]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/skbuff.h
tcp: add tcp_tsopt_ecr_before helper
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4 22#include <linux/cache.h>
56b17425 23#include <linux/rbtree.h>
51f3d02b 24#include <linux/socket.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
1bd758eb 37#include <net/flow_dissector.h>
a60e3cc7 38#include <linux/splice.h>
72b31f72 39#include <linux/in6.h>
f70ea018 40#include <net/flow.h>
1da177e4 41
78ea85f1
DB
42/* A. Checksumming of received packets by device.
43 *
44 * CHECKSUM_NONE:
45 *
46 * Device failed to checksum this packet e.g. due to lack of capabilities.
47 * The packet contains full (though not verified) checksum in packet but
48 * not in skb->csum. Thus, skb->csum is undefined in this case.
49 *
50 * CHECKSUM_UNNECESSARY:
51 *
52 * The hardware you're dealing with doesn't calculate the full checksum
53 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
54 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
55 * if their checksums are okay. skb->csum is still undefined in this case
56 * though. It is a bad option, but, unfortunately, nowadays most vendors do
57 * this. Apparently with the secret goal to sell you new devices, when you
58 * will add new protocol to your host, f.e. IPv6 8)
59 *
60 * CHECKSUM_UNNECESSARY is applicable to following protocols:
61 * TCP: IPv6 and IPv4.
62 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
63 * zero UDP checksum for either IPv4 or IPv6, the networking stack
64 * may perform further validation in this case.
65 * GRE: only if the checksum is present in the header.
66 * SCTP: indicates the CRC in SCTP header has been validated.
67 *
68 * skb->csum_level indicates the number of consecutive checksums found in
69 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
70 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
71 * and a device is able to verify the checksums for UDP (possibly zero),
72 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
73 * two. If the device were only able to verify the UDP checksum and not
74 * GRE, either because it doesn't support GRE checksum of because GRE
75 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
76 * not considered in this case).
78ea85f1
DB
77 *
78 * CHECKSUM_COMPLETE:
79 *
80 * This is the most generic way. The device supplied checksum of the _whole_
81 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
82 * hardware doesn't need to parse L3/L4 headers to implement this.
83 *
84 * Note: Even if device supports only some protocols, but is able to produce
85 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
86 *
87 * CHECKSUM_PARTIAL:
88 *
6edec0e6
TH
89 * A checksum is set up to be offloaded to a device as described in the
90 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 91 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
92 * on the same host, or it may be set in the input path in GRO or remote
93 * checksum offload. For the purposes of checksum verification, the checksum
94 * referred to by skb->csum_start + skb->csum_offset and any preceding
95 * checksums in the packet are considered verified. Any checksums in the
96 * packet that are after the checksum being offloaded are not considered to
97 * be verified.
78ea85f1
DB
98 *
99 * B. Checksumming on output.
100 *
101 * CHECKSUM_NONE:
102 *
103 * The skb was already checksummed by the protocol, or a checksum is not
104 * required.
105 *
106 * CHECKSUM_PARTIAL:
107 *
108 * The device is required to checksum the packet as seen by hard_start_xmit()
109 * from skb->csum_start up to the end, and to record/write the checksum at
110 * offset skb->csum_start + skb->csum_offset.
111 *
112 * The device must show its capabilities in dev->features, set up at device
113 * setup time, e.g. netdev_features.h:
114 *
115 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
116 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
117 * IPv4. Sigh. Vendors like this way for an unknown reason.
118 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
119 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
120 * NETIF_F_... - Well, you get the picture.
121 *
122 * CHECKSUM_UNNECESSARY:
123 *
124 * Normally, the device will do per protocol specific checksumming. Protocol
125 * implementations that do not want the NIC to perform the checksum
126 * calculation should use this flag in their outgoing skbs.
127 *
128 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
129 * offload. Correspondingly, the FCoE protocol driver
130 * stack should use CHECKSUM_UNNECESSARY.
131 *
132 * Any questions? No questions, good. --ANK
133 */
134
60476372 135/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
136#define CHECKSUM_NONE 0
137#define CHECKSUM_UNNECESSARY 1
138#define CHECKSUM_COMPLETE 2
139#define CHECKSUM_PARTIAL 3
1da177e4 140
77cffe23
TH
141/* Maximum value in skb->csum_level */
142#define SKB_MAX_CSUM_LEVEL 3
143
0bec8c88 144#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 145#define SKB_WITH_OVERHEAD(X) \
deea84b0 146 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
147#define SKB_MAX_ORDER(X, ORDER) \
148 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
149#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
150#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
151
87fb4b7b
ED
152/* return minimum truesize of one skb containing X bytes of data */
153#define SKB_TRUESIZE(X) ((X) + \
154 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
155 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
156
1da177e4 157struct net_device;
716ea3a7 158struct scatterlist;
9c55e01c 159struct pipe_inode_info;
a8f820aa 160struct iov_iter;
fd11a83d 161struct napi_struct;
1da177e4 162
5f79e0f9 163#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
164struct nf_conntrack {
165 atomic_t use;
1da177e4 166};
5f79e0f9 167#endif
1da177e4 168
34666d46 169#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 170struct nf_bridge_info {
bf1ac5ca 171 atomic_t use;
3eaf4025
FW
172 enum {
173 BRNF_PROTO_UNCHANGED,
174 BRNF_PROTO_8021Q,
175 BRNF_PROTO_PPPOE
7fb48c5b 176 } orig_proto:8;
72b1e5e4
FW
177 u8 pkt_otherhost:1;
178 u8 in_prerouting:1;
179 u8 bridged_dnat:1;
411ffb4f 180 __u16 frag_max_size;
bf1ac5ca 181 struct net_device *physindev;
63cdbc06
FW
182
183 /* always valid & non-NULL from FORWARD on, for physdev match */
184 struct net_device *physoutdev;
7fb48c5b 185 union {
72b1e5e4 186 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
187 __be32 ipv4_daddr;
188 struct in6_addr ipv6_daddr;
72b1e5e4
FW
189
190 /* after prerouting + nat detected: store original source
191 * mac since neigh resolution overwrites it, only used while
192 * skb is out in neigh layer.
193 */
194 char neigh_header[8];
72b31f72 195 };
1da177e4
LT
196};
197#endif
198
1da177e4
LT
199struct sk_buff_head {
200 /* These two members must be first. */
201 struct sk_buff *next;
202 struct sk_buff *prev;
203
204 __u32 qlen;
205 spinlock_t lock;
206};
207
208struct sk_buff;
209
9d4dde52
IC
210/* To allow 64K frame to be packed as single skb without frag_list we
211 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
212 * buffers which do not start on a page boundary.
213 *
214 * Since GRO uses frags we allocate at least 16 regardless of page
215 * size.
a715dea3 216 */
9d4dde52 217#if (65536/PAGE_SIZE + 1) < 16
eec00954 218#define MAX_SKB_FRAGS 16UL
a715dea3 219#else
9d4dde52 220#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 221#endif
1da177e4
LT
222
223typedef struct skb_frag_struct skb_frag_t;
224
225struct skb_frag_struct {
a8605c60
IC
226 struct {
227 struct page *p;
228 } page;
cb4dfe56 229#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
230 __u32 page_offset;
231 __u32 size;
cb4dfe56
ED
232#else
233 __u16 page_offset;
234 __u16 size;
235#endif
1da177e4
LT
236};
237
9e903e08
ED
238static inline unsigned int skb_frag_size(const skb_frag_t *frag)
239{
240 return frag->size;
241}
242
243static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
244{
245 frag->size = size;
246}
247
248static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
249{
250 frag->size += delta;
251}
252
253static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
254{
255 frag->size -= delta;
256}
257
ac45f602
PO
258#define HAVE_HW_TIME_STAMP
259
260/**
d3a21be8 261 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
262 * @hwtstamp: hardware time stamp transformed into duration
263 * since arbitrary point in time
ac45f602
PO
264 *
265 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 266 * skb->tstamp.
ac45f602
PO
267 *
268 * hwtstamps can only be compared against other hwtstamps from
269 * the same device.
270 *
271 * This structure is attached to packets as part of the
272 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
273 */
274struct skb_shared_hwtstamps {
275 ktime_t hwtstamp;
ac45f602
PO
276};
277
2244d07b
OH
278/* Definitions for tx_flags in struct skb_shared_info */
279enum {
280 /* generate hardware time stamp */
281 SKBTX_HW_TSTAMP = 1 << 0,
282
e7fd2885 283 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
284 SKBTX_SW_TSTAMP = 1 << 1,
285
286 /* device driver is going to provide hardware time stamp */
287 SKBTX_IN_PROGRESS = 1 << 2,
288
a6686f2f 289 /* device driver supports TX zero-copy buffers */
62b1a8ab 290 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
291
292 /* generate wifi status information (where possible) */
62b1a8ab 293 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
294
295 /* This indicates at least one fragment might be overwritten
296 * (as in vmsplice(), sendfile() ...)
297 * If we need to compute a TX checksum, we'll need to copy
298 * all frags to avoid possible bad checksum
299 */
300 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
301
302 /* generate software time stamp when entering packet scheduling */
303 SKBTX_SCHED_TSTAMP = 1 << 6,
e1c8a607
WB
304
305 /* generate software timestamp on peer data acknowledgment */
306 SKBTX_ACK_TSTAMP = 1 << 7,
a6686f2f
SM
307};
308
e1c8a607
WB
309#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
310 SKBTX_SCHED_TSTAMP | \
311 SKBTX_ACK_TSTAMP)
f24b9be5
WB
312#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
313
a6686f2f
SM
314/*
315 * The callback notifies userspace to release buffers when skb DMA is done in
316 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
317 * The zerocopy_success argument is true if zero copy transmit occurred,
318 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
319 * The ctx field is used to track device context.
320 * The desc field is used to track userspace buffer index.
a6686f2f
SM
321 */
322struct ubuf_info {
e19d6763 323 void (*callback)(struct ubuf_info *, bool zerocopy_success);
ca8f4fb2 324 void *ctx;
a6686f2f 325 unsigned long desc;
ac45f602
PO
326};
327
1da177e4
LT
328/* This data is invariant across clones and lives at
329 * the end of the header data, ie. at skb->end.
330 */
331struct skb_shared_info {
9f42f126
IC
332 unsigned char nr_frags;
333 __u8 tx_flags;
7967168c
HX
334 unsigned short gso_size;
335 /* Warning: this field is not always filled in (UFO)! */
336 unsigned short gso_segs;
337 unsigned short gso_type;
1da177e4 338 struct sk_buff *frag_list;
ac45f602 339 struct skb_shared_hwtstamps hwtstamps;
09c2d251 340 u32 tskey;
9f42f126 341 __be32 ip6_frag_id;
ec7d2f2c
ED
342
343 /*
344 * Warning : all fields before dataref are cleared in __alloc_skb()
345 */
346 atomic_t dataref;
347
69e3c75f
JB
348 /* Intermediate layers must ensure that destructor_arg
349 * remains valid until skb destructor */
350 void * destructor_arg;
a6686f2f 351
fed66381
ED
352 /* must be last field, see pskb_expand_head() */
353 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
354};
355
356/* We divide dataref into two halves. The higher 16 bits hold references
357 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
358 * the entire skb->data. A clone of a headerless skb holds the length of
359 * the header in skb->hdr_len.
1da177e4
LT
360 *
361 * All users must obey the rule that the skb->data reference count must be
362 * greater than or equal to the payload reference count.
363 *
364 * Holding a reference to the payload part means that the user does not
365 * care about modifications to the header part of skb->data.
366 */
367#define SKB_DATAREF_SHIFT 16
368#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
369
d179cd12
DM
370
371enum {
c8753d55
VS
372 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
373 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
374 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
375};
376
7967168c
HX
377enum {
378 SKB_GSO_TCPV4 = 1 << 0,
f83ef8c0 379 SKB_GSO_UDP = 1 << 1,
576a30eb
HX
380
381 /* This indicates the skb is from an untrusted source. */
382 SKB_GSO_DODGY = 1 << 2,
b0da8537
MC
383
384 /* This indicates the tcp segment has CWR set. */
f83ef8c0
HX
385 SKB_GSO_TCP_ECN = 1 << 3,
386
387 SKB_GSO_TCPV6 = 1 << 4,
01d5b2fc
CL
388
389 SKB_GSO_FCOE = 1 << 5,
68c33163
PS
390
391 SKB_GSO_GRE = 1 << 6,
73136267 392
4b28252c 393 SKB_GSO_GRE_CSUM = 1 << 7,
0d89d203 394
4b28252c 395 SKB_GSO_IPIP = 1 << 8,
cb32f511 396
4b28252c 397 SKB_GSO_SIT = 1 << 9,
61c1db7f 398
4b28252c 399 SKB_GSO_UDP_TUNNEL = 1 << 10,
0f4f4ffa
TH
400
401 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
4749c09c 402
59b93b41 403 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
7967168c
HX
404};
405
2e07fa9c
ACM
406#if BITS_PER_LONG > 32
407#define NET_SKBUFF_DATA_USES_OFFSET 1
408#endif
409
410#ifdef NET_SKBUFF_DATA_USES_OFFSET
411typedef unsigned int sk_buff_data_t;
412#else
413typedef unsigned char *sk_buff_data_t;
414#endif
415
363ec392
ED
416/**
417 * struct skb_mstamp - multi resolution time stamps
418 * @stamp_us: timestamp in us resolution
419 * @stamp_jiffies: timestamp in jiffies
420 */
421struct skb_mstamp {
422 union {
423 u64 v64;
424 struct {
425 u32 stamp_us;
426 u32 stamp_jiffies;
427 };
428 };
429};
430
431/**
432 * skb_mstamp_get - get current timestamp
433 * @cl: place to store timestamps
434 */
435static inline void skb_mstamp_get(struct skb_mstamp *cl)
436{
437 u64 val = local_clock();
438
439 do_div(val, NSEC_PER_USEC);
440 cl->stamp_us = (u32)val;
441 cl->stamp_jiffies = (u32)jiffies;
442}
443
444/**
445 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
446 * @t1: pointer to newest sample
447 * @t0: pointer to oldest sample
448 */
449static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
450 const struct skb_mstamp *t0)
451{
452 s32 delta_us = t1->stamp_us - t0->stamp_us;
453 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
454
455 /* If delta_us is negative, this might be because interval is too big,
456 * or local_clock() drift is too big : fallback using jiffies.
457 */
458 if (delta_us <= 0 ||
459 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
460
461 delta_us = jiffies_to_usecs(delta_jiffies);
462
463 return delta_us;
464}
465
466
1da177e4
LT
467/**
468 * struct sk_buff - socket buffer
469 * @next: Next buffer in list
470 * @prev: Previous buffer in list
363ec392 471 * @tstamp: Time we arrived/left
56b17425 472 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 473 * @sk: Socket we are owned by
1da177e4 474 * @dev: Device we arrived on/are leaving by
d84e0bd7 475 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 476 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 477 * @sp: the security path, used for xfrm
1da177e4
LT
478 * @len: Length of actual data
479 * @data_len: Data length
480 * @mac_len: Length of link layer header
334a8132 481 * @hdr_len: writable header length of cloned skb
663ead3b
HX
482 * @csum: Checksum (must include start/offset pair)
483 * @csum_start: Offset from skb->head where checksumming should start
484 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 485 * @priority: Packet queueing priority
60ff7467 486 * @ignore_df: allow local fragmentation
1da177e4 487 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 488 * @ip_summed: Driver fed us an IP checksum
1da177e4 489 * @nohdr: Payload reference only, must not modify header
d84e0bd7 490 * @nfctinfo: Relationship of this skb to the connection
1da177e4 491 * @pkt_type: Packet class
c83c2486 492 * @fclone: skbuff clone status
c83c2486 493 * @ipvs_property: skbuff is owned by ipvs
31729363
RD
494 * @peeked: this packet has been seen already, so stats have been
495 * done for it, don't do them again
ba9dda3a 496 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
497 * @protocol: Packet protocol from driver
498 * @destructor: Destruct function
499 * @nfct: Associated connection, if any
1da177e4 500 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 501 * @skb_iif: ifindex of device we arrived on
1da177e4
LT
502 * @tc_index: Traffic control index
503 * @tc_verd: traffic control verdict
61b905da 504 * @hash: the packet hash
d84e0bd7 505 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 506 * @xmit_more: More SKBs are pending for this queue
553a5672 507 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 508 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 509 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 510 * ports.
a3b18ddb 511 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
512 * @wifi_acked_valid: wifi_acked was set
513 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 514 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
06021292 515 * @napi_id: id of the NAPI struct this skb came from
984bc16c 516 * @secmark: security marking
0c4f691f 517 * @offload_fwd_mark: fwding offload mark
d84e0bd7 518 * @mark: Generic packet mark
86a9bad3 519 * @vlan_proto: vlan encapsulation protocol
6aa895b0 520 * @vlan_tci: vlan tag control information
0d89d203 521 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
522 * @inner_transport_header: Inner transport layer header (encapsulation)
523 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 524 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
525 * @transport_header: Transport layer header
526 * @network_header: Network layer header
527 * @mac_header: Link layer header
528 * @tail: Tail pointer
529 * @end: End pointer
530 * @head: Head of buffer
531 * @data: Data head pointer
532 * @truesize: Buffer size
533 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
534 */
535
536struct sk_buff {
363ec392 537 union {
56b17425
ED
538 struct {
539 /* These two members must be first. */
540 struct sk_buff *next;
541 struct sk_buff *prev;
542
543 union {
544 ktime_t tstamp;
545 struct skb_mstamp skb_mstamp;
546 };
547 };
548 struct rb_node rbnode; /* used in netem & tcp stack */
363ec392 549 };
da3f5cf1 550 struct sock *sk;
1da177e4 551 struct net_device *dev;
1da177e4 552
1da177e4
LT
553 /*
554 * This is the control buffer. It is free to use for every
555 * layer. Please put your private variables there. If you
556 * want to keep them across layers you have to do a skb_clone()
557 * first. This is owned by whoever has the skb queued ATM.
558 */
da3f5cf1 559 char cb[48] __aligned(8);
1da177e4 560
7fee226a 561 unsigned long _skb_refdst;
b1937227 562 void (*destructor)(struct sk_buff *skb);
da3f5cf1
FF
563#ifdef CONFIG_XFRM
564 struct sec_path *sp;
b1937227
ED
565#endif
566#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
567 struct nf_conntrack *nfct;
568#endif
85224844 569#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 570 struct nf_bridge_info *nf_bridge;
da3f5cf1 571#endif
1da177e4 572 unsigned int len,
334a8132
PM
573 data_len;
574 __u16 mac_len,
575 hdr_len;
b1937227
ED
576
577 /* Following fields are _not_ copied in __copy_skb_header()
578 * Note that queue_mapping is here mostly to fill a hole.
579 */
fe55f6d5 580 kmemcheck_bitfield_begin(flags1);
b1937227
ED
581 __u16 queue_mapping;
582 __u8 cloned:1,
6869c4d8 583 nohdr:1,
b84f4cc9 584 fclone:2,
a59322be 585 peeked:1,
b1937227
ED
586 head_frag:1,
587 xmit_more:1;
588 /* one bit hole */
fe55f6d5 589 kmemcheck_bitfield_end(flags1);
4031ae6e 590
b1937227
ED
591 /* fields enclosed in headers_start/headers_end are copied
592 * using a single memcpy() in __copy_skb_header()
593 */
ebcf34f3 594 /* private: */
b1937227 595 __u32 headers_start[0];
ebcf34f3 596 /* public: */
4031ae6e 597
233577a2
HFS
598/* if you move pkt_type around you also must adapt those constants */
599#ifdef __BIG_ENDIAN_BITFIELD
600#define PKT_TYPE_MAX (7 << 5)
601#else
602#define PKT_TYPE_MAX 7
1da177e4 603#endif
233577a2 604#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 605
233577a2 606 __u8 __pkt_type_offset[0];
b1937227 607 __u8 pkt_type:3;
c93bdd0e 608 __u8 pfmemalloc:1;
b1937227
ED
609 __u8 ignore_df:1;
610 __u8 nfctinfo:3;
611
612 __u8 nf_trace:1;
613 __u8 ip_summed:2;
3853b584 614 __u8 ooo_okay:1;
61b905da 615 __u8 l4_hash:1;
a3b18ddb 616 __u8 sw_hash:1;
6e3e939f
JB
617 __u8 wifi_acked_valid:1;
618 __u8 wifi_acked:1;
b1937227 619
3bdc0eba 620 __u8 no_fcs:1;
77cffe23 621 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 622 __u8 encapsulation:1;
7e2b10c1 623 __u8 encap_hdr_csum:1;
5d0c2b95 624 __u8 csum_valid:1;
7e3cead5 625 __u8 csum_complete_sw:1;
b1937227
ED
626 __u8 csum_level:2;
627 __u8 csum_bad:1;
fe55f6d5 628
b1937227
ED
629#ifdef CONFIG_IPV6_NDISC_NODETYPE
630 __u8 ndisc_nodetype:2;
631#endif
632 __u8 ipvs_property:1;
8bce6d7d 633 __u8 inner_protocol_type:1;
e585f236
TH
634 __u8 remcsum_offload:1;
635 /* 3 or 5 bit hole */
b1937227
ED
636
637#ifdef CONFIG_NET_SCHED
638 __u16 tc_index; /* traffic control index */
639#ifdef CONFIG_NET_CLS_ACT
640 __u16 tc_verd; /* traffic control verdict */
641#endif
642#endif
fe55f6d5 643
b1937227
ED
644 union {
645 __wsum csum;
646 struct {
647 __u16 csum_start;
648 __u16 csum_offset;
649 };
650 };
651 __u32 priority;
652 int skb_iif;
653 __u32 hash;
654 __be16 vlan_proto;
655 __u16 vlan_tci;
2bd82484
ED
656#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
657 union {
658 unsigned int napi_id;
659 unsigned int sender_cpu;
660 };
97fc2f08 661#endif
0c4f691f 662 union {
984bc16c 663#ifdef CONFIG_NETWORK_SECMARK
0c4f691f
SF
664 __u32 secmark;
665#endif
666#ifdef CONFIG_NET_SWITCHDEV
667 __u32 offload_fwd_mark;
984bc16c 668#endif
0c4f691f
SF
669 };
670
3b885787
NH
671 union {
672 __u32 mark;
16fad69c 673 __u32 reserved_tailroom;
3b885787 674 };
1da177e4 675
8bce6d7d
TH
676 union {
677 __be16 inner_protocol;
678 __u8 inner_ipproto;
679 };
680
1a37e412
SH
681 __u16 inner_transport_header;
682 __u16 inner_network_header;
683 __u16 inner_mac_header;
b1937227
ED
684
685 __be16 protocol;
1a37e412
SH
686 __u16 transport_header;
687 __u16 network_header;
688 __u16 mac_header;
b1937227 689
ebcf34f3 690 /* private: */
b1937227 691 __u32 headers_end[0];
ebcf34f3 692 /* public: */
b1937227 693
1da177e4 694 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 695 sk_buff_data_t tail;
4305b541 696 sk_buff_data_t end;
1da177e4 697 unsigned char *head,
4305b541 698 *data;
27a884dc
ACM
699 unsigned int truesize;
700 atomic_t users;
1da177e4
LT
701};
702
703#ifdef __KERNEL__
704/*
705 * Handling routines are only of interest to the kernel
706 */
707#include <linux/slab.h>
708
1da177e4 709
c93bdd0e
MG
710#define SKB_ALLOC_FCLONE 0x01
711#define SKB_ALLOC_RX 0x02
fd11a83d 712#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
713
714/* Returns true if the skb was allocated from PFMEMALLOC reserves */
715static inline bool skb_pfmemalloc(const struct sk_buff *skb)
716{
717 return unlikely(skb->pfmemalloc);
718}
719
7fee226a
ED
720/*
721 * skb might have a dst pointer attached, refcounted or not.
722 * _skb_refdst low order bit is set if refcount was _not_ taken
723 */
724#define SKB_DST_NOREF 1UL
725#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
726
727/**
728 * skb_dst - returns skb dst_entry
729 * @skb: buffer
730 *
731 * Returns skb dst_entry, regardless of reference taken or not.
732 */
adf30907
ED
733static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
734{
7fee226a
ED
735 /* If refdst was not refcounted, check we still are in a
736 * rcu_read_lock section
737 */
738 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
739 !rcu_read_lock_held() &&
740 !rcu_read_lock_bh_held());
741 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
742}
743
7fee226a
ED
744/**
745 * skb_dst_set - sets skb dst
746 * @skb: buffer
747 * @dst: dst entry
748 *
749 * Sets skb dst, assuming a reference was taken on dst and should
750 * be released by skb_dst_drop()
751 */
adf30907
ED
752static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
753{
7fee226a
ED
754 skb->_skb_refdst = (unsigned long)dst;
755}
756
932bc4d7
JA
757/**
758 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
759 * @skb: buffer
760 * @dst: dst entry
761 *
762 * Sets skb dst, assuming a reference was not taken on dst.
763 * If dst entry is cached, we do not take reference and dst_release
764 * will be avoided by refdst_drop. If dst entry is not cached, we take
765 * reference, so that last dst_release can destroy the dst immediately.
766 */
767static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
768{
dbfc4fb7
HFS
769 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
770 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 771}
7fee226a
ED
772
773/**
25985edc 774 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
775 * @skb: buffer
776 */
777static inline bool skb_dst_is_noref(const struct sk_buff *skb)
778{
779 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
780}
781
511c3f92
ED
782static inline struct rtable *skb_rtable(const struct sk_buff *skb)
783{
adf30907 784 return (struct rtable *)skb_dst(skb);
511c3f92
ED
785}
786
7965bd4d
JP
787void kfree_skb(struct sk_buff *skb);
788void kfree_skb_list(struct sk_buff *segs);
789void skb_tx_error(struct sk_buff *skb);
790void consume_skb(struct sk_buff *skb);
791void __kfree_skb(struct sk_buff *skb);
d7e8883c 792extern struct kmem_cache *skbuff_head_cache;
bad43ca8 793
7965bd4d
JP
794void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
795bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
796 bool *fragstolen, int *delta_truesize);
bad43ca8 797
7965bd4d
JP
798struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
799 int node);
2ea2f62c 800struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 801struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 802static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 803 gfp_t priority)
d179cd12 804{
564824b0 805 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
806}
807
2e4e4410
ED
808struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
809 unsigned long data_len,
810 int max_page_order,
811 int *errcode,
812 gfp_t gfp_mask);
813
d0bf4a9e
ED
814/* Layout of fast clones : [skb1][skb2][fclone_ref] */
815struct sk_buff_fclones {
816 struct sk_buff skb1;
817
818 struct sk_buff skb2;
819
820 atomic_t fclone_ref;
821};
822
823/**
824 * skb_fclone_busy - check if fclone is busy
825 * @skb: buffer
826 *
827 * Returns true is skb is a fast clone, and its clone is not freed.
39bb5e62
ED
828 * Some drivers call skb_orphan() in their ndo_start_xmit(),
829 * so we also check that this didnt happen.
d0bf4a9e 830 */
39bb5e62
ED
831static inline bool skb_fclone_busy(const struct sock *sk,
832 const struct sk_buff *skb)
d0bf4a9e
ED
833{
834 const struct sk_buff_fclones *fclones;
835
836 fclones = container_of(skb, struct sk_buff_fclones, skb1);
837
838 return skb->fclone == SKB_FCLONE_ORIG &&
6ffe75eb 839 atomic_read(&fclones->fclone_ref) > 1 &&
39bb5e62 840 fclones->skb2.sk == sk;
d0bf4a9e
ED
841}
842
d179cd12 843static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 844 gfp_t priority)
d179cd12 845{
c93bdd0e 846 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
847}
848
7965bd4d 849struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
0ebd0ac5
PM
850static inline struct sk_buff *alloc_skb_head(gfp_t priority)
851{
852 return __alloc_skb_head(priority, -1);
853}
854
7965bd4d
JP
855struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
856int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
857struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
858struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
859struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
860 gfp_t gfp_mask, bool fclone);
861static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
862 gfp_t gfp_mask)
863{
864 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
865}
7965bd4d
JP
866
867int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
868struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
869 unsigned int headroom);
870struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
871 int newtailroom, gfp_t priority);
25a91d8d
FD
872int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
873 int offset, int len);
7965bd4d
JP
874int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
875 int len);
876int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
877int skb_pad(struct sk_buff *skb, int pad);
ead2ceb0 878#define dev_kfree_skb(a) consume_skb(a)
1da177e4 879
7965bd4d
JP
880int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
881 int getfrag(void *from, char *to, int offset,
882 int len, int odd, struct sk_buff *skb),
883 void *from, int length);
e89e9cf5 884
be12a1fe
HFS
885int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
886 int offset, size_t size);
887
d94d9fee 888struct skb_seq_state {
677e90ed
TG
889 __u32 lower_offset;
890 __u32 upper_offset;
891 __u32 frag_idx;
892 __u32 stepped_offset;
893 struct sk_buff *root_skb;
894 struct sk_buff *cur_skb;
895 __u8 *frag_data;
896};
897
7965bd4d
JP
898void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
899 unsigned int to, struct skb_seq_state *st);
900unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
901 struct skb_seq_state *st);
902void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 903
7965bd4d 904unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 905 unsigned int to, struct ts_config *config);
3fc7e8a6 906
09323cc4
TH
907/*
908 * Packet hash types specify the type of hash in skb_set_hash.
909 *
910 * Hash types refer to the protocol layer addresses which are used to
911 * construct a packet's hash. The hashes are used to differentiate or identify
912 * flows of the protocol layer for the hash type. Hash types are either
913 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
914 *
915 * Properties of hashes:
916 *
917 * 1) Two packets in different flows have different hash values
918 * 2) Two packets in the same flow should have the same hash value
919 *
920 * A hash at a higher layer is considered to be more specific. A driver should
921 * set the most specific hash possible.
922 *
923 * A driver cannot indicate a more specific hash than the layer at which a hash
924 * was computed. For instance an L3 hash cannot be set as an L4 hash.
925 *
926 * A driver may indicate a hash level which is less specific than the
927 * actual layer the hash was computed on. For instance, a hash computed
928 * at L4 may be considered an L3 hash. This should only be done if the
929 * driver can't unambiguously determine that the HW computed the hash at
930 * the higher layer. Note that the "should" in the second property above
931 * permits this.
932 */
933enum pkt_hash_types {
934 PKT_HASH_TYPE_NONE, /* Undefined type */
935 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
936 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
937 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
938};
939
bcc83839 940static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 941{
bcc83839 942 skb->hash = 0;
a3b18ddb 943 skb->sw_hash = 0;
bcc83839
TH
944 skb->l4_hash = 0;
945}
946
947static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
948{
949 if (!skb->l4_hash)
950 skb_clear_hash(skb);
951}
952
953static inline void
954__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
955{
956 skb->l4_hash = is_l4;
957 skb->sw_hash = is_sw;
61b905da 958 skb->hash = hash;
09323cc4
TH
959}
960
bcc83839
TH
961static inline void
962skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
963{
964 /* Used by drivers to set hash from HW */
965 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
966}
967
968static inline void
969__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
970{
971 __skb_set_hash(skb, hash, true, is_l4);
972}
973
e5276937
TH
974void __skb_get_hash(struct sk_buff *skb);
975u32 skb_get_poff(const struct sk_buff *skb);
976u32 __skb_get_poff(const struct sk_buff *skb, void *data,
977 const struct flow_keys *keys, int hlen);
978__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
979 void *data, int hlen_proto);
980
981static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
982 int thoff, u8 ip_proto)
983{
984 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
985}
986
987void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
988 const struct flow_dissector_key *key,
989 unsigned int key_count);
990
991bool __skb_flow_dissect(const struct sk_buff *skb,
992 struct flow_dissector *flow_dissector,
993 void *target_container,
cd79a238
TH
994 void *data, __be16 proto, int nhoff, int hlen,
995 unsigned int flags);
e5276937
TH
996
997static inline bool skb_flow_dissect(const struct sk_buff *skb,
998 struct flow_dissector *flow_dissector,
cd79a238 999 void *target_container, unsigned int flags)
e5276937
TH
1000{
1001 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1002 NULL, 0, 0, 0, flags);
e5276937
TH
1003}
1004
1005static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1006 struct flow_keys *flow,
1007 unsigned int flags)
e5276937
TH
1008{
1009 memset(flow, 0, sizeof(*flow));
1010 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1011 NULL, 0, 0, 0, flags);
e5276937
TH
1012}
1013
1014static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1015 void *data, __be16 proto,
cd79a238
TH
1016 int nhoff, int hlen,
1017 unsigned int flags)
e5276937
TH
1018{
1019 memset(flow, 0, sizeof(*flow));
1020 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
cd79a238 1021 data, proto, nhoff, hlen, flags);
e5276937
TH
1022}
1023
3958afa1 1024static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1025{
a3b18ddb 1026 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1027 __skb_get_hash(skb);
bfb564e7 1028
61b905da 1029 return skb->hash;
bfb564e7
KK
1030}
1031
20a17bf6 1032__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
f70ea018 1033
20a17bf6 1034static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1035{
c6cc1ca7
TH
1036 if (!skb->l4_hash && !skb->sw_hash) {
1037 struct flow_keys keys;
de4c1f8b 1038 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1039
de4c1f8b 1040 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1041 }
f70ea018
TH
1042
1043 return skb->hash;
1044}
1045
20a17bf6 1046__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
f70ea018 1047
20a17bf6 1048static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
f70ea018 1049{
c6cc1ca7
TH
1050 if (!skb->l4_hash && !skb->sw_hash) {
1051 struct flow_keys keys;
de4c1f8b 1052 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
c6cc1ca7 1053
de4c1f8b 1054 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1055 }
f70ea018
TH
1056
1057 return skb->hash;
1058}
1059
50fb7992
TH
1060__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1061
57bdf7f4
TH
1062static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1063{
61b905da 1064 return skb->hash;
57bdf7f4
TH
1065}
1066
3df7a74e
TH
1067static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1068{
61b905da 1069 to->hash = from->hash;
a3b18ddb 1070 to->sw_hash = from->sw_hash;
61b905da 1071 to->l4_hash = from->l4_hash;
3df7a74e
TH
1072};
1073
c29390c6
ED
1074static inline void skb_sender_cpu_clear(struct sk_buff *skb)
1075{
1076#ifdef CONFIG_XPS
1077 skb->sender_cpu = 0;
1078#endif
1079}
1080
4305b541
ACM
1081#ifdef NET_SKBUFF_DATA_USES_OFFSET
1082static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1083{
1084 return skb->head + skb->end;
1085}
ec47ea82
AD
1086
1087static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1088{
1089 return skb->end;
1090}
4305b541
ACM
1091#else
1092static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1093{
1094 return skb->end;
1095}
ec47ea82
AD
1096
1097static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1098{
1099 return skb->end - skb->head;
1100}
4305b541
ACM
1101#endif
1102
1da177e4 1103/* Internal */
4305b541 1104#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1105
ac45f602
PO
1106static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1107{
1108 return &skb_shinfo(skb)->hwtstamps;
1109}
1110
1da177e4
LT
1111/**
1112 * skb_queue_empty - check if a queue is empty
1113 * @list: queue head
1114 *
1115 * Returns true if the queue is empty, false otherwise.
1116 */
1117static inline int skb_queue_empty(const struct sk_buff_head *list)
1118{
fd44b93c 1119 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1120}
1121
fc7ebb21
DM
1122/**
1123 * skb_queue_is_last - check if skb is the last entry in the queue
1124 * @list: queue head
1125 * @skb: buffer
1126 *
1127 * Returns true if @skb is the last buffer on the list.
1128 */
1129static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1130 const struct sk_buff *skb)
1131{
fd44b93c 1132 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1133}
1134
832d11c5
IJ
1135/**
1136 * skb_queue_is_first - check if skb is the first entry in the queue
1137 * @list: queue head
1138 * @skb: buffer
1139 *
1140 * Returns true if @skb is the first buffer on the list.
1141 */
1142static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1143 const struct sk_buff *skb)
1144{
fd44b93c 1145 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1146}
1147
249c8b42
DM
1148/**
1149 * skb_queue_next - return the next packet in the queue
1150 * @list: queue head
1151 * @skb: current buffer
1152 *
1153 * Return the next packet in @list after @skb. It is only valid to
1154 * call this if skb_queue_is_last() evaluates to false.
1155 */
1156static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1157 const struct sk_buff *skb)
1158{
1159 /* This BUG_ON may seem severe, but if we just return then we
1160 * are going to dereference garbage.
1161 */
1162 BUG_ON(skb_queue_is_last(list, skb));
1163 return skb->next;
1164}
1165
832d11c5
IJ
1166/**
1167 * skb_queue_prev - return the prev packet in the queue
1168 * @list: queue head
1169 * @skb: current buffer
1170 *
1171 * Return the prev packet in @list before @skb. It is only valid to
1172 * call this if skb_queue_is_first() evaluates to false.
1173 */
1174static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1175 const struct sk_buff *skb)
1176{
1177 /* This BUG_ON may seem severe, but if we just return then we
1178 * are going to dereference garbage.
1179 */
1180 BUG_ON(skb_queue_is_first(list, skb));
1181 return skb->prev;
1182}
1183
1da177e4
LT
1184/**
1185 * skb_get - reference buffer
1186 * @skb: buffer to reference
1187 *
1188 * Makes another reference to a socket buffer and returns a pointer
1189 * to the buffer.
1190 */
1191static inline struct sk_buff *skb_get(struct sk_buff *skb)
1192{
1193 atomic_inc(&skb->users);
1194 return skb;
1195}
1196
1197/*
1198 * If users == 1, we are the only owner and are can avoid redundant
1199 * atomic change.
1200 */
1201
1da177e4
LT
1202/**
1203 * skb_cloned - is the buffer a clone
1204 * @skb: buffer to check
1205 *
1206 * Returns true if the buffer was generated with skb_clone() and is
1207 * one of multiple shared copies of the buffer. Cloned buffers are
1208 * shared data so must not be written to under normal circumstances.
1209 */
1210static inline int skb_cloned(const struct sk_buff *skb)
1211{
1212 return skb->cloned &&
1213 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1214}
1215
14bbd6a5
PS
1216static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1217{
1218 might_sleep_if(pri & __GFP_WAIT);
1219
1220 if (skb_cloned(skb))
1221 return pskb_expand_head(skb, 0, 0, pri);
1222
1223 return 0;
1224}
1225
1da177e4
LT
1226/**
1227 * skb_header_cloned - is the header a clone
1228 * @skb: buffer to check
1229 *
1230 * Returns true if modifying the header part of the buffer requires
1231 * the data to be copied.
1232 */
1233static inline int skb_header_cloned(const struct sk_buff *skb)
1234{
1235 int dataref;
1236
1237 if (!skb->cloned)
1238 return 0;
1239
1240 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1241 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1242 return dataref != 1;
1243}
1244
1245/**
1246 * skb_header_release - release reference to header
1247 * @skb: buffer to operate on
1248 *
1249 * Drop a reference to the header part of the buffer. This is done
1250 * by acquiring a payload reference. You must not read from the header
1251 * part of skb->data after this.
f4a775d1 1252 * Note : Check if you can use __skb_header_release() instead.
1da177e4
LT
1253 */
1254static inline void skb_header_release(struct sk_buff *skb)
1255{
1256 BUG_ON(skb->nohdr);
1257 skb->nohdr = 1;
1258 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1259}
1260
f4a775d1
ED
1261/**
1262 * __skb_header_release - release reference to header
1263 * @skb: buffer to operate on
1264 *
1265 * Variant of skb_header_release() assuming skb is private to caller.
1266 * We can avoid one atomic operation.
1267 */
1268static inline void __skb_header_release(struct sk_buff *skb)
1269{
1270 skb->nohdr = 1;
1271 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1272}
1273
1274
1da177e4
LT
1275/**
1276 * skb_shared - is the buffer shared
1277 * @skb: buffer to check
1278 *
1279 * Returns true if more than one person has a reference to this
1280 * buffer.
1281 */
1282static inline int skb_shared(const struct sk_buff *skb)
1283{
1284 return atomic_read(&skb->users) != 1;
1285}
1286
1287/**
1288 * skb_share_check - check if buffer is shared and if so clone it
1289 * @skb: buffer to check
1290 * @pri: priority for memory allocation
1291 *
1292 * If the buffer is shared the buffer is cloned and the old copy
1293 * drops a reference. A new clone with a single reference is returned.
1294 * If the buffer is not shared the original buffer is returned. When
1295 * being called from interrupt status or with spinlocks held pri must
1296 * be GFP_ATOMIC.
1297 *
1298 * NULL is returned on a memory allocation failure.
1299 */
47061bc4 1300static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4
LT
1301{
1302 might_sleep_if(pri & __GFP_WAIT);
1303 if (skb_shared(skb)) {
1304 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1305
1306 if (likely(nskb))
1307 consume_skb(skb);
1308 else
1309 kfree_skb(skb);
1da177e4
LT
1310 skb = nskb;
1311 }
1312 return skb;
1313}
1314
1315/*
1316 * Copy shared buffers into a new sk_buff. We effectively do COW on
1317 * packets to handle cases where we have a local reader and forward
1318 * and a couple of other messy ones. The normal one is tcpdumping
1319 * a packet thats being forwarded.
1320 */
1321
1322/**
1323 * skb_unshare - make a copy of a shared buffer
1324 * @skb: buffer to check
1325 * @pri: priority for memory allocation
1326 *
1327 * If the socket buffer is a clone then this function creates a new
1328 * copy of the data, drops a reference count on the old copy and returns
1329 * the new copy with the reference count at 1. If the buffer is not a clone
1330 * the original buffer is returned. When called with a spinlock held or
1331 * from interrupt state @pri must be %GFP_ATOMIC
1332 *
1333 * %NULL is returned on a memory allocation failure.
1334 */
e2bf521d 1335static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1336 gfp_t pri)
1da177e4
LT
1337{
1338 might_sleep_if(pri & __GFP_WAIT);
1339 if (skb_cloned(skb)) {
1340 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1341
1342 /* Free our shared copy */
1343 if (likely(nskb))
1344 consume_skb(skb);
1345 else
1346 kfree_skb(skb);
1da177e4
LT
1347 skb = nskb;
1348 }
1349 return skb;
1350}
1351
1352/**
1a5778aa 1353 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1354 * @list_: list to peek at
1355 *
1356 * Peek an &sk_buff. Unlike most other operations you _MUST_
1357 * be careful with this one. A peek leaves the buffer on the
1358 * list and someone else may run off with it. You must hold
1359 * the appropriate locks or have a private queue to do this.
1360 *
1361 * Returns %NULL for an empty list or a pointer to the head element.
1362 * The reference count is not incremented and the reference is therefore
1363 * volatile. Use with caution.
1364 */
05bdd2f1 1365static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1366{
18d07000
ED
1367 struct sk_buff *skb = list_->next;
1368
1369 if (skb == (struct sk_buff *)list_)
1370 skb = NULL;
1371 return skb;
1da177e4
LT
1372}
1373
da5ef6e5
PE
1374/**
1375 * skb_peek_next - peek skb following the given one from a queue
1376 * @skb: skb to start from
1377 * @list_: list to peek at
1378 *
1379 * Returns %NULL when the end of the list is met or a pointer to the
1380 * next element. The reference count is not incremented and the
1381 * reference is therefore volatile. Use with caution.
1382 */
1383static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1384 const struct sk_buff_head *list_)
1385{
1386 struct sk_buff *next = skb->next;
18d07000 1387
da5ef6e5
PE
1388 if (next == (struct sk_buff *)list_)
1389 next = NULL;
1390 return next;
1391}
1392
1da177e4 1393/**
1a5778aa 1394 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1395 * @list_: list to peek at
1396 *
1397 * Peek an &sk_buff. Unlike most other operations you _MUST_
1398 * be careful with this one. A peek leaves the buffer on the
1399 * list and someone else may run off with it. You must hold
1400 * the appropriate locks or have a private queue to do this.
1401 *
1402 * Returns %NULL for an empty list or a pointer to the tail element.
1403 * The reference count is not incremented and the reference is therefore
1404 * volatile. Use with caution.
1405 */
05bdd2f1 1406static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1407{
18d07000
ED
1408 struct sk_buff *skb = list_->prev;
1409
1410 if (skb == (struct sk_buff *)list_)
1411 skb = NULL;
1412 return skb;
1413
1da177e4
LT
1414}
1415
1416/**
1417 * skb_queue_len - get queue length
1418 * @list_: list to measure
1419 *
1420 * Return the length of an &sk_buff queue.
1421 */
1422static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1423{
1424 return list_->qlen;
1425}
1426
67fed459
DM
1427/**
1428 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1429 * @list: queue to initialize
1430 *
1431 * This initializes only the list and queue length aspects of
1432 * an sk_buff_head object. This allows to initialize the list
1433 * aspects of an sk_buff_head without reinitializing things like
1434 * the spinlock. It can also be used for on-stack sk_buff_head
1435 * objects where the spinlock is known to not be used.
1436 */
1437static inline void __skb_queue_head_init(struct sk_buff_head *list)
1438{
1439 list->prev = list->next = (struct sk_buff *)list;
1440 list->qlen = 0;
1441}
1442
76f10ad0
AV
1443/*
1444 * This function creates a split out lock class for each invocation;
1445 * this is needed for now since a whole lot of users of the skb-queue
1446 * infrastructure in drivers have different locking usage (in hardirq)
1447 * than the networking core (in softirq only). In the long run either the
1448 * network layer or drivers should need annotation to consolidate the
1449 * main types of usage into 3 classes.
1450 */
1da177e4
LT
1451static inline void skb_queue_head_init(struct sk_buff_head *list)
1452{
1453 spin_lock_init(&list->lock);
67fed459 1454 __skb_queue_head_init(list);
1da177e4
LT
1455}
1456
c2ecba71
PE
1457static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1458 struct lock_class_key *class)
1459{
1460 skb_queue_head_init(list);
1461 lockdep_set_class(&list->lock, class);
1462}
1463
1da177e4 1464/*
bf299275 1465 * Insert an sk_buff on a list.
1da177e4
LT
1466 *
1467 * The "__skb_xxxx()" functions are the non-atomic ones that
1468 * can only be called with interrupts disabled.
1469 */
7965bd4d
JP
1470void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1471 struct sk_buff_head *list);
bf299275
GR
1472static inline void __skb_insert(struct sk_buff *newsk,
1473 struct sk_buff *prev, struct sk_buff *next,
1474 struct sk_buff_head *list)
1475{
1476 newsk->next = next;
1477 newsk->prev = prev;
1478 next->prev = prev->next = newsk;
1479 list->qlen++;
1480}
1da177e4 1481
67fed459
DM
1482static inline void __skb_queue_splice(const struct sk_buff_head *list,
1483 struct sk_buff *prev,
1484 struct sk_buff *next)
1485{
1486 struct sk_buff *first = list->next;
1487 struct sk_buff *last = list->prev;
1488
1489 first->prev = prev;
1490 prev->next = first;
1491
1492 last->next = next;
1493 next->prev = last;
1494}
1495
1496/**
1497 * skb_queue_splice - join two skb lists, this is designed for stacks
1498 * @list: the new list to add
1499 * @head: the place to add it in the first list
1500 */
1501static inline void skb_queue_splice(const struct sk_buff_head *list,
1502 struct sk_buff_head *head)
1503{
1504 if (!skb_queue_empty(list)) {
1505 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1506 head->qlen += list->qlen;
67fed459
DM
1507 }
1508}
1509
1510/**
d9619496 1511 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1512 * @list: the new list to add
1513 * @head: the place to add it in the first list
1514 *
1515 * The list at @list is reinitialised
1516 */
1517static inline void skb_queue_splice_init(struct sk_buff_head *list,
1518 struct sk_buff_head *head)
1519{
1520 if (!skb_queue_empty(list)) {
1521 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1522 head->qlen += list->qlen;
67fed459
DM
1523 __skb_queue_head_init(list);
1524 }
1525}
1526
1527/**
1528 * skb_queue_splice_tail - join two skb lists, each list being a queue
1529 * @list: the new list to add
1530 * @head: the place to add it in the first list
1531 */
1532static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1533 struct sk_buff_head *head)
1534{
1535 if (!skb_queue_empty(list)) {
1536 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1537 head->qlen += list->qlen;
67fed459
DM
1538 }
1539}
1540
1541/**
d9619496 1542 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1543 * @list: the new list to add
1544 * @head: the place to add it in the first list
1545 *
1546 * Each of the lists is a queue.
1547 * The list at @list is reinitialised
1548 */
1549static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1550 struct sk_buff_head *head)
1551{
1552 if (!skb_queue_empty(list)) {
1553 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1554 head->qlen += list->qlen;
67fed459
DM
1555 __skb_queue_head_init(list);
1556 }
1557}
1558
1da177e4 1559/**
300ce174 1560 * __skb_queue_after - queue a buffer at the list head
1da177e4 1561 * @list: list to use
300ce174 1562 * @prev: place after this buffer
1da177e4
LT
1563 * @newsk: buffer to queue
1564 *
300ce174 1565 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1566 * and you must therefore hold required locks before calling it.
1567 *
1568 * A buffer cannot be placed on two lists at the same time.
1569 */
300ce174
SH
1570static inline void __skb_queue_after(struct sk_buff_head *list,
1571 struct sk_buff *prev,
1572 struct sk_buff *newsk)
1da177e4 1573{
bf299275 1574 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1575}
1576
7965bd4d
JP
1577void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1578 struct sk_buff_head *list);
7de6c033 1579
f5572855
GR
1580static inline void __skb_queue_before(struct sk_buff_head *list,
1581 struct sk_buff *next,
1582 struct sk_buff *newsk)
1583{
1584 __skb_insert(newsk, next->prev, next, list);
1585}
1586
300ce174
SH
1587/**
1588 * __skb_queue_head - queue a buffer at the list head
1589 * @list: list to use
1590 * @newsk: buffer to queue
1591 *
1592 * Queue a buffer at the start of a list. This function takes no locks
1593 * and you must therefore hold required locks before calling it.
1594 *
1595 * A buffer cannot be placed on two lists at the same time.
1596 */
7965bd4d 1597void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1598static inline void __skb_queue_head(struct sk_buff_head *list,
1599 struct sk_buff *newsk)
1600{
1601 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1602}
1603
1da177e4
LT
1604/**
1605 * __skb_queue_tail - queue a buffer at the list tail
1606 * @list: list to use
1607 * @newsk: buffer to queue
1608 *
1609 * Queue a buffer at the end of a list. This function takes no locks
1610 * and you must therefore hold required locks before calling it.
1611 *
1612 * A buffer cannot be placed on two lists at the same time.
1613 */
7965bd4d 1614void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1615static inline void __skb_queue_tail(struct sk_buff_head *list,
1616 struct sk_buff *newsk)
1617{
f5572855 1618 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1619}
1620
1da177e4
LT
1621/*
1622 * remove sk_buff from list. _Must_ be called atomically, and with
1623 * the list known..
1624 */
7965bd4d 1625void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1626static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1627{
1628 struct sk_buff *next, *prev;
1629
1630 list->qlen--;
1631 next = skb->next;
1632 prev = skb->prev;
1633 skb->next = skb->prev = NULL;
1da177e4
LT
1634 next->prev = prev;
1635 prev->next = next;
1636}
1637
f525c06d
GR
1638/**
1639 * __skb_dequeue - remove from the head of the queue
1640 * @list: list to dequeue from
1641 *
1642 * Remove the head of the list. This function does not take any locks
1643 * so must be used with appropriate locks held only. The head item is
1644 * returned or %NULL if the list is empty.
1645 */
7965bd4d 1646struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1647static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1648{
1649 struct sk_buff *skb = skb_peek(list);
1650 if (skb)
1651 __skb_unlink(skb, list);
1652 return skb;
1653}
1da177e4
LT
1654
1655/**
1656 * __skb_dequeue_tail - remove from the tail of the queue
1657 * @list: list to dequeue from
1658 *
1659 * Remove the tail of the list. This function does not take any locks
1660 * so must be used with appropriate locks held only. The tail item is
1661 * returned or %NULL if the list is empty.
1662 */
7965bd4d 1663struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1664static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1665{
1666 struct sk_buff *skb = skb_peek_tail(list);
1667 if (skb)
1668 __skb_unlink(skb, list);
1669 return skb;
1670}
1671
1672
bdcc0924 1673static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1674{
1675 return skb->data_len;
1676}
1677
1678static inline unsigned int skb_headlen(const struct sk_buff *skb)
1679{
1680 return skb->len - skb->data_len;
1681}
1682
1683static inline int skb_pagelen(const struct sk_buff *skb)
1684{
1685 int i, len = 0;
1686
1687 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
9e903e08 1688 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1da177e4
LT
1689 return len + skb_headlen(skb);
1690}
1691
131ea667
IC
1692/**
1693 * __skb_fill_page_desc - initialise a paged fragment in an skb
1694 * @skb: buffer containing fragment to be initialised
1695 * @i: paged fragment index to initialise
1696 * @page: the page to use for this fragment
1697 * @off: the offset to the data with @page
1698 * @size: the length of the data
1699 *
1700 * Initialises the @i'th fragment of @skb to point to &size bytes at
1701 * offset @off within @page.
1702 *
1703 * Does not take any additional reference on the fragment.
1704 */
1705static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1706 struct page *page, int off, int size)
1da177e4
LT
1707{
1708 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1709
c48a11c7 1710 /*
2f064f34
MH
1711 * Propagate page pfmemalloc to the skb if we can. The problem is
1712 * that not all callers have unique ownership of the page but rely
1713 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1714 */
a8605c60 1715 frag->page.p = page;
1da177e4 1716 frag->page_offset = off;
9e903e08 1717 skb_frag_size_set(frag, size);
cca7af38
PE
1718
1719 page = compound_head(page);
2f064f34 1720 if (page_is_pfmemalloc(page))
cca7af38 1721 skb->pfmemalloc = true;
131ea667
IC
1722}
1723
1724/**
1725 * skb_fill_page_desc - initialise a paged fragment in an skb
1726 * @skb: buffer containing fragment to be initialised
1727 * @i: paged fragment index to initialise
1728 * @page: the page to use for this fragment
1729 * @off: the offset to the data with @page
1730 * @size: the length of the data
1731 *
1732 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1733 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1734 * addition updates @skb such that @i is the last fragment.
1735 *
1736 * Does not take any additional reference on the fragment.
1737 */
1738static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1739 struct page *page, int off, int size)
1740{
1741 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1742 skb_shinfo(skb)->nr_frags = i + 1;
1743}
1744
7965bd4d
JP
1745void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1746 int size, unsigned int truesize);
654bed16 1747
f8e617e1
JW
1748void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1749 unsigned int truesize);
1750
1da177e4 1751#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1752#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1753#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1754
27a884dc
ACM
1755#ifdef NET_SKBUFF_DATA_USES_OFFSET
1756static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1757{
1758 return skb->head + skb->tail;
1759}
1760
1761static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1762{
1763 skb->tail = skb->data - skb->head;
1764}
1765
1766static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1767{
1768 skb_reset_tail_pointer(skb);
1769 skb->tail += offset;
1770}
7cc46190 1771
27a884dc
ACM
1772#else /* NET_SKBUFF_DATA_USES_OFFSET */
1773static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1774{
1775 return skb->tail;
1776}
1777
1778static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1779{
1780 skb->tail = skb->data;
1781}
1782
1783static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1784{
1785 skb->tail = skb->data + offset;
1786}
4305b541 1787
27a884dc
ACM
1788#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1789
1da177e4
LT
1790/*
1791 * Add data to an sk_buff
1792 */
0c7ddf36 1793unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
7965bd4d 1794unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1795static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1796{
27a884dc 1797 unsigned char *tmp = skb_tail_pointer(skb);
1da177e4
LT
1798 SKB_LINEAR_ASSERT(skb);
1799 skb->tail += len;
1800 skb->len += len;
1801 return tmp;
1802}
1803
7965bd4d 1804unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1805static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1806{
1807 skb->data -= len;
1808 skb->len += len;
1809 return skb->data;
1810}
1811
7965bd4d 1812unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1813static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1814{
1815 skb->len -= len;
1816 BUG_ON(skb->len < skb->data_len);
1817 return skb->data += len;
1818}
1819
47d29646
DM
1820static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1821{
1822 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1823}
1824
7965bd4d 1825unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4
LT
1826
1827static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1828{
1829 if (len > skb_headlen(skb) &&
987c402a 1830 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
1831 return NULL;
1832 skb->len -= len;
1833 return skb->data += len;
1834}
1835
1836static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1837{
1838 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1839}
1840
1841static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1842{
1843 if (likely(len <= skb_headlen(skb)))
1844 return 1;
1845 if (unlikely(len > skb->len))
1846 return 0;
987c402a 1847 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
1848}
1849
1850/**
1851 * skb_headroom - bytes at buffer head
1852 * @skb: buffer to check
1853 *
1854 * Return the number of bytes of free space at the head of an &sk_buff.
1855 */
c2636b4d 1856static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
1857{
1858 return skb->data - skb->head;
1859}
1860
1861/**
1862 * skb_tailroom - bytes at buffer end
1863 * @skb: buffer to check
1864 *
1865 * Return the number of bytes of free space at the tail of an sk_buff
1866 */
1867static inline int skb_tailroom(const struct sk_buff *skb)
1868{
4305b541 1869 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
1870}
1871
a21d4572
ED
1872/**
1873 * skb_availroom - bytes at buffer end
1874 * @skb: buffer to check
1875 *
1876 * Return the number of bytes of free space at the tail of an sk_buff
1877 * allocated by sk_stream_alloc()
1878 */
1879static inline int skb_availroom(const struct sk_buff *skb)
1880{
16fad69c
ED
1881 if (skb_is_nonlinear(skb))
1882 return 0;
1883
1884 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
1885}
1886
1da177e4
LT
1887/**
1888 * skb_reserve - adjust headroom
1889 * @skb: buffer to alter
1890 * @len: bytes to move
1891 *
1892 * Increase the headroom of an empty &sk_buff by reducing the tail
1893 * room. This is only allowed for an empty buffer.
1894 */
8243126c 1895static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
1896{
1897 skb->data += len;
1898 skb->tail += len;
1899}
1900
8bce6d7d
TH
1901#define ENCAP_TYPE_ETHER 0
1902#define ENCAP_TYPE_IPPROTO 1
1903
1904static inline void skb_set_inner_protocol(struct sk_buff *skb,
1905 __be16 protocol)
1906{
1907 skb->inner_protocol = protocol;
1908 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1909}
1910
1911static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1912 __u8 ipproto)
1913{
1914 skb->inner_ipproto = ipproto;
1915 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1916}
1917
6a674e9c
JG
1918static inline void skb_reset_inner_headers(struct sk_buff *skb)
1919{
aefbd2b3 1920 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
1921 skb->inner_network_header = skb->network_header;
1922 skb->inner_transport_header = skb->transport_header;
1923}
1924
0b5c9db1
JP
1925static inline void skb_reset_mac_len(struct sk_buff *skb)
1926{
1927 skb->mac_len = skb->network_header - skb->mac_header;
1928}
1929
6a674e9c
JG
1930static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1931 *skb)
1932{
1933 return skb->head + skb->inner_transport_header;
1934}
1935
1936static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1937{
1938 skb->inner_transport_header = skb->data - skb->head;
1939}
1940
1941static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1942 const int offset)
1943{
1944 skb_reset_inner_transport_header(skb);
1945 skb->inner_transport_header += offset;
1946}
1947
1948static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1949{
1950 return skb->head + skb->inner_network_header;
1951}
1952
1953static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1954{
1955 skb->inner_network_header = skb->data - skb->head;
1956}
1957
1958static inline void skb_set_inner_network_header(struct sk_buff *skb,
1959 const int offset)
1960{
1961 skb_reset_inner_network_header(skb);
1962 skb->inner_network_header += offset;
1963}
1964
aefbd2b3
PS
1965static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1966{
1967 return skb->head + skb->inner_mac_header;
1968}
1969
1970static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1971{
1972 skb->inner_mac_header = skb->data - skb->head;
1973}
1974
1975static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1976 const int offset)
1977{
1978 skb_reset_inner_mac_header(skb);
1979 skb->inner_mac_header += offset;
1980}
fda55eca
ED
1981static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1982{
35d04610 1983 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
1984}
1985
9c70220b
ACM
1986static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1987{
2e07fa9c 1988 return skb->head + skb->transport_header;
9c70220b
ACM
1989}
1990
badff6d0
ACM
1991static inline void skb_reset_transport_header(struct sk_buff *skb)
1992{
2e07fa9c 1993 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
1994}
1995
967b05f6
ACM
1996static inline void skb_set_transport_header(struct sk_buff *skb,
1997 const int offset)
1998{
2e07fa9c
ACM
1999 skb_reset_transport_header(skb);
2000 skb->transport_header += offset;
ea2ae17d
ACM
2001}
2002
d56f90a7
ACM
2003static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2004{
2e07fa9c 2005 return skb->head + skb->network_header;
d56f90a7
ACM
2006}
2007
c1d2bbe1
ACM
2008static inline void skb_reset_network_header(struct sk_buff *skb)
2009{
2e07fa9c 2010 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2011}
2012
c14d2450
ACM
2013static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2014{
2e07fa9c
ACM
2015 skb_reset_network_header(skb);
2016 skb->network_header += offset;
c14d2450
ACM
2017}
2018
2e07fa9c 2019static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2020{
2e07fa9c 2021 return skb->head + skb->mac_header;
bbe735e4
ACM
2022}
2023
2e07fa9c 2024static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2025{
35d04610 2026 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2027}
2028
2029static inline void skb_reset_mac_header(struct sk_buff *skb)
2030{
2031 skb->mac_header = skb->data - skb->head;
2032}
2033
2034static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2035{
2036 skb_reset_mac_header(skb);
2037 skb->mac_header += offset;
2038}
2039
0e3da5bb
TT
2040static inline void skb_pop_mac_header(struct sk_buff *skb)
2041{
2042 skb->mac_header = skb->network_header;
2043}
2044
fbbdb8f0
YX
2045static inline void skb_probe_transport_header(struct sk_buff *skb,
2046 const int offset_hint)
2047{
2048 struct flow_keys keys;
2049
2050 if (skb_transport_header_was_set(skb))
2051 return;
cd79a238 2052 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
42aecaa9 2053 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2054 else
2055 skb_set_transport_header(skb, offset_hint);
2056}
2057
03606895
ED
2058static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2059{
2060 if (skb_mac_header_was_set(skb)) {
2061 const unsigned char *old_mac = skb_mac_header(skb);
2062
2063 skb_set_mac_header(skb, -skb->mac_len);
2064 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2065 }
2066}
2067
04fb451e
MM
2068static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2069{
2070 return skb->csum_start - skb_headroom(skb);
2071}
2072
2e07fa9c
ACM
2073static inline int skb_transport_offset(const struct sk_buff *skb)
2074{
2075 return skb_transport_header(skb) - skb->data;
2076}
2077
2078static inline u32 skb_network_header_len(const struct sk_buff *skb)
2079{
2080 return skb->transport_header - skb->network_header;
2081}
2082
6a674e9c
JG
2083static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2084{
2085 return skb->inner_transport_header - skb->inner_network_header;
2086}
2087
2e07fa9c
ACM
2088static inline int skb_network_offset(const struct sk_buff *skb)
2089{
2090 return skb_network_header(skb) - skb->data;
2091}
48d49d0c 2092
6a674e9c
JG
2093static inline int skb_inner_network_offset(const struct sk_buff *skb)
2094{
2095 return skb_inner_network_header(skb) - skb->data;
2096}
2097
f9599ce1
CG
2098static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2099{
2100 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2101}
2102
1da177e4
LT
2103/*
2104 * CPUs often take a performance hit when accessing unaligned memory
2105 * locations. The actual performance hit varies, it can be small if the
2106 * hardware handles it or large if we have to take an exception and fix it
2107 * in software.
2108 *
2109 * Since an ethernet header is 14 bytes network drivers often end up with
2110 * the IP header at an unaligned offset. The IP header can be aligned by
2111 * shifting the start of the packet by 2 bytes. Drivers should do this
2112 * with:
2113 *
8660c124 2114 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2115 *
2116 * The downside to this alignment of the IP header is that the DMA is now
2117 * unaligned. On some architectures the cost of an unaligned DMA is high
2118 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2119 *
1da177e4
LT
2120 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2121 * to be overridden.
2122 */
2123#ifndef NET_IP_ALIGN
2124#define NET_IP_ALIGN 2
2125#endif
2126
025be81e
AB
2127/*
2128 * The networking layer reserves some headroom in skb data (via
2129 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2130 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2131 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2132 *
2133 * Unfortunately this headroom changes the DMA alignment of the resulting
2134 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2135 * on some architectures. An architecture can override this value,
2136 * perhaps setting it to a cacheline in size (since that will maintain
2137 * cacheline alignment of the DMA). It must be a power of 2.
2138 *
d6301d3d 2139 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2140 * headroom, you should not reduce this.
5933dd2f
ED
2141 *
2142 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2143 * to reduce average number of cache lines per packet.
2144 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2145 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2146 */
2147#ifndef NET_SKB_PAD
5933dd2f 2148#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2149#endif
2150
7965bd4d 2151int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2152
2153static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2154{
c4264f27 2155 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2156 WARN_ON(1);
2157 return;
2158 }
27a884dc
ACM
2159 skb->len = len;
2160 skb_set_tail_pointer(skb, len);
1da177e4
LT
2161}
2162
7965bd4d 2163void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2164
2165static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2166{
3cc0e873
HX
2167 if (skb->data_len)
2168 return ___pskb_trim(skb, len);
2169 __skb_trim(skb, len);
2170 return 0;
1da177e4
LT
2171}
2172
2173static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2174{
2175 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2176}
2177
e9fa4f7b
HX
2178/**
2179 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2180 * @skb: buffer to alter
2181 * @len: new length
2182 *
2183 * This is identical to pskb_trim except that the caller knows that
2184 * the skb is not cloned so we should never get an error due to out-
2185 * of-memory.
2186 */
2187static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2188{
2189 int err = pskb_trim(skb, len);
2190 BUG_ON(err);
2191}
2192
1da177e4
LT
2193/**
2194 * skb_orphan - orphan a buffer
2195 * @skb: buffer to orphan
2196 *
2197 * If a buffer currently has an owner then we call the owner's
2198 * destructor function and make the @skb unowned. The buffer continues
2199 * to exist but is no longer charged to its former owner.
2200 */
2201static inline void skb_orphan(struct sk_buff *skb)
2202{
c34a7612 2203 if (skb->destructor) {
1da177e4 2204 skb->destructor(skb);
c34a7612
ED
2205 skb->destructor = NULL;
2206 skb->sk = NULL;
376c7311
ED
2207 } else {
2208 BUG_ON(skb->sk);
c34a7612 2209 }
1da177e4
LT
2210}
2211
a353e0ce
MT
2212/**
2213 * skb_orphan_frags - orphan the frags contained in a buffer
2214 * @skb: buffer to orphan frags from
2215 * @gfp_mask: allocation mask for replacement pages
2216 *
2217 * For each frag in the SKB which needs a destructor (i.e. has an
2218 * owner) create a copy of that frag and release the original
2219 * page by calling the destructor.
2220 */
2221static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2222{
2223 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2224 return 0;
2225 return skb_copy_ubufs(skb, gfp_mask);
2226}
2227
1da177e4
LT
2228/**
2229 * __skb_queue_purge - empty a list
2230 * @list: list to empty
2231 *
2232 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2233 * the list and one reference dropped. This function does not take the
2234 * list lock and the caller must hold the relevant locks to use it.
2235 */
7965bd4d 2236void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2237static inline void __skb_queue_purge(struct sk_buff_head *list)
2238{
2239 struct sk_buff *skb;
2240 while ((skb = __skb_dequeue(list)) != NULL)
2241 kfree_skb(skb);
2242}
2243
7965bd4d 2244void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2245
7965bd4d
JP
2246struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2247 gfp_t gfp_mask);
8af27456
CH
2248
2249/**
2250 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2251 * @dev: network device to receive on
2252 * @length: length to allocate
2253 *
2254 * Allocate a new &sk_buff and assign it a usage count of one. The
2255 * buffer has unspecified headroom built in. Users should allocate
2256 * the headroom they think they need without accounting for the
2257 * built in space. The built in space is used for optimisations.
2258 *
2259 * %NULL is returned if there is no free memory. Although this function
2260 * allocates memory it can be called from an interrupt.
2261 */
2262static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2263 unsigned int length)
8af27456
CH
2264{
2265 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2266}
2267
6f532612
ED
2268/* legacy helper around __netdev_alloc_skb() */
2269static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2270 gfp_t gfp_mask)
2271{
2272 return __netdev_alloc_skb(NULL, length, gfp_mask);
2273}
2274
2275/* legacy helper around netdev_alloc_skb() */
2276static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2277{
2278 return netdev_alloc_skb(NULL, length);
2279}
2280
2281
4915a0de
ED
2282static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2283 unsigned int length, gfp_t gfp)
61321bbd 2284{
4915a0de 2285 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2286
2287 if (NET_IP_ALIGN && skb)
2288 skb_reserve(skb, NET_IP_ALIGN);
2289 return skb;
2290}
2291
4915a0de
ED
2292static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2293 unsigned int length)
2294{
2295 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2296}
2297
181edb2b
AD
2298static inline void skb_free_frag(void *addr)
2299{
2300 __free_page_frag(addr);
2301}
2302
ffde7328 2303void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2304struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2305 unsigned int length, gfp_t gfp_mask);
2306static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2307 unsigned int length)
2308{
2309 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2310}
ffde7328 2311
71dfda58
AD
2312/**
2313 * __dev_alloc_pages - allocate page for network Rx
2314 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2315 * @order: size of the allocation
2316 *
2317 * Allocate a new page.
2318 *
2319 * %NULL is returned if there is no free memory.
2320*/
2321static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2322 unsigned int order)
2323{
2324 /* This piece of code contains several assumptions.
2325 * 1. This is for device Rx, therefor a cold page is preferred.
2326 * 2. The expectation is the user wants a compound page.
2327 * 3. If requesting a order 0 page it will not be compound
2328 * due to the check to see if order has a value in prep_new_page
2329 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2330 * code in gfp_to_alloc_flags that should be enforcing this.
2331 */
2332 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2333
2334 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2335}
2336
2337static inline struct page *dev_alloc_pages(unsigned int order)
2338{
2339 return __dev_alloc_pages(GFP_ATOMIC, order);
2340}
2341
2342/**
2343 * __dev_alloc_page - allocate a page for network Rx
2344 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2345 *
2346 * Allocate a new page.
2347 *
2348 * %NULL is returned if there is no free memory.
2349 */
2350static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2351{
2352 return __dev_alloc_pages(gfp_mask, 0);
2353}
2354
2355static inline struct page *dev_alloc_page(void)
2356{
2357 return __dev_alloc_page(GFP_ATOMIC);
2358}
2359
0614002b
MG
2360/**
2361 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2362 * @page: The page that was allocated from skb_alloc_page
2363 * @skb: The skb that may need pfmemalloc set
2364 */
2365static inline void skb_propagate_pfmemalloc(struct page *page,
2366 struct sk_buff *skb)
2367{
2f064f34 2368 if (page_is_pfmemalloc(page))
0614002b
MG
2369 skb->pfmemalloc = true;
2370}
2371
131ea667 2372/**
e227867f 2373 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2374 * @frag: the paged fragment
2375 *
2376 * Returns the &struct page associated with @frag.
2377 */
2378static inline struct page *skb_frag_page(const skb_frag_t *frag)
2379{
a8605c60 2380 return frag->page.p;
131ea667
IC
2381}
2382
2383/**
2384 * __skb_frag_ref - take an addition reference on a paged fragment.
2385 * @frag: the paged fragment
2386 *
2387 * Takes an additional reference on the paged fragment @frag.
2388 */
2389static inline void __skb_frag_ref(skb_frag_t *frag)
2390{
2391 get_page(skb_frag_page(frag));
2392}
2393
2394/**
2395 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2396 * @skb: the buffer
2397 * @f: the fragment offset.
2398 *
2399 * Takes an additional reference on the @f'th paged fragment of @skb.
2400 */
2401static inline void skb_frag_ref(struct sk_buff *skb, int f)
2402{
2403 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2404}
2405
2406/**
2407 * __skb_frag_unref - release a reference on a paged fragment.
2408 * @frag: the paged fragment
2409 *
2410 * Releases a reference on the paged fragment @frag.
2411 */
2412static inline void __skb_frag_unref(skb_frag_t *frag)
2413{
2414 put_page(skb_frag_page(frag));
2415}
2416
2417/**
2418 * skb_frag_unref - release a reference on a paged fragment of an skb.
2419 * @skb: the buffer
2420 * @f: the fragment offset
2421 *
2422 * Releases a reference on the @f'th paged fragment of @skb.
2423 */
2424static inline void skb_frag_unref(struct sk_buff *skb, int f)
2425{
2426 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2427}
2428
2429/**
2430 * skb_frag_address - gets the address of the data contained in a paged fragment
2431 * @frag: the paged fragment buffer
2432 *
2433 * Returns the address of the data within @frag. The page must already
2434 * be mapped.
2435 */
2436static inline void *skb_frag_address(const skb_frag_t *frag)
2437{
2438 return page_address(skb_frag_page(frag)) + frag->page_offset;
2439}
2440
2441/**
2442 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2443 * @frag: the paged fragment buffer
2444 *
2445 * Returns the address of the data within @frag. Checks that the page
2446 * is mapped and returns %NULL otherwise.
2447 */
2448static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2449{
2450 void *ptr = page_address(skb_frag_page(frag));
2451 if (unlikely(!ptr))
2452 return NULL;
2453
2454 return ptr + frag->page_offset;
2455}
2456
2457/**
2458 * __skb_frag_set_page - sets the page contained in a paged fragment
2459 * @frag: the paged fragment
2460 * @page: the page to set
2461 *
2462 * Sets the fragment @frag to contain @page.
2463 */
2464static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2465{
a8605c60 2466 frag->page.p = page;
131ea667
IC
2467}
2468
2469/**
2470 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2471 * @skb: the buffer
2472 * @f: the fragment offset
2473 * @page: the page to set
2474 *
2475 * Sets the @f'th fragment of @skb to contain @page.
2476 */
2477static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2478 struct page *page)
2479{
2480 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2481}
2482
400dfd3a
ED
2483bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2484
131ea667
IC
2485/**
2486 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2487 * @dev: the device to map the fragment to
131ea667
IC
2488 * @frag: the paged fragment to map
2489 * @offset: the offset within the fragment (starting at the
2490 * fragment's own offset)
2491 * @size: the number of bytes to map
f83347df 2492 * @dir: the direction of the mapping (%PCI_DMA_*)
131ea667
IC
2493 *
2494 * Maps the page associated with @frag to @device.
2495 */
2496static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2497 const skb_frag_t *frag,
2498 size_t offset, size_t size,
2499 enum dma_data_direction dir)
2500{
2501 return dma_map_page(dev, skb_frag_page(frag),
2502 frag->page_offset + offset, size, dir);
2503}
2504
117632e6
ED
2505static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2506 gfp_t gfp_mask)
2507{
2508 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2509}
2510
bad93e9d
OP
2511
2512static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2513 gfp_t gfp_mask)
2514{
2515 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2516}
2517
2518
334a8132
PM
2519/**
2520 * skb_clone_writable - is the header of a clone writable
2521 * @skb: buffer to check
2522 * @len: length up to which to write
2523 *
2524 * Returns true if modifying the header part of the cloned buffer
2525 * does not requires the data to be copied.
2526 */
05bdd2f1 2527static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2528{
2529 return !skb_header_cloned(skb) &&
2530 skb_headroom(skb) + len <= skb->hdr_len;
2531}
2532
d9cc2048
HX
2533static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2534 int cloned)
2535{
2536 int delta = 0;
2537
d9cc2048
HX
2538 if (headroom > skb_headroom(skb))
2539 delta = headroom - skb_headroom(skb);
2540
2541 if (delta || cloned)
2542 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2543 GFP_ATOMIC);
2544 return 0;
2545}
2546
1da177e4
LT
2547/**
2548 * skb_cow - copy header of skb when it is required
2549 * @skb: buffer to cow
2550 * @headroom: needed headroom
2551 *
2552 * If the skb passed lacks sufficient headroom or its data part
2553 * is shared, data is reallocated. If reallocation fails, an error
2554 * is returned and original skb is not changed.
2555 *
2556 * The result is skb with writable area skb->head...skb->tail
2557 * and at least @headroom of space at head.
2558 */
2559static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2560{
d9cc2048
HX
2561 return __skb_cow(skb, headroom, skb_cloned(skb));
2562}
1da177e4 2563
d9cc2048
HX
2564/**
2565 * skb_cow_head - skb_cow but only making the head writable
2566 * @skb: buffer to cow
2567 * @headroom: needed headroom
2568 *
2569 * This function is identical to skb_cow except that we replace the
2570 * skb_cloned check by skb_header_cloned. It should be used when
2571 * you only need to push on some header and do not need to modify
2572 * the data.
2573 */
2574static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2575{
2576 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2577}
2578
2579/**
2580 * skb_padto - pad an skbuff up to a minimal size
2581 * @skb: buffer to pad
2582 * @len: minimal length
2583 *
2584 * Pads up a buffer to ensure the trailing bytes exist and are
2585 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2586 * is untouched. Otherwise it is extended. Returns zero on
2587 * success. The skb is freed on error.
1da177e4 2588 */
5b057c6b 2589static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2590{
2591 unsigned int size = skb->len;
2592 if (likely(size >= len))
5b057c6b 2593 return 0;
987c402a 2594 return skb_pad(skb, len - size);
1da177e4
LT
2595}
2596
9c0c1124
AD
2597/**
2598 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2599 * @skb: buffer to pad
2600 * @len: minimal length
2601 *
2602 * Pads up a buffer to ensure the trailing bytes exist and are
2603 * blanked. If the buffer already contains sufficient data it
2604 * is untouched. Otherwise it is extended. Returns zero on
2605 * success. The skb is freed on error.
2606 */
2607static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2608{
2609 unsigned int size = skb->len;
2610
2611 if (unlikely(size < len)) {
2612 len -= size;
2613 if (skb_pad(skb, len))
2614 return -ENOMEM;
2615 __skb_put(skb, len);
2616 }
2617 return 0;
2618}
2619
1da177e4 2620static inline int skb_add_data(struct sk_buff *skb,
af2b040e 2621 struct iov_iter *from, int copy)
1da177e4
LT
2622{
2623 const int off = skb->len;
2624
2625 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e
AV
2626 __wsum csum = 0;
2627 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2628 &csum, from) == copy) {
1da177e4
LT
2629 skb->csum = csum_block_add(skb->csum, csum, off);
2630 return 0;
2631 }
af2b040e 2632 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
1da177e4
LT
2633 return 0;
2634
2635 __skb_trim(skb, off);
2636 return -EFAULT;
2637}
2638
38ba0a65
ED
2639static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2640 const struct page *page, int off)
1da177e4
LT
2641{
2642 if (i) {
9e903e08 2643 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 2644
ea2ab693 2645 return page == skb_frag_page(frag) &&
9e903e08 2646 off == frag->page_offset + skb_frag_size(frag);
1da177e4 2647 }
38ba0a65 2648 return false;
1da177e4
LT
2649}
2650
364c6bad
HX
2651static inline int __skb_linearize(struct sk_buff *skb)
2652{
2653 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2654}
2655
1da177e4
LT
2656/**
2657 * skb_linearize - convert paged skb to linear one
2658 * @skb: buffer to linarize
1da177e4
LT
2659 *
2660 * If there is no free memory -ENOMEM is returned, otherwise zero
2661 * is returned and the old skb data released.
2662 */
364c6bad
HX
2663static inline int skb_linearize(struct sk_buff *skb)
2664{
2665 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2666}
2667
cef401de
ED
2668/**
2669 * skb_has_shared_frag - can any frag be overwritten
2670 * @skb: buffer to test
2671 *
2672 * Return true if the skb has at least one frag that might be modified
2673 * by an external entity (as in vmsplice()/sendfile())
2674 */
2675static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2676{
c9af6db4
PS
2677 return skb_is_nonlinear(skb) &&
2678 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
2679}
2680
364c6bad
HX
2681/**
2682 * skb_linearize_cow - make sure skb is linear and writable
2683 * @skb: buffer to process
2684 *
2685 * If there is no free memory -ENOMEM is returned, otherwise zero
2686 * is returned and the old skb data released.
2687 */
2688static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 2689{
364c6bad
HX
2690 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2691 __skb_linearize(skb) : 0;
1da177e4
LT
2692}
2693
2694/**
2695 * skb_postpull_rcsum - update checksum for received skb after pull
2696 * @skb: buffer to update
2697 * @start: start of data before pull
2698 * @len: length of data pulled
2699 *
2700 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
2701 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2702 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4
LT
2703 */
2704
2705static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 2706 const void *start, unsigned int len)
1da177e4 2707{
84fa7933 2708 if (skb->ip_summed == CHECKSUM_COMPLETE)
1da177e4 2709 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
6ae459bd 2710 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
31b33dfb 2711 skb_checksum_start_offset(skb) < 0)
6ae459bd 2712 skb->ip_summed = CHECKSUM_NONE;
1da177e4
LT
2713}
2714
cbb042f9
HX
2715unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2716
7ce5a27f
DM
2717/**
2718 * pskb_trim_rcsum - trim received skb and update checksum
2719 * @skb: buffer to trim
2720 * @len: new length
2721 *
2722 * This is exactly the same as pskb_trim except that it ensures the
2723 * checksum of received packets are still valid after the operation.
2724 */
2725
2726static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2727{
2728 if (likely(len >= skb->len))
2729 return 0;
2730 if (skb->ip_summed == CHECKSUM_COMPLETE)
2731 skb->ip_summed = CHECKSUM_NONE;
2732 return __pskb_trim(skb, len);
2733}
2734
1da177e4
LT
2735#define skb_queue_walk(queue, skb) \
2736 for (skb = (queue)->next; \
a1e4891f 2737 skb != (struct sk_buff *)(queue); \
1da177e4
LT
2738 skb = skb->next)
2739
46f8914e
JC
2740#define skb_queue_walk_safe(queue, skb, tmp) \
2741 for (skb = (queue)->next, tmp = skb->next; \
2742 skb != (struct sk_buff *)(queue); \
2743 skb = tmp, tmp = skb->next)
2744
1164f52a 2745#define skb_queue_walk_from(queue, skb) \
a1e4891f 2746 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
2747 skb = skb->next)
2748
2749#define skb_queue_walk_from_safe(queue, skb, tmp) \
2750 for (tmp = skb->next; \
2751 skb != (struct sk_buff *)(queue); \
2752 skb = tmp, tmp = skb->next)
2753
300ce174
SH
2754#define skb_queue_reverse_walk(queue, skb) \
2755 for (skb = (queue)->prev; \
a1e4891f 2756 skb != (struct sk_buff *)(queue); \
300ce174
SH
2757 skb = skb->prev)
2758
686a2955
DM
2759#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2760 for (skb = (queue)->prev, tmp = skb->prev; \
2761 skb != (struct sk_buff *)(queue); \
2762 skb = tmp, tmp = skb->prev)
2763
2764#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2765 for (tmp = skb->prev; \
2766 skb != (struct sk_buff *)(queue); \
2767 skb = tmp, tmp = skb->prev)
1da177e4 2768
21dc3301 2769static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
2770{
2771 return skb_shinfo(skb)->frag_list != NULL;
2772}
2773
2774static inline void skb_frag_list_init(struct sk_buff *skb)
2775{
2776 skb_shinfo(skb)->frag_list = NULL;
2777}
2778
ee039871
DM
2779#define skb_walk_frags(skb, iter) \
2780 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2781
7965bd4d
JP
2782struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2783 int *peeked, int *off, int *err);
2784struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2785 int *err);
2786unsigned int datagram_poll(struct file *file, struct socket *sock,
2787 struct poll_table_struct *wait);
c0371da6
AV
2788int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2789 struct iov_iter *to, int size);
51f3d02b
DM
2790static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2791 struct msghdr *msg, int size)
2792{
e5a4b0bb 2793 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 2794}
e5a4b0bb
AV
2795int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2796 struct msghdr *msg);
3a654f97
AV
2797int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2798 struct iov_iter *from, int len);
3a654f97 2799int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d
JP
2800void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2801void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2802int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
2803int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2804int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2805__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2806 int len, __wsum csum);
a60e3cc7
HFS
2807ssize_t skb_socket_splice(struct sock *sk,
2808 struct pipe_inode_info *pipe,
2809 struct splice_pipe_desc *spd);
2810int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 2811 struct pipe_inode_info *pipe, unsigned int len,
a60e3cc7
HFS
2812 unsigned int flags,
2813 ssize_t (*splice_cb)(struct sock *,
2814 struct pipe_inode_info *,
2815 struct splice_pipe_desc *));
7965bd4d 2816void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 2817unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
2818int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2819 int len, int hlen);
7965bd4d
JP
2820void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2821int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2822void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 2823unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
7965bd4d 2824struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 2825struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 2826int skb_ensure_writable(struct sk_buff *skb, int write_len);
93515d53
JP
2827int skb_vlan_pop(struct sk_buff *skb);
2828int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
20380731 2829
6ce8e9ce
AV
2830static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2831{
21226abb 2832 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
6ce8e9ce
AV
2833}
2834
7eab8d9e
AV
2835static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2836{
e5a4b0bb 2837 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
2838}
2839
2817a336
DB
2840struct skb_checksum_ops {
2841 __wsum (*update)(const void *mem, int len, __wsum wsum);
2842 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2843};
2844
2845__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2846 __wsum csum, const struct skb_checksum_ops *ops);
2847__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2848 __wsum csum);
2849
1e98a0f0
ED
2850static inline void * __must_check
2851__skb_header_pointer(const struct sk_buff *skb, int offset,
2852 int len, void *data, int hlen, void *buffer)
1da177e4 2853{
55820ee2 2854 if (hlen - offset >= len)
690e36e7 2855 return data + offset;
1da177e4 2856
690e36e7
DM
2857 if (!skb ||
2858 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
2859 return NULL;
2860
2861 return buffer;
2862}
2863
1e98a0f0
ED
2864static inline void * __must_check
2865skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
2866{
2867 return __skb_header_pointer(skb, offset, len, skb->data,
2868 skb_headlen(skb), buffer);
2869}
2870
4262e5cc
DB
2871/**
2872 * skb_needs_linearize - check if we need to linearize a given skb
2873 * depending on the given device features.
2874 * @skb: socket buffer to check
2875 * @features: net device features
2876 *
2877 * Returns true if either:
2878 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2879 * 2. skb is fragmented and the device does not support SG.
2880 */
2881static inline bool skb_needs_linearize(struct sk_buff *skb,
2882 netdev_features_t features)
2883{
2884 return skb_is_nonlinear(skb) &&
2885 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2886 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2887}
2888
d626f62b
ACM
2889static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2890 void *to,
2891 const unsigned int len)
2892{
2893 memcpy(to, skb->data, len);
2894}
2895
2896static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2897 const int offset, void *to,
2898 const unsigned int len)
2899{
2900 memcpy(to, skb->data + offset, len);
2901}
2902
27d7ff46
ACM
2903static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2904 const void *from,
2905 const unsigned int len)
2906{
2907 memcpy(skb->data, from, len);
2908}
2909
2910static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2911 const int offset,
2912 const void *from,
2913 const unsigned int len)
2914{
2915 memcpy(skb->data + offset, from, len);
2916}
2917
7965bd4d 2918void skb_init(void);
1da177e4 2919
ac45f602
PO
2920static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2921{
2922 return skb->tstamp;
2923}
2924
a61bbcf2
PM
2925/**
2926 * skb_get_timestamp - get timestamp from a skb
2927 * @skb: skb to get stamp from
2928 * @stamp: pointer to struct timeval to store stamp in
2929 *
2930 * Timestamps are stored in the skb as offsets to a base timestamp.
2931 * This function converts the offset back to a struct timeval and stores
2932 * it in stamp.
2933 */
ac45f602
PO
2934static inline void skb_get_timestamp(const struct sk_buff *skb,
2935 struct timeval *stamp)
a61bbcf2 2936{
b7aa0bf7 2937 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
2938}
2939
ac45f602
PO
2940static inline void skb_get_timestampns(const struct sk_buff *skb,
2941 struct timespec *stamp)
2942{
2943 *stamp = ktime_to_timespec(skb->tstamp);
2944}
2945
b7aa0bf7 2946static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 2947{
b7aa0bf7 2948 skb->tstamp = ktime_get_real();
a61bbcf2
PM
2949}
2950
164891aa
SH
2951static inline ktime_t net_timedelta(ktime_t t)
2952{
2953 return ktime_sub(ktime_get_real(), t);
2954}
2955
b9ce204f
IJ
2956static inline ktime_t net_invalid_timestamp(void)
2957{
2958 return ktime_set(0, 0);
2959}
a61bbcf2 2960
62bccb8c
AD
2961struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2962
c1f19b51
RC
2963#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2964
7965bd4d
JP
2965void skb_clone_tx_timestamp(struct sk_buff *skb);
2966bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
2967
2968#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2969
2970static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2971{
2972}
2973
2974static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2975{
2976 return false;
2977}
2978
2979#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2980
2981/**
2982 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2983 *
da92b194
RC
2984 * PHY drivers may accept clones of transmitted packets for
2985 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
2986 * must call this function to return the skb back to the stack with a
2987 * timestamp.
da92b194 2988 *
c1f19b51 2989 * @skb: clone of the the original outgoing packet
7a76a021 2990 * @hwtstamps: hardware time stamps
c1f19b51
RC
2991 *
2992 */
2993void skb_complete_tx_timestamp(struct sk_buff *skb,
2994 struct skb_shared_hwtstamps *hwtstamps);
2995
e7fd2885
WB
2996void __skb_tstamp_tx(struct sk_buff *orig_skb,
2997 struct skb_shared_hwtstamps *hwtstamps,
2998 struct sock *sk, int tstype);
2999
ac45f602
PO
3000/**
3001 * skb_tstamp_tx - queue clone of skb with send time stamps
3002 * @orig_skb: the original outgoing packet
3003 * @hwtstamps: hardware time stamps, may be NULL if not available
3004 *
3005 * If the skb has a socket associated, then this function clones the
3006 * skb (thus sharing the actual data and optional structures), stores
3007 * the optional hardware time stamping information (if non NULL) or
3008 * generates a software time stamp (otherwise), then queues the clone
3009 * to the error queue of the socket. Errors are silently ignored.
3010 */
7965bd4d
JP
3011void skb_tstamp_tx(struct sk_buff *orig_skb,
3012 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3013
4507a715
RC
3014static inline void sw_tx_timestamp(struct sk_buff *skb)
3015{
2244d07b
OH
3016 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3017 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
4507a715
RC
3018 skb_tstamp_tx(skb, NULL);
3019}
3020
3021/**
3022 * skb_tx_timestamp() - Driver hook for transmit timestamping
3023 *
3024 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3025 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3026 *
73409f3b
DM
3027 * Specifically, one should make absolutely sure that this function is
3028 * called before TX completion of this packet can trigger. Otherwise
3029 * the packet could potentially already be freed.
3030 *
4507a715
RC
3031 * @skb: A socket buffer.
3032 */
3033static inline void skb_tx_timestamp(struct sk_buff *skb)
3034{
c1f19b51 3035 skb_clone_tx_timestamp(skb);
4507a715
RC
3036 sw_tx_timestamp(skb);
3037}
3038
6e3e939f
JB
3039/**
3040 * skb_complete_wifi_ack - deliver skb with wifi status
3041 *
3042 * @skb: the original outgoing packet
3043 * @acked: ack status
3044 *
3045 */
3046void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3047
7965bd4d
JP
3048__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3049__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3050
60476372
HX
3051static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3052{
6edec0e6
TH
3053 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3054 skb->csum_valid ||
3055 (skb->ip_summed == CHECKSUM_PARTIAL &&
3056 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3057}
3058
fb286bb2
HX
3059/**
3060 * skb_checksum_complete - Calculate checksum of an entire packet
3061 * @skb: packet to process
3062 *
3063 * This function calculates the checksum over the entire packet plus
3064 * the value of skb->csum. The latter can be used to supply the
3065 * checksum of a pseudo header as used by TCP/UDP. It returns the
3066 * checksum.
3067 *
3068 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3069 * this function can be used to verify that checksum on received
3070 * packets. In that case the function should return zero if the
3071 * checksum is correct. In particular, this function will return zero
3072 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3073 * hardware has already verified the correctness of the checksum.
3074 */
4381ca3c 3075static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3076{
60476372
HX
3077 return skb_csum_unnecessary(skb) ?
3078 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3079}
3080
77cffe23
TH
3081static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3082{
3083 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3084 if (skb->csum_level == 0)
3085 skb->ip_summed = CHECKSUM_NONE;
3086 else
3087 skb->csum_level--;
3088 }
3089}
3090
3091static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3092{
3093 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3094 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3095 skb->csum_level++;
3096 } else if (skb->ip_summed == CHECKSUM_NONE) {
3097 skb->ip_summed = CHECKSUM_UNNECESSARY;
3098 skb->csum_level = 0;
3099 }
3100}
3101
5a212329
TH
3102static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3103{
3104 /* Mark current checksum as bad (typically called from GRO
3105 * path). In the case that ip_summed is CHECKSUM_NONE
3106 * this must be the first checksum encountered in the packet.
3107 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3108 * checksum after the last one validated. For UDP, a zero
3109 * checksum can not be marked as bad.
3110 */
3111
3112 if (skb->ip_summed == CHECKSUM_NONE ||
3113 skb->ip_summed == CHECKSUM_UNNECESSARY)
3114 skb->csum_bad = 1;
3115}
3116
76ba0aae
TH
3117/* Check if we need to perform checksum complete validation.
3118 *
3119 * Returns true if checksum complete is needed, false otherwise
3120 * (either checksum is unnecessary or zero checksum is allowed).
3121 */
3122static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3123 bool zero_okay,
3124 __sum16 check)
3125{
5d0c2b95
TH
3126 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3127 skb->csum_valid = 1;
77cffe23 3128 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3129 return false;
3130 }
3131
3132 return true;
3133}
3134
3135/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3136 * in checksum_init.
3137 */
3138#define CHECKSUM_BREAK 76
3139
4e18b9ad
TH
3140/* Unset checksum-complete
3141 *
3142 * Unset checksum complete can be done when packet is being modified
3143 * (uncompressed for instance) and checksum-complete value is
3144 * invalidated.
3145 */
3146static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3147{
3148 if (skb->ip_summed == CHECKSUM_COMPLETE)
3149 skb->ip_summed = CHECKSUM_NONE;
3150}
3151
76ba0aae
TH
3152/* Validate (init) checksum based on checksum complete.
3153 *
3154 * Return values:
3155 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3156 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3157 * checksum is stored in skb->csum for use in __skb_checksum_complete
3158 * non-zero: value of invalid checksum
3159 *
3160 */
3161static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3162 bool complete,
3163 __wsum psum)
3164{
3165 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3166 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3167 skb->csum_valid = 1;
76ba0aae
TH
3168 return 0;
3169 }
5a212329
TH
3170 } else if (skb->csum_bad) {
3171 /* ip_summed == CHECKSUM_NONE in this case */
c91d4606 3172 return (__force __sum16)1;
76ba0aae
TH
3173 }
3174
3175 skb->csum = psum;
3176
5d0c2b95
TH
3177 if (complete || skb->len <= CHECKSUM_BREAK) {
3178 __sum16 csum;
3179
3180 csum = __skb_checksum_complete(skb);
3181 skb->csum_valid = !csum;
3182 return csum;
3183 }
76ba0aae
TH
3184
3185 return 0;
3186}
3187
3188static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3189{
3190 return 0;
3191}
3192
3193/* Perform checksum validate (init). Note that this is a macro since we only
3194 * want to calculate the pseudo header which is an input function if necessary.
3195 * First we try to validate without any computation (checksum unnecessary) and
3196 * then calculate based on checksum complete calling the function to compute
3197 * pseudo header.
3198 *
3199 * Return values:
3200 * 0: checksum is validated or try to in skb_checksum_complete
3201 * non-zero: value of invalid checksum
3202 */
3203#define __skb_checksum_validate(skb, proto, complete, \
3204 zero_okay, check, compute_pseudo) \
3205({ \
3206 __sum16 __ret = 0; \
5d0c2b95 3207 skb->csum_valid = 0; \
76ba0aae
TH
3208 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3209 __ret = __skb_checksum_validate_complete(skb, \
3210 complete, compute_pseudo(skb, proto)); \
3211 __ret; \
3212})
3213
3214#define skb_checksum_init(skb, proto, compute_pseudo) \
3215 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3216
3217#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3218 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3219
3220#define skb_checksum_validate(skb, proto, compute_pseudo) \
3221 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3222
3223#define skb_checksum_validate_zero_check(skb, proto, check, \
3224 compute_pseudo) \
096a4cfa 3225 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3226
3227#define skb_checksum_simple_validate(skb) \
3228 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3229
d96535a1
TH
3230static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3231{
3232 return (skb->ip_summed == CHECKSUM_NONE &&
3233 skb->csum_valid && !skb->csum_bad);
3234}
3235
3236static inline void __skb_checksum_convert(struct sk_buff *skb,
3237 __sum16 check, __wsum pseudo)
3238{
3239 skb->csum = ~pseudo;
3240 skb->ip_summed = CHECKSUM_COMPLETE;
3241}
3242
3243#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3244do { \
3245 if (__skb_checksum_convert_check(skb)) \
3246 __skb_checksum_convert(skb, check, \
3247 compute_pseudo(skb, proto)); \
3248} while (0)
3249
15e2396d
TH
3250static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3251 u16 start, u16 offset)
3252{
3253 skb->ip_summed = CHECKSUM_PARTIAL;
3254 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3255 skb->csum_offset = offset - start;
3256}
3257
dcdc8994
TH
3258/* Update skbuf and packet to reflect the remote checksum offload operation.
3259 * When called, ptr indicates the starting point for skb->csum when
3260 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3261 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3262 */
3263static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3264 int start, int offset, bool nopartial)
dcdc8994
TH
3265{
3266 __wsum delta;
3267
15e2396d
TH
3268 if (!nopartial) {
3269 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3270 return;
3271 }
3272
dcdc8994
TH
3273 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3274 __skb_checksum_complete(skb);
3275 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3276 }
3277
3278 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3279
3280 /* Adjust skb->csum since we changed the packet */
3281 skb->csum = csum_add(skb->csum, delta);
3282}
3283
5f79e0f9 3284#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3285void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3286static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3287{
3288 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3289 nf_conntrack_destroy(nfct);
1da177e4
LT
3290}
3291static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3292{
3293 if (nfct)
3294 atomic_inc(&nfct->use);
3295}
2fc72c7b 3296#endif
34666d46 3297#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3298static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3299{
3300 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3301 kfree(nf_bridge);
3302}
3303static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3304{
3305 if (nf_bridge)
3306 atomic_inc(&nf_bridge->use);
3307}
3308#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3309static inline void nf_reset(struct sk_buff *skb)
3310{
5f79e0f9 3311#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a193a4ab
PM
3312 nf_conntrack_put(skb->nfct);
3313 skb->nfct = NULL;
2fc72c7b 3314#endif
34666d46 3315#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3316 nf_bridge_put(skb->nf_bridge);
3317 skb->nf_bridge = NULL;
3318#endif
3319}
3320
124dff01
PM
3321static inline void nf_reset_trace(struct sk_buff *skb)
3322{
478b360a 3323#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3324 skb->nf_trace = 0;
3325#endif
a193a4ab
PM
3326}
3327
edda553c 3328/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3329static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3330 bool copy)
edda553c 3331{
5f79e0f9 3332#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
edda553c
YK
3333 dst->nfct = src->nfct;
3334 nf_conntrack_get(src->nfct);
b1937227
ED
3335 if (copy)
3336 dst->nfctinfo = src->nfctinfo;
2fc72c7b 3337#endif
34666d46 3338#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3339 dst->nf_bridge = src->nf_bridge;
3340 nf_bridge_get(src->nf_bridge);
3341#endif
478b360a 3342#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3343 if (copy)
3344 dst->nf_trace = src->nf_trace;
478b360a 3345#endif
edda553c
YK
3346}
3347
e7ac05f3
YK
3348static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3349{
e7ac05f3 3350#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 3351 nf_conntrack_put(dst->nfct);
2fc72c7b 3352#endif
34666d46 3353#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3354 nf_bridge_put(dst->nf_bridge);
3355#endif
b1937227 3356 __nf_copy(dst, src, true);
e7ac05f3
YK
3357}
3358
984bc16c
JM
3359#ifdef CONFIG_NETWORK_SECMARK
3360static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3361{
3362 to->secmark = from->secmark;
3363}
3364
3365static inline void skb_init_secmark(struct sk_buff *skb)
3366{
3367 skb->secmark = 0;
3368}
3369#else
3370static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3371{ }
3372
3373static inline void skb_init_secmark(struct sk_buff *skb)
3374{ }
3375#endif
3376
574f7194
EB
3377static inline bool skb_irq_freeable(const struct sk_buff *skb)
3378{
3379 return !skb->destructor &&
3380#if IS_ENABLED(CONFIG_XFRM)
3381 !skb->sp &&
3382#endif
3383#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3384 !skb->nfct &&
3385#endif
3386 !skb->_skb_refdst &&
3387 !skb_has_frag_list(skb);
3388}
3389
f25f4e44
PWJ
3390static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3391{
f25f4e44 3392 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3393}
3394
9247744e 3395static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3396{
4e3ab47a 3397 return skb->queue_mapping;
4e3ab47a
PE
3398}
3399
f25f4e44
PWJ
3400static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3401{
f25f4e44 3402 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3403}
3404
d5a9e24a
DM
3405static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3406{
3407 skb->queue_mapping = rx_queue + 1;
3408}
3409
9247744e 3410static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3411{
3412 return skb->queue_mapping - 1;
3413}
3414
9247744e 3415static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3416{
a02cec21 3417 return skb->queue_mapping != 0;
d5a9e24a
DM
3418}
3419
def8b4fa
AD
3420static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3421{
0b3d8e08 3422#ifdef CONFIG_XFRM
def8b4fa 3423 return skb->sp;
def8b4fa 3424#else
def8b4fa 3425 return NULL;
def8b4fa 3426#endif
0b3d8e08 3427}
def8b4fa 3428
68c33163
PS
3429/* Keeps track of mac header offset relative to skb->head.
3430 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3431 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3432 * tunnel skb it points to outer mac header.
3433 * Keeps track of level of encapsulation of network headers.
3434 */
68c33163 3435struct skb_gso_cb {
3347c960
ED
3436 int mac_offset;
3437 int encap_level;
7e2b10c1 3438 __u16 csum_start;
68c33163
PS
3439};
3440#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3441
3442static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3443{
3444 return (skb_mac_header(inner_skb) - inner_skb->head) -
3445 SKB_GSO_CB(inner_skb)->mac_offset;
3446}
3447
1e2bd517
PS
3448static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3449{
3450 int new_headroom, headroom;
3451 int ret;
3452
3453 headroom = skb_headroom(skb);
3454 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3455 if (ret)
3456 return ret;
3457
3458 new_headroom = skb_headroom(skb);
3459 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3460 return 0;
3461}
3462
7e2b10c1
TH
3463/* Compute the checksum for a gso segment. First compute the checksum value
3464 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3465 * then add in skb->csum (checksum from csum_start to end of packet).
3466 * skb->csum and csum_start are then updated to reflect the checksum of the
3467 * resultant packet starting from the transport header-- the resultant checksum
3468 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3469 * header.
3470 */
3471static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3472{
3473 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
c91d4606
ED
3474 skb_transport_offset(skb);
3475 __wsum partial;
7e2b10c1 3476
c91d4606 3477 partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
7e2b10c1
TH
3478 skb->csum = res;
3479 SKB_GSO_CB(skb)->csum_start -= plen;
3480
c91d4606 3481 return csum_fold(partial);
7e2b10c1
TH
3482}
3483
bdcc0924 3484static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3485{
3486 return skb_shinfo(skb)->gso_size;
3487}
3488
36a8f39e 3489/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 3490static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
3491{
3492 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3493}
3494
7965bd4d 3495void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
3496
3497static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3498{
3499 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3500 * wanted then gso_type will be set. */
05bdd2f1
ED
3501 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3502
b78462eb
AD
3503 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3504 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
3505 __skb_warn_lro_forwarding(skb);
3506 return true;
3507 }
3508 return false;
3509}
3510
35fc92a9
HX
3511static inline void skb_forward_csum(struct sk_buff *skb)
3512{
3513 /* Unfortunately we don't support this one. Any brave souls? */
3514 if (skb->ip_summed == CHECKSUM_COMPLETE)
3515 skb->ip_summed = CHECKSUM_NONE;
3516}
3517
bc8acf2c
ED
3518/**
3519 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3520 * @skb: skb to check
3521 *
3522 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3523 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3524 * use this helper, to document places where we make this assertion.
3525 */
05bdd2f1 3526static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
3527{
3528#ifdef DEBUG
3529 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3530#endif
3531}
3532
f35d9d8a 3533bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 3534
ed1f50c3 3535int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
3536struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3537 unsigned int transport_len,
3538 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 3539
3a7c1ee4
AD
3540/**
3541 * skb_head_is_locked - Determine if the skb->head is locked down
3542 * @skb: skb to check
3543 *
3544 * The head on skbs build around a head frag can be removed if they are
3545 * not cloned. This function returns true if the skb head is locked down
3546 * due to either being allocated via kmalloc, or by being a clone with
3547 * multiple references to the head.
3548 */
3549static inline bool skb_head_is_locked(const struct sk_buff *skb)
3550{
3551 return !skb->head_frag || skb_cloned(skb);
3552}
fe6cc55f
FW
3553
3554/**
3555 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3556 *
3557 * @skb: GSO skb
3558 *
3559 * skb_gso_network_seglen is used to determine the real size of the
3560 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3561 *
3562 * The MAC/L2 header is not accounted for.
3563 */
3564static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3565{
3566 unsigned int hdr_len = skb_transport_header(skb) -
3567 skb_network_header(skb);
3568 return hdr_len + skb_gso_transport_seglen(skb);
3569}
ee122c79 3570
1da177e4
LT
3571#endif /* __KERNEL__ */
3572#endif /* _LINUX_SKBUFF_H */