]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/skbuff.h
tcp: warn on negative reordering values
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4 22#include <linux/cache.h>
56b17425 23#include <linux/rbtree.h>
51f3d02b 24#include <linux/socket.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1bd758eb 38#include <net/flow_dissector.h>
a60e3cc7 39#include <linux/splice.h>
72b31f72 40#include <linux/in6.h>
8b10cab6 41#include <linux/if_packet.h>
f70ea018 42#include <net/flow.h>
1da177e4 43
7a6ae71b
TH
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
89 *
90 * CHECKSUM_NONE:
91 *
7a6ae71b 92 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
77cffe23
TH
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 *
113 * skb->csum_level indicates the number of consecutive checksums found in
114 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
115 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
116 * and a device is able to verify the checksums for UDP (possibly zero),
117 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
118 * two. If the device were only able to verify the UDP checksum and not
119 * GRE, either because it doesn't support GRE checksum of because GRE
120 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
121 * not considered in this case).
78ea85f1
DB
122 *
123 * CHECKSUM_COMPLETE:
124 *
125 * This is the most generic way. The device supplied checksum of the _whole_
126 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
127 * hardware doesn't need to parse L3/L4 headers to implement this.
128 *
129 * Note: Even if device supports only some protocols, but is able to produce
130 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
131 *
132 * CHECKSUM_PARTIAL:
133 *
6edec0e6
TH
134 * A checksum is set up to be offloaded to a device as described in the
135 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 136 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
137 * on the same host, or it may be set in the input path in GRO or remote
138 * checksum offload. For the purposes of checksum verification, the checksum
139 * referred to by skb->csum_start + skb->csum_offset and any preceding
140 * checksums in the packet are considered verified. Any checksums in the
141 * packet that are after the checksum being offloaded are not considered to
142 * be verified.
78ea85f1 143 *
7a6ae71b
TH
144 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
145 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
146 *
147 * CHECKSUM_PARTIAL:
148 *
7a6ae71b 149 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 150 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
151 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
152 * csum_start and csum_offset values are valid values given the length and
153 * offset of the packet, however they should not attempt to validate that the
154 * checksum refers to a legitimate transport layer checksum-- it is the
155 * purview of the stack to validate that csum_start and csum_offset are set
156 * correctly.
157 *
158 * When the stack requests checksum offload for a packet, the driver MUST
159 * ensure that the checksum is set correctly. A driver can either offload the
160 * checksum calculation to the device, or call skb_checksum_help (in the case
161 * that the device does not support offload for a particular checksum).
162 *
163 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
164 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
165 * checksum offload capability. If a device has limited checksum capabilities
166 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
167 * described above) a helper function can be called to resolve
168 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
169 * function takes a spec argument that describes the protocol layer that is
170 * supported for checksum offload and can be called for each packet. If a
171 * packet does not match the specification for offload, skb_checksum_help
172 * is called to resolve the checksum.
78ea85f1 173 *
7a6ae71b 174 * CHECKSUM_NONE:
78ea85f1 175 *
7a6ae71b
TH
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
78ea85f1
DB
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
7a6ae71b
TH
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
78ea85f1 183 *
7a6ae71b
TH
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
193 * accordingly. Note the there is no indication in the skbuff that the
194 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
195 * both IP checksum offload and SCTP CRC offload must verify which offload
196 * is configured for a packet presumably by inspecting packet headers.
197 *
198 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
199 * offloading the FCOE CRC in a packet. To perform this offload the stack
200 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
201 * accordingly. Note the there is no indication in the skbuff that the
202 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
203 * both IP checksum offload and FCOE CRC offload must verify which offload
204 * is configured for a packet presumably by inspecting packet headers.
205 *
206 * E. Checksumming on output with GSO.
207 *
208 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
209 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
210 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
211 * part of the GSO operation is implied. If a checksum is being offloaded
212 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
213 * are set to refer to the outermost checksum being offload (two offloaded
214 * checksums are possible with UDP encapsulation).
78ea85f1
DB
215 */
216
60476372 217/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
218#define CHECKSUM_NONE 0
219#define CHECKSUM_UNNECESSARY 1
220#define CHECKSUM_COMPLETE 2
221#define CHECKSUM_PARTIAL 3
1da177e4 222
77cffe23
TH
223/* Maximum value in skb->csum_level */
224#define SKB_MAX_CSUM_LEVEL 3
225
0bec8c88 226#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 227#define SKB_WITH_OVERHEAD(X) \
deea84b0 228 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
229#define SKB_MAX_ORDER(X, ORDER) \
230 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
231#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
232#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
233
87fb4b7b
ED
234/* return minimum truesize of one skb containing X bytes of data */
235#define SKB_TRUESIZE(X) ((X) + \
236 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
237 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
238
1da177e4 239struct net_device;
716ea3a7 240struct scatterlist;
9c55e01c 241struct pipe_inode_info;
a8f820aa 242struct iov_iter;
fd11a83d 243struct napi_struct;
1da177e4 244
5f79e0f9 245#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
246struct nf_conntrack {
247 atomic_t use;
1da177e4 248};
5f79e0f9 249#endif
1da177e4 250
34666d46 251#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 252struct nf_bridge_info {
bf1ac5ca 253 atomic_t use;
3eaf4025
FW
254 enum {
255 BRNF_PROTO_UNCHANGED,
256 BRNF_PROTO_8021Q,
257 BRNF_PROTO_PPPOE
7fb48c5b 258 } orig_proto:8;
72b1e5e4
FW
259 u8 pkt_otherhost:1;
260 u8 in_prerouting:1;
261 u8 bridged_dnat:1;
411ffb4f 262 __u16 frag_max_size;
bf1ac5ca 263 struct net_device *physindev;
63cdbc06
FW
264
265 /* always valid & non-NULL from FORWARD on, for physdev match */
266 struct net_device *physoutdev;
7fb48c5b 267 union {
72b1e5e4 268 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
269 __be32 ipv4_daddr;
270 struct in6_addr ipv6_daddr;
72b1e5e4
FW
271
272 /* after prerouting + nat detected: store original source
273 * mac since neigh resolution overwrites it, only used while
274 * skb is out in neigh layer.
275 */
276 char neigh_header[8];
72b31f72 277 };
1da177e4
LT
278};
279#endif
280
1da177e4
LT
281struct sk_buff_head {
282 /* These two members must be first. */
283 struct sk_buff *next;
284 struct sk_buff *prev;
285
286 __u32 qlen;
287 spinlock_t lock;
288};
289
290struct sk_buff;
291
9d4dde52
IC
292/* To allow 64K frame to be packed as single skb without frag_list we
293 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
294 * buffers which do not start on a page boundary.
295 *
296 * Since GRO uses frags we allocate at least 16 regardless of page
297 * size.
a715dea3 298 */
9d4dde52 299#if (65536/PAGE_SIZE + 1) < 16
eec00954 300#define MAX_SKB_FRAGS 16UL
a715dea3 301#else
9d4dde52 302#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 303#endif
5f74f82e 304extern int sysctl_max_skb_frags;
1da177e4 305
3953c46c
MRL
306/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
307 * segment using its current segmentation instead.
308 */
309#define GSO_BY_FRAGS 0xFFFF
310
1da177e4
LT
311typedef struct skb_frag_struct skb_frag_t;
312
313struct skb_frag_struct {
a8605c60
IC
314 struct {
315 struct page *p;
316 } page;
cb4dfe56 317#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
318 __u32 page_offset;
319 __u32 size;
cb4dfe56
ED
320#else
321 __u16 page_offset;
322 __u16 size;
323#endif
1da177e4
LT
324};
325
9e903e08
ED
326static inline unsigned int skb_frag_size(const skb_frag_t *frag)
327{
328 return frag->size;
329}
330
331static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
332{
333 frag->size = size;
334}
335
336static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
337{
338 frag->size += delta;
339}
340
341static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
342{
343 frag->size -= delta;
344}
345
ac45f602
PO
346#define HAVE_HW_TIME_STAMP
347
348/**
d3a21be8 349 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
350 * @hwtstamp: hardware time stamp transformed into duration
351 * since arbitrary point in time
ac45f602
PO
352 *
353 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 354 * skb->tstamp.
ac45f602
PO
355 *
356 * hwtstamps can only be compared against other hwtstamps from
357 * the same device.
358 *
359 * This structure is attached to packets as part of the
360 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
361 */
362struct skb_shared_hwtstamps {
363 ktime_t hwtstamp;
ac45f602
PO
364};
365
2244d07b
OH
366/* Definitions for tx_flags in struct skb_shared_info */
367enum {
368 /* generate hardware time stamp */
369 SKBTX_HW_TSTAMP = 1 << 0,
370
e7fd2885 371 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
372 SKBTX_SW_TSTAMP = 1 << 1,
373
374 /* device driver is going to provide hardware time stamp */
375 SKBTX_IN_PROGRESS = 1 << 2,
376
a6686f2f 377 /* device driver supports TX zero-copy buffers */
62b1a8ab 378 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
379
380 /* generate wifi status information (where possible) */
62b1a8ab 381 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
382
383 /* This indicates at least one fragment might be overwritten
384 * (as in vmsplice(), sendfile() ...)
385 * If we need to compute a TX checksum, we'll need to copy
386 * all frags to avoid possible bad checksum
387 */
388 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
389
390 /* generate software time stamp when entering packet scheduling */
391 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
392};
393
e1c8a607 394#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 395 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
396#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
397
a6686f2f
SM
398/*
399 * The callback notifies userspace to release buffers when skb DMA is done in
400 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
401 * The zerocopy_success argument is true if zero copy transmit occurred,
402 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
403 * The ctx field is used to track device context.
404 * The desc field is used to track userspace buffer index.
a6686f2f
SM
405 */
406struct ubuf_info {
e19d6763 407 void (*callback)(struct ubuf_info *, bool zerocopy_success);
ca8f4fb2 408 void *ctx;
a6686f2f 409 unsigned long desc;
ac45f602
PO
410};
411
1da177e4
LT
412/* This data is invariant across clones and lives at
413 * the end of the header data, ie. at skb->end.
414 */
415struct skb_shared_info {
7f564528 416 unsigned short _unused;
9f42f126
IC
417 unsigned char nr_frags;
418 __u8 tx_flags;
7967168c
HX
419 unsigned short gso_size;
420 /* Warning: this field is not always filled in (UFO)! */
421 unsigned short gso_segs;
1da177e4 422 struct sk_buff *frag_list;
ac45f602 423 struct skb_shared_hwtstamps hwtstamps;
7f564528 424 unsigned int gso_type;
09c2d251 425 u32 tskey;
9f42f126 426 __be32 ip6_frag_id;
ec7d2f2c
ED
427
428 /*
429 * Warning : all fields before dataref are cleared in __alloc_skb()
430 */
431 atomic_t dataref;
432
69e3c75f
JB
433 /* Intermediate layers must ensure that destructor_arg
434 * remains valid until skb destructor */
435 void * destructor_arg;
a6686f2f 436
fed66381
ED
437 /* must be last field, see pskb_expand_head() */
438 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
439};
440
441/* We divide dataref into two halves. The higher 16 bits hold references
442 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
443 * the entire skb->data. A clone of a headerless skb holds the length of
444 * the header in skb->hdr_len.
1da177e4
LT
445 *
446 * All users must obey the rule that the skb->data reference count must be
447 * greater than or equal to the payload reference count.
448 *
449 * Holding a reference to the payload part means that the user does not
450 * care about modifications to the header part of skb->data.
451 */
452#define SKB_DATAREF_SHIFT 16
453#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
454
d179cd12
DM
455
456enum {
c8753d55
VS
457 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
458 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
459 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
460};
461
7967168c
HX
462enum {
463 SKB_GSO_TCPV4 = 1 << 0,
f83ef8c0 464 SKB_GSO_UDP = 1 << 1,
576a30eb
HX
465
466 /* This indicates the skb is from an untrusted source. */
467 SKB_GSO_DODGY = 1 << 2,
b0da8537
MC
468
469 /* This indicates the tcp segment has CWR set. */
f83ef8c0
HX
470 SKB_GSO_TCP_ECN = 1 << 3,
471
cbc53e08 472 SKB_GSO_TCP_FIXEDID = 1 << 4,
01d5b2fc 473
cbc53e08 474 SKB_GSO_TCPV6 = 1 << 5,
68c33163 475
cbc53e08 476 SKB_GSO_FCOE = 1 << 6,
73136267 477
cbc53e08 478 SKB_GSO_GRE = 1 << 7,
0d89d203 479
cbc53e08 480 SKB_GSO_GRE_CSUM = 1 << 8,
cb32f511 481
7e13318d 482 SKB_GSO_IPXIP4 = 1 << 9,
61c1db7f 483
7e13318d 484 SKB_GSO_IPXIP6 = 1 << 10,
0f4f4ffa 485
cbc53e08 486 SKB_GSO_UDP_TUNNEL = 1 << 11,
4749c09c 487
cbc53e08
AD
488 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
489
802ab55a
AD
490 SKB_GSO_PARTIAL = 1 << 13,
491
492 SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
90017acc
MRL
493
494 SKB_GSO_SCTP = 1 << 15,
c7ef8f0c
SK
495
496 SKB_GSO_ESP = 1 << 16,
7967168c
HX
497};
498
2e07fa9c
ACM
499#if BITS_PER_LONG > 32
500#define NET_SKBUFF_DATA_USES_OFFSET 1
501#endif
502
503#ifdef NET_SKBUFF_DATA_USES_OFFSET
504typedef unsigned int sk_buff_data_t;
505#else
506typedef unsigned char *sk_buff_data_t;
507#endif
508
1da177e4
LT
509/**
510 * struct sk_buff - socket buffer
511 * @next: Next buffer in list
512 * @prev: Previous buffer in list
363ec392 513 * @tstamp: Time we arrived/left
56b17425 514 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 515 * @sk: Socket we are owned by
1da177e4 516 * @dev: Device we arrived on/are leaving by
d84e0bd7 517 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 518 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 519 * @sp: the security path, used for xfrm
1da177e4
LT
520 * @len: Length of actual data
521 * @data_len: Data length
522 * @mac_len: Length of link layer header
334a8132 523 * @hdr_len: writable header length of cloned skb
663ead3b
HX
524 * @csum: Checksum (must include start/offset pair)
525 * @csum_start: Offset from skb->head where checksumming should start
526 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 527 * @priority: Packet queueing priority
60ff7467 528 * @ignore_df: allow local fragmentation
1da177e4 529 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 530 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
531 * @nohdr: Payload reference only, must not modify header
532 * @pkt_type: Packet class
c83c2486 533 * @fclone: skbuff clone status
c83c2486 534 * @ipvs_property: skbuff is owned by ipvs
e7246e12 535 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 536 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
537 * @tc_redirected: packet was redirected by a tc action
538 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
539 * @peeked: this packet has been seen already, so stats have been
540 * done for it, don't do them again
ba9dda3a 541 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
542 * @protocol: Packet protocol from driver
543 * @destructor: Destruct function
a9e419dc 544 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 545 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 546 * @skb_iif: ifindex of device we arrived on
1da177e4 547 * @tc_index: Traffic control index
61b905da 548 * @hash: the packet hash
d84e0bd7 549 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 550 * @xmit_more: More SKBs are pending for this queue
553a5672 551 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 552 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 553 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 554 * ports.
a3b18ddb 555 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
556 * @wifi_acked_valid: wifi_acked was set
557 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 558 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
4ff06203 559 * @dst_pending_confirm: need to confirm neighbour
06021292 560 * @napi_id: id of the NAPI struct this skb came from
984bc16c 561 * @secmark: security marking
d84e0bd7 562 * @mark: Generic packet mark
86a9bad3 563 * @vlan_proto: vlan encapsulation protocol
6aa895b0 564 * @vlan_tci: vlan tag control information
0d89d203 565 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
566 * @inner_transport_header: Inner transport layer header (encapsulation)
567 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 568 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
569 * @transport_header: Transport layer header
570 * @network_header: Network layer header
571 * @mac_header: Link layer header
572 * @tail: Tail pointer
573 * @end: End pointer
574 * @head: Head of buffer
575 * @data: Data head pointer
576 * @truesize: Buffer size
577 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
578 */
579
580struct sk_buff {
363ec392 581 union {
56b17425
ED
582 struct {
583 /* These two members must be first. */
584 struct sk_buff *next;
585 struct sk_buff *prev;
586
587 union {
588 ktime_t tstamp;
9a568de4 589 u64 skb_mstamp;
56b17425
ED
590 };
591 };
592 struct rb_node rbnode; /* used in netem & tcp stack */
363ec392 593 };
da3f5cf1 594 struct sock *sk;
1da177e4 595
c84d9490
ED
596 union {
597 struct net_device *dev;
598 /* Some protocols might use this space to store information,
599 * while device pointer would be NULL.
600 * UDP receive path is one user.
601 */
602 unsigned long dev_scratch;
603 };
1da177e4
LT
604 /*
605 * This is the control buffer. It is free to use for every
606 * layer. Please put your private variables there. If you
607 * want to keep them across layers you have to do a skb_clone()
608 * first. This is owned by whoever has the skb queued ATM.
609 */
da3f5cf1 610 char cb[48] __aligned(8);
1da177e4 611
7fee226a 612 unsigned long _skb_refdst;
b1937227 613 void (*destructor)(struct sk_buff *skb);
da3f5cf1
FF
614#ifdef CONFIG_XFRM
615 struct sec_path *sp;
b1937227
ED
616#endif
617#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 618 unsigned long _nfct;
b1937227 619#endif
85224844 620#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 621 struct nf_bridge_info *nf_bridge;
da3f5cf1 622#endif
1da177e4 623 unsigned int len,
334a8132
PM
624 data_len;
625 __u16 mac_len,
626 hdr_len;
b1937227
ED
627
628 /* Following fields are _not_ copied in __copy_skb_header()
629 * Note that queue_mapping is here mostly to fill a hole.
630 */
fe55f6d5 631 kmemcheck_bitfield_begin(flags1);
b1937227 632 __u16 queue_mapping;
36bbef52
DB
633
634/* if you move cloned around you also must adapt those constants */
635#ifdef __BIG_ENDIAN_BITFIELD
636#define CLONED_MASK (1 << 7)
637#else
638#define CLONED_MASK 1
639#endif
640#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
641
642 __u8 __cloned_offset[0];
b1937227 643 __u8 cloned:1,
6869c4d8 644 nohdr:1,
b84f4cc9 645 fclone:2,
a59322be 646 peeked:1,
b1937227 647 head_frag:1,
36bbef52
DB
648 xmit_more:1,
649 __unused:1; /* one bit hole */
fe55f6d5 650 kmemcheck_bitfield_end(flags1);
4031ae6e 651
b1937227
ED
652 /* fields enclosed in headers_start/headers_end are copied
653 * using a single memcpy() in __copy_skb_header()
654 */
ebcf34f3 655 /* private: */
b1937227 656 __u32 headers_start[0];
ebcf34f3 657 /* public: */
4031ae6e 658
233577a2
HFS
659/* if you move pkt_type around you also must adapt those constants */
660#ifdef __BIG_ENDIAN_BITFIELD
661#define PKT_TYPE_MAX (7 << 5)
662#else
663#define PKT_TYPE_MAX 7
1da177e4 664#endif
233577a2 665#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 666
233577a2 667 __u8 __pkt_type_offset[0];
b1937227 668 __u8 pkt_type:3;
c93bdd0e 669 __u8 pfmemalloc:1;
b1937227 670 __u8 ignore_df:1;
b1937227
ED
671
672 __u8 nf_trace:1;
673 __u8 ip_summed:2;
3853b584 674 __u8 ooo_okay:1;
61b905da 675 __u8 l4_hash:1;
a3b18ddb 676 __u8 sw_hash:1;
6e3e939f
JB
677 __u8 wifi_acked_valid:1;
678 __u8 wifi_acked:1;
b1937227 679
3bdc0eba 680 __u8 no_fcs:1;
77cffe23 681 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 682 __u8 encapsulation:1;
7e2b10c1 683 __u8 encap_hdr_csum:1;
5d0c2b95 684 __u8 csum_valid:1;
7e3cead5 685 __u8 csum_complete_sw:1;
b1937227
ED
686 __u8 csum_level:2;
687 __u8 csum_bad:1;
fe55f6d5 688
4ff06203 689 __u8 dst_pending_confirm:1;
b1937227
ED
690#ifdef CONFIG_IPV6_NDISC_NODETYPE
691 __u8 ndisc_nodetype:2;
692#endif
693 __u8 ipvs_property:1;
8bce6d7d 694 __u8 inner_protocol_type:1;
e585f236 695 __u8 remcsum_offload:1;
6bc506b4
IS
696#ifdef CONFIG_NET_SWITCHDEV
697 __u8 offload_fwd_mark:1;
698#endif
e7246e12
WB
699#ifdef CONFIG_NET_CLS_ACT
700 __u8 tc_skip_classify:1;
8dc07fdb 701 __u8 tc_at_ingress:1;
bc31c905
WB
702 __u8 tc_redirected:1;
703 __u8 tc_from_ingress:1;
e7246e12 704#endif
b1937227
ED
705
706#ifdef CONFIG_NET_SCHED
707 __u16 tc_index; /* traffic control index */
b1937227 708#endif
fe55f6d5 709
b1937227
ED
710 union {
711 __wsum csum;
712 struct {
713 __u16 csum_start;
714 __u16 csum_offset;
715 };
716 };
717 __u32 priority;
718 int skb_iif;
719 __u32 hash;
720 __be16 vlan_proto;
721 __u16 vlan_tci;
2bd82484
ED
722#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
723 union {
724 unsigned int napi_id;
725 unsigned int sender_cpu;
726 };
97fc2f08 727#endif
984bc16c 728#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 729 __u32 secmark;
0c4f691f 730#endif
0c4f691f 731
3b885787
NH
732 union {
733 __u32 mark;
16fad69c 734 __u32 reserved_tailroom;
3b885787 735 };
1da177e4 736
8bce6d7d
TH
737 union {
738 __be16 inner_protocol;
739 __u8 inner_ipproto;
740 };
741
1a37e412
SH
742 __u16 inner_transport_header;
743 __u16 inner_network_header;
744 __u16 inner_mac_header;
b1937227
ED
745
746 __be16 protocol;
1a37e412
SH
747 __u16 transport_header;
748 __u16 network_header;
749 __u16 mac_header;
b1937227 750
ebcf34f3 751 /* private: */
b1937227 752 __u32 headers_end[0];
ebcf34f3 753 /* public: */
b1937227 754
1da177e4 755 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 756 sk_buff_data_t tail;
4305b541 757 sk_buff_data_t end;
1da177e4 758 unsigned char *head,
4305b541 759 *data;
27a884dc
ACM
760 unsigned int truesize;
761 atomic_t users;
1da177e4
LT
762};
763
764#ifdef __KERNEL__
765/*
766 * Handling routines are only of interest to the kernel
767 */
768#include <linux/slab.h>
769
1da177e4 770
c93bdd0e
MG
771#define SKB_ALLOC_FCLONE 0x01
772#define SKB_ALLOC_RX 0x02
fd11a83d 773#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
774
775/* Returns true if the skb was allocated from PFMEMALLOC reserves */
776static inline bool skb_pfmemalloc(const struct sk_buff *skb)
777{
778 return unlikely(skb->pfmemalloc);
779}
780
7fee226a
ED
781/*
782 * skb might have a dst pointer attached, refcounted or not.
783 * _skb_refdst low order bit is set if refcount was _not_ taken
784 */
785#define SKB_DST_NOREF 1UL
786#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
787
a9e419dc 788#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
789/**
790 * skb_dst - returns skb dst_entry
791 * @skb: buffer
792 *
793 * Returns skb dst_entry, regardless of reference taken or not.
794 */
adf30907
ED
795static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
796{
7fee226a
ED
797 /* If refdst was not refcounted, check we still are in a
798 * rcu_read_lock section
799 */
800 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
801 !rcu_read_lock_held() &&
802 !rcu_read_lock_bh_held());
803 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
804}
805
7fee226a
ED
806/**
807 * skb_dst_set - sets skb dst
808 * @skb: buffer
809 * @dst: dst entry
810 *
811 * Sets skb dst, assuming a reference was taken on dst and should
812 * be released by skb_dst_drop()
813 */
adf30907
ED
814static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
815{
7fee226a
ED
816 skb->_skb_refdst = (unsigned long)dst;
817}
818
932bc4d7
JA
819/**
820 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
821 * @skb: buffer
822 * @dst: dst entry
823 *
824 * Sets skb dst, assuming a reference was not taken on dst.
825 * If dst entry is cached, we do not take reference and dst_release
826 * will be avoided by refdst_drop. If dst entry is not cached, we take
827 * reference, so that last dst_release can destroy the dst immediately.
828 */
829static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
830{
dbfc4fb7
HFS
831 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
832 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 833}
7fee226a
ED
834
835/**
25985edc 836 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
837 * @skb: buffer
838 */
839static inline bool skb_dst_is_noref(const struct sk_buff *skb)
840{
841 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
842}
843
511c3f92
ED
844static inline struct rtable *skb_rtable(const struct sk_buff *skb)
845{
adf30907 846 return (struct rtable *)skb_dst(skb);
511c3f92
ED
847}
848
8b10cab6
JHS
849/* For mangling skb->pkt_type from user space side from applications
850 * such as nft, tc, etc, we only allow a conservative subset of
851 * possible pkt_types to be set.
852*/
853static inline bool skb_pkt_type_ok(u32 ptype)
854{
855 return ptype <= PACKET_OTHERHOST;
856}
857
7965bd4d
JP
858void kfree_skb(struct sk_buff *skb);
859void kfree_skb_list(struct sk_buff *segs);
860void skb_tx_error(struct sk_buff *skb);
861void consume_skb(struct sk_buff *skb);
862void __kfree_skb(struct sk_buff *skb);
d7e8883c 863extern struct kmem_cache *skbuff_head_cache;
bad43ca8 864
7965bd4d
JP
865void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
866bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
867 bool *fragstolen, int *delta_truesize);
bad43ca8 868
7965bd4d
JP
869struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
870 int node);
2ea2f62c 871struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 872struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 873static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 874 gfp_t priority)
d179cd12 875{
564824b0 876 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
877}
878
2e4e4410
ED
879struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
880 unsigned long data_len,
881 int max_page_order,
882 int *errcode,
883 gfp_t gfp_mask);
884
d0bf4a9e
ED
885/* Layout of fast clones : [skb1][skb2][fclone_ref] */
886struct sk_buff_fclones {
887 struct sk_buff skb1;
888
889 struct sk_buff skb2;
890
891 atomic_t fclone_ref;
892};
893
894/**
895 * skb_fclone_busy - check if fclone is busy
293de7de 896 * @sk: socket
d0bf4a9e
ED
897 * @skb: buffer
898 *
bda13fed 899 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
900 * Some drivers call skb_orphan() in their ndo_start_xmit(),
901 * so we also check that this didnt happen.
d0bf4a9e 902 */
39bb5e62
ED
903static inline bool skb_fclone_busy(const struct sock *sk,
904 const struct sk_buff *skb)
d0bf4a9e
ED
905{
906 const struct sk_buff_fclones *fclones;
907
908 fclones = container_of(skb, struct sk_buff_fclones, skb1);
909
910 return skb->fclone == SKB_FCLONE_ORIG &&
6ffe75eb 911 atomic_read(&fclones->fclone_ref) > 1 &&
39bb5e62 912 fclones->skb2.sk == sk;
d0bf4a9e
ED
913}
914
d179cd12 915static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 916 gfp_t priority)
d179cd12 917{
c93bdd0e 918 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
919}
920
7965bd4d 921struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
0ebd0ac5
PM
922static inline struct sk_buff *alloc_skb_head(gfp_t priority)
923{
924 return __alloc_skb_head(priority, -1);
925}
926
7965bd4d
JP
927struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
928int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
929struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
930struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
931struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
932 gfp_t gfp_mask, bool fclone);
933static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
934 gfp_t gfp_mask)
935{
936 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
937}
7965bd4d
JP
938
939int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
940struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
941 unsigned int headroom);
942struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
943 int newtailroom, gfp_t priority);
25a91d8d
FD
944int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
945 int offset, int len);
7965bd4d
JP
946int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
947 int len);
948int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
949int skb_pad(struct sk_buff *skb, int pad);
ead2ceb0 950#define dev_kfree_skb(a) consume_skb(a)
1da177e4 951
7965bd4d
JP
952int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
953 int getfrag(void *from, char *to, int offset,
954 int len, int odd, struct sk_buff *skb),
955 void *from, int length);
e89e9cf5 956
be12a1fe
HFS
957int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
958 int offset, size_t size);
959
d94d9fee 960struct skb_seq_state {
677e90ed
TG
961 __u32 lower_offset;
962 __u32 upper_offset;
963 __u32 frag_idx;
964 __u32 stepped_offset;
965 struct sk_buff *root_skb;
966 struct sk_buff *cur_skb;
967 __u8 *frag_data;
968};
969
7965bd4d
JP
970void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
971 unsigned int to, struct skb_seq_state *st);
972unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
973 struct skb_seq_state *st);
974void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 975
7965bd4d 976unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 977 unsigned int to, struct ts_config *config);
3fc7e8a6 978
09323cc4
TH
979/*
980 * Packet hash types specify the type of hash in skb_set_hash.
981 *
982 * Hash types refer to the protocol layer addresses which are used to
983 * construct a packet's hash. The hashes are used to differentiate or identify
984 * flows of the protocol layer for the hash type. Hash types are either
985 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
986 *
987 * Properties of hashes:
988 *
989 * 1) Two packets in different flows have different hash values
990 * 2) Two packets in the same flow should have the same hash value
991 *
992 * A hash at a higher layer is considered to be more specific. A driver should
993 * set the most specific hash possible.
994 *
995 * A driver cannot indicate a more specific hash than the layer at which a hash
996 * was computed. For instance an L3 hash cannot be set as an L4 hash.
997 *
998 * A driver may indicate a hash level which is less specific than the
999 * actual layer the hash was computed on. For instance, a hash computed
1000 * at L4 may be considered an L3 hash. This should only be done if the
1001 * driver can't unambiguously determine that the HW computed the hash at
1002 * the higher layer. Note that the "should" in the second property above
1003 * permits this.
1004 */
1005enum pkt_hash_types {
1006 PKT_HASH_TYPE_NONE, /* Undefined type */
1007 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1008 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1009 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1010};
1011
bcc83839 1012static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1013{
bcc83839 1014 skb->hash = 0;
a3b18ddb 1015 skb->sw_hash = 0;
bcc83839
TH
1016 skb->l4_hash = 0;
1017}
1018
1019static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1020{
1021 if (!skb->l4_hash)
1022 skb_clear_hash(skb);
1023}
1024
1025static inline void
1026__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1027{
1028 skb->l4_hash = is_l4;
1029 skb->sw_hash = is_sw;
61b905da 1030 skb->hash = hash;
09323cc4
TH
1031}
1032
bcc83839
TH
1033static inline void
1034skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1035{
1036 /* Used by drivers to set hash from HW */
1037 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1038}
1039
1040static inline void
1041__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1042{
1043 __skb_set_hash(skb, hash, true, is_l4);
1044}
1045
e5276937 1046void __skb_get_hash(struct sk_buff *skb);
b917783c 1047u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1048u32 skb_get_poff(const struct sk_buff *skb);
1049u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1050 const struct flow_keys *keys, int hlen);
1051__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1052 void *data, int hlen_proto);
1053
1054static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1055 int thoff, u8 ip_proto)
1056{
1057 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1058}
1059
1060void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1061 const struct flow_dissector_key *key,
1062 unsigned int key_count);
1063
1064bool __skb_flow_dissect(const struct sk_buff *skb,
1065 struct flow_dissector *flow_dissector,
1066 void *target_container,
cd79a238
TH
1067 void *data, __be16 proto, int nhoff, int hlen,
1068 unsigned int flags);
e5276937
TH
1069
1070static inline bool skb_flow_dissect(const struct sk_buff *skb,
1071 struct flow_dissector *flow_dissector,
cd79a238 1072 void *target_container, unsigned int flags)
e5276937
TH
1073{
1074 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1075 NULL, 0, 0, 0, flags);
e5276937
TH
1076}
1077
1078static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1079 struct flow_keys *flow,
1080 unsigned int flags)
e5276937
TH
1081{
1082 memset(flow, 0, sizeof(*flow));
1083 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1084 NULL, 0, 0, 0, flags);
e5276937
TH
1085}
1086
1087static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1088 void *data, __be16 proto,
cd79a238
TH
1089 int nhoff, int hlen,
1090 unsigned int flags)
e5276937
TH
1091{
1092 memset(flow, 0, sizeof(*flow));
1093 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
cd79a238 1094 data, proto, nhoff, hlen, flags);
e5276937
TH
1095}
1096
3958afa1 1097static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1098{
a3b18ddb 1099 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1100 __skb_get_hash(skb);
bfb564e7 1101
61b905da 1102 return skb->hash;
bfb564e7
KK
1103}
1104
20a17bf6 1105__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
f70ea018 1106
20a17bf6 1107static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1108{
c6cc1ca7
TH
1109 if (!skb->l4_hash && !skb->sw_hash) {
1110 struct flow_keys keys;
de4c1f8b 1111 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1112
de4c1f8b 1113 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1114 }
f70ea018
TH
1115
1116 return skb->hash;
1117}
1118
20a17bf6 1119__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
f70ea018 1120
20a17bf6 1121static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
f70ea018 1122{
c6cc1ca7
TH
1123 if (!skb->l4_hash && !skb->sw_hash) {
1124 struct flow_keys keys;
de4c1f8b 1125 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
c6cc1ca7 1126
de4c1f8b 1127 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1128 }
f70ea018
TH
1129
1130 return skb->hash;
1131}
1132
50fb7992
TH
1133__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1134
57bdf7f4
TH
1135static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1136{
61b905da 1137 return skb->hash;
57bdf7f4
TH
1138}
1139
3df7a74e
TH
1140static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1141{
61b905da 1142 to->hash = from->hash;
a3b18ddb 1143 to->sw_hash = from->sw_hash;
61b905da 1144 to->l4_hash = from->l4_hash;
3df7a74e
TH
1145};
1146
4305b541
ACM
1147#ifdef NET_SKBUFF_DATA_USES_OFFSET
1148static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1149{
1150 return skb->head + skb->end;
1151}
ec47ea82
AD
1152
1153static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1154{
1155 return skb->end;
1156}
4305b541
ACM
1157#else
1158static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1159{
1160 return skb->end;
1161}
ec47ea82
AD
1162
1163static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1164{
1165 return skb->end - skb->head;
1166}
4305b541
ACM
1167#endif
1168
1da177e4 1169/* Internal */
4305b541 1170#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1171
ac45f602
PO
1172static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1173{
1174 return &skb_shinfo(skb)->hwtstamps;
1175}
1176
1da177e4
LT
1177/**
1178 * skb_queue_empty - check if a queue is empty
1179 * @list: queue head
1180 *
1181 * Returns true if the queue is empty, false otherwise.
1182 */
1183static inline int skb_queue_empty(const struct sk_buff_head *list)
1184{
fd44b93c 1185 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1186}
1187
fc7ebb21
DM
1188/**
1189 * skb_queue_is_last - check if skb is the last entry in the queue
1190 * @list: queue head
1191 * @skb: buffer
1192 *
1193 * Returns true if @skb is the last buffer on the list.
1194 */
1195static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1196 const struct sk_buff *skb)
1197{
fd44b93c 1198 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1199}
1200
832d11c5
IJ
1201/**
1202 * skb_queue_is_first - check if skb is the first entry in the queue
1203 * @list: queue head
1204 * @skb: buffer
1205 *
1206 * Returns true if @skb is the first buffer on the list.
1207 */
1208static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1209 const struct sk_buff *skb)
1210{
fd44b93c 1211 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1212}
1213
249c8b42
DM
1214/**
1215 * skb_queue_next - return the next packet in the queue
1216 * @list: queue head
1217 * @skb: current buffer
1218 *
1219 * Return the next packet in @list after @skb. It is only valid to
1220 * call this if skb_queue_is_last() evaluates to false.
1221 */
1222static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1223 const struct sk_buff *skb)
1224{
1225 /* This BUG_ON may seem severe, but if we just return then we
1226 * are going to dereference garbage.
1227 */
1228 BUG_ON(skb_queue_is_last(list, skb));
1229 return skb->next;
1230}
1231
832d11c5
IJ
1232/**
1233 * skb_queue_prev - return the prev packet in the queue
1234 * @list: queue head
1235 * @skb: current buffer
1236 *
1237 * Return the prev packet in @list before @skb. It is only valid to
1238 * call this if skb_queue_is_first() evaluates to false.
1239 */
1240static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1241 const struct sk_buff *skb)
1242{
1243 /* This BUG_ON may seem severe, but if we just return then we
1244 * are going to dereference garbage.
1245 */
1246 BUG_ON(skb_queue_is_first(list, skb));
1247 return skb->prev;
1248}
1249
1da177e4
LT
1250/**
1251 * skb_get - reference buffer
1252 * @skb: buffer to reference
1253 *
1254 * Makes another reference to a socket buffer and returns a pointer
1255 * to the buffer.
1256 */
1257static inline struct sk_buff *skb_get(struct sk_buff *skb)
1258{
1259 atomic_inc(&skb->users);
1260 return skb;
1261}
1262
1263/*
1264 * If users == 1, we are the only owner and are can avoid redundant
1265 * atomic change.
1266 */
1267
1da177e4
LT
1268/**
1269 * skb_cloned - is the buffer a clone
1270 * @skb: buffer to check
1271 *
1272 * Returns true if the buffer was generated with skb_clone() and is
1273 * one of multiple shared copies of the buffer. Cloned buffers are
1274 * shared data so must not be written to under normal circumstances.
1275 */
1276static inline int skb_cloned(const struct sk_buff *skb)
1277{
1278 return skb->cloned &&
1279 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1280}
1281
14bbd6a5
PS
1282static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1283{
d0164adc 1284 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1285
1286 if (skb_cloned(skb))
1287 return pskb_expand_head(skb, 0, 0, pri);
1288
1289 return 0;
1290}
1291
1da177e4
LT
1292/**
1293 * skb_header_cloned - is the header a clone
1294 * @skb: buffer to check
1295 *
1296 * Returns true if modifying the header part of the buffer requires
1297 * the data to be copied.
1298 */
1299static inline int skb_header_cloned(const struct sk_buff *skb)
1300{
1301 int dataref;
1302
1303 if (!skb->cloned)
1304 return 0;
1305
1306 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1307 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1308 return dataref != 1;
1309}
1310
9580bf2e
ED
1311static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1312{
1313 might_sleep_if(gfpflags_allow_blocking(pri));
1314
1315 if (skb_header_cloned(skb))
1316 return pskb_expand_head(skb, 0, 0, pri);
1317
1318 return 0;
1319}
1320
1da177e4
LT
1321/**
1322 * skb_header_release - release reference to header
1323 * @skb: buffer to operate on
1324 *
1325 * Drop a reference to the header part of the buffer. This is done
1326 * by acquiring a payload reference. You must not read from the header
1327 * part of skb->data after this.
f4a775d1 1328 * Note : Check if you can use __skb_header_release() instead.
1da177e4
LT
1329 */
1330static inline void skb_header_release(struct sk_buff *skb)
1331{
1332 BUG_ON(skb->nohdr);
1333 skb->nohdr = 1;
1334 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1335}
1336
f4a775d1
ED
1337/**
1338 * __skb_header_release - release reference to header
1339 * @skb: buffer to operate on
1340 *
1341 * Variant of skb_header_release() assuming skb is private to caller.
1342 * We can avoid one atomic operation.
1343 */
1344static inline void __skb_header_release(struct sk_buff *skb)
1345{
1346 skb->nohdr = 1;
1347 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1348}
1349
1350
1da177e4
LT
1351/**
1352 * skb_shared - is the buffer shared
1353 * @skb: buffer to check
1354 *
1355 * Returns true if more than one person has a reference to this
1356 * buffer.
1357 */
1358static inline int skb_shared(const struct sk_buff *skb)
1359{
1360 return atomic_read(&skb->users) != 1;
1361}
1362
1363/**
1364 * skb_share_check - check if buffer is shared and if so clone it
1365 * @skb: buffer to check
1366 * @pri: priority for memory allocation
1367 *
1368 * If the buffer is shared the buffer is cloned and the old copy
1369 * drops a reference. A new clone with a single reference is returned.
1370 * If the buffer is not shared the original buffer is returned. When
1371 * being called from interrupt status or with spinlocks held pri must
1372 * be GFP_ATOMIC.
1373 *
1374 * NULL is returned on a memory allocation failure.
1375 */
47061bc4 1376static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1377{
d0164adc 1378 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1379 if (skb_shared(skb)) {
1380 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1381
1382 if (likely(nskb))
1383 consume_skb(skb);
1384 else
1385 kfree_skb(skb);
1da177e4
LT
1386 skb = nskb;
1387 }
1388 return skb;
1389}
1390
1391/*
1392 * Copy shared buffers into a new sk_buff. We effectively do COW on
1393 * packets to handle cases where we have a local reader and forward
1394 * and a couple of other messy ones. The normal one is tcpdumping
1395 * a packet thats being forwarded.
1396 */
1397
1398/**
1399 * skb_unshare - make a copy of a shared buffer
1400 * @skb: buffer to check
1401 * @pri: priority for memory allocation
1402 *
1403 * If the socket buffer is a clone then this function creates a new
1404 * copy of the data, drops a reference count on the old copy and returns
1405 * the new copy with the reference count at 1. If the buffer is not a clone
1406 * the original buffer is returned. When called with a spinlock held or
1407 * from interrupt state @pri must be %GFP_ATOMIC
1408 *
1409 * %NULL is returned on a memory allocation failure.
1410 */
e2bf521d 1411static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1412 gfp_t pri)
1da177e4 1413{
d0164adc 1414 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1415 if (skb_cloned(skb)) {
1416 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1417
1418 /* Free our shared copy */
1419 if (likely(nskb))
1420 consume_skb(skb);
1421 else
1422 kfree_skb(skb);
1da177e4
LT
1423 skb = nskb;
1424 }
1425 return skb;
1426}
1427
1428/**
1a5778aa 1429 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1430 * @list_: list to peek at
1431 *
1432 * Peek an &sk_buff. Unlike most other operations you _MUST_
1433 * be careful with this one. A peek leaves the buffer on the
1434 * list and someone else may run off with it. You must hold
1435 * the appropriate locks or have a private queue to do this.
1436 *
1437 * Returns %NULL for an empty list or a pointer to the head element.
1438 * The reference count is not incremented and the reference is therefore
1439 * volatile. Use with caution.
1440 */
05bdd2f1 1441static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1442{
18d07000
ED
1443 struct sk_buff *skb = list_->next;
1444
1445 if (skb == (struct sk_buff *)list_)
1446 skb = NULL;
1447 return skb;
1da177e4
LT
1448}
1449
da5ef6e5
PE
1450/**
1451 * skb_peek_next - peek skb following the given one from a queue
1452 * @skb: skb to start from
1453 * @list_: list to peek at
1454 *
1455 * Returns %NULL when the end of the list is met or a pointer to the
1456 * next element. The reference count is not incremented and the
1457 * reference is therefore volatile. Use with caution.
1458 */
1459static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1460 const struct sk_buff_head *list_)
1461{
1462 struct sk_buff *next = skb->next;
18d07000 1463
da5ef6e5
PE
1464 if (next == (struct sk_buff *)list_)
1465 next = NULL;
1466 return next;
1467}
1468
1da177e4 1469/**
1a5778aa 1470 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1471 * @list_: list to peek at
1472 *
1473 * Peek an &sk_buff. Unlike most other operations you _MUST_
1474 * be careful with this one. A peek leaves the buffer on the
1475 * list and someone else may run off with it. You must hold
1476 * the appropriate locks or have a private queue to do this.
1477 *
1478 * Returns %NULL for an empty list or a pointer to the tail element.
1479 * The reference count is not incremented and the reference is therefore
1480 * volatile. Use with caution.
1481 */
05bdd2f1 1482static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1483{
18d07000
ED
1484 struct sk_buff *skb = list_->prev;
1485
1486 if (skb == (struct sk_buff *)list_)
1487 skb = NULL;
1488 return skb;
1489
1da177e4
LT
1490}
1491
1492/**
1493 * skb_queue_len - get queue length
1494 * @list_: list to measure
1495 *
1496 * Return the length of an &sk_buff queue.
1497 */
1498static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1499{
1500 return list_->qlen;
1501}
1502
67fed459
DM
1503/**
1504 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1505 * @list: queue to initialize
1506 *
1507 * This initializes only the list and queue length aspects of
1508 * an sk_buff_head object. This allows to initialize the list
1509 * aspects of an sk_buff_head without reinitializing things like
1510 * the spinlock. It can also be used for on-stack sk_buff_head
1511 * objects where the spinlock is known to not be used.
1512 */
1513static inline void __skb_queue_head_init(struct sk_buff_head *list)
1514{
1515 list->prev = list->next = (struct sk_buff *)list;
1516 list->qlen = 0;
1517}
1518
76f10ad0
AV
1519/*
1520 * This function creates a split out lock class for each invocation;
1521 * this is needed for now since a whole lot of users of the skb-queue
1522 * infrastructure in drivers have different locking usage (in hardirq)
1523 * than the networking core (in softirq only). In the long run either the
1524 * network layer or drivers should need annotation to consolidate the
1525 * main types of usage into 3 classes.
1526 */
1da177e4
LT
1527static inline void skb_queue_head_init(struct sk_buff_head *list)
1528{
1529 spin_lock_init(&list->lock);
67fed459 1530 __skb_queue_head_init(list);
1da177e4
LT
1531}
1532
c2ecba71
PE
1533static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1534 struct lock_class_key *class)
1535{
1536 skb_queue_head_init(list);
1537 lockdep_set_class(&list->lock, class);
1538}
1539
1da177e4 1540/*
bf299275 1541 * Insert an sk_buff on a list.
1da177e4
LT
1542 *
1543 * The "__skb_xxxx()" functions are the non-atomic ones that
1544 * can only be called with interrupts disabled.
1545 */
7965bd4d
JP
1546void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1547 struct sk_buff_head *list);
bf299275
GR
1548static inline void __skb_insert(struct sk_buff *newsk,
1549 struct sk_buff *prev, struct sk_buff *next,
1550 struct sk_buff_head *list)
1551{
1552 newsk->next = next;
1553 newsk->prev = prev;
1554 next->prev = prev->next = newsk;
1555 list->qlen++;
1556}
1da177e4 1557
67fed459
DM
1558static inline void __skb_queue_splice(const struct sk_buff_head *list,
1559 struct sk_buff *prev,
1560 struct sk_buff *next)
1561{
1562 struct sk_buff *first = list->next;
1563 struct sk_buff *last = list->prev;
1564
1565 first->prev = prev;
1566 prev->next = first;
1567
1568 last->next = next;
1569 next->prev = last;
1570}
1571
1572/**
1573 * skb_queue_splice - join two skb lists, this is designed for stacks
1574 * @list: the new list to add
1575 * @head: the place to add it in the first list
1576 */
1577static inline void skb_queue_splice(const struct sk_buff_head *list,
1578 struct sk_buff_head *head)
1579{
1580 if (!skb_queue_empty(list)) {
1581 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1582 head->qlen += list->qlen;
67fed459
DM
1583 }
1584}
1585
1586/**
d9619496 1587 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1588 * @list: the new list to add
1589 * @head: the place to add it in the first list
1590 *
1591 * The list at @list is reinitialised
1592 */
1593static inline void skb_queue_splice_init(struct sk_buff_head *list,
1594 struct sk_buff_head *head)
1595{
1596 if (!skb_queue_empty(list)) {
1597 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1598 head->qlen += list->qlen;
67fed459
DM
1599 __skb_queue_head_init(list);
1600 }
1601}
1602
1603/**
1604 * skb_queue_splice_tail - join two skb lists, each list being a queue
1605 * @list: the new list to add
1606 * @head: the place to add it in the first list
1607 */
1608static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1609 struct sk_buff_head *head)
1610{
1611 if (!skb_queue_empty(list)) {
1612 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1613 head->qlen += list->qlen;
67fed459
DM
1614 }
1615}
1616
1617/**
d9619496 1618 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1619 * @list: the new list to add
1620 * @head: the place to add it in the first list
1621 *
1622 * Each of the lists is a queue.
1623 * The list at @list is reinitialised
1624 */
1625static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1626 struct sk_buff_head *head)
1627{
1628 if (!skb_queue_empty(list)) {
1629 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1630 head->qlen += list->qlen;
67fed459
DM
1631 __skb_queue_head_init(list);
1632 }
1633}
1634
1da177e4 1635/**
300ce174 1636 * __skb_queue_after - queue a buffer at the list head
1da177e4 1637 * @list: list to use
300ce174 1638 * @prev: place after this buffer
1da177e4
LT
1639 * @newsk: buffer to queue
1640 *
300ce174 1641 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1642 * and you must therefore hold required locks before calling it.
1643 *
1644 * A buffer cannot be placed on two lists at the same time.
1645 */
300ce174
SH
1646static inline void __skb_queue_after(struct sk_buff_head *list,
1647 struct sk_buff *prev,
1648 struct sk_buff *newsk)
1da177e4 1649{
bf299275 1650 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1651}
1652
7965bd4d
JP
1653void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1654 struct sk_buff_head *list);
7de6c033 1655
f5572855
GR
1656static inline void __skb_queue_before(struct sk_buff_head *list,
1657 struct sk_buff *next,
1658 struct sk_buff *newsk)
1659{
1660 __skb_insert(newsk, next->prev, next, list);
1661}
1662
300ce174
SH
1663/**
1664 * __skb_queue_head - queue a buffer at the list head
1665 * @list: list to use
1666 * @newsk: buffer to queue
1667 *
1668 * Queue a buffer at the start of a list. This function takes no locks
1669 * and you must therefore hold required locks before calling it.
1670 *
1671 * A buffer cannot be placed on two lists at the same time.
1672 */
7965bd4d 1673void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1674static inline void __skb_queue_head(struct sk_buff_head *list,
1675 struct sk_buff *newsk)
1676{
1677 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1678}
1679
1da177e4
LT
1680/**
1681 * __skb_queue_tail - queue a buffer at the list tail
1682 * @list: list to use
1683 * @newsk: buffer to queue
1684 *
1685 * Queue a buffer at the end of a list. This function takes no locks
1686 * and you must therefore hold required locks before calling it.
1687 *
1688 * A buffer cannot be placed on two lists at the same time.
1689 */
7965bd4d 1690void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1691static inline void __skb_queue_tail(struct sk_buff_head *list,
1692 struct sk_buff *newsk)
1693{
f5572855 1694 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1695}
1696
1da177e4
LT
1697/*
1698 * remove sk_buff from list. _Must_ be called atomically, and with
1699 * the list known..
1700 */
7965bd4d 1701void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1702static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1703{
1704 struct sk_buff *next, *prev;
1705
1706 list->qlen--;
1707 next = skb->next;
1708 prev = skb->prev;
1709 skb->next = skb->prev = NULL;
1da177e4
LT
1710 next->prev = prev;
1711 prev->next = next;
1712}
1713
f525c06d
GR
1714/**
1715 * __skb_dequeue - remove from the head of the queue
1716 * @list: list to dequeue from
1717 *
1718 * Remove the head of the list. This function does not take any locks
1719 * so must be used with appropriate locks held only. The head item is
1720 * returned or %NULL if the list is empty.
1721 */
7965bd4d 1722struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1723static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1724{
1725 struct sk_buff *skb = skb_peek(list);
1726 if (skb)
1727 __skb_unlink(skb, list);
1728 return skb;
1729}
1da177e4
LT
1730
1731/**
1732 * __skb_dequeue_tail - remove from the tail of the queue
1733 * @list: list to dequeue from
1734 *
1735 * Remove the tail of the list. This function does not take any locks
1736 * so must be used with appropriate locks held only. The tail item is
1737 * returned or %NULL if the list is empty.
1738 */
7965bd4d 1739struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1740static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1741{
1742 struct sk_buff *skb = skb_peek_tail(list);
1743 if (skb)
1744 __skb_unlink(skb, list);
1745 return skb;
1746}
1747
1748
bdcc0924 1749static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1750{
1751 return skb->data_len;
1752}
1753
1754static inline unsigned int skb_headlen(const struct sk_buff *skb)
1755{
1756 return skb->len - skb->data_len;
1757}
1758
c72d8cda 1759static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1da177e4 1760{
c72d8cda 1761 unsigned int i, len = 0;
1da177e4 1762
c72d8cda 1763 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 1764 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1da177e4
LT
1765 return len + skb_headlen(skb);
1766}
1767
131ea667
IC
1768/**
1769 * __skb_fill_page_desc - initialise a paged fragment in an skb
1770 * @skb: buffer containing fragment to be initialised
1771 * @i: paged fragment index to initialise
1772 * @page: the page to use for this fragment
1773 * @off: the offset to the data with @page
1774 * @size: the length of the data
1775 *
1776 * Initialises the @i'th fragment of @skb to point to &size bytes at
1777 * offset @off within @page.
1778 *
1779 * Does not take any additional reference on the fragment.
1780 */
1781static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1782 struct page *page, int off, int size)
1da177e4
LT
1783{
1784 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1785
c48a11c7 1786 /*
2f064f34
MH
1787 * Propagate page pfmemalloc to the skb if we can. The problem is
1788 * that not all callers have unique ownership of the page but rely
1789 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1790 */
a8605c60 1791 frag->page.p = page;
1da177e4 1792 frag->page_offset = off;
9e903e08 1793 skb_frag_size_set(frag, size);
cca7af38
PE
1794
1795 page = compound_head(page);
2f064f34 1796 if (page_is_pfmemalloc(page))
cca7af38 1797 skb->pfmemalloc = true;
131ea667
IC
1798}
1799
1800/**
1801 * skb_fill_page_desc - initialise a paged fragment in an skb
1802 * @skb: buffer containing fragment to be initialised
1803 * @i: paged fragment index to initialise
1804 * @page: the page to use for this fragment
1805 * @off: the offset to the data with @page
1806 * @size: the length of the data
1807 *
1808 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1809 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1810 * addition updates @skb such that @i is the last fragment.
1811 *
1812 * Does not take any additional reference on the fragment.
1813 */
1814static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1815 struct page *page, int off, int size)
1816{
1817 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1818 skb_shinfo(skb)->nr_frags = i + 1;
1819}
1820
7965bd4d
JP
1821void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1822 int size, unsigned int truesize);
654bed16 1823
f8e617e1
JW
1824void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1825 unsigned int truesize);
1826
1da177e4 1827#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1828#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1829#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1830
27a884dc
ACM
1831#ifdef NET_SKBUFF_DATA_USES_OFFSET
1832static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1833{
1834 return skb->head + skb->tail;
1835}
1836
1837static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1838{
1839 skb->tail = skb->data - skb->head;
1840}
1841
1842static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1843{
1844 skb_reset_tail_pointer(skb);
1845 skb->tail += offset;
1846}
7cc46190 1847
27a884dc
ACM
1848#else /* NET_SKBUFF_DATA_USES_OFFSET */
1849static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1850{
1851 return skb->tail;
1852}
1853
1854static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1855{
1856 skb->tail = skb->data;
1857}
1858
1859static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1860{
1861 skb->tail = skb->data + offset;
1862}
4305b541 1863
27a884dc
ACM
1864#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1865
1da177e4
LT
1866/*
1867 * Add data to an sk_buff
1868 */
0c7ddf36 1869unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
7965bd4d 1870unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1871static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1872{
27a884dc 1873 unsigned char *tmp = skb_tail_pointer(skb);
1da177e4
LT
1874 SKB_LINEAR_ASSERT(skb);
1875 skb->tail += len;
1876 skb->len += len;
1877 return tmp;
1878}
1879
7965bd4d 1880unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1881static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1882{
1883 skb->data -= len;
1884 skb->len += len;
1885 return skb->data;
1886}
1887
7965bd4d 1888unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1889static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1890{
1891 skb->len -= len;
1892 BUG_ON(skb->len < skb->data_len);
1893 return skb->data += len;
1894}
1895
47d29646
DM
1896static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1897{
1898 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1899}
1900
7965bd4d 1901unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4
LT
1902
1903static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1904{
1905 if (len > skb_headlen(skb) &&
987c402a 1906 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
1907 return NULL;
1908 skb->len -= len;
1909 return skb->data += len;
1910}
1911
1912static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1913{
1914 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1915}
1916
1917static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1918{
1919 if (likely(len <= skb_headlen(skb)))
1920 return 1;
1921 if (unlikely(len > skb->len))
1922 return 0;
987c402a 1923 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
1924}
1925
c8c8b127
ED
1926void skb_condense(struct sk_buff *skb);
1927
1da177e4
LT
1928/**
1929 * skb_headroom - bytes at buffer head
1930 * @skb: buffer to check
1931 *
1932 * Return the number of bytes of free space at the head of an &sk_buff.
1933 */
c2636b4d 1934static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
1935{
1936 return skb->data - skb->head;
1937}
1938
1939/**
1940 * skb_tailroom - bytes at buffer end
1941 * @skb: buffer to check
1942 *
1943 * Return the number of bytes of free space at the tail of an sk_buff
1944 */
1945static inline int skb_tailroom(const struct sk_buff *skb)
1946{
4305b541 1947 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
1948}
1949
a21d4572
ED
1950/**
1951 * skb_availroom - bytes at buffer end
1952 * @skb: buffer to check
1953 *
1954 * Return the number of bytes of free space at the tail of an sk_buff
1955 * allocated by sk_stream_alloc()
1956 */
1957static inline int skb_availroom(const struct sk_buff *skb)
1958{
16fad69c
ED
1959 if (skb_is_nonlinear(skb))
1960 return 0;
1961
1962 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
1963}
1964
1da177e4
LT
1965/**
1966 * skb_reserve - adjust headroom
1967 * @skb: buffer to alter
1968 * @len: bytes to move
1969 *
1970 * Increase the headroom of an empty &sk_buff by reducing the tail
1971 * room. This is only allowed for an empty buffer.
1972 */
8243126c 1973static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
1974{
1975 skb->data += len;
1976 skb->tail += len;
1977}
1978
1837b2e2
BP
1979/**
1980 * skb_tailroom_reserve - adjust reserved_tailroom
1981 * @skb: buffer to alter
1982 * @mtu: maximum amount of headlen permitted
1983 * @needed_tailroom: minimum amount of reserved_tailroom
1984 *
1985 * Set reserved_tailroom so that headlen can be as large as possible but
1986 * not larger than mtu and tailroom cannot be smaller than
1987 * needed_tailroom.
1988 * The required headroom should already have been reserved before using
1989 * this function.
1990 */
1991static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
1992 unsigned int needed_tailroom)
1993{
1994 SKB_LINEAR_ASSERT(skb);
1995 if (mtu < skb_tailroom(skb) - needed_tailroom)
1996 /* use at most mtu */
1997 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
1998 else
1999 /* use up to all available space */
2000 skb->reserved_tailroom = needed_tailroom;
2001}
2002
8bce6d7d
TH
2003#define ENCAP_TYPE_ETHER 0
2004#define ENCAP_TYPE_IPPROTO 1
2005
2006static inline void skb_set_inner_protocol(struct sk_buff *skb,
2007 __be16 protocol)
2008{
2009 skb->inner_protocol = protocol;
2010 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2011}
2012
2013static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2014 __u8 ipproto)
2015{
2016 skb->inner_ipproto = ipproto;
2017 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2018}
2019
6a674e9c
JG
2020static inline void skb_reset_inner_headers(struct sk_buff *skb)
2021{
aefbd2b3 2022 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2023 skb->inner_network_header = skb->network_header;
2024 skb->inner_transport_header = skb->transport_header;
2025}
2026
0b5c9db1
JP
2027static inline void skb_reset_mac_len(struct sk_buff *skb)
2028{
2029 skb->mac_len = skb->network_header - skb->mac_header;
2030}
2031
6a674e9c
JG
2032static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2033 *skb)
2034{
2035 return skb->head + skb->inner_transport_header;
2036}
2037
55dc5a9f
TH
2038static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2039{
2040 return skb_inner_transport_header(skb) - skb->data;
2041}
2042
6a674e9c
JG
2043static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2044{
2045 skb->inner_transport_header = skb->data - skb->head;
2046}
2047
2048static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2049 const int offset)
2050{
2051 skb_reset_inner_transport_header(skb);
2052 skb->inner_transport_header += offset;
2053}
2054
2055static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2056{
2057 return skb->head + skb->inner_network_header;
2058}
2059
2060static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2061{
2062 skb->inner_network_header = skb->data - skb->head;
2063}
2064
2065static inline void skb_set_inner_network_header(struct sk_buff *skb,
2066 const int offset)
2067{
2068 skb_reset_inner_network_header(skb);
2069 skb->inner_network_header += offset;
2070}
2071
aefbd2b3
PS
2072static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2073{
2074 return skb->head + skb->inner_mac_header;
2075}
2076
2077static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2078{
2079 skb->inner_mac_header = skb->data - skb->head;
2080}
2081
2082static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2083 const int offset)
2084{
2085 skb_reset_inner_mac_header(skb);
2086 skb->inner_mac_header += offset;
2087}
fda55eca
ED
2088static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2089{
35d04610 2090 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2091}
2092
9c70220b
ACM
2093static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2094{
2e07fa9c 2095 return skb->head + skb->transport_header;
9c70220b
ACM
2096}
2097
badff6d0
ACM
2098static inline void skb_reset_transport_header(struct sk_buff *skb)
2099{
2e07fa9c 2100 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2101}
2102
967b05f6
ACM
2103static inline void skb_set_transport_header(struct sk_buff *skb,
2104 const int offset)
2105{
2e07fa9c
ACM
2106 skb_reset_transport_header(skb);
2107 skb->transport_header += offset;
ea2ae17d
ACM
2108}
2109
d56f90a7
ACM
2110static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2111{
2e07fa9c 2112 return skb->head + skb->network_header;
d56f90a7
ACM
2113}
2114
c1d2bbe1
ACM
2115static inline void skb_reset_network_header(struct sk_buff *skb)
2116{
2e07fa9c 2117 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2118}
2119
c14d2450
ACM
2120static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2121{
2e07fa9c
ACM
2122 skb_reset_network_header(skb);
2123 skb->network_header += offset;
c14d2450
ACM
2124}
2125
2e07fa9c 2126static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2127{
2e07fa9c 2128 return skb->head + skb->mac_header;
bbe735e4
ACM
2129}
2130
ea6da4fd
AV
2131static inline int skb_mac_offset(const struct sk_buff *skb)
2132{
2133 return skb_mac_header(skb) - skb->data;
2134}
2135
2e07fa9c 2136static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2137{
35d04610 2138 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2139}
2140
2141static inline void skb_reset_mac_header(struct sk_buff *skb)
2142{
2143 skb->mac_header = skb->data - skb->head;
2144}
2145
2146static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2147{
2148 skb_reset_mac_header(skb);
2149 skb->mac_header += offset;
2150}
2151
0e3da5bb
TT
2152static inline void skb_pop_mac_header(struct sk_buff *skb)
2153{
2154 skb->mac_header = skb->network_header;
2155}
2156
fbbdb8f0
YX
2157static inline void skb_probe_transport_header(struct sk_buff *skb,
2158 const int offset_hint)
2159{
2160 struct flow_keys keys;
2161
2162 if (skb_transport_header_was_set(skb))
2163 return;
cd79a238 2164 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
42aecaa9 2165 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2166 else
2167 skb_set_transport_header(skb, offset_hint);
2168}
2169
03606895
ED
2170static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2171{
2172 if (skb_mac_header_was_set(skb)) {
2173 const unsigned char *old_mac = skb_mac_header(skb);
2174
2175 skb_set_mac_header(skb, -skb->mac_len);
2176 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2177 }
2178}
2179
04fb451e
MM
2180static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2181{
2182 return skb->csum_start - skb_headroom(skb);
2183}
2184
08b64fcc
AD
2185static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2186{
2187 return skb->head + skb->csum_start;
2188}
2189
2e07fa9c
ACM
2190static inline int skb_transport_offset(const struct sk_buff *skb)
2191{
2192 return skb_transport_header(skb) - skb->data;
2193}
2194
2195static inline u32 skb_network_header_len(const struct sk_buff *skb)
2196{
2197 return skb->transport_header - skb->network_header;
2198}
2199
6a674e9c
JG
2200static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2201{
2202 return skb->inner_transport_header - skb->inner_network_header;
2203}
2204
2e07fa9c
ACM
2205static inline int skb_network_offset(const struct sk_buff *skb)
2206{
2207 return skb_network_header(skb) - skb->data;
2208}
48d49d0c 2209
6a674e9c
JG
2210static inline int skb_inner_network_offset(const struct sk_buff *skb)
2211{
2212 return skb_inner_network_header(skb) - skb->data;
2213}
2214
f9599ce1
CG
2215static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2216{
2217 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2218}
2219
1da177e4
LT
2220/*
2221 * CPUs often take a performance hit when accessing unaligned memory
2222 * locations. The actual performance hit varies, it can be small if the
2223 * hardware handles it or large if we have to take an exception and fix it
2224 * in software.
2225 *
2226 * Since an ethernet header is 14 bytes network drivers often end up with
2227 * the IP header at an unaligned offset. The IP header can be aligned by
2228 * shifting the start of the packet by 2 bytes. Drivers should do this
2229 * with:
2230 *
8660c124 2231 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2232 *
2233 * The downside to this alignment of the IP header is that the DMA is now
2234 * unaligned. On some architectures the cost of an unaligned DMA is high
2235 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2236 *
1da177e4
LT
2237 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2238 * to be overridden.
2239 */
2240#ifndef NET_IP_ALIGN
2241#define NET_IP_ALIGN 2
2242#endif
2243
025be81e
AB
2244/*
2245 * The networking layer reserves some headroom in skb data (via
2246 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2247 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2248 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2249 *
2250 * Unfortunately this headroom changes the DMA alignment of the resulting
2251 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2252 * on some architectures. An architecture can override this value,
2253 * perhaps setting it to a cacheline in size (since that will maintain
2254 * cacheline alignment of the DMA). It must be a power of 2.
2255 *
d6301d3d 2256 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2257 * headroom, you should not reduce this.
5933dd2f
ED
2258 *
2259 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2260 * to reduce average number of cache lines per packet.
2261 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2262 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2263 */
2264#ifndef NET_SKB_PAD
5933dd2f 2265#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2266#endif
2267
7965bd4d 2268int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2269
5293efe6 2270static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2271{
c4264f27 2272 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2273 WARN_ON(1);
2274 return;
2275 }
27a884dc
ACM
2276 skb->len = len;
2277 skb_set_tail_pointer(skb, len);
1da177e4
LT
2278}
2279
5293efe6
DB
2280static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2281{
2282 __skb_set_length(skb, len);
2283}
2284
7965bd4d 2285void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2286
2287static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2288{
3cc0e873
HX
2289 if (skb->data_len)
2290 return ___pskb_trim(skb, len);
2291 __skb_trim(skb, len);
2292 return 0;
1da177e4
LT
2293}
2294
2295static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2296{
2297 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2298}
2299
e9fa4f7b
HX
2300/**
2301 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2302 * @skb: buffer to alter
2303 * @len: new length
2304 *
2305 * This is identical to pskb_trim except that the caller knows that
2306 * the skb is not cloned so we should never get an error due to out-
2307 * of-memory.
2308 */
2309static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2310{
2311 int err = pskb_trim(skb, len);
2312 BUG_ON(err);
2313}
2314
5293efe6
DB
2315static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2316{
2317 unsigned int diff = len - skb->len;
2318
2319 if (skb_tailroom(skb) < diff) {
2320 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2321 GFP_ATOMIC);
2322 if (ret)
2323 return ret;
2324 }
2325 __skb_set_length(skb, len);
2326 return 0;
2327}
2328
1da177e4
LT
2329/**
2330 * skb_orphan - orphan a buffer
2331 * @skb: buffer to orphan
2332 *
2333 * If a buffer currently has an owner then we call the owner's
2334 * destructor function and make the @skb unowned. The buffer continues
2335 * to exist but is no longer charged to its former owner.
2336 */
2337static inline void skb_orphan(struct sk_buff *skb)
2338{
c34a7612 2339 if (skb->destructor) {
1da177e4 2340 skb->destructor(skb);
c34a7612
ED
2341 skb->destructor = NULL;
2342 skb->sk = NULL;
376c7311
ED
2343 } else {
2344 BUG_ON(skb->sk);
c34a7612 2345 }
1da177e4
LT
2346}
2347
a353e0ce
MT
2348/**
2349 * skb_orphan_frags - orphan the frags contained in a buffer
2350 * @skb: buffer to orphan frags from
2351 * @gfp_mask: allocation mask for replacement pages
2352 *
2353 * For each frag in the SKB which needs a destructor (i.e. has an
2354 * owner) create a copy of that frag and release the original
2355 * page by calling the destructor.
2356 */
2357static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2358{
2359 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2360 return 0;
2361 return skb_copy_ubufs(skb, gfp_mask);
2362}
2363
1da177e4
LT
2364/**
2365 * __skb_queue_purge - empty a list
2366 * @list: list to empty
2367 *
2368 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2369 * the list and one reference dropped. This function does not take the
2370 * list lock and the caller must hold the relevant locks to use it.
2371 */
7965bd4d 2372void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2373static inline void __skb_queue_purge(struct sk_buff_head *list)
2374{
2375 struct sk_buff *skb;
2376 while ((skb = __skb_dequeue(list)) != NULL)
2377 kfree_skb(skb);
2378}
2379
9f5afeae
YW
2380void skb_rbtree_purge(struct rb_root *root);
2381
7965bd4d 2382void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2383
7965bd4d
JP
2384struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2385 gfp_t gfp_mask);
8af27456
CH
2386
2387/**
2388 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2389 * @dev: network device to receive on
2390 * @length: length to allocate
2391 *
2392 * Allocate a new &sk_buff and assign it a usage count of one. The
2393 * buffer has unspecified headroom built in. Users should allocate
2394 * the headroom they think they need without accounting for the
2395 * built in space. The built in space is used for optimisations.
2396 *
2397 * %NULL is returned if there is no free memory. Although this function
2398 * allocates memory it can be called from an interrupt.
2399 */
2400static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2401 unsigned int length)
8af27456
CH
2402{
2403 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2404}
2405
6f532612
ED
2406/* legacy helper around __netdev_alloc_skb() */
2407static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2408 gfp_t gfp_mask)
2409{
2410 return __netdev_alloc_skb(NULL, length, gfp_mask);
2411}
2412
2413/* legacy helper around netdev_alloc_skb() */
2414static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2415{
2416 return netdev_alloc_skb(NULL, length);
2417}
2418
2419
4915a0de
ED
2420static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2421 unsigned int length, gfp_t gfp)
61321bbd 2422{
4915a0de 2423 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2424
2425 if (NET_IP_ALIGN && skb)
2426 skb_reserve(skb, NET_IP_ALIGN);
2427 return skb;
2428}
2429
4915a0de
ED
2430static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2431 unsigned int length)
2432{
2433 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2434}
2435
181edb2b
AD
2436static inline void skb_free_frag(void *addr)
2437{
8c2dd3e4 2438 page_frag_free(addr);
181edb2b
AD
2439}
2440
ffde7328 2441void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2442struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2443 unsigned int length, gfp_t gfp_mask);
2444static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2445 unsigned int length)
2446{
2447 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2448}
795bb1c0
JDB
2449void napi_consume_skb(struct sk_buff *skb, int budget);
2450
2451void __kfree_skb_flush(void);
15fad714 2452void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2453
71dfda58
AD
2454/**
2455 * __dev_alloc_pages - allocate page for network Rx
2456 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2457 * @order: size of the allocation
2458 *
2459 * Allocate a new page.
2460 *
2461 * %NULL is returned if there is no free memory.
2462*/
2463static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2464 unsigned int order)
2465{
2466 /* This piece of code contains several assumptions.
2467 * 1. This is for device Rx, therefor a cold page is preferred.
2468 * 2. The expectation is the user wants a compound page.
2469 * 3. If requesting a order 0 page it will not be compound
2470 * due to the check to see if order has a value in prep_new_page
2471 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2472 * code in gfp_to_alloc_flags that should be enforcing this.
2473 */
2474 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2475
2476 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2477}
2478
2479static inline struct page *dev_alloc_pages(unsigned int order)
2480{
95829b3a 2481 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2482}
2483
2484/**
2485 * __dev_alloc_page - allocate a page for network Rx
2486 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2487 *
2488 * Allocate a new page.
2489 *
2490 * %NULL is returned if there is no free memory.
2491 */
2492static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2493{
2494 return __dev_alloc_pages(gfp_mask, 0);
2495}
2496
2497static inline struct page *dev_alloc_page(void)
2498{
95829b3a 2499 return dev_alloc_pages(0);
71dfda58
AD
2500}
2501
0614002b
MG
2502/**
2503 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2504 * @page: The page that was allocated from skb_alloc_page
2505 * @skb: The skb that may need pfmemalloc set
2506 */
2507static inline void skb_propagate_pfmemalloc(struct page *page,
2508 struct sk_buff *skb)
2509{
2f064f34 2510 if (page_is_pfmemalloc(page))
0614002b
MG
2511 skb->pfmemalloc = true;
2512}
2513
131ea667 2514/**
e227867f 2515 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2516 * @frag: the paged fragment
2517 *
2518 * Returns the &struct page associated with @frag.
2519 */
2520static inline struct page *skb_frag_page(const skb_frag_t *frag)
2521{
a8605c60 2522 return frag->page.p;
131ea667
IC
2523}
2524
2525/**
2526 * __skb_frag_ref - take an addition reference on a paged fragment.
2527 * @frag: the paged fragment
2528 *
2529 * Takes an additional reference on the paged fragment @frag.
2530 */
2531static inline void __skb_frag_ref(skb_frag_t *frag)
2532{
2533 get_page(skb_frag_page(frag));
2534}
2535
2536/**
2537 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2538 * @skb: the buffer
2539 * @f: the fragment offset.
2540 *
2541 * Takes an additional reference on the @f'th paged fragment of @skb.
2542 */
2543static inline void skb_frag_ref(struct sk_buff *skb, int f)
2544{
2545 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2546}
2547
2548/**
2549 * __skb_frag_unref - release a reference on a paged fragment.
2550 * @frag: the paged fragment
2551 *
2552 * Releases a reference on the paged fragment @frag.
2553 */
2554static inline void __skb_frag_unref(skb_frag_t *frag)
2555{
2556 put_page(skb_frag_page(frag));
2557}
2558
2559/**
2560 * skb_frag_unref - release a reference on a paged fragment of an skb.
2561 * @skb: the buffer
2562 * @f: the fragment offset
2563 *
2564 * Releases a reference on the @f'th paged fragment of @skb.
2565 */
2566static inline void skb_frag_unref(struct sk_buff *skb, int f)
2567{
2568 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2569}
2570
2571/**
2572 * skb_frag_address - gets the address of the data contained in a paged fragment
2573 * @frag: the paged fragment buffer
2574 *
2575 * Returns the address of the data within @frag. The page must already
2576 * be mapped.
2577 */
2578static inline void *skb_frag_address(const skb_frag_t *frag)
2579{
2580 return page_address(skb_frag_page(frag)) + frag->page_offset;
2581}
2582
2583/**
2584 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2585 * @frag: the paged fragment buffer
2586 *
2587 * Returns the address of the data within @frag. Checks that the page
2588 * is mapped and returns %NULL otherwise.
2589 */
2590static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2591{
2592 void *ptr = page_address(skb_frag_page(frag));
2593 if (unlikely(!ptr))
2594 return NULL;
2595
2596 return ptr + frag->page_offset;
2597}
2598
2599/**
2600 * __skb_frag_set_page - sets the page contained in a paged fragment
2601 * @frag: the paged fragment
2602 * @page: the page to set
2603 *
2604 * Sets the fragment @frag to contain @page.
2605 */
2606static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2607{
a8605c60 2608 frag->page.p = page;
131ea667
IC
2609}
2610
2611/**
2612 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2613 * @skb: the buffer
2614 * @f: the fragment offset
2615 * @page: the page to set
2616 *
2617 * Sets the @f'th fragment of @skb to contain @page.
2618 */
2619static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2620 struct page *page)
2621{
2622 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2623}
2624
400dfd3a
ED
2625bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2626
131ea667
IC
2627/**
2628 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2629 * @dev: the device to map the fragment to
131ea667
IC
2630 * @frag: the paged fragment to map
2631 * @offset: the offset within the fragment (starting at the
2632 * fragment's own offset)
2633 * @size: the number of bytes to map
f83347df 2634 * @dir: the direction of the mapping (%PCI_DMA_*)
131ea667
IC
2635 *
2636 * Maps the page associated with @frag to @device.
2637 */
2638static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2639 const skb_frag_t *frag,
2640 size_t offset, size_t size,
2641 enum dma_data_direction dir)
2642{
2643 return dma_map_page(dev, skb_frag_page(frag),
2644 frag->page_offset + offset, size, dir);
2645}
2646
117632e6
ED
2647static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2648 gfp_t gfp_mask)
2649{
2650 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2651}
2652
bad93e9d
OP
2653
2654static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2655 gfp_t gfp_mask)
2656{
2657 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2658}
2659
2660
334a8132
PM
2661/**
2662 * skb_clone_writable - is the header of a clone writable
2663 * @skb: buffer to check
2664 * @len: length up to which to write
2665 *
2666 * Returns true if modifying the header part of the cloned buffer
2667 * does not requires the data to be copied.
2668 */
05bdd2f1 2669static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2670{
2671 return !skb_header_cloned(skb) &&
2672 skb_headroom(skb) + len <= skb->hdr_len;
2673}
2674
3697649f
DB
2675static inline int skb_try_make_writable(struct sk_buff *skb,
2676 unsigned int write_len)
2677{
2678 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2679 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2680}
2681
d9cc2048
HX
2682static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2683 int cloned)
2684{
2685 int delta = 0;
2686
d9cc2048
HX
2687 if (headroom > skb_headroom(skb))
2688 delta = headroom - skb_headroom(skb);
2689
2690 if (delta || cloned)
2691 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2692 GFP_ATOMIC);
2693 return 0;
2694}
2695
1da177e4
LT
2696/**
2697 * skb_cow - copy header of skb when it is required
2698 * @skb: buffer to cow
2699 * @headroom: needed headroom
2700 *
2701 * If the skb passed lacks sufficient headroom or its data part
2702 * is shared, data is reallocated. If reallocation fails, an error
2703 * is returned and original skb is not changed.
2704 *
2705 * The result is skb with writable area skb->head...skb->tail
2706 * and at least @headroom of space at head.
2707 */
2708static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2709{
d9cc2048
HX
2710 return __skb_cow(skb, headroom, skb_cloned(skb));
2711}
1da177e4 2712
d9cc2048
HX
2713/**
2714 * skb_cow_head - skb_cow but only making the head writable
2715 * @skb: buffer to cow
2716 * @headroom: needed headroom
2717 *
2718 * This function is identical to skb_cow except that we replace the
2719 * skb_cloned check by skb_header_cloned. It should be used when
2720 * you only need to push on some header and do not need to modify
2721 * the data.
2722 */
2723static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2724{
2725 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2726}
2727
2728/**
2729 * skb_padto - pad an skbuff up to a minimal size
2730 * @skb: buffer to pad
2731 * @len: minimal length
2732 *
2733 * Pads up a buffer to ensure the trailing bytes exist and are
2734 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2735 * is untouched. Otherwise it is extended. Returns zero on
2736 * success. The skb is freed on error.
1da177e4 2737 */
5b057c6b 2738static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2739{
2740 unsigned int size = skb->len;
2741 if (likely(size >= len))
5b057c6b 2742 return 0;
987c402a 2743 return skb_pad(skb, len - size);
1da177e4
LT
2744}
2745
9c0c1124
AD
2746/**
2747 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2748 * @skb: buffer to pad
2749 * @len: minimal length
2750 *
2751 * Pads up a buffer to ensure the trailing bytes exist and are
2752 * blanked. If the buffer already contains sufficient data it
2753 * is untouched. Otherwise it is extended. Returns zero on
2754 * success. The skb is freed on error.
2755 */
2756static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2757{
2758 unsigned int size = skb->len;
2759
2760 if (unlikely(size < len)) {
2761 len -= size;
2762 if (skb_pad(skb, len))
2763 return -ENOMEM;
2764 __skb_put(skb, len);
2765 }
2766 return 0;
2767}
2768
1da177e4 2769static inline int skb_add_data(struct sk_buff *skb,
af2b040e 2770 struct iov_iter *from, int copy)
1da177e4
LT
2771{
2772 const int off = skb->len;
2773
2774 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 2775 __wsum csum = 0;
15e6cb46
AV
2776 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2777 &csum, from)) {
1da177e4
LT
2778 skb->csum = csum_block_add(skb->csum, csum, off);
2779 return 0;
2780 }
15e6cb46 2781 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
2782 return 0;
2783
2784 __skb_trim(skb, off);
2785 return -EFAULT;
2786}
2787
38ba0a65
ED
2788static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2789 const struct page *page, int off)
1da177e4
LT
2790{
2791 if (i) {
9e903e08 2792 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 2793
ea2ab693 2794 return page == skb_frag_page(frag) &&
9e903e08 2795 off == frag->page_offset + skb_frag_size(frag);
1da177e4 2796 }
38ba0a65 2797 return false;
1da177e4
LT
2798}
2799
364c6bad
HX
2800static inline int __skb_linearize(struct sk_buff *skb)
2801{
2802 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2803}
2804
1da177e4
LT
2805/**
2806 * skb_linearize - convert paged skb to linear one
2807 * @skb: buffer to linarize
1da177e4
LT
2808 *
2809 * If there is no free memory -ENOMEM is returned, otherwise zero
2810 * is returned and the old skb data released.
2811 */
364c6bad
HX
2812static inline int skb_linearize(struct sk_buff *skb)
2813{
2814 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2815}
2816
cef401de
ED
2817/**
2818 * skb_has_shared_frag - can any frag be overwritten
2819 * @skb: buffer to test
2820 *
2821 * Return true if the skb has at least one frag that might be modified
2822 * by an external entity (as in vmsplice()/sendfile())
2823 */
2824static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2825{
c9af6db4
PS
2826 return skb_is_nonlinear(skb) &&
2827 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
2828}
2829
364c6bad
HX
2830/**
2831 * skb_linearize_cow - make sure skb is linear and writable
2832 * @skb: buffer to process
2833 *
2834 * If there is no free memory -ENOMEM is returned, otherwise zero
2835 * is returned and the old skb data released.
2836 */
2837static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 2838{
364c6bad
HX
2839 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2840 __skb_linearize(skb) : 0;
1da177e4
LT
2841}
2842
479ffccc
DB
2843static __always_inline void
2844__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2845 unsigned int off)
2846{
2847 if (skb->ip_summed == CHECKSUM_COMPLETE)
2848 skb->csum = csum_block_sub(skb->csum,
2849 csum_partial(start, len, 0), off);
2850 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2851 skb_checksum_start_offset(skb) < 0)
2852 skb->ip_summed = CHECKSUM_NONE;
2853}
2854
1da177e4
LT
2855/**
2856 * skb_postpull_rcsum - update checksum for received skb after pull
2857 * @skb: buffer to update
2858 * @start: start of data before pull
2859 * @len: length of data pulled
2860 *
2861 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
2862 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2863 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 2864 */
1da177e4 2865static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 2866 const void *start, unsigned int len)
1da177e4 2867{
479ffccc 2868 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
2869}
2870
479ffccc
DB
2871static __always_inline void
2872__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2873 unsigned int off)
2874{
2875 if (skb->ip_summed == CHECKSUM_COMPLETE)
2876 skb->csum = csum_block_add(skb->csum,
2877 csum_partial(start, len, 0), off);
2878}
cbb042f9 2879
479ffccc
DB
2880/**
2881 * skb_postpush_rcsum - update checksum for received skb after push
2882 * @skb: buffer to update
2883 * @start: start of data after push
2884 * @len: length of data pushed
2885 *
2886 * After doing a push on a received packet, you need to call this to
2887 * update the CHECKSUM_COMPLETE checksum.
2888 */
f8ffad69
DB
2889static inline void skb_postpush_rcsum(struct sk_buff *skb,
2890 const void *start, unsigned int len)
2891{
479ffccc 2892 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
2893}
2894
479ffccc
DB
2895unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2896
82a31b92
WC
2897/**
2898 * skb_push_rcsum - push skb and update receive checksum
2899 * @skb: buffer to update
2900 * @len: length of data pulled
2901 *
2902 * This function performs an skb_push on the packet and updates
2903 * the CHECKSUM_COMPLETE checksum. It should be used on
2904 * receive path processing instead of skb_push unless you know
2905 * that the checksum difference is zero (e.g., a valid IP header)
2906 * or you are setting ip_summed to CHECKSUM_NONE.
2907 */
2908static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2909 unsigned int len)
2910{
2911 skb_push(skb, len);
2912 skb_postpush_rcsum(skb, skb->data, len);
2913 return skb->data;
2914}
2915
7ce5a27f
DM
2916/**
2917 * pskb_trim_rcsum - trim received skb and update checksum
2918 * @skb: buffer to trim
2919 * @len: new length
2920 *
2921 * This is exactly the same as pskb_trim except that it ensures the
2922 * checksum of received packets are still valid after the operation.
2923 */
2924
2925static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2926{
2927 if (likely(len >= skb->len))
2928 return 0;
2929 if (skb->ip_summed == CHECKSUM_COMPLETE)
2930 skb->ip_summed = CHECKSUM_NONE;
2931 return __pskb_trim(skb, len);
2932}
2933
5293efe6
DB
2934static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2935{
2936 if (skb->ip_summed == CHECKSUM_COMPLETE)
2937 skb->ip_summed = CHECKSUM_NONE;
2938 __skb_trim(skb, len);
2939 return 0;
2940}
2941
2942static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
2943{
2944 if (skb->ip_summed == CHECKSUM_COMPLETE)
2945 skb->ip_summed = CHECKSUM_NONE;
2946 return __skb_grow(skb, len);
2947}
2948
1da177e4
LT
2949#define skb_queue_walk(queue, skb) \
2950 for (skb = (queue)->next; \
a1e4891f 2951 skb != (struct sk_buff *)(queue); \
1da177e4
LT
2952 skb = skb->next)
2953
46f8914e
JC
2954#define skb_queue_walk_safe(queue, skb, tmp) \
2955 for (skb = (queue)->next, tmp = skb->next; \
2956 skb != (struct sk_buff *)(queue); \
2957 skb = tmp, tmp = skb->next)
2958
1164f52a 2959#define skb_queue_walk_from(queue, skb) \
a1e4891f 2960 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
2961 skb = skb->next)
2962
2963#define skb_queue_walk_from_safe(queue, skb, tmp) \
2964 for (tmp = skb->next; \
2965 skb != (struct sk_buff *)(queue); \
2966 skb = tmp, tmp = skb->next)
2967
300ce174
SH
2968#define skb_queue_reverse_walk(queue, skb) \
2969 for (skb = (queue)->prev; \
a1e4891f 2970 skb != (struct sk_buff *)(queue); \
300ce174
SH
2971 skb = skb->prev)
2972
686a2955
DM
2973#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2974 for (skb = (queue)->prev, tmp = skb->prev; \
2975 skb != (struct sk_buff *)(queue); \
2976 skb = tmp, tmp = skb->prev)
2977
2978#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2979 for (tmp = skb->prev; \
2980 skb != (struct sk_buff *)(queue); \
2981 skb = tmp, tmp = skb->prev)
1da177e4 2982
21dc3301 2983static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
2984{
2985 return skb_shinfo(skb)->frag_list != NULL;
2986}
2987
2988static inline void skb_frag_list_init(struct sk_buff *skb)
2989{
2990 skb_shinfo(skb)->frag_list = NULL;
2991}
2992
ee039871
DM
2993#define skb_walk_frags(skb, iter) \
2994 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2995
ea3793ee
RW
2996
2997int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2998 const struct sk_buff *skb);
65101aec
PA
2999struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3000 struct sk_buff_head *queue,
3001 unsigned int flags,
3002 void (*destructor)(struct sock *sk,
3003 struct sk_buff *skb),
3004 int *peeked, int *off, int *err,
3005 struct sk_buff **last);
ea3793ee 3006struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3007 void (*destructor)(struct sock *sk,
3008 struct sk_buff *skb),
ea3793ee
RW
3009 int *peeked, int *off, int *err,
3010 struct sk_buff **last);
7965bd4d 3011struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3012 void (*destructor)(struct sock *sk,
3013 struct sk_buff *skb),
7965bd4d
JP
3014 int *peeked, int *off, int *err);
3015struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3016 int *err);
3017unsigned int datagram_poll(struct file *file, struct socket *sock,
3018 struct poll_table_struct *wait);
c0371da6
AV
3019int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3020 struct iov_iter *to, int size);
51f3d02b
DM
3021static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3022 struct msghdr *msg, int size)
3023{
e5a4b0bb 3024 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3025}
e5a4b0bb
AV
3026int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3027 struct msghdr *msg);
3a654f97
AV
3028int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3029 struct iov_iter *from, int len);
3a654f97 3030int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3031void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3032void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3033static inline void skb_free_datagram_locked(struct sock *sk,
3034 struct sk_buff *skb)
3035{
3036 __skb_free_datagram_locked(sk, skb, 0);
3037}
7965bd4d 3038int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3039int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3040int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3041__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3042 int len, __wsum csum);
a60e3cc7 3043int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3044 struct pipe_inode_info *pipe, unsigned int len,
25869262 3045 unsigned int flags);
7965bd4d 3046void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3047unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3048int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3049 int len, int hlen);
7965bd4d
JP
3050void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3051int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3052void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 3053unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
ae7ef81e 3054bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
7965bd4d 3055struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3056struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3057int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3058int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3059int skb_vlan_pop(struct sk_buff *skb);
3060int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3061struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3062 gfp_t gfp);
20380731 3063
6ce8e9ce
AV
3064static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3065{
3073f070 3066 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3067}
3068
7eab8d9e
AV
3069static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3070{
e5a4b0bb 3071 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3072}
3073
2817a336
DB
3074struct skb_checksum_ops {
3075 __wsum (*update)(const void *mem, int len, __wsum wsum);
3076 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3077};
3078
3079__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3080 __wsum csum, const struct skb_checksum_ops *ops);
3081__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3082 __wsum csum);
3083
1e98a0f0
ED
3084static inline void * __must_check
3085__skb_header_pointer(const struct sk_buff *skb, int offset,
3086 int len, void *data, int hlen, void *buffer)
1da177e4 3087{
55820ee2 3088 if (hlen - offset >= len)
690e36e7 3089 return data + offset;
1da177e4 3090
690e36e7
DM
3091 if (!skb ||
3092 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3093 return NULL;
3094
3095 return buffer;
3096}
3097
1e98a0f0
ED
3098static inline void * __must_check
3099skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3100{
3101 return __skb_header_pointer(skb, offset, len, skb->data,
3102 skb_headlen(skb), buffer);
3103}
3104
4262e5cc
DB
3105/**
3106 * skb_needs_linearize - check if we need to linearize a given skb
3107 * depending on the given device features.
3108 * @skb: socket buffer to check
3109 * @features: net device features
3110 *
3111 * Returns true if either:
3112 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3113 * 2. skb is fragmented and the device does not support SG.
3114 */
3115static inline bool skb_needs_linearize(struct sk_buff *skb,
3116 netdev_features_t features)
3117{
3118 return skb_is_nonlinear(skb) &&
3119 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3120 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3121}
3122
d626f62b
ACM
3123static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3124 void *to,
3125 const unsigned int len)
3126{
3127 memcpy(to, skb->data, len);
3128}
3129
3130static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3131 const int offset, void *to,
3132 const unsigned int len)
3133{
3134 memcpy(to, skb->data + offset, len);
3135}
3136
27d7ff46
ACM
3137static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3138 const void *from,
3139 const unsigned int len)
3140{
3141 memcpy(skb->data, from, len);
3142}
3143
3144static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3145 const int offset,
3146 const void *from,
3147 const unsigned int len)
3148{
3149 memcpy(skb->data + offset, from, len);
3150}
3151
7965bd4d 3152void skb_init(void);
1da177e4 3153
ac45f602
PO
3154static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3155{
3156 return skb->tstamp;
3157}
3158
a61bbcf2
PM
3159/**
3160 * skb_get_timestamp - get timestamp from a skb
3161 * @skb: skb to get stamp from
3162 * @stamp: pointer to struct timeval to store stamp in
3163 *
3164 * Timestamps are stored in the skb as offsets to a base timestamp.
3165 * This function converts the offset back to a struct timeval and stores
3166 * it in stamp.
3167 */
ac45f602
PO
3168static inline void skb_get_timestamp(const struct sk_buff *skb,
3169 struct timeval *stamp)
a61bbcf2 3170{
b7aa0bf7 3171 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3172}
3173
ac45f602
PO
3174static inline void skb_get_timestampns(const struct sk_buff *skb,
3175 struct timespec *stamp)
3176{
3177 *stamp = ktime_to_timespec(skb->tstamp);
3178}
3179
b7aa0bf7 3180static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3181{
b7aa0bf7 3182 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3183}
3184
164891aa
SH
3185static inline ktime_t net_timedelta(ktime_t t)
3186{
3187 return ktime_sub(ktime_get_real(), t);
3188}
3189
b9ce204f
IJ
3190static inline ktime_t net_invalid_timestamp(void)
3191{
8b0e1953 3192 return 0;
b9ce204f 3193}
a61bbcf2 3194
62bccb8c
AD
3195struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3196
c1f19b51
RC
3197#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3198
7965bd4d
JP
3199void skb_clone_tx_timestamp(struct sk_buff *skb);
3200bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3201
3202#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3203
3204static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3205{
3206}
3207
3208static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3209{
3210 return false;
3211}
3212
3213#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3214
3215/**
3216 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3217 *
da92b194
RC
3218 * PHY drivers may accept clones of transmitted packets for
3219 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3220 * must call this function to return the skb back to the stack with a
3221 * timestamp.
da92b194 3222 *
c1f19b51 3223 * @skb: clone of the the original outgoing packet
7a76a021 3224 * @hwtstamps: hardware time stamps
c1f19b51
RC
3225 *
3226 */
3227void skb_complete_tx_timestamp(struct sk_buff *skb,
3228 struct skb_shared_hwtstamps *hwtstamps);
3229
e7fd2885
WB
3230void __skb_tstamp_tx(struct sk_buff *orig_skb,
3231 struct skb_shared_hwtstamps *hwtstamps,
3232 struct sock *sk, int tstype);
3233
ac45f602
PO
3234/**
3235 * skb_tstamp_tx - queue clone of skb with send time stamps
3236 * @orig_skb: the original outgoing packet
3237 * @hwtstamps: hardware time stamps, may be NULL if not available
3238 *
3239 * If the skb has a socket associated, then this function clones the
3240 * skb (thus sharing the actual data and optional structures), stores
3241 * the optional hardware time stamping information (if non NULL) or
3242 * generates a software time stamp (otherwise), then queues the clone
3243 * to the error queue of the socket. Errors are silently ignored.
3244 */
7965bd4d
JP
3245void skb_tstamp_tx(struct sk_buff *orig_skb,
3246 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3247
4507a715
RC
3248static inline void sw_tx_timestamp(struct sk_buff *skb)
3249{
2244d07b
OH
3250 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3251 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
4507a715
RC
3252 skb_tstamp_tx(skb, NULL);
3253}
3254
3255/**
3256 * skb_tx_timestamp() - Driver hook for transmit timestamping
3257 *
3258 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3259 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3260 *
73409f3b
DM
3261 * Specifically, one should make absolutely sure that this function is
3262 * called before TX completion of this packet can trigger. Otherwise
3263 * the packet could potentially already be freed.
3264 *
4507a715
RC
3265 * @skb: A socket buffer.
3266 */
3267static inline void skb_tx_timestamp(struct sk_buff *skb)
3268{
c1f19b51 3269 skb_clone_tx_timestamp(skb);
4507a715
RC
3270 sw_tx_timestamp(skb);
3271}
3272
6e3e939f
JB
3273/**
3274 * skb_complete_wifi_ack - deliver skb with wifi status
3275 *
3276 * @skb: the original outgoing packet
3277 * @acked: ack status
3278 *
3279 */
3280void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3281
7965bd4d
JP
3282__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3283__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3284
60476372
HX
3285static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3286{
6edec0e6
TH
3287 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3288 skb->csum_valid ||
3289 (skb->ip_summed == CHECKSUM_PARTIAL &&
3290 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3291}
3292
fb286bb2
HX
3293/**
3294 * skb_checksum_complete - Calculate checksum of an entire packet
3295 * @skb: packet to process
3296 *
3297 * This function calculates the checksum over the entire packet plus
3298 * the value of skb->csum. The latter can be used to supply the
3299 * checksum of a pseudo header as used by TCP/UDP. It returns the
3300 * checksum.
3301 *
3302 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3303 * this function can be used to verify that checksum on received
3304 * packets. In that case the function should return zero if the
3305 * checksum is correct. In particular, this function will return zero
3306 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3307 * hardware has already verified the correctness of the checksum.
3308 */
4381ca3c 3309static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3310{
60476372
HX
3311 return skb_csum_unnecessary(skb) ?
3312 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3313}
3314
77cffe23
TH
3315static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3316{
3317 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3318 if (skb->csum_level == 0)
3319 skb->ip_summed = CHECKSUM_NONE;
3320 else
3321 skb->csum_level--;
3322 }
3323}
3324
3325static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3326{
3327 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3328 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3329 skb->csum_level++;
3330 } else if (skb->ip_summed == CHECKSUM_NONE) {
3331 skb->ip_summed = CHECKSUM_UNNECESSARY;
3332 skb->csum_level = 0;
3333 }
3334}
3335
5a212329
TH
3336static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3337{
3338 /* Mark current checksum as bad (typically called from GRO
3339 * path). In the case that ip_summed is CHECKSUM_NONE
3340 * this must be the first checksum encountered in the packet.
3341 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3342 * checksum after the last one validated. For UDP, a zero
3343 * checksum can not be marked as bad.
3344 */
3345
3346 if (skb->ip_summed == CHECKSUM_NONE ||
3347 skb->ip_summed == CHECKSUM_UNNECESSARY)
3348 skb->csum_bad = 1;
3349}
3350
76ba0aae
TH
3351/* Check if we need to perform checksum complete validation.
3352 *
3353 * Returns true if checksum complete is needed, false otherwise
3354 * (either checksum is unnecessary or zero checksum is allowed).
3355 */
3356static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3357 bool zero_okay,
3358 __sum16 check)
3359{
5d0c2b95
TH
3360 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3361 skb->csum_valid = 1;
77cffe23 3362 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3363 return false;
3364 }
3365
3366 return true;
3367}
3368
3369/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3370 * in checksum_init.
3371 */
3372#define CHECKSUM_BREAK 76
3373
4e18b9ad
TH
3374/* Unset checksum-complete
3375 *
3376 * Unset checksum complete can be done when packet is being modified
3377 * (uncompressed for instance) and checksum-complete value is
3378 * invalidated.
3379 */
3380static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3381{
3382 if (skb->ip_summed == CHECKSUM_COMPLETE)
3383 skb->ip_summed = CHECKSUM_NONE;
3384}
3385
76ba0aae
TH
3386/* Validate (init) checksum based on checksum complete.
3387 *
3388 * Return values:
3389 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3390 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3391 * checksum is stored in skb->csum for use in __skb_checksum_complete
3392 * non-zero: value of invalid checksum
3393 *
3394 */
3395static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3396 bool complete,
3397 __wsum psum)
3398{
3399 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3400 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3401 skb->csum_valid = 1;
76ba0aae
TH
3402 return 0;
3403 }
5a212329
TH
3404 } else if (skb->csum_bad) {
3405 /* ip_summed == CHECKSUM_NONE in this case */
c91d4606 3406 return (__force __sum16)1;
76ba0aae
TH
3407 }
3408
3409 skb->csum = psum;
3410
5d0c2b95
TH
3411 if (complete || skb->len <= CHECKSUM_BREAK) {
3412 __sum16 csum;
3413
3414 csum = __skb_checksum_complete(skb);
3415 skb->csum_valid = !csum;
3416 return csum;
3417 }
76ba0aae
TH
3418
3419 return 0;
3420}
3421
3422static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3423{
3424 return 0;
3425}
3426
3427/* Perform checksum validate (init). Note that this is a macro since we only
3428 * want to calculate the pseudo header which is an input function if necessary.
3429 * First we try to validate without any computation (checksum unnecessary) and
3430 * then calculate based on checksum complete calling the function to compute
3431 * pseudo header.
3432 *
3433 * Return values:
3434 * 0: checksum is validated or try to in skb_checksum_complete
3435 * non-zero: value of invalid checksum
3436 */
3437#define __skb_checksum_validate(skb, proto, complete, \
3438 zero_okay, check, compute_pseudo) \
3439({ \
3440 __sum16 __ret = 0; \
5d0c2b95 3441 skb->csum_valid = 0; \
76ba0aae
TH
3442 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3443 __ret = __skb_checksum_validate_complete(skb, \
3444 complete, compute_pseudo(skb, proto)); \
3445 __ret; \
3446})
3447
3448#define skb_checksum_init(skb, proto, compute_pseudo) \
3449 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3450
3451#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3452 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3453
3454#define skb_checksum_validate(skb, proto, compute_pseudo) \
3455 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3456
3457#define skb_checksum_validate_zero_check(skb, proto, check, \
3458 compute_pseudo) \
096a4cfa 3459 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3460
3461#define skb_checksum_simple_validate(skb) \
3462 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3463
d96535a1
TH
3464static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3465{
3466 return (skb->ip_summed == CHECKSUM_NONE &&
3467 skb->csum_valid && !skb->csum_bad);
3468}
3469
3470static inline void __skb_checksum_convert(struct sk_buff *skb,
3471 __sum16 check, __wsum pseudo)
3472{
3473 skb->csum = ~pseudo;
3474 skb->ip_summed = CHECKSUM_COMPLETE;
3475}
3476
3477#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3478do { \
3479 if (__skb_checksum_convert_check(skb)) \
3480 __skb_checksum_convert(skb, check, \
3481 compute_pseudo(skb, proto)); \
3482} while (0)
3483
15e2396d
TH
3484static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3485 u16 start, u16 offset)
3486{
3487 skb->ip_summed = CHECKSUM_PARTIAL;
3488 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3489 skb->csum_offset = offset - start;
3490}
3491
dcdc8994
TH
3492/* Update skbuf and packet to reflect the remote checksum offload operation.
3493 * When called, ptr indicates the starting point for skb->csum when
3494 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3495 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3496 */
3497static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3498 int start, int offset, bool nopartial)
dcdc8994
TH
3499{
3500 __wsum delta;
3501
15e2396d
TH
3502 if (!nopartial) {
3503 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3504 return;
3505 }
3506
dcdc8994
TH
3507 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3508 __skb_checksum_complete(skb);
3509 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3510 }
3511
3512 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3513
3514 /* Adjust skb->csum since we changed the packet */
3515 skb->csum = csum_add(skb->csum, delta);
3516}
3517
cb9c6836
FW
3518static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3519{
3520#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3521 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3522#else
3523 return NULL;
3524#endif
3525}
3526
5f79e0f9 3527#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3528void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3529static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3530{
3531 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3532 nf_conntrack_destroy(nfct);
1da177e4
LT
3533}
3534static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3535{
3536 if (nfct)
3537 atomic_inc(&nfct->use);
3538}
2fc72c7b 3539#endif
34666d46 3540#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3541static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3542{
3543 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3544 kfree(nf_bridge);
3545}
3546static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3547{
3548 if (nf_bridge)
3549 atomic_inc(&nf_bridge->use);
3550}
3551#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3552static inline void nf_reset(struct sk_buff *skb)
3553{
5f79e0f9 3554#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3555 nf_conntrack_put(skb_nfct(skb));
3556 skb->_nfct = 0;
2fc72c7b 3557#endif
34666d46 3558#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3559 nf_bridge_put(skb->nf_bridge);
3560 skb->nf_bridge = NULL;
3561#endif
3562}
3563
124dff01
PM
3564static inline void nf_reset_trace(struct sk_buff *skb)
3565{
478b360a 3566#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3567 skb->nf_trace = 0;
3568#endif
a193a4ab
PM
3569}
3570
edda553c 3571/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3572static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3573 bool copy)
edda553c 3574{
5f79e0f9 3575#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3576 dst->_nfct = src->_nfct;
3577 nf_conntrack_get(skb_nfct(src));
2fc72c7b 3578#endif
34666d46 3579#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3580 dst->nf_bridge = src->nf_bridge;
3581 nf_bridge_get(src->nf_bridge);
3582#endif
478b360a 3583#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3584 if (copy)
3585 dst->nf_trace = src->nf_trace;
478b360a 3586#endif
edda553c
YK
3587}
3588
e7ac05f3
YK
3589static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3590{
e7ac05f3 3591#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 3592 nf_conntrack_put(skb_nfct(dst));
2fc72c7b 3593#endif
34666d46 3594#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3595 nf_bridge_put(dst->nf_bridge);
3596#endif
b1937227 3597 __nf_copy(dst, src, true);
e7ac05f3
YK
3598}
3599
984bc16c
JM
3600#ifdef CONFIG_NETWORK_SECMARK
3601static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3602{
3603 to->secmark = from->secmark;
3604}
3605
3606static inline void skb_init_secmark(struct sk_buff *skb)
3607{
3608 skb->secmark = 0;
3609}
3610#else
3611static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3612{ }
3613
3614static inline void skb_init_secmark(struct sk_buff *skb)
3615{ }
3616#endif
3617
574f7194
EB
3618static inline bool skb_irq_freeable(const struct sk_buff *skb)
3619{
3620 return !skb->destructor &&
3621#if IS_ENABLED(CONFIG_XFRM)
3622 !skb->sp &&
3623#endif
cb9c6836 3624 !skb_nfct(skb) &&
574f7194
EB
3625 !skb->_skb_refdst &&
3626 !skb_has_frag_list(skb);
3627}
3628
f25f4e44
PWJ
3629static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3630{
f25f4e44 3631 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3632}
3633
9247744e 3634static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3635{
4e3ab47a 3636 return skb->queue_mapping;
4e3ab47a
PE
3637}
3638
f25f4e44
PWJ
3639static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3640{
f25f4e44 3641 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3642}
3643
d5a9e24a
DM
3644static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3645{
3646 skb->queue_mapping = rx_queue + 1;
3647}
3648
9247744e 3649static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3650{
3651 return skb->queue_mapping - 1;
3652}
3653
9247744e 3654static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3655{
a02cec21 3656 return skb->queue_mapping != 0;
d5a9e24a
DM
3657}
3658
4ff06203
JA
3659static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3660{
3661 skb->dst_pending_confirm = val;
3662}
3663
3664static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3665{
3666 return skb->dst_pending_confirm != 0;
3667}
3668
def8b4fa
AD
3669static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3670{
0b3d8e08 3671#ifdef CONFIG_XFRM
def8b4fa 3672 return skb->sp;
def8b4fa 3673#else
def8b4fa 3674 return NULL;
def8b4fa 3675#endif
0b3d8e08 3676}
def8b4fa 3677
68c33163
PS
3678/* Keeps track of mac header offset relative to skb->head.
3679 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3680 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3681 * tunnel skb it points to outer mac header.
3682 * Keeps track of level of encapsulation of network headers.
3683 */
68c33163 3684struct skb_gso_cb {
802ab55a
AD
3685 union {
3686 int mac_offset;
3687 int data_offset;
3688 };
3347c960 3689 int encap_level;
76443456 3690 __wsum csum;
7e2b10c1 3691 __u16 csum_start;
68c33163 3692};
9207f9d4
KK
3693#define SKB_SGO_CB_OFFSET 32
3694#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
3695
3696static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3697{
3698 return (skb_mac_header(inner_skb) - inner_skb->head) -
3699 SKB_GSO_CB(inner_skb)->mac_offset;
3700}
3701
1e2bd517
PS
3702static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3703{
3704 int new_headroom, headroom;
3705 int ret;
3706
3707 headroom = skb_headroom(skb);
3708 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3709 if (ret)
3710 return ret;
3711
3712 new_headroom = skb_headroom(skb);
3713 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3714 return 0;
3715}
3716
08b64fcc
AD
3717static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3718{
3719 /* Do not update partial checksums if remote checksum is enabled. */
3720 if (skb->remcsum_offload)
3721 return;
3722
3723 SKB_GSO_CB(skb)->csum = res;
3724 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3725}
3726
7e2b10c1
TH
3727/* Compute the checksum for a gso segment. First compute the checksum value
3728 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3729 * then add in skb->csum (checksum from csum_start to end of packet).
3730 * skb->csum and csum_start are then updated to reflect the checksum of the
3731 * resultant packet starting from the transport header-- the resultant checksum
3732 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3733 * header.
3734 */
3735static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3736{
76443456
AD
3737 unsigned char *csum_start = skb_transport_header(skb);
3738 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3739 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 3740
76443456
AD
3741 SKB_GSO_CB(skb)->csum = res;
3742 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 3743
76443456 3744 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
3745}
3746
bdcc0924 3747static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3748{
3749 return skb_shinfo(skb)->gso_size;
3750}
3751
36a8f39e 3752/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 3753static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
3754{
3755 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3756}
3757
5293efe6
DB
3758static inline void skb_gso_reset(struct sk_buff *skb)
3759{
3760 skb_shinfo(skb)->gso_size = 0;
3761 skb_shinfo(skb)->gso_segs = 0;
3762 skb_shinfo(skb)->gso_type = 0;
3763}
3764
7965bd4d 3765void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
3766
3767static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3768{
3769 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3770 * wanted then gso_type will be set. */
05bdd2f1
ED
3771 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3772
b78462eb
AD
3773 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3774 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
3775 __skb_warn_lro_forwarding(skb);
3776 return true;
3777 }
3778 return false;
3779}
3780
35fc92a9
HX
3781static inline void skb_forward_csum(struct sk_buff *skb)
3782{
3783 /* Unfortunately we don't support this one. Any brave souls? */
3784 if (skb->ip_summed == CHECKSUM_COMPLETE)
3785 skb->ip_summed = CHECKSUM_NONE;
3786}
3787
bc8acf2c
ED
3788/**
3789 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3790 * @skb: skb to check
3791 *
3792 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3793 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3794 * use this helper, to document places where we make this assertion.
3795 */
05bdd2f1 3796static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
3797{
3798#ifdef DEBUG
3799 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3800#endif
3801}
3802
f35d9d8a 3803bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 3804
ed1f50c3 3805int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
3806struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3807 unsigned int transport_len,
3808 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 3809
3a7c1ee4
AD
3810/**
3811 * skb_head_is_locked - Determine if the skb->head is locked down
3812 * @skb: skb to check
3813 *
3814 * The head on skbs build around a head frag can be removed if they are
3815 * not cloned. This function returns true if the skb head is locked down
3816 * due to either being allocated via kmalloc, or by being a clone with
3817 * multiple references to the head.
3818 */
3819static inline bool skb_head_is_locked(const struct sk_buff *skb)
3820{
3821 return !skb->head_frag || skb_cloned(skb);
3822}
fe6cc55f
FW
3823
3824/**
3825 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3826 *
3827 * @skb: GSO skb
3828 *
3829 * skb_gso_network_seglen is used to determine the real size of the
3830 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3831 *
3832 * The MAC/L2 header is not accounted for.
3833 */
3834static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3835{
3836 unsigned int hdr_len = skb_transport_header(skb) -
3837 skb_network_header(skb);
3838 return hdr_len + skb_gso_transport_seglen(skb);
3839}
ee122c79 3840
179bc67f
EC
3841/* Local Checksum Offload.
3842 * Compute outer checksum based on the assumption that the
3843 * inner checksum will be offloaded later.
e8ae7b00
EC
3844 * See Documentation/networking/checksum-offloads.txt for
3845 * explanation of how this works.
179bc67f
EC
3846 * Fill in outer checksum adjustment (e.g. with sum of outer
3847 * pseudo-header) before calling.
3848 * Also ensure that inner checksum is in linear data area.
3849 */
3850static inline __wsum lco_csum(struct sk_buff *skb)
3851{
9e74a6da
AD
3852 unsigned char *csum_start = skb_checksum_start(skb);
3853 unsigned char *l4_hdr = skb_transport_header(skb);
3854 __wsum partial;
179bc67f
EC
3855
3856 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
3857 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3858 skb->csum_offset));
3859
179bc67f 3860 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 3861 * adjustment filled in by caller) and return result.
179bc67f 3862 */
9e74a6da 3863 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
3864}
3865
1da177e4
LT
3866#endif /* __KERNEL__ */
3867#endif /* _LINUX_SKBUFF_H */