT_TYPE_MAX (7 << 5)
696#else
697#define PKT_TYPE_MAX 7
1da177e4 698#endif
233577a2 699#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 700
233577a2 701 __u8 __pkt_type_offset[0];
b1937227 702 __u8 pkt_type:3;
c93bdd0e 703 __u8 pfmemalloc:1;
b1937227
ED
704 __u8 ignore_df:1;
705 __u8 nfctinfo:3;
706
707 __u8 nf_trace:1;
708 __u8 ip_summed:2;
3853b584 709 __u8 ooo_okay:1;
61b905da 710 __u8 l4_hash:1;
a3b18ddb 711 __u8 sw_hash:1;
6e3e939f
JB
712 __u8 wifi_acked_valid:1;
713 __u8 wifi_acked:1;
b1937227 714
3bdc0eba 715 __u8 no_fcs:1;
77cffe23 716 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 717 __u8 encapsulation:1;
7e2b10c1 718 __u8 encap_hdr_csum:1;
5d0c2b95 719 __u8 csum_valid:1;
7e3cead5 720 __u8 csum_complete_sw:1;
b1937227
ED
721 __u8 csum_level:2;
722 __u8 csum_bad:1;
fe55f6d5 723
b1937227
ED
724#ifdef CONFIG_IPV6_NDISC_NODETYPE
725 __u8 ndisc_nodetype:2;
726#endif
727 __u8 ipvs_property:1;
8bce6d7d 728 __u8 inner_protocol_type:1;
e585f236
TH
729 __u8 remcsum_offload:1;
730 /* 3 or 5 bit hole */
b1937227
ED
731
732#ifdef CONFIG_NET_SCHED
733 __u16 tc_index; /* traffic control index */
734#ifdef CONFIG_NET_CLS_ACT
735 __u16 tc_verd; /* traffic control verdict */
736#endif
737#endif
fe55f6d5 738
b1937227
ED
739 union {
740 __wsum csum;
741 struct {
742 __u16 csum_start;
743 __u16 csum_offset;
744 };
745 };
746 __u32 priority;
747 int skb_iif;
748 __u32 hash;
749 __be16 vlan_proto;
750 __u16 vlan_tci;
2bd82484
ED
751#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
752 union {
753 unsigned int napi_id;
754 unsigned int sender_cpu;
755 };
97fc2f08 756#endif
0c4f691f 757 union {
984bc16c 758#ifdef CONFIG_NETWORK_SECMARK
0c4f691f
SF
759 __u32 secmark;
760#endif
761#ifdef CONFIG_NET_SWITCHDEV
762 __u32 offload_fwd_mark;
984bc16c 763#endif
0c4f691f
SF
764 };
765
3b885787
NH
766 union {
767 __u32 mark;
16fad69c 768 __u32 reserved_tailroom;
3b885787 769 };
1da177e4 770
8bce6d7d
TH
771 union {
772 __be16 inner_protocol;
773 __u8 inner_ipproto;
774 };
775
1a37e412
SH
776 __u16 inner_transport_header;
777 __u16 inner_network_header;
778 __u16 inner_mac_header;
b1937227
ED
779
780 __be16 protocol;
1a37e412
SH
781 __u16 transport_header;
782 __u16 network_header;
783 __u16 mac_header;
b1937227 784
ebcf34f3 785 /* private: */
b1937227 786 __u32 headers_end[0];
ebcf34f3 787 /* public: */
b1937227 788
1da177e4 789 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 790 sk_buff_data_t tail;
4305b541 791 sk_buff_data_t end;
1da177e4 792 unsigned char *head,
4305b541 793 *data;
27a884dc
ACM
794 unsigned int truesize;
795 atomic_t users;
1da177e4
LT
796};
797
798#ifdef __KERNEL__
799/*
800 * Handling routines are only of interest to the kernel
801 */
802#include <linux/slab.h>
803
1da177e4 804
c93bdd0e
MG
805#define SKB_ALLOC_FCLONE 0x01
806#define SKB_ALLOC_RX 0x02
fd11a83d 807#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
808
809/* Returns true if the skb was allocated from PFMEMALLOC reserves */
810static inline bool skb_pfmemalloc(const struct sk_buff *skb)
811{
812 return unlikely(skb->pfmemalloc);
813}
814
7fee226a
ED
815/*
816 * skb might have a dst pointer attached, refcounted or not.
817 * _skb_refdst low order bit is set if refcount was _not_ taken
818 */
819#define SKB_DST_NOREF 1UL
820#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
821
822/**
823 * skb_dst - returns skb dst_entry
824 * @skb: buffer
825 *
826 * Returns skb dst_entry, regardless of reference taken or not.
827 */
adf30907
ED
828static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
829{
7fee226a
ED
830 /* If refdst was not refcounted, check we still are in a
831 * rcu_read_lock section
832 */
833 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
834 !rcu_read_lock_held() &&
835 !rcu_read_lock_bh_held());
836 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
837}
838
7fee226a
ED
839/**
840 * skb_dst_set - sets skb dst
841 * @skb: buffer
842 * @dst: dst entry
843 *
844 * Sets skb dst, assuming a reference was taken on dst and should
845 * be released by skb_dst_drop()
846 */
adf30907
ED
847static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
848{
7fee226a
ED
849 skb->_skb_refdst = (unsigned long)dst;
850}
851
932bc4d7
JA
852/**
853 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
854 * @skb: buffer
855 * @dst: dst entry
856 *
857 * Sets skb dst, assuming a reference was not taken on dst.
858 * If dst entry is cached, we do not take reference and dst_release
859 * will be avoided by refdst_drop. If dst entry is not cached, we take
860 * reference, so that last dst_release can destroy the dst immediately.
861 */
862static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
863{
dbfc4fb7
HFS
864 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
865 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 866}
7fee226a
ED
867
868/**
25985edc 869 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
870 * @skb: buffer
871 */
872static inline bool skb_dst_is_noref(const struct sk_buff *skb)
873{
874 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
875}
876
511c3f92
ED
877static inline struct rtable *skb_rtable(const struct sk_buff *skb)
878{
adf30907 879 return (struct rtable *)skb_dst(skb);
511c3f92
ED
880}
881
7965bd4d
JP
882void kfree_skb(struct sk_buff *skb);
883void kfree_skb_list(struct sk_buff *segs);
884void skb_tx_error(struct sk_buff *skb);
885void consume_skb(struct sk_buff *skb);
886void __kfree_skb(struct sk_buff *skb);
d7e8883c 887extern struct kmem_cache *skbuff_head_cache;
bad43ca8 888
7965bd4d
JP
889void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
890bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
891 bool *fragstolen, int *delta_truesize);
bad43ca8 892
7965bd4d
JP
893struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
894 int node);
2ea2f62c 895struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 896struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 897static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 898 gfp_t priority)
d179cd12 899{
564824b0 900 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
901}
902
2e4e4410
ED
903struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
904 unsigned long data_len,
905 int max_page_order,
906 int *errcode,
907 gfp_t gfp_mask);
908
d0bf4a9e
ED
909/* Layout of fast clones : [skb1][skb2][fclone_ref] */
910struct sk_buff_fclones {
911 struct sk_buff skb1;
912
913 struct sk_buff skb2;
914
915 atomic_t fclone_ref;
916};
917
918/**
919 * skb_fclone_busy - check if fclone is busy
920 * @skb: buffer
921 *
bda13fed 922 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
923 * Some drivers call skb_orphan() in their ndo_start_xmit(),
924 * so we also check that this didnt happen.
d0bf4a9e 925 */
39bb5e62
ED
926static inline bool skb_fclone_busy(const struct sock *sk,
927 const struct sk_buff *skb)
d0bf4a9e
ED
928{
929 const struct sk_buff_fclones *fclones;
930
931 fclones = container_of(skb, struct sk_buff_fclones, skb1);
932
933 return skb->fclone == SKB_FCLONE_ORIG &&
6ffe75eb 934 atomic_read(&fclones->fclone_ref) > 1 &&
39bb5e62 935 fclones->skb2.sk == sk;
d0bf4a9e
ED
936}
937
d179cd12 938static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 939 gfp_t priority)
d179cd12 940{
c93bdd0e 941 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
942}
943
7965bd4d 944struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
0ebd0ac5
PM
945static inline struct sk_buff *alloc_skb_head(gfp_t priority)
946{
947 return __alloc_skb_head(priority, -1);
948}
949
7965bd4d
JP
950struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
951int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
952struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
953struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
954struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
955 gfp_t gfp_mask, bool fclone);
956static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
957 gfp_t gfp_mask)
958{
959 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
960}
7965bd4d
JP
961
962int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
963struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
964 unsigned int headroom);
965struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
966 int newtailroom, gfp_t priority);
25a91d8d
FD
967int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
968 int offset, int len);
7965bd4d
JP
969int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
970 int len);
971int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
972int skb_pad(struct sk_buff *skb, int pad);
ead2ceb0 973#define dev_kfree_skb(a) consume_skb(a)
1da177e4 974
7965bd4d
JP
975int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
976 int getfrag(void *from, char *to, int offset,
977 int len, int odd, struct sk_buff *skb),
978 void *from, int length);
e89e9cf5 979
be12a1fe
HFS
980int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
981 int offset, size_t size);
982
d94d9fee 983struct skb_seq_state {
677e90ed
TG
984 __u32 lower_offset;
985 __u32 upper_offset;
986 __u32 frag_idx;
987 __u32 stepped_offset;
988 struct sk_buff *root_skb;
989 struct sk_buff *cur_skb;
990 __u8 *frag_data;
991};
992
7965bd4d
JP
993void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
994 unsigned int to, struct skb_seq_state *st);
995unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
996 struct skb_seq_state *st);
997void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 998
7965bd4d 999unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1000 unsigned int to, struct ts_config *config);
3fc7e8a6 1001
09323cc4
TH
1002/*
1003 * Packet hash types specify the type of hash in skb_set_hash.
1004 *
1005 * Hash types refer to the protocol layer addresses which are used to
1006 * construct a packet's hash. The hashes are used to differentiate or identify
1007 * flows of the protocol layer for the hash type. Hash types are either
1008 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1009 *
1010 * Properties of hashes:
1011 *
1012 * 1) Two packets in different flows have different hash values
1013 * 2) Two packets in the same flow should have the same hash value
1014 *
1015 * A hash at a higher layer is considered to be more specific. A driver should
1016 * set the most specific hash possible.
1017 *
1018 * A driver cannot indicate a more specific hash than the layer at which a hash
1019 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1020 *
1021 * A driver may indicate a hash level which is less specific than the
1022 * actual layer the hash was computed on. For instance, a hash computed
1023 * at L4 may be considered an L3 hash. This should only be done if the
1024 * driver can't unambiguously determine that the HW computed the hash at
1025 * the higher layer. Note that the "should" in the second property above
1026 * permits this.
1027 */
1028enum pkt_hash_types {
1029 PKT_HASH_TYPE_NONE, /* Undefined type */
1030 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1031 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1032 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1033};
1034
bcc83839 1035static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1036{
bcc83839 1037 skb->hash = 0;
a3b18ddb 1038 skb->sw_hash = 0;
bcc83839
TH
1039 skb->l4_hash = 0;
1040}
1041
1042static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1043{
1044 if (!skb->l4_hash)
1045 skb_clear_hash(skb);
1046}
1047
1048static inline void
1049__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1050{
1051 skb->l4_hash = is_l4;
1052 skb->sw_hash = is_sw;
61b905da 1053 skb->hash = hash;
09323cc4
TH
1054}
1055
bcc83839
TH
1056static inline void
1057skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1058{
1059 /* Used by drivers to set hash from HW */
1060 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1061}
1062
1063static inline void
1064__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1065{
1066 __skb_set_hash(skb, hash, true, is_l4);
1067}
1068
e5276937
TH
1069void __skb_get_hash(struct sk_buff *skb);
1070u32 skb_get_poff(const struct sk_buff *skb);
1071u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1072 const struct flow_keys *keys, int hlen);
1073__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1074 void *data, int hlen_proto);
1075
1076static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1077 int thoff, u8 ip_proto)
1078{
1079 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1080}
1081
1082void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1083 const struct flow_dissector_key *key,
1084 unsigned int key_count);
1085
1086bool __skb_flow_dissect(const struct sk_buff *skb,
1087 struct flow_dissector *flow_dissector,
1088 void *target_container,
cd79a238
TH
1089 void *data, __be16 proto, int nhoff, int hlen,
1090 unsigned int flags);
e5276937
TH
1091
1092static inline bool skb_flow_dissect(const struct sk_buff *skb,
1093 struct flow_dissector *flow_dissector,
cd79a238 1094 void *target_container, unsigned int flags)
e5276937
TH
1095{
1096 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1097 NULL, 0, 0, 0, flags);
e5276937
TH
1098}
1099
1100static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1101 struct flow_keys *flow,
1102 unsigned int flags)
e5276937
TH
1103{
1104 memset(flow, 0, sizeof(*flow));
1105 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1106 NULL, 0, 0, 0, flags);
e5276937
TH
1107}
1108
1109static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1110 void *data, __be16 proto,
cd79a238
TH
1111 int nhoff, int hlen,
1112 unsigned int flags)
e5276937
TH
1113{
1114 memset(flow, 0, sizeof(*flow));
1115 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
cd79a238 1116 data, proto, nhoff, hlen, flags);
e5276937
TH
1117}
1118
3958afa1 1119static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1120{
a3b18ddb 1121 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1122 __skb_get_hash(skb);
bfb564e7 1123
61b905da 1124 return skb->hash;
bfb564e7
KK
1125}
1126
20a17bf6 1127__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
f70ea018 1128
20a17bf6 1129static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1130{
c6cc1ca7
TH
1131 if (!skb->l4_hash && !skb->sw_hash) {
1132 struct flow_keys keys;
de4c1f8b 1133 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1134
de4c1f8b 1135 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1136 }
f70ea018
TH
1137
1138 return skb->hash;
1139}
1140
20a17bf6 1141__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
f70ea018 1142
20a17bf6 1143static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
f70ea018 1144{
c6cc1ca7
TH
1145 if (!skb->l4_hash && !skb->sw_hash) {
1146 struct flow_keys keys;
de4c1f8b 1147 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
c6cc1ca7 1148
de4c1f8b 1149 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1150 }
f70ea018
TH
1151
1152 return skb->hash;
1153}
1154
50fb7992
TH
1155__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1156
57bdf7f4
TH
1157static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1158{
61b905da 1159 return skb->hash;
57bdf7f4
TH
1160}
1161
3df7a74e
TH
1162static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1163{
61b905da 1164 to->hash = from->hash;
a3b18ddb 1165 to->sw_hash = from->sw_hash;
61b905da 1166 to->l4_hash = from->l4_hash;
3df7a74e
TH
1167};
1168
4305b541
ACM
1169#ifdef NET_SKBUFF_DATA_USES_OFFSET
1170static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1171{
1172 return skb->head + skb->end;
1173}
ec47ea82
AD
1174
1175static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1176{
1177 return skb->end;
1178}
4305b541
ACM
1179#else
1180static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1181{
1182 return skb->end;
1183}
ec47ea82
AD
1184
1185static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1186{
1187 return skb->end - skb->head;
1188}
4305b541
ACM
1189#endif
1190
1da177e4 1191/* Internal */
4305b541 1192#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1193
ac45f602
PO
1194static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1195{
1196 return &skb_shinfo(skb)->hwtstamps;
1197}
1198
1da177e4
LT
1199/**
1200 * skb_queue_empty - check if a queue is empty
1201 * @list: queue head
1202 *
1203 * Returns true if the queue is empty, false otherwise.
1204 */
1205static inline int skb_queue_empty(const struct sk_buff_head *list)
1206{
fd44b93c 1207 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1208}
1209
fc7ebb21
DM
1210/**
1211 * skb_queue_is_last - check if skb is the last entry in the queue
1212 * @list: queue head
1213 * @skb: buffer
1214 *
1215 * Returns true if @skb is the last buffer on the list.
1216 */
1217static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1218 const struct sk_buff *skb)
1219{
fd44b93c 1220 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1221}
1222
832d11c5
IJ
1223/**
1224 * skb_queue_is_first - check if skb is the first entry in the queue
1225 * @list: queue head
1226 * @skb: buffer
1227 *
1228 * Returns true if @skb is the first buffer on the list.
1229 */
1230static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1231 const struct sk_buff *skb)
1232{
fd44b93c 1233 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1234}
1235
249c8b42
DM
1236/**
1237 * skb_queue_next - return the next packet in the queue
1238 * @list: queue head
1239 * @skb: current buffer
1240 *
1241 * Return the next packet in @list after @skb. It is only valid to
1242 * call this if skb_queue_is_last() evaluates to false.
1243 */
1244static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1245 const struct sk_buff *skb)
1246{
1247 /* This BUG_ON may seem severe, but if we just return then we
1248 * are going to dereference garbage.
1249 */
1250 BUG_ON(skb_queue_is_last(list, skb));
1251 return skb->next;
1252}
1253
832d11c5
IJ
1254/**
1255 * skb_queue_prev - return the prev packet in the queue
1256 * @list: queue head
1257 * @skb: current buffer
1258 *
1259 * Return the prev packet in @list before @skb. It is only valid to
1260 * call this if skb_queue_is_first() evaluates to false.
1261 */
1262static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1263 const struct sk_buff *skb)
1264{
1265 /* This BUG_ON may seem severe, but if we just return then we
1266 * are going to dereference garbage.
1267 */
1268 BUG_ON(skb_queue_is_first(list, skb));
1269 return skb->prev;
1270}
1271
1da177e4
LT
1272/**
1273 * skb_get - reference buffer
1274 * @skb: buffer to reference
1275 *
1276 * Makes another reference to a socket buffer and returns a pointer
1277 * to the buffer.
1278 */
1279static inline struct sk_buff *skb_get(struct sk_buff *skb)
1280{
1281 atomic_inc(&skb->users);
1282 return skb;
1283}
1284
1285/*
1286 * If users == 1, we are the only owner and are can avoid redundant
1287 * atomic change.
1288 */
1289
1da177e4
LT
1290/**
1291 * skb_cloned - is the buffer a clone
1292 * @skb: buffer to check
1293 *
1294 * Returns true if the buffer was generated with skb_clone() and is
1295 * one of multiple shared copies of the buffer. Cloned buffers are
1296 * shared data so must not be written to under normal circumstances.
1297 */
1298static inline int skb_cloned(const struct sk_buff *skb)
1299{
1300 return skb->cloned &&
1301 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1302}
1303
14bbd6a5
PS
1304static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1305{
d0164adc 1306 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1307
1308 if (skb_cloned(skb))
1309 return pskb_expand_head(skb, 0, 0, pri);
1310
1311 return 0;
1312}
1313
1da177e4
LT
1314/**
1315 * skb_header_cloned - is the header a clone
1316 * @skb: buffer to check
1317 *
1318 * Returns true if modifying the header part of the buffer requires
1319 * the data to be copied.
1320 */
1321static inline int skb_header_cloned(const struct sk_buff *skb)
1322{
1323 int dataref;
1324
1325 if (!skb->cloned)
1326 return 0;
1327
1328 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1329 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1330 return dataref != 1;
1331}
1332
9580bf2e
ED
1333static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1334{
1335 might_sleep_if(gfpflags_allow_blocking(pri));
1336
1337 if (skb_header_cloned(skb))
1338 return pskb_expand_head(skb, 0, 0, pri);
1339
1340 return 0;
1341}
1342
1da177e4
LT
1343/**
1344 * skb_header_release - release reference to header
1345 * @skb: buffer to operate on
1346 *
1347 * Drop a reference to the header part of the buffer. This is done
1348 * by acquiring a payload reference. You must not read from the header
1349 * part of skb->data after this.
f4a775d1 1350 * Note : Check if you can use __skb_header_release() instead.
1da177e4
LT
1351 */
1352static inline void skb_header_release(struct sk_buff *skb)
1353{
1354 BUG_ON(skb->nohdr);
1355 skb->nohdr = 1;
1356 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1357}
1358
f4a775d1
ED
1359/**
1360 * __skb_header_release - release reference to header
1361 * @skb: buffer to operate on
1362 *
1363 * Variant of skb_header_release() assuming skb is private to caller.
1364 * We can avoid one atomic operation.
1365 */
1366static inline void __skb_header_release(struct sk_buff *skb)
1367{
1368 skb->nohdr = 1;
1369 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1370}
1371
1372
1da177e4
LT
1373/**
1374 * skb_shared - is the buffer shared
1375 * @skb: buffer to check
1376 *
1377 * Returns true if more than one person has a reference to this
1378 * buffer.
1379 */
1380static inline int skb_shared(const struct sk_buff *skb)
1381{
1382 return atomic_read(&skb->users) != 1;
1383}
1384
1385/**
1386 * skb_share_check - check if buffer is shared and if so clone it
1387 * @skb: buffer to check
1388 * @pri: priority for memory allocation
1389 *
1390 * If the buffer is shared the buffer is cloned and the old copy
1391 * drops a reference. A new clone with a single reference is returned.
1392 * If the buffer is not shared the original buffer is returned. When
1393 * being called from interrupt status or with spinlocks held pri must
1394 * be GFP_ATOMIC.
1395 *
1396 * NULL is returned on a memory allocation failure.
1397 */
47061bc4 1398static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1399{
d0164adc 1400 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1401 if (skb_shared(skb)) {
1402 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1403
1404 if (likely(nskb))
1405 consume_skb(skb);
1406 else
1407 kfree_skb(skb);
1da177e4
LT
1408 skb = nskb;
1409 }
1410 return skb;
1411}
1412
1413/*
1414 * Copy shared buffers into a new sk_buff. We effectively do COW on
1415 * packets to handle cases where we have a local reader and forward
1416 * and a couple of other messy ones. The normal one is tcpdumping
1417 * a packet thats being forwarded.
1418 */
1419
1420/**
1421 * skb_unshare - make a copy of a shared buffer
1422 * @skb: buffer to check
1423 * @pri: priority for memory allocation
1424 *
1425 * If the socket buffer is a clone then this function creates a new
1426 * copy of the data, drops a reference count on the old copy and returns
1427 * the new copy with the reference count at 1. If the buffer is not a clone
1428 * the original buffer is returned. When called with a spinlock held or
1429 * from interrupt state @pri must be %GFP_ATOMIC
1430 *
1431 * %NULL is returned on a memory allocation failure.
1432 */
e2bf521d 1433static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1434 gfp_t pri)
1da177e4 1435{
d0164adc 1436 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1437 if (skb_cloned(skb)) {
1438 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1439
1440 /* Free our shared copy */
1441 if (likely(nskb))
1442 consume_skb(skb);
1443 else
1444 kfree_skb(skb);
1da177e4
LT
1445 skb = nskb;
1446 }
1447 return skb;
1448}
1449
1450/**
1a5778aa 1451 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1452 * @list_: list to peek at
1453 *
1454 * Peek an &sk_buff. Unlike most other operations you _MUST_
1455 * be careful with this one. A peek leaves the buffer on the
1456 * list and someone else may run off with it. You must hold
1457 * the appropriate locks or have a private queue to do this.
1458 *
1459 * Returns %NULL for an empty list or a pointer to the head element.
1460 * The reference count is not incremented and the reference is therefore
1461 * volatile. Use with caution.
1462 */
05bdd2f1 1463static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1464{
18d07000
ED
1465 struct sk_buff *skb = list_->next;
1466
1467 if (skb == (struct sk_buff *)list_)
1468 skb = NULL;
1469 return skb;
1da177e4
LT
1470}
1471
da5ef6e5
PE
1472/**
1473 * skb_peek_next - peek skb following the given one from a queue
1474 * @skb: skb to start from
1475 * @list_: list to peek at
1476 *
1477 * Returns %NULL when the end of the list is met or a pointer to the
1478 * next element. The reference count is not incremented and the
1479 * reference is therefore volatile. Use with caution.
1480 */
1481static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1482 const struct sk_buff_head *list_)
1483{
1484 struct sk_buff *next = skb->next;
18d07000 1485
da5ef6e5
PE
1486 if (next == (struct sk_buff *)list_)
1487 next = NULL;
1488 return next;
1489}
1490
1da177e4 1491/**
1a5778aa 1492 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1493 * @list_: list to peek at
1494 *
1495 * Peek an &sk_buff. Unlike most other operations you _MUST_
1496 * be careful with this one. A peek leaves the buffer on the
1497 * list and someone else may run off with it. You must hold
1498 * the appropriate locks or have a private queue to do this.
1499 *
1500 * Returns %NULL for an empty list or a pointer to the tail element.
1501 * The reference count is not incremented and the reference is therefore
1502 * volatile. Use with caution.
1503 */
05bdd2f1 1504static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1505{
18d07000
ED
1506 struct sk_buff *skb = list_->prev;
1507
1508 if (skb == (struct sk_buff *)list_)
1509 skb = NULL;
1510 return skb;
1511
1da177e4
LT
1512}
1513
1514/**
1515 * skb_queue_len - get queue length
1516 * @list_: list to measure
1517 *
1518 * Return the length of an &sk_buff queue.
1519 */
1520static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1521{
1522 return list_->qlen;
1523}
1524
67fed459
DM
1525/**
1526 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1527 * @list: queue to initialize
1528 *
1529 * This initializes only the list and queue length aspects of
1530 * an sk_buff_head object. This allows to initialize the list
1531 * aspects of an sk_buff_head without reinitializing things like
1532 * the spinlock. It can also be used for on-stack sk_buff_head
1533 * objects where the spinlock is known to not be used.
1534 */
1535static inline void __skb_queue_head_init(struct sk_buff_head *list)
1536{
1537 list->prev = list->next = (struct sk_buff *)list;
1538 list->qlen = 0;
1539}
1540
76f10ad0
AV
1541/*
1542 * This function creates a split out lock class for each invocation;
1543 * this is needed for now since a whole lot of users of the skb-queue
1544 * infrastructure in drivers have different locking usage (in hardirq)
1545 * than the networking core (in softirq only). In the long run either the
1546 * network layer or drivers should need annotation to consolidate the
1547 * main types of usage into 3 classes.
1548 */
1da177e4
LT
1549static inline void skb_queue_head_init(struct sk_buff_head *list)
1550{
1551 spin_lock_init(&list->lock);
67fed459 1552 __skb_queue_head_init(list);
1da177e4
LT
1553}
1554
c2ecba71
PE
1555static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1556 struct lock_class_key *class)
1557{
1558 skb_queue_head_init(list);
1559 lockdep_set_class(&list->lock, class);
1560}
1561
1da177e4 1562/*
bf299275 1563 * Insert an sk_buff on a list.
1da177e4
LT
1564 *
1565 * The "__skb_xxxx()" functions are the non-atomic ones that
1566 * can only be called with interrupts disabled.
1567 */
7965bd4d
JP
1568void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1569 struct sk_buff_head *list);
bf299275
GR
1570static inline void __skb_insert(struct sk_buff *newsk,
1571 struct sk_buff *prev, struct sk_buff *next,
1572 struct sk_buff_head *list)
1573{
1574 newsk->next = next;
1575 newsk->prev = prev;
1576 next->prev = prev->next = newsk;
1577 list->qlen++;
1578}
1da177e4 1579
67fed459
DM
1580static inline void __skb_queue_splice(const struct sk_buff_head *list,
1581 struct sk_buff *prev,
1582 struct sk_buff *next)
1583{
1584 struct sk_buff *first = list->next;
1585 struct sk_buff *last = list->prev;
1586
1587 first->prev = prev;
1588 prev->next = first;
1589
1590 last->next = next;
1591 next->prev = last;
1592}
1593
1594/**
1595 * skb_queue_splice - join two skb lists, this is designed for stacks
1596 * @list: the new list to add
1597 * @head: the place to add it in the first list
1598 */
1599static inline void skb_queue_splice(const struct sk_buff_head *list,
1600 struct sk_buff_head *head)
1601{
1602 if (!skb_queue_empty(list)) {
1603 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1604 head->qlen += list->qlen;
67fed459
DM
1605 }
1606}
1607
1608/**
d9619496 1609 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1610 * @list: the new list to add
1611 * @head: the place to add it in the first list
1612 *
1613 * The list at @list is reinitialised
1614 */
1615static inline void skb_queue_splice_init(struct sk_buff_head *list,
1616 struct sk_buff_head *head)
1617{
1618 if (!skb_queue_empty(list)) {
1619 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1620 head->qlen += list->qlen;
67fed459
DM
1621 __skb_queue_head_init(list);
1622 }
1623}
1624
1625/**
1626 * skb_queue_splice_tail - join two skb lists, each list being a queue
1627 * @list: the new list to add
1628 * @head: the place to add it in the first list
1629 */
1630static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1631 struct sk_buff_head *head)
1632{
1633 if (!skb_queue_empty(list)) {
1634 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1635 head->qlen += list->qlen;
67fed459
DM
1636 }
1637}
1638
1639/**
d9619496 1640 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1641 * @list: the new list to add
1642 * @head: the place to add it in the first list
1643 *
1644 * Each of the lists is a queue.
1645 * The list at @list is reinitialised
1646 */
1647static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1648 struct sk_buff_head *head)
1649{
1650 if (!skb_queue_empty(list)) {
1651 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1652 head->qlen += list->qlen;
67fed459
DM
1653 __skb_queue_head_init(list);
1654 }
1655}
1656
1da177e4 1657/**
300ce174 1658 * __skb_queue_after - queue a buffer at the list head
1da177e4 1659 * @list: list to use
300ce174 1660 * @prev: place after this buffer
1da177e4
LT
1661 * @newsk: buffer to queue
1662 *
300ce174 1663 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1664 * and you must therefore hold required locks before calling it.
1665 *
1666 * A buffer cannot be placed on two lists at the same time.
1667 */
300ce174
SH
1668static inline void __skb_queue_after(struct sk_buff_head *list,
1669 struct sk_buff *prev,
1670 struct sk_buff *newsk)
1da177e4 1671{
bf299275 1672 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1673}
1674
7965bd4d
JP
1675void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1676 struct sk_buff_head *list);
7de6c033 1677
f5572855
GR
1678static inline void __skb_queue_before(struct sk_buff_head *list,
1679 struct sk_buff *next,
1680 struct sk_buff *newsk)
1681{
1682 __skb_insert(newsk, next->prev, next, list);
1683}
1684
300ce174
SH
1685/**
1686 * __skb_queue_head - queue a buffer at the list head
1687 * @list: list to use
1688 * @newsk: buffer to queue
1689 *
1690 * Queue a buffer at the start of a list. This function takes no locks
1691 * and you must therefore hold required locks before calling it.
1692 *
1693 * A buffer cannot be placed on two lists at the same time.
1694 */
7965bd4d 1695void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1696static inline void __skb_queue_head(struct sk_buff_head *list,
1697 struct sk_buff *newsk)
1698{
1699 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1700}
1701
1da177e4
LT
1702/**
1703 * __skb_queue_tail - queue a buffer at the list tail
1704 * @list: list to use
1705 * @newsk: buffer to queue
1706 *
1707 * Queue a buffer at the end of a list. This function takes no locks
1708 * and you must therefore hold required locks before calling it.
1709 *
1710 * A buffer cannot be placed on two lists at the same time.
1711 */
7965bd4d 1712void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1713static inline void __skb_queue_tail(struct sk_buff_head *list,
1714 struct sk_buff *newsk)
1715{
f5572855 1716 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1717}
1718
1da177e4
LT
1719/*
1720 * remove sk_buff from list. _Must_ be called atomically, and with
1721 * the list known..
1722 */
7965bd4d 1723void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1724static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1725{
1726 struct sk_buff *next, *prev;
1727
1728 list->qlen--;
1729 next = skb->next;
1730 prev = skb->prev;
1731 skb->next = skb->prev = NULL;
1da177e4
LT
1732 next->prev = prev;
1733 prev->next = next;
1734}
1735
f525c06d
GR
1736/**
1737 * __skb_dequeue - remove from the head of the queue
1738 * @list: list to dequeue from
1739 *
1740 * Remove the head of the list. This function does not take any locks
1741 * so must be used with appropriate locks held only. The head item is
1742 * returned or %NULL if the list is empty.
1743 */
7965bd4d 1744struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1745static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1746{
1747 struct sk_buff *skb = skb_peek(list);
1748 if (skb)
1749 __skb_unlink(skb, list);
1750 return skb;
1751}
1da177e4
LT
1752
1753/**
1754 * __skb_dequeue_tail - remove from the tail of the queue
1755 * @list: list to dequeue from
1756 *
1757 * Remove the tail of the list. This function does not take any locks
1758 * so must be used with appropriate locks held only. The tail item is
1759 * returned or %NULL if the list is empty.
1760 */
7965bd4d 1761struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1762static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1763{
1764 struct sk_buff *skb = skb_peek_tail(list);
1765 if (skb)
1766 __skb_unlink(skb, list);
1767 return skb;
1768}
1769
1770
bdcc0924 1771static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1772{
1773 return skb->data_len;
1774}
1775
1776static inline unsigned int skb_headlen(const struct sk_buff *skb)
1777{
1778 return skb->len - skb->data_len;
1779}
1780
1781static inline int skb_pagelen(const struct sk_buff *skb)
1782{
1783 int i, len = 0;
1784
1785 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
9e903e08 1786 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1da177e4
LT
1787 return len + skb_headlen(skb);
1788}
1789
131ea667
IC
1790/**
1791 * __skb_fill_page_desc - initialise a paged fragment in an skb
1792 * @skb: buffer containing fragment to be initialised
1793 * @i: paged fragment index to initialise
1794 * @page: the page to use for this fragment
1795 * @off: the offset to the data with @page
1796 * @size: the length of the data
1797 *
1798 * Initialises the @i'th fragment of @skb to point to &size bytes at
1799 * offset @off within @page.
1800 *
1801 * Does not take any additional reference on the fragment.
1802 */
1803static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1804 struct page *page, int off, int size)
1da177e4
LT
1805{
1806 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1807
c48a11c7 1808 /*
2f064f34
MH
1809 * Propagate page pfmemalloc to the skb if we can. The problem is
1810 * that not all callers have unique ownership of the page but rely
1811 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1812 */
a8605c60 1813 frag->page.p = page;
1da177e4 1814 frag->page_offset = off;
9e903e08 1815 skb_frag_size_set(frag, size);
cca7af38
PE
1816
1817 page = compound_head(page);
2f064f34 1818 if (page_is_pfmemalloc(page))
cca7af38 1819 skb->pfmemalloc = true;
131ea667
IC
1820}
1821
1822/**
1823 * skb_fill_page_desc - initialise a paged fragment in an skb
1824 * @skb: buffer containing fragment to be initialised
1825 * @i: paged fragment index to initialise
1826 * @page: the page to use for this fragment
1827 * @off: the offset to the data with @page
1828 * @size: the length of the data
1829 *
1830 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1831 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1832 * addition updates @skb such that @i is the last fragment.
1833 *
1834 * Does not take any additional reference on the fragment.
1835 */
1836static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1837 struct page *page, int off, int size)
1838{
1839 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1840 skb_shinfo(skb)->nr_frags = i + 1;
1841}
1842
7965bd4d
JP
1843void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1844 int size, unsigned int truesize);
654bed16 1845
f8e617e1
JW
1846void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1847 unsigned int truesize);
1848
1da177e4 1849#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1850#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1851#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1852
27a884dc
ACM
1853#ifdef NET_SKBUFF_DATA_USES_OFFSET
1854static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1855{
1856 return skb->head + skb->tail;
1857}
1858
1859static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1860{
1861 skb->tail = skb->data - skb->head;
1862}
1863
1864static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1865{
1866 skb_reset_tail_pointer(skb);
1867 skb->tail += offset;
1868}
7cc46190 1869
27a884dc
ACM
1870#else /* NET_SKBUFF_DATA_USES_OFFSET */
1871static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1872{
1873 return skb->tail;
1874}
1875
1876static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1877{
1878 skb->tail = skb->data;
1879}
1880
1881static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1882{
1883 skb->tail = skb->data + offset;
1884}
4305b541 1885
27a884dc
ACM
1886#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1887
1da177e4
LT
1888/*
1889 * Add data to an sk_buff
1890 */
0c7ddf36 1891unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
7965bd4d 1892unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1893static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1894{
27a884dc 1895 unsigned char *tmp = skb_tail_pointer(skb);
1da177e4
LT
1896 SKB_LINEAR_ASSERT(skb);
1897 skb->tail += len;
1898 skb->len += len;
1899 return tmp;
1900}
1901
7965bd4d 1902unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1903static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1904{
1905 skb->data -= len;
1906 skb->len += len;
1907 return skb->data;
1908}
1909
7965bd4d 1910unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1911static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1912{
1913 skb->len -= len;
1914 BUG_ON(skb->len < skb->data_len);
1915 return skb->data += len;
1916}
1917
47d29646
DM
1918static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1919{
1920 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1921}
1922
7965bd4d 1923unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4
LT
1924
1925static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1926{
1927 if (len > skb_headlen(skb) &&
987c402a 1928 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
1929 return NULL;
1930 skb->len -= len;
1931 return skb->data += len;
1932}
1933
1934static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1935{
1936 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1937}
1938
1939static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1940{
1941 if (likely(len <= skb_headlen(skb)))
1942 return 1;
1943 if (unlikely(len > skb->len))
1944 return 0;
987c402a 1945 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
1946}
1947
1948/**
1949 * skb_headroom - bytes at buffer head
1950 * @skb: buffer to check
1951 *
1952 * Return the number of bytes of free space at the head of an &sk_buff.
1953 */
c2636b4d 1954static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
1955{
1956 return skb->data - skb->head;
1957}
1958
1959/**
1960 * skb_tailroom - bytes at buffer end
1961 * @skb: buffer to check
1962 *
1963 * Return the number of bytes of free space at the tail of an sk_buff
1964 */
1965static inline int skb_tailroom(const struct sk_buff *skb)
1966{
4305b541 1967 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
1968}
1969
a21d4572
ED
1970/**
1971 * skb_availroom - bytes at buffer end
1972 * @skb: buffer to check
1973 *
1974 * Return the number of bytes of free space at the tail of an sk_buff
1975 * allocated by sk_stream_alloc()
1976 */
1977static inline int skb_availroom(const struct sk_buff *skb)
1978{
16fad69c
ED
1979 if (skb_is_nonlinear(skb))
1980 return 0;
1981
1982 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
1983}
1984
1da177e4
LT
1985/**
1986 * skb_reserve - adjust headroom
1987 * @skb: buffer to alter
1988 * @len: bytes to move
1989 *
1990 * Increase the headroom of an empty &sk_buff by reducing the tail
1991 * room. This is only allowed for an empty buffer.
1992 */
8243126c 1993static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
1994{
1995 skb->data += len;
1996 skb->tail += len;
1997}
1998
1837b2e2
BP
1999/**
2000 * skb_tailroom_reserve - adjust reserved_tailroom
2001 * @skb: buffer to alter
2002 * @mtu: maximum amount of headlen permitted
2003 * @needed_tailroom: minimum amount of reserved_tailroom
2004 *
2005 * Set reserved_tailroom so that headlen can be as large as possible but
2006 * not larger than mtu and tailroom cannot be smaller than
2007 * needed_tailroom.
2008 * The required headroom should already have been reserved before using
2009 * this function.
2010 */
2011static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2012 unsigned int needed_tailroom)
2013{
2014 SKB_LINEAR_ASSERT(skb);
2015 if (mtu < skb_tailroom(skb) - needed_tailroom)
2016 /* use at most mtu */
2017 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2018 else
2019 /* use up to all available space */
2020 skb->reserved_tailroom = needed_tailroom;
2021}
2022
8bce6d7d
TH
2023#define ENCAP_TYPE_ETHER 0
2024#define ENCAP_TYPE_IPPROTO 1
2025
2026static inline void skb_set_inner_protocol(struct sk_buff *skb,
2027 __be16 protocol)
2028{
2029 skb->inner_protocol = protocol;
2030 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2031}
2032
2033static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2034 __u8 ipproto)
2035{
2036 skb->inner_ipproto = ipproto;
2037 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2038}
2039
6a674e9c
JG
2040static inline void skb_reset_inner_headers(struct sk_buff *skb)
2041{
aefbd2b3 2042 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2043 skb->inner_network_header = skb->network_header;
2044 skb->inner_transport_header = skb->transport_header;
2045}
2046
0b5c9db1
JP
2047static inline void skb_reset_mac_len(struct sk_buff *skb)
2048{
2049 skb->mac_len = skb->network_header - skb->mac_header;
2050}
2051
6a674e9c
JG
2052static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2053 *skb)
2054{
2055 return skb->head + skb->inner_transport_header;
2056}
2057
55dc5a9f
TH
2058static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2059{
2060 return skb_inner_transport_header(skb) - skb->data;
2061}
2062
6a674e9c
JG
2063static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2064{
2065 skb->inner_transport_header = skb->data - skb->head;
2066}
2067
2068static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2069 const int offset)
2070{
2071 skb_reset_inner_transport_header(skb);
2072 skb->inner_transport_header += offset;
2073}
2074
2075static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2076{
2077 return skb->head + skb->inner_network_header;
2078}
2079
2080static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2081{
2082 skb->inner_network_header = skb->data - skb->head;
2083}
2084
2085static inline void skb_set_inner_network_header(struct sk_buff *skb,
2086 const int offset)
2087{
2088 skb_reset_inner_network_header(skb);
2089 skb->inner_network_header += offset;
2090}
2091
aefbd2b3
PS
2092static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2093{
2094 return skb->head + skb->inner_mac_header;
2095}
2096
2097static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2098{
2099 skb->inner_mac_header = skb->data - skb->head;
2100}
2101
2102static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2103 const int offset)
2104{
2105 skb_reset_inner_mac_header(skb);
2106 skb->inner_mac_header += offset;
2107}
fda55eca
ED
2108static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2109{
35d04610 2110 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2111}
2112
9c70220b
ACM
2113static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2114{
2e07fa9c 2115 return skb->head + skb->transport_header;
9c70220b
ACM
2116}
2117
badff6d0
ACM
2118static inline void skb_reset_transport_header(struct sk_buff *skb)
2119{
2e07fa9c 2120 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2121}
2122
967b05f6
ACM
2123static inline void skb_set_transport_header(struct sk_buff *skb,
2124 const int offset)
2125{
2e07fa9c
ACM
2126 skb_reset_transport_header(skb);
2127 skb->transport_header += offset;
ea2ae17d
ACM
2128}
2129
d56f90a7
ACM
2130static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2131{
2e07fa9c 2132 return skb->head + skb->network_header;
d56f90a7
ACM
2133}
2134
c1d2bbe1
ACM
2135static inline void skb_reset_network_header(struct sk_buff *skb)
2136{
2e07fa9c 2137 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2138}
2139
c14d2450
ACM
2140static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2141{
2e07fa9c
ACM
2142 skb_reset_network_header(skb);
2143 skb->network_header += offset;
c14d2450
ACM
2144}
2145
2e07fa9c 2146static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2147{
2e07fa9c 2148 return skb->head + skb->mac_header;
bbe735e4
ACM
2149}
2150
2e07fa9c 2151static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2152{
35d04610 2153 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2154}
2155
2156static inline void skb_reset_mac_header(struct sk_buff *skb)
2157{
2158 skb->mac_header = skb->data - skb->head;
2159}
2160
2161static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2162{
2163 skb_reset_mac_header(skb);
2164 skb->mac_header += offset;
2165}
2166
0e3da5bb
TT
2167static inline void skb_pop_mac_header(struct sk_buff *skb)
2168{
2169 skb->mac_header = skb->network_header;
2170}
2171
fbbdb8f0
YX
2172static inline void skb_probe_transport_header(struct sk_buff *skb,
2173 const int offset_hint)
2174{
2175 struct flow_keys keys;
2176
2177 if (skb_transport_header_was_set(skb))
2178 return;
cd79a238 2179 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
42aecaa9 2180 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2181 else
2182 skb_set_transport_header(skb, offset_hint);
2183}
2184
03606895
ED
2185static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2186{
2187 if (skb_mac_header_was_set(skb)) {
2188 const unsigned char *old_mac = skb_mac_header(skb);
2189
2190 skb_set_mac_header(skb, -skb->mac_len);
2191 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2192 }
2193}
2194
04fb451e
MM
2195static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2196{
2197 return skb->csum_start - skb_headroom(skb);
2198}
2199
08b64fcc
AD
2200static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2201{
2202 return skb->head + skb->csum_start;
2203}
2204
2e07fa9c
ACM
2205static inline int skb_transport_offset(const struct sk_buff *skb)
2206{
2207 return skb_transport_header(skb) - skb->data;
2208}
2209
2210static inline u32 skb_network_header_len(const struct sk_buff *skb)
2211{
2212 return skb->transport_header - skb->network_header;
2213}
2214
6a674e9c
JG
2215static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2216{
2217 return skb->inner_transport_header - skb->inner_network_header;
2218}
2219
2e07fa9c
ACM
2220static inline int skb_network_offset(const struct sk_buff *skb)
2221{
2222 return skb_network_header(skb) - skb->data;
2223}
48d49d0c 2224
6a674e9c
JG
2225static inline int skb_inner_network_offset(const struct sk_buff *skb)
2226{
2227 return skb_inner_network_header(skb) - skb->data;
2228}
2229
f9599ce1
CG
2230static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2231{
2232 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2233}
2234
1da177e4
LT
2235/*
2236 * CPUs often take a performance hit when accessing unaligned memory
2237 * locations. The actual performance hit varies, it can be small if the
2238 * hardware handles it or large if we have to take an exception and fix it
2239 * in software.
2240 *
2241 * Since an ethernet header is 14 bytes network drivers often end up with
2242 * the IP header at an unaligned offset. The IP header can be aligned by
2243 * shifting the start of the packet by 2 bytes. Drivers should do this
2244 * with:
2245 *
8660c124 2246 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2247 *
2248 * The downside to this alignment of the IP header is that the DMA is now
2249 * unaligned. On some architectures the cost of an unaligned DMA is high
2250 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2251 *
1da177e4
LT
2252 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2253 * to be overridden.
2254 */
2255#ifndef NET_IP_ALIGN
2256#define NET_IP_ALIGN 2
2257#endif
2258
025be81e
AB
2259/*
2260 * The networking layer reserves some headroom in skb data (via
2261 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2262 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2263 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2264 *
2265 * Unfortunately this headroom changes the DMA alignment of the resulting
2266 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2267 * on some architectures. An architecture can override this value,
2268 * perhaps setting it to a cacheline in size (since that will maintain
2269 * cacheline alignment of the DMA). It must be a power of 2.
2270 *
d6301d3d 2271 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2272 * headroom, you should not reduce this.
5933dd2f
ED
2273 *
2274 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2275 * to reduce average number of cache lines per packet.
2276 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2277 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2278 */
2279#ifndef NET_SKB_PAD
5933dd2f 2280#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2281#endif
2282
7965bd4d 2283int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2284
2285static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2286{
c4264f27 2287 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2288 WARN_ON(1);
2289 return;
2290 }
27a884dc
ACM
2291 skb->len = len;
2292 skb_set_tail_pointer(skb, len);
1da177e4
LT
2293}
2294
7965bd4d 2295void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2296
2297static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2298{
3cc0e873
HX
2299 if (skb->data_len)
2300 return ___pskb_trim(skb, len);
2301 __skb_trim(skb, len);
2302 return 0;
1da177e4
LT
2303}
2304
2305static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2306{
2307 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2308}
2309
e9fa4f7b
HX
2310/**
2311 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2312 * @skb: buffer to alter
2313 * @len: new length
2314 *
2315 * This is identical to pskb_trim except that the caller knows that
2316 * the skb is not cloned so we should never get an error due to out-
2317 * of-memory.
2318 */
2319static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2320{
2321 int err = pskb_trim(skb, len);
2322 BUG_ON(err);
2323}
2324
1da177e4
LT
2325/**
2326 * skb_orphan - orphan a buffer
2327 * @skb: buffer to orphan
2328 *
2329 * If a buffer currently has an owner then we call the owner's
2330 * destructor function and make the @skb unowned. The buffer continues
2331 * to exist but is no longer charged to its former owner.
2332 */
2333static inline void skb_orphan(struct sk_buff *skb)
2334{
c34a7612 2335 if (skb->destructor) {
1da177e4 2336 skb->destructor(skb);
c34a7612
ED
2337 skb->destructor = NULL;
2338 skb->sk = NULL;
376c7311
ED
2339 } else {
2340 BUG_ON(skb->sk);
c34a7612 2341 }
1da177e4
LT
2342}
2343
a353e0ce
MT
2344/**
2345 * skb_orphan_frags - orphan the frags contained in a buffer
2346 * @skb: buffer to orphan frags from
2347 * @gfp_mask: allocation mask for replacement pages
2348 *
2349 * For each frag in the SKB which needs a destructor (i.e. has an
2350 * owner) create a copy of that frag and release the original
2351 * page by calling the destructor.
2352 */
2353static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2354{
2355 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2356 return 0;
2357 return skb_copy_ubufs(skb, gfp_mask);
2358}
2359
1da177e4
LT
2360/**
2361 * __skb_queue_purge - empty a list
2362 * @list: list to empty
2363 *
2364 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2365 * the list and one reference dropped. This function does not take the
2366 * list lock and the caller must hold the relevant locks to use it.
2367 */
7965bd4d 2368void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2369static inline void __skb_queue_purge(struct sk_buff_head *list)
2370{
2371 struct sk_buff *skb;
2372 while ((skb = __skb_dequeue(list)) != NULL)
2373 kfree_skb(skb);
2374}
2375
7965bd4d 2376void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2377
7965bd4d
JP
2378struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2379 gfp_t gfp_mask);
8af27456
CH
2380
2381/**
2382 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2383 * @dev: network device to receive on
2384 * @length: length to allocate
2385 *
2386 * Allocate a new &sk_buff and assign it a usage count of one. The
2387 * buffer has unspecified headroom built in. Users should allocate
2388 * the headroom they think they need without accounting for the
2389 * built in space. The built in space is used for optimisations.
2390 *
2391 * %NULL is returned if there is no free memory. Although this function
2392 * allocates memory it can be called from an interrupt.
2393 */
2394static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2395 unsigned int length)
8af27456
CH
2396{
2397 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2398}
2399
6f532612
ED
2400/* legacy helper around __netdev_alloc_skb() */
2401static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2402 gfp_t gfp_mask)
2403{
2404 return __netdev_alloc_skb(NULL, length, gfp_mask);
2405}
2406
2407/* legacy helper around netdev_alloc_skb() */
2408static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2409{
2410 return netdev_alloc_skb(NULL, length);
2411}
2412
2413
4915a0de
ED
2414static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2415 unsigned int length, gfp_t gfp)
61321bbd 2416{
4915a0de 2417 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2418
2419 if (NET_IP_ALIGN && skb)
2420 skb_reserve(skb, NET_IP_ALIGN);
2421 return skb;
2422}
2423
4915a0de
ED
2424static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2425 unsigned int length)
2426{
2427 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2428}
2429
181edb2b
AD
2430static inline void skb_free_frag(void *addr)
2431{
2432 __free_page_frag(addr);
2433}
2434
ffde7328 2435void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2436struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2437 unsigned int length, gfp_t gfp_mask);
2438static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2439 unsigned int length)
2440{
2441 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2442}
795bb1c0
JDB
2443void napi_consume_skb(struct sk_buff *skb, int budget);
2444
2445void __kfree_skb_flush(void);
15fad714 2446void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2447
71dfda58
AD
2448/**
2449 * __dev_alloc_pages - allocate page for network Rx
2450 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2451 * @order: size of the allocation
2452 *
2453 * Allocate a new page.
2454 *
2455 * %NULL is returned if there is no free memory.
2456*/
2457static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2458 unsigned int order)
2459{
2460 /* This piece of code contains several assumptions.
2461 * 1. This is for device Rx, therefor a cold page is preferred.
2462 * 2. The expectation is the user wants a compound page.
2463 * 3. If requesting a order 0 page it will not be compound
2464 * due to the check to see if order has a value in prep_new_page
2465 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2466 * code in gfp_to_alloc_flags that should be enforcing this.
2467 */
2468 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2469
2470 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2471}
2472
2473static inline struct page *dev_alloc_pages(unsigned int order)
2474{
95829b3a 2475 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2476}
2477
2478/**
2479 * __dev_alloc_page - allocate a page for network Rx
2480 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2481 *
2482 * Allocate a new page.
2483 *
2484 * %NULL is returned if there is no free memory.
2485 */
2486static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2487{
2488 return __dev_alloc_pages(gfp_mask, 0);
2489}
2490
2491static inline struct page *dev_alloc_page(void)
2492{
95829b3a 2493 return dev_alloc_pages(0);
71dfda58
AD
2494}
2495
0614002b
MG
2496/**
2497 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2498 * @page: The page that was allocated from skb_alloc_page
2499 * @skb: The skb that may need pfmemalloc set
2500 */
2501static inline void skb_propagate_pfmemalloc(struct page *page,
2502 struct sk_buff *skb)
2503{
2f064f34 2504 if (page_is_pfmemalloc(page))
0614002b
MG
2505 skb->pfmemalloc = true;
2506}
2507
131ea667 2508/**
e227867f 2509 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2510 * @frag: the paged fragment
2511 *
2512 * Returns the &struct page associated with @frag.
2513 */
2514static inline struct page *skb_frag_page(const skb_frag_t *frag)
2515{
a8605c60 2516 return frag->page.p;
131ea667
IC
2517}
2518
2519/**
2520 * __skb_frag_ref - take an addition reference on a paged fragment.
2521 * @frag: the paged fragment
2522 *
2523 * Takes an additional reference on the paged fragment @frag.
2524 */
2525static inline void __skb_frag_ref(skb_frag_t *frag)
2526{
2527 get_page(skb_frag_page(frag));
2528}
2529
2530/**
2531 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2532 * @skb: the buffer
2533 * @f: the fragment offset.
2534 *
2535 * Takes an additional reference on the @f'th paged fragment of @skb.
2536 */
2537static inline void skb_frag_ref(struct sk_buff *skb, int f)
2538{
2539 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2540}
2541
2542/**
2543 * __skb_frag_unref - release a reference on a paged fragment.
2544 * @frag: the paged fragment
2545 *
2546 * Releases a reference on the paged fragment @frag.
2547 */
2548static inline void __skb_frag_unref(skb_frag_t *frag)
2549{
2550 put_page(skb_frag_page(frag));
2551}
2552
2553/**
2554 * skb_frag_unref - release a reference on a paged fragment of an skb.
2555 * @skb: the buffer
2556 * @f: the fragment offset
2557 *
2558 * Releases a reference on the @f'th paged fragment of @skb.
2559 */
2560static inline void skb_frag_unref(struct sk_buff *skb, int f)
2561{
2562 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2563}
2564
2565/**
2566 * skb_frag_address - gets the address of the data contained in a paged fragment
2567 * @frag: the paged fragment buffer
2568 *
2569 * Returns the address of the data within @frag. The page must already
2570 * be mapped.
2571 */
2572static inline void *skb_frag_address(const skb_frag_t *frag)
2573{
2574 return page_address(skb_frag_page(frag)) + frag->page_offset;
2575}
2576
2577/**
2578 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2579 * @frag: the paged fragment buffer
2580 *
2581 * Returns the address of the data within @frag. Checks that the page
2582 * is mapped and returns %NULL otherwise.
2583 */
2584static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2585{
2586 void *ptr = page_address(skb_frag_page(frag));
2587 if (unlikely(!ptr))
2588 return NULL;
2589
2590 return ptr + frag->page_offset;
2591}
2592
2593/**
2594 * __skb_frag_set_page - sets the page contained in a paged fragment
2595 * @frag: the paged fragment
2596 * @page: the page to set
2597 *
2598 * Sets the fragment @frag to contain @page.
2599 */
2600static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2601{
a8605c60 2602 frag->page.p = page;
131ea667
IC
2603}
2604
2605/**
2606 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2607 * @skb: the buffer
2608 * @f: the fragment offset
2609 * @page: the page to set
2610 *
2611 * Sets the @f'th fragment of @skb to contain @page.
2612 */
2613static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2614 struct page *page)
2615{
2616 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2617}
2618
400dfd3a
ED
2619bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2620
131ea667
IC
2621/**
2622 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2623 * @dev: the device to map the fragment to
131ea667
IC
2624 * @frag: the paged fragment to map
2625 * @offset: the offset within the fragment (starting at the
2626 * fragment's own offset)
2627 * @size: the number of bytes to map
f83347df 2628 * @dir: the direction of the mapping (%PCI_DMA_*)
131ea667
IC
2629 *
2630 * Maps the page associated with @frag to @device.
2631 */
2632static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2633 const skb_frag_t *frag,
2634 size_t offset, size_t size,
2635 enum dma_data_direction dir)
2636{
2637 return dma_map_page(dev, skb_frag_page(frag),
2638 frag->page_offset + offset, size, dir);
2639}
2640
117632e6
ED
2641static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2642 gfp_t gfp_mask)
2643{
2644 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2645}
2646
bad93e9d
OP
2647
2648static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2649 gfp_t gfp_mask)
2650{
2651 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2652}
2653
2654
334a8132
PM
2655/**
2656 * skb_clone_writable - is the header of a clone writable
2657 * @skb: buffer to check
2658 * @len: length up to which to write
2659 *
2660 * Returns true if modifying the header part of the cloned buffer
2661 * does not requires the data to be copied.
2662 */
05bdd2f1 2663static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2664{
2665 return !skb_header_cloned(skb) &&
2666 skb_headroom(skb) + len <= skb->hdr_len;
2667}
2668
3697649f
DB
2669static inline int skb_try_make_writable(struct sk_buff *skb,
2670 unsigned int write_len)
2671{
2672 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2673 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2674}
2675
d9cc2048
HX
2676static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2677 int cloned)
2678{
2679 int delta = 0;
2680
d9cc2048
HX
2681 if (headroom > skb_headroom(skb))
2682 delta = headroom - skb_headroom(skb);
2683
2684 if (delta || cloned)
2685 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2686 GFP_ATOMIC);
2687 return 0;
2688}
2689
1da177e4
LT
2690/**
2691 * skb_cow - copy header of skb when it is required
2692 * @skb: buffer to cow
2693 * @headroom: needed headroom
2694 *
2695 * If the skb passed lacks sufficient headroom or its data part
2696 * is shared, data is reallocated. If reallocation fails, an error
2697 * is returned and original skb is not changed.
2698 *
2699 * The result is skb with writable area skb->head...skb->tail
2700 * and at least @headroom of space at head.
2701 */
2702static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2703{
d9cc2048
HX
2704 return __skb_cow(skb, headroom, skb_cloned(skb));
2705}
1da177e4 2706
d9cc2048
HX
2707/**
2708 * skb_cow_head - skb_cow but only making the head writable
2709 * @skb: buffer to cow
2710 * @headroom: needed headroom
2711 *
2712 * This function is identical to skb_cow except that we replace the
2713 * skb_cloned check by skb_header_cloned. It should be used when
2714 * you only need to push on some header and do not need to modify
2715 * the data.
2716 */
2717static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2718{
2719 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2720}
2721
2722/**
2723 * skb_padto - pad an skbuff up to a minimal size
2724 * @skb: buffer to pad
2725 * @len: minimal length
2726 *
2727 * Pads up a buffer to ensure the trailing bytes exist and are
2728 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2729 * is untouched. Otherwise it is extended. Returns zero on
2730 * success. The skb is freed on error.
1da177e4 2731 */
5b057c6b 2732static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2733{
2734 unsigned int size = skb->len;
2735 if (likely(size >= len))
5b057c6b 2736 return 0;
987c402a 2737 return skb_pad(skb, len - size);
1da177e4
LT
2738}
2739
9c0c1124
AD
2740/**
2741 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2742 * @skb: buffer to pad
2743 * @len: minimal length
2744 *
2745 * Pads up a buffer to ensure the trailing bytes exist and are
2746 * blanked. If the buffer already contains sufficient data it
2747 * is untouched. Otherwise it is extended. Returns zero on
2748 * success. The skb is freed on error.
2749 */
2750static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2751{
2752 unsigned int size = skb->len;
2753
2754 if (unlikely(size < len)) {
2755 len -= size;
2756 if (skb_pad(skb, len))
2757 return -ENOMEM;
2758 __skb_put(skb, len);
2759 }
2760 return 0;
2761}
2762
1da177e4 2763static inline int skb_add_data(struct sk_buff *skb,
af2b040e 2764 struct iov_iter *from, int copy)
1da177e4
LT
2765{
2766 const int off = skb->len;
2767
2768 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e
AV
2769 __wsum csum = 0;
2770 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2771 &csum, from) == copy) {
1da177e4
LT
2772 skb->csum = csum_block_add(skb->csum, csum, off);
2773 return 0;
2774 }
af2b040e 2775 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
1da177e4
LT
2776 return 0;
2777
2778 __skb_trim(skb, off);
2779 return -EFAULT;
2780}
2781
38ba0a65
ED
2782static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2783 const struct page *page, int off)
1da177e4
LT
2784{
2785 if (i) {
9e903e08 2786 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 2787
ea2ab693 2788 return page == skb_frag_page(frag) &&
9e903e08 2789 off == frag->page_offset + skb_frag_size(frag);
1da177e4 2790 }
38ba0a65 2791 return false;
1da177e4
LT
2792}
2793
364c6bad
HX
2794static inline int __skb_linearize(struct sk_buff *skb)
2795{
2796 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2797}
2798
1da177e4
LT
2799/**
2800 * skb_linearize - convert paged skb to linear one
2801 * @skb: buffer to linarize
1da177e4
LT
2802 *
2803 * If there is no free memory -ENOMEM is returned, otherwise zero
2804 * is returned and the old skb data released.
2805 */
364c6bad
HX
2806static inline int skb_linearize(struct sk_buff *skb)
2807{
2808 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2809}
2810
cef401de
ED
2811/**
2812 * skb_has_shared_frag - can any frag be overwritten
2813 * @skb: buffer to test
2814 *
2815 * Return true if the skb has at least one frag that might be modified
2816 * by an external entity (as in vmsplice()/sendfile())
2817 */
2818static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2819{
c9af6db4
PS
2820 return skb_is_nonlinear(skb) &&
2821 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
2822}
2823
364c6bad
HX
2824/**
2825 * skb_linearize_cow - make sure skb is linear and writable
2826 * @skb: buffer to process
2827 *
2828 * If there is no free memory -ENOMEM is returned, otherwise zero
2829 * is returned and the old skb data released.
2830 */
2831static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 2832{
364c6bad
HX
2833 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2834 __skb_linearize(skb) : 0;
1da177e4
LT
2835}
2836
2837/**
2838 * skb_postpull_rcsum - update checksum for received skb after pull
2839 * @skb: buffer to update
2840 * @start: start of data before pull
2841 * @len: length of data pulled
2842 *
2843 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
2844 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2845 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4
LT
2846 */
2847
2848static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 2849 const void *start, unsigned int len)
1da177e4 2850{
84fa7933 2851 if (skb->ip_summed == CHECKSUM_COMPLETE)
1da177e4 2852 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
6ae459bd 2853 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
31b33dfb 2854 skb_checksum_start_offset(skb) < 0)
6ae459bd 2855 skb->ip_summed = CHECKSUM_NONE;
1da177e4
LT
2856}
2857
cbb042f9
HX
2858unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2859
f8ffad69
DB
2860static inline void skb_postpush_rcsum(struct sk_buff *skb,
2861 const void *start, unsigned int len)
2862{
2863 /* For performing the reverse operation to skb_postpull_rcsum(),
2864 * we can instead of ...
2865 *
2866 * skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2867 *
2868 * ... just use this equivalent version here to save a few
2869 * instructions. Feeding csum of 0 in csum_partial() and later
2870 * on adding skb->csum is equivalent to feed skb->csum in the
2871 * first place.
2872 */
2873 if (skb->ip_summed == CHECKSUM_COMPLETE)
2874 skb->csum = csum_partial(start, len, skb->csum);
2875}
2876
7ce5a27f
DM
2877/**
2878 * pskb_trim_rcsum - trim received skb and update checksum
2879 * @skb: buffer to trim
2880 * @len: new length
2881 *
2882 * This is exactly the same as pskb_trim except that it ensures the
2883 * checksum of received packets are still valid after the operation.
2884 */
2885
2886static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2887{
2888 if (likely(len >= skb->len))
2889 return 0;
2890 if (skb->ip_summed == CHECKSUM_COMPLETE)
2891 skb->ip_summed = CHECKSUM_NONE;
2892 return __pskb_trim(skb, len);
2893}
2894
1da177e4
LT
2895#define skb_queue_walk(queue, skb) \
2896 for (skb = (queue)->next; \
a1e4891f 2897 skb != (struct sk_buff *)(queue); \
1da177e4
LT
2898 skb = skb->next)
2899
46f8914e
JC
2900#define skb_queue_walk_safe(queue, skb, tmp) \
2901 for (skb = (queue)->next, tmp = skb->next; \
2902 skb != (struct sk_buff *)(queue); \
2903 skb = tmp, tmp = skb->next)
2904
1164f52a 2905#define skb_queue_walk_from(queue, skb) \
a1e4891f 2906 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
2907 skb = skb->next)
2908
2909#define skb_queue_walk_from_safe(queue, skb, tmp) \
2910 for (tmp = skb->next; \
2911 skb != (struct sk_buff *)(queue); \
2912 skb = tmp, tmp = skb->next)
2913
300ce174
SH
2914#define skb_queue_reverse_walk(queue, skb) \
2915 for (skb = (queue)->prev; \
a1e4891f 2916 skb != (struct sk_buff *)(queue); \
300ce174
SH
2917 skb = skb->prev)
2918
686a2955
DM
2919#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2920 for (skb = (queue)->prev, tmp = skb->prev; \
2921 skb != (struct sk_buff *)(queue); \
2922 skb = tmp, tmp = skb->prev)
2923
2924#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2925 for (tmp = skb->prev; \
2926 skb != (struct sk_buff *)(queue); \
2927 skb = tmp, tmp = skb->prev)
1da177e4 2928
21dc3301 2929static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
2930{
2931 return skb_shinfo(skb)->frag_list != NULL;
2932}
2933
2934static inline void skb_frag_list_init(struct sk_buff *skb)
2935{
2936 skb_shinfo(skb)->frag_list = NULL;
2937}
2938
ee039871
DM
2939#define skb_walk_frags(skb, iter) \
2940 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2941
ea3793ee
RW
2942
2943int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2944 const struct sk_buff *skb);
2945struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
2946 int *peeked, int *off, int *err,
2947 struct sk_buff **last);
7965bd4d
JP
2948struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2949 int *peeked, int *off, int *err);
2950struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2951 int *err);
2952unsigned int datagram_poll(struct file *file, struct socket *sock,
2953 struct poll_table_struct *wait);
c0371da6
AV
2954int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2955 struct iov_iter *to, int size);
51f3d02b
DM
2956static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2957 struct msghdr *msg, int size)
2958{
e5a4b0bb 2959 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 2960}
e5a4b0bb
AV
2961int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2962 struct msghdr *msg);
3a654f97
AV
2963int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2964 struct iov_iter *from, int len);
3a654f97 2965int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 2966void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 2967void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
2968static inline void skb_free_datagram_locked(struct sock *sk,
2969 struct sk_buff *skb)
2970{
2971 __skb_free_datagram_locked(sk, skb, 0);
2972}
7965bd4d 2973int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
2974int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2975int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2976__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2977 int len, __wsum csum);
a60e3cc7
HFS
2978ssize_t skb_socket_splice(struct sock *sk,
2979 struct pipe_inode_info *pipe,
2980 struct splice_pipe_desc *spd);
2981int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 2982 struct pipe_inode_info *pipe, unsigned int len,
a60e3cc7
HFS
2983 unsigned int flags,
2984 ssize_t (*splice_cb)(struct sock *,
2985 struct pipe_inode_info *,
2986 struct splice_pipe_desc *));
7965bd4d 2987void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 2988unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
2989int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2990 int len, int hlen);
7965bd4d
JP
2991void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2992int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2993void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 2994unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
ae7ef81e 2995bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
7965bd4d 2996struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 2997struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 2998int skb_ensure_writable(struct sk_buff *skb, int write_len);
93515d53
JP
2999int skb_vlan_pop(struct sk_buff *skb);
3000int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3001struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3002 gfp_t gfp);
20380731 3003
6ce8e9ce
AV
3004static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3005{
21226abb 3006 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
6ce8e9ce
AV
3007}
3008
7eab8d9e
AV
3009static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3010{
e5a4b0bb 3011 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3012}
3013
2817a336
DB
3014struct skb_checksum_ops {
3015 __wsum (*update)(const void *mem, int len, __wsum wsum);
3016 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3017};
3018
3019__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3020 __wsum csum, const struct skb_checksum_ops *ops);
3021__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3022 __wsum csum);
3023
1e98a0f0
ED
3024static inline void * __must_check
3025__skb_header_pointer(const struct sk_buff *skb, int offset,
3026 int len, void *data, int hlen, void *buffer)
1da177e4 3027{
55820ee2 3028 if (hlen - offset >= len)
690e36e7 3029 return data + offset;
1da177e4 3030
690e36e7
DM
3031 if (!skb ||
3032 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3033 return NULL;
3034
3035 return buffer;
3036}
3037
1e98a0f0
ED
3038static inline void * __must_check
3039skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3040{
3041 return __skb_header_pointer(skb, offset, len, skb->data,
3042 skb_headlen(skb), buffer);
3043}
3044
4262e5cc
DB
3045/**
3046 * skb_needs_linearize - check if we need to linearize a given skb
3047 * depending on the given device features.
3048 * @skb: socket buffer to check
3049 * @features: net device features
3050 *
3051 * Returns true if either:
3052 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3053 * 2. skb is fragmented and the device does not support SG.
3054 */
3055static inline bool skb_needs_linearize(struct sk_buff *skb,
3056 netdev_features_t features)
3057{
3058 return skb_is_nonlinear(skb) &&
3059 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3060 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3061}
3062
d626f62b
ACM
3063static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3064 void *to,
3065 const unsigned int len)
3066{
3067 memcpy(to, skb->data, len);
3068}
3069
3070static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3071 const int offset, void *to,
3072 const unsigned int len)
3073{
3074 memcpy(to, skb->data + offset, len);
3075}
3076
27d7ff46
ACM
3077static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3078 const void *from,
3079 const unsigned int len)
3080{
3081 memcpy(skb->data, from, len);
3082}
3083
3084static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3085 const int offset,
3086 const void *from,
3087 const unsigned int len)
3088{
3089 memcpy(skb->data + offset, from, len);
3090}
3091
7965bd4d 3092void skb_init(void);
1da177e4 3093
ac45f602
PO
3094static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3095{
3096 return skb->tstamp;
3097}
3098
a61bbcf2
PM
3099/**
3100 * skb_get_timestamp - get timestamp from a skb
3101 * @skb: skb to get stamp from
3102 * @stamp: pointer to struct timeval to store stamp in
3103 *
3104 * Timestamps are stored in the skb as offsets to a base timestamp.
3105 * This function converts the offset back to a struct timeval and stores
3106 * it in stamp.
3107 */
ac45f602
PO
3108static inline void skb_get_timestamp(const struct sk_buff *skb,
3109 struct timeval *stamp)
a61bbcf2 3110{
b7aa0bf7 3111 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3112}
3113
ac45f602
PO
3114static inline void skb_get_timestampns(const struct sk_buff *skb,
3115 struct timespec *stamp)
3116{
3117 *stamp = ktime_to_timespec(skb->tstamp);
3118}
3119
b7aa0bf7 3120static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3121{
b7aa0bf7 3122 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3123}
3124
164891aa
SH
3125static inline ktime_t net_timedelta(ktime_t t)
3126{
3127 return ktime_sub(ktime_get_real(), t);
3128}
3129
b9ce204f
IJ
3130static inline ktime_t net_invalid_timestamp(void)
3131{
3132 return ktime_set(0, 0);
3133}
a61bbcf2 3134
62bccb8c
AD
3135struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3136
c1f19b51
RC
3137#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3138
7965bd4d
JP
3139void skb_clone_tx_timestamp(struct sk_buff *skb);
3140bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3141
3142#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3143
3144static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3145{
3146}
3147
3148static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3149{
3150 return false;
3151}
3152
3153#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3154
3155/**
3156 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3157 *
da92b194
RC
3158 * PHY drivers may accept clones of transmitted packets for
3159 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3160 * must call this function to return the skb back to the stack with a
3161 * timestamp.
da92b194 3162 *
c1f19b51 3163 * @skb: clone of the the original outgoing packet
7a76a021 3164 * @hwtstamps: hardware time stamps
c1f19b51
RC
3165 *
3166 */
3167void skb_complete_tx_timestamp(struct sk_buff *skb,
3168 struct skb_shared_hwtstamps *hwtstamps);
3169
e7fd2885
WB
3170void __skb_tstamp_tx(struct sk_buff *orig_skb,
3171 struct skb_shared_hwtstamps *hwtstamps,
3172 struct sock *sk, int tstype);
3173
ac45f602
PO
3174/**
3175 * skb_tstamp_tx - queue clone of skb with send time stamps
3176 * @orig_skb: the original outgoing packet
3177 * @hwtstamps: hardware time stamps, may be NULL if not available
3178 *
3179 * If the skb has a socket associated, then this function clones the
3180 * skb (thus sharing the actual data and optional structures), stores
3181 * the optional hardware time stamping information (if non NULL) or
3182 * generates a software time stamp (otherwise), then queues the clone
3183 * to the error queue of the socket. Errors are silently ignored.
3184 */
7965bd4d
JP
3185void skb_tstamp_tx(struct sk_buff *orig_skb,
3186 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3187
4507a715
RC
3188static inline void sw_tx_timestamp(struct sk_buff *skb)
3189{
2244d07b
OH
3190 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3191 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
4507a715
RC
3192 skb_tstamp_tx(skb, NULL);
3193}
3194
3195/**
3196 * skb_tx_timestamp() - Driver hook for transmit timestamping
3197 *
3198 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3199 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3200 *
73409f3b
DM
3201 * Specifically, one should make absolutely sure that this function is
3202 * called before TX completion of this packet can trigger. Otherwise
3203 * the packet could potentially already be freed.
3204 *
4507a715
RC
3205 * @skb: A socket buffer.
3206 */
3207static inline void skb_tx_timestamp(struct sk_buff *skb)
3208{
c1f19b51 3209 skb_clone_tx_timestamp(skb);
4507a715
RC
3210 sw_tx_timestamp(skb);
3211}
3212
6e3e939f
JB
3213/**
3214 * skb_complete_wifi_ack - deliver skb with wifi status
3215 *
3216 * @skb: the original outgoing packet
3217 * @acked: ack status
3218 *
3219 */
3220void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3221
7965bd4d
JP
3222__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3223__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3224
60476372
HX
3225static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3226{
6edec0e6
TH
3227 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3228 skb->csum_valid ||
3229 (skb->ip_summed == CHECKSUM_PARTIAL &&
3230 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3231}
3232
fb286bb2
HX
3233/**
3234 * skb_checksum_complete - Calculate checksum of an entire packet
3235 * @skb: packet to process
3236 *
3237 * This function calculates the checksum over the entire packet plus
3238 * the value of skb->csum. The latter can be used to supply the
3239 * checksum of a pseudo header as used by TCP/UDP. It returns the
3240 * checksum.
3241 *
3242 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3243 * this function can be used to verify that checksum on received
3244 * packets. In that case the function should return zero if the
3245 * checksum is correct. In particular, this function will return zero
3246 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3247 * hardware has already verified the correctness of the checksum.
3248 */
4381ca3c 3249static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3250{
60476372
HX
3251 return skb_csum_unnecessary(skb) ?
3252 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3253}
3254
77cffe23
TH
3255static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3256{
3257 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3258 if (skb->csum_level == 0)
3259 skb->ip_summed = CHECKSUM_NONE;
3260 else
3261 skb->csum_level--;
3262 }
3263}
3264
3265static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3266{
3267 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3268 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3269 skb->csum_level++;
3270 } else if (skb->ip_summed == CHECKSUM_NONE) {
3271 skb->ip_summed = CHECKSUM_UNNECESSARY;
3272 skb->csum_level = 0;
3273 }
3274}
3275
5a212329
TH
3276static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3277{
3278 /* Mark current checksum as bad (typically called from GRO
3279 * path). In the case that ip_summed is CHECKSUM_NONE
3280 * this must be the first checksum encountered in the packet.
3281 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3282 * checksum after the last one validated. For UDP, a zero
3283 * checksum can not be marked as bad.
3284 */
3285
3286 if (skb->ip_summed == CHECKSUM_NONE ||
3287 skb->ip_summed == CHECKSUM_UNNECESSARY)
3288 skb->csum_bad = 1;
3289}
3290
76ba0aae
TH
3291/* Check if we need to perform checksum complete validation.
3292 *
3293 * Returns true if checksum complete is needed, false otherwise
3294 * (either checksum is unnecessary or zero checksum is allowed).
3295 */
3296static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3297 bool zero_okay,
3298 __sum16 check)
3299{
5d0c2b95
TH
3300 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3301 skb->csum_valid = 1;
77cffe23 3302 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3303 return false;
3304 }
3305
3306 return true;
3307}
3308
3309/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3310 * in checksum_init.
3311 */
3312#define CHECKSUM_BREAK 76
3313
4e18b9ad
TH
3314/* Unset checksum-complete
3315 *
3316 * Unset checksum complete can be done when packet is being modified
3317 * (uncompressed for instance) and checksum-complete value is
3318 * invalidated.
3319 */
3320static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3321{
3322 if (skb->ip_summed == CHECKSUM_COMPLETE)
3323 skb->ip_summed = CHECKSUM_NONE;
3324}
3325
76ba0aae
TH
3326/* Validate (init) checksum based on checksum complete.
3327 *
3328 * Return values:
3329 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3330 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3331 * checksum is stored in skb->csum for use in __skb_checksum_complete
3332 * non-zero: value of invalid checksum
3333 *
3334 */
3335static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3336 bool complete,
3337 __wsum psum)
3338{
3339 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3340 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3341 skb->csum_valid = 1;
76ba0aae
TH
3342 return 0;
3343 }
5a212329
TH
3344 } else if (skb->csum_bad) {
3345 /* ip_summed == CHECKSUM_NONE in this case */
c91d4606 3346 return (__force __sum16)1;
76ba0aae
TH
3347 }
3348
3349 skb->csum = psum;
3350
5d0c2b95
TH
3351 if (complete || skb->len <= CHECKSUM_BREAK) {
3352 __sum16 csum;
3353
3354 csum = __skb_checksum_complete(skb);
3355 skb->csum_valid = !csum;
3356 return csum;
3357 }
76ba0aae
TH
3358
3359 return 0;
3360}
3361
3362static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3363{
3364 return 0;
3365}
3366
3367/* Perform checksum validate (init). Note that this is a macro since we only
3368 * want to calculate the pseudo header which is an input function if necessary.
3369 * First we try to validate without any computation (checksum unnecessary) and
3370 * then calculate based on checksum complete calling the function to compute
3371 * pseudo header.
3372 *
3373 * Return values:
3374 * 0: checksum is validated or try to in skb_checksum_complete
3375 * non-zero: value of invalid checksum
3376 */
3377#define __skb_checksum_validate(skb, proto, complete, \
3378 zero_okay, check, compute_pseudo) \
3379({ \
3380 __sum16 __ret = 0; \
5d0c2b95 3381 skb->csum_valid = 0; \
76ba0aae
TH
3382 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3383 __ret = __skb_checksum_validate_complete(skb, \
3384 complete, compute_pseudo(skb, proto)); \
3385 __ret; \
3386})
3387
3388#define skb_checksum_init(skb, proto, compute_pseudo) \
3389 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3390
3391#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3392 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3393
3394#define skb_checksum_validate(skb, proto, compute_pseudo) \
3395 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3396
3397#define skb_checksum_validate_zero_check(skb, proto, check, \
3398 compute_pseudo) \
096a4cfa 3399 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3400
3401#define skb_checksum_simple_validate(skb) \
3402 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3403
d96535a1
TH
3404static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3405{
3406 return (skb->ip_summed == CHECKSUM_NONE &&
3407 skb->csum_valid && !skb->csum_bad);
3408}
3409
3410static inline void __skb_checksum_convert(struct sk_buff *skb,
3411 __sum16 check, __wsum pseudo)
3412{
3413 skb->csum = ~pseudo;
3414 skb->ip_summed = CHECKSUM_COMPLETE;
3415}
3416
3417#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3418do { \
3419 if (__skb_checksum_convert_check(skb)) \
3420 __skb_checksum_convert(skb, check, \
3421 compute_pseudo(skb, proto)); \
3422} while (0)
3423
15e2396d
TH
3424static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3425 u16 start, u16 offset)
3426{
3427 skb->ip_summed = CHECKSUM_PARTIAL;
3428 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3429 skb->csum_offset = offset - start;
3430}
3431
dcdc8994
TH
3432/* Update skbuf and packet to reflect the remote checksum offload operation.
3433 * When called, ptr indicates the starting point for skb->csum when
3434 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3435 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3436 */
3437static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3438 int start, int offset, bool nopartial)
dcdc8994
TH
3439{
3440 __wsum delta;
3441
15e2396d
TH
3442 if (!nopartial) {
3443 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3444 return;
3445 }
3446
dcdc8994
TH
3447 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3448 __skb_checksum_complete(skb);
3449 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3450 }
3451
3452 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3453
3454 /* Adjust skb->csum since we changed the packet */
3455 skb->csum = csum_add(skb->csum, delta);
3456}
3457
5f79e0f9 3458#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3459void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3460static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3461{
3462 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3463 nf_conntrack_destroy(nfct);
1da177e4
LT
3464}
3465static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3466{
3467 if (nfct)
3468 atomic_inc(&nfct->use);
3469}
2fc72c7b 3470#endif
34666d46 3471#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3472static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3473{
3474 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3475 kfree(nf_bridge);
3476}
3477static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3478{
3479 if (nf_bridge)
3480 atomic_inc(&nf_bridge->use);
3481}
3482#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3483static inline void nf_reset(struct sk_buff *skb)
3484{
5f79e0f9 3485#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a193a4ab
PM
3486 nf_conntrack_put(skb->nfct);
3487 skb->nfct = NULL;
2fc72c7b 3488#endif
34666d46 3489#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3490 nf_bridge_put(skb->nf_bridge);
3491 skb->nf_bridge = NULL;
3492#endif
3493}
3494
124dff01
PM
3495static inline void nf_reset_trace(struct sk_buff *skb)
3496{
478b360a 3497#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3498 skb->nf_trace = 0;
3499#endif
a193a4ab
PM
3500}
3501
edda553c 3502/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3503static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3504 bool copy)
edda553c 3505{
5f79e0f9 3506#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
edda553c
YK
3507 dst->nfct = src->nfct;
3508 nf_conntrack_get(src->nfct);
b1937227
ED
3509 if (copy)
3510 dst->nfctinfo = src->nfctinfo;
2fc72c7b 3511#endif
34666d46 3512#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3513 dst->nf_bridge = src->nf_bridge;
3514 nf_bridge_get(src->nf_bridge);
3515#endif
478b360a 3516#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3517 if (copy)
3518 dst->nf_trace = src->nf_trace;
478b360a 3519#endif
edda553c
YK
3520}
3521
e7ac05f3
YK
3522static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3523{
e7ac05f3 3524#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 3525 nf_conntrack_put(dst->nfct);
2fc72c7b 3526#endif
34666d46 3527#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3528 nf_bridge_put(dst->nf_bridge);
3529#endif
b1937227 3530 __nf_copy(dst, src, true);
e7ac05f3
YK
3531}
3532
984bc16c
JM
3533#ifdef CONFIG_NETWORK_SECMARK
3534static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3535{
3536 to->secmark = from->secmark;
3537}
3538
3539static inline void skb_init_secmark(struct sk_buff *skb)
3540{
3541 skb->secmark = 0;
3542}
3543#else
3544static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3545{ }
3546
3547static inline void skb_init_secmark(struct sk_buff *skb)
3548{ }
3549#endif
3550
574f7194
EB
3551static inline bool skb_irq_freeable(const struct sk_buff *skb)
3552{
3553 return !skb->destructor &&
3554#if IS_ENABLED(CONFIG_XFRM)
3555 !skb->sp &&
3556#endif
3557#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3558 !skb->nfct &&
3559#endif
3560 !skb->_skb_refdst &&
3561 !skb_has_frag_list(skb);
3562}
3563
f25f4e44
PWJ
3564static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3565{
f25f4e44 3566 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3567}
3568
9247744e 3569static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3570{
4e3ab47a 3571 return skb->queue_mapping;
4e3ab47a
PE
3572}
3573
f25f4e44
PWJ
3574static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3575{
f25f4e44 3576 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3577}
3578
d5a9e24a
DM
3579static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3580{
3581 skb->queue_mapping = rx_queue + 1;
3582}
3583
9247744e 3584static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3585{
3586 return skb->queue_mapping - 1;
3587}
3588
9247744e 3589static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3590{
a02cec21 3591 return skb->queue_mapping != 0;
d5a9e24a
DM
3592}
3593
def8b4fa
AD
3594static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3595{
0b3d8e08 3596#ifdef CONFIG_XFRM
def8b4fa 3597 return skb->sp;
def8b4fa 3598#else
def8b4fa 3599 return NULL;
def8b4fa 3600#endif
0b3d8e08 3601}
def8b4fa 3602
68c33163
PS
3603/* Keeps track of mac header offset relative to skb->head.
3604 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3605 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3606 * tunnel skb it points to outer mac header.
3607 * Keeps track of level of encapsulation of network headers.
3608 */
68c33163 3609struct skb_gso_cb {
802ab55a
AD
3610 union {
3611 int mac_offset;
3612 int data_offset;
3613 };
3347c960 3614 int encap_level;
76443456 3615 __wsum csum;
7e2b10c1 3616 __u16 csum_start;
68c33163 3617};
9207f9d4
KK
3618#define SKB_SGO_CB_OFFSET 32
3619#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
3620
3621static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3622{
3623 return (skb_mac_header(inner_skb) - inner_skb->head) -
3624 SKB_GSO_CB(inner_skb)->mac_offset;
3625}
3626
1e2bd517
PS
3627static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3628{
3629 int new_headroom, headroom;
3630 int ret;
3631
3632 headroom = skb_headroom(skb);
3633 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3634 if (ret)
3635 return ret;
3636
3637 new_headroom = skb_headroom(skb);
3638 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3639 return 0;
3640}
3641
08b64fcc
AD
3642static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3643{
3644 /* Do not update partial checksums if remote checksum is enabled. */
3645 if (skb->remcsum_offload)
3646 return;
3647
3648 SKB_GSO_CB(skb)->csum = res;
3649 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3650}
3651
7e2b10c1
TH
3652/* Compute the checksum for a gso segment. First compute the checksum value
3653 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3654 * then add in skb->csum (checksum from csum_start to end of packet).
3655 * skb->csum and csum_start are then updated to reflect the checksum of the
3656 * resultant packet starting from the transport header-- the resultant checksum
3657 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3658 * header.
3659 */
3660static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3661{
76443456
AD
3662 unsigned char *csum_start = skb_transport_header(skb);
3663 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3664 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 3665
76443456
AD
3666 SKB_GSO_CB(skb)->csum = res;
3667 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 3668
76443456 3669 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
3670}
3671
bdcc0924 3672static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3673{
3674 return skb_shinfo(skb)->gso_size;
3675}
3676
36a8f39e 3677/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 3678static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
3679{
3680 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3681}
3682
7965bd4d 3683void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
3684
3685static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3686{
3687 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3688 * wanted then gso_type will be set. */
05bdd2f1
ED
3689 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3690
b78462eb
AD
3691 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3692 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
3693 __skb_warn_lro_forwarding(skb);
3694 return true;
3695 }
3696 return false;
3697}
3698
35fc92a9
HX
3699static inline void skb_forward_csum(struct sk_buff *skb)
3700{
3701 /* Unfortunately we don't support this one. Any brave souls? */
3702 if (skb->ip_summed == CHECKSUM_COMPLETE)
3703 skb->ip_summed = CHECKSUM_NONE;
3704}
3705
bc8acf2c
ED
3706/**
3707 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3708 * @skb: skb to check
3709 *
3710 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3711 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3712 * use this helper, to document places where we make this assertion.
3713 */
05bdd2f1 3714static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
3715{
3716#ifdef DEBUG
3717 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3718#endif
3719}
3720
f35d9d8a 3721bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 3722
ed1f50c3 3723int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
3724struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3725 unsigned int transport_len,
3726 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 3727
3a7c1ee4
AD
3728/**
3729 * skb_head_is_locked - Determine if the skb->head is locked down
3730 * @skb: skb to check
3731 *
3732 * The head on skbs build around a head frag can be removed if they are
3733 * not cloned. This function returns true if the skb head is locked down
3734 * due to either being allocated via kmalloc, or by being a clone with
3735 * multiple references to the head.
3736 */
3737static inline bool skb_head_is_locked(const struct sk_buff *skb)
3738{
3739 return !skb->head_frag || skb_cloned(skb);
3740}
fe6cc55f
FW
3741
3742/**
3743 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3744 *
3745 * @skb: GSO skb
3746 *
3747 * skb_gso_network_seglen is used to determine the real size of the
3748 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3749 *
3750 * The MAC/L2 header is not accounted for.
3751 */
3752static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3753{
3754 unsigned int hdr_len = skb_transport_header(skb) -
3755 skb_network_header(skb);
3756 return hdr_len + skb_gso_transport_seglen(skb);
3757}
ee122c79 3758
179bc67f
EC
3759/* Local Checksum Offload.
3760 * Compute outer checksum based on the assumption that the
3761 * inner checksum will be offloaded later.
e8ae7b00
EC
3762 * See Documentation/networking/checksum-offloads.txt for
3763 * explanation of how this works.
179bc67f
EC
3764 * Fill in outer checksum adjustment (e.g. with sum of outer
3765 * pseudo-header) before calling.
3766 * Also ensure that inner checksum is in linear data area.
3767 */
3768static inline __wsum lco_csum(struct sk_buff *skb)
3769{
9e74a6da
AD
3770 unsigned char *csum_start = skb_checksum_start(skb);
3771 unsigned char *l4_hdr = skb_transport_header(skb);
3772 __wsum partial;
179bc67f
EC
3773
3774 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
3775 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3776 skb->csum_offset));
3777
179bc67f 3778 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 3779 * adjustment filled in by caller) and return result.
179bc67f 3780 */
9e74a6da 3781 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
3782}
3783
1da177e4
LT
3784#endif /* __KERNEL__ */
3785#endif /* _LINUX_SKBUFF_H */