]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/skbuff.h
new helper: add_to_pipe()
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4 22#include <linux/cache.h>
56b17425 23#include <linux/rbtree.h>
51f3d02b 24#include <linux/socket.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
1bd758eb 37#include <net/flow_dissector.h>
a60e3cc7 38#include <linux/splice.h>
72b31f72 39#include <linux/in6.h>
8b10cab6 40#include <linux/if_packet.h>
f70ea018 41#include <net/flow.h>
1da177e4 42
7a6ae71b
TH
43/* The interface for checksum offload between the stack and networking drivers
44 * is as follows...
45 *
46 * A. IP checksum related features
47 *
48 * Drivers advertise checksum offload capabilities in the features of a device.
49 * From the stack's point of view these are capabilities offered by the driver,
50 * a driver typically only advertises features that it is capable of offloading
51 * to its device.
52 *
53 * The checksum related features are:
54 *
55 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
56 * IP (one's complement) checksum for any combination
57 * of protocols or protocol layering. The checksum is
58 * computed and set in a packet per the CHECKSUM_PARTIAL
59 * interface (see below).
60 *
61 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
62 * TCP or UDP packets over IPv4. These are specifically
63 * unencapsulated packets of the form IPv4|TCP or
64 * IPv4|UDP where the Protocol field in the IPv4 header
65 * is TCP or UDP. The IPv4 header may contain IP options
66 * This feature cannot be set in features for a device
67 * with NETIF_F_HW_CSUM also set. This feature is being
68 * DEPRECATED (see below).
69 *
70 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
71 * TCP or UDP packets over IPv6. These are specifically
72 * unencapsulated packets of the form IPv6|TCP or
73 * IPv4|UDP where the Next Header field in the IPv6
74 * header is either TCP or UDP. IPv6 extension headers
75 * are not supported with this feature. This feature
76 * cannot be set in features for a device with
77 * NETIF_F_HW_CSUM also set. This feature is being
78 * DEPRECATED (see below).
79 *
80 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
81 * This flag is used only used to disable the RX checksum
82 * feature for a device. The stack will accept receive
83 * checksum indication in packets received on a device
84 * regardless of whether NETIF_F_RXCSUM is set.
85 *
86 * B. Checksumming of received packets by device. Indication of checksum
87 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
88 *
89 * CHECKSUM_NONE:
90 *
7a6ae71b 91 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
92 * The packet contains full (though not verified) checksum in packet but
93 * not in skb->csum. Thus, skb->csum is undefined in this case.
94 *
95 * CHECKSUM_UNNECESSARY:
96 *
97 * The hardware you're dealing with doesn't calculate the full checksum
98 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
99 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
100 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
101 * though. A driver or device must never modify the checksum field in the
102 * packet even if checksum is verified.
77cffe23
TH
103 *
104 * CHECKSUM_UNNECESSARY is applicable to following protocols:
105 * TCP: IPv6 and IPv4.
106 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
107 * zero UDP checksum for either IPv4 or IPv6, the networking stack
108 * may perform further validation in this case.
109 * GRE: only if the checksum is present in the header.
110 * SCTP: indicates the CRC in SCTP header has been validated.
111 *
112 * skb->csum_level indicates the number of consecutive checksums found in
113 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
114 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
115 * and a device is able to verify the checksums for UDP (possibly zero),
116 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
117 * two. If the device were only able to verify the UDP checksum and not
118 * GRE, either because it doesn't support GRE checksum of because GRE
119 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
120 * not considered in this case).
78ea85f1
DB
121 *
122 * CHECKSUM_COMPLETE:
123 *
124 * This is the most generic way. The device supplied checksum of the _whole_
125 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
126 * hardware doesn't need to parse L3/L4 headers to implement this.
127 *
128 * Note: Even if device supports only some protocols, but is able to produce
129 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
130 *
131 * CHECKSUM_PARTIAL:
132 *
6edec0e6
TH
133 * A checksum is set up to be offloaded to a device as described in the
134 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 135 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
136 * on the same host, or it may be set in the input path in GRO or remote
137 * checksum offload. For the purposes of checksum verification, the checksum
138 * referred to by skb->csum_start + skb->csum_offset and any preceding
139 * checksums in the packet are considered verified. Any checksums in the
140 * packet that are after the checksum being offloaded are not considered to
141 * be verified.
78ea85f1 142 *
7a6ae71b
TH
143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
145 *
146 * CHECKSUM_PARTIAL:
147 *
7a6ae71b 148 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 149 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
150 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
151 * csum_start and csum_offset values are valid values given the length and
152 * offset of the packet, however they should not attempt to validate that the
153 * checksum refers to a legitimate transport layer checksum-- it is the
154 * purview of the stack to validate that csum_start and csum_offset are set
155 * correctly.
156 *
157 * When the stack requests checksum offload for a packet, the driver MUST
158 * ensure that the checksum is set correctly. A driver can either offload the
159 * checksum calculation to the device, or call skb_checksum_help (in the case
160 * that the device does not support offload for a particular checksum).
161 *
162 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
164 * checksum offload capability. If a device has limited checksum capabilities
165 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
166 * described above) a helper function can be called to resolve
167 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
168 * function takes a spec argument that describes the protocol layer that is
169 * supported for checksum offload and can be called for each packet. If a
170 * packet does not match the specification for offload, skb_checksum_help
171 * is called to resolve the checksum.
78ea85f1 172 *
7a6ae71b 173 * CHECKSUM_NONE:
78ea85f1 174 *
7a6ae71b
TH
175 * The skb was already checksummed by the protocol, or a checksum is not
176 * required.
78ea85f1
DB
177 *
178 * CHECKSUM_UNNECESSARY:
179 *
7a6ae71b
TH
180 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
181 * output.
78ea85f1 182 *
7a6ae71b
TH
183 * CHECKSUM_COMPLETE:
184 * Not used in checksum output. If a driver observes a packet with this value
185 * set in skbuff, if should treat as CHECKSUM_NONE being set.
186 *
187 * D. Non-IP checksum (CRC) offloads
188 *
189 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
190 * offloading the SCTP CRC in a packet. To perform this offload the stack
191 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
192 * accordingly. Note the there is no indication in the skbuff that the
193 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
194 * both IP checksum offload and SCTP CRC offload must verify which offload
195 * is configured for a packet presumably by inspecting packet headers.
196 *
197 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
198 * offloading the FCOE CRC in a packet. To perform this offload the stack
199 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
200 * accordingly. Note the there is no indication in the skbuff that the
201 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
202 * both IP checksum offload and FCOE CRC offload must verify which offload
203 * is configured for a packet presumably by inspecting packet headers.
204 *
205 * E. Checksumming on output with GSO.
206 *
207 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
208 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
209 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
210 * part of the GSO operation is implied. If a checksum is being offloaded
211 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
212 * are set to refer to the outermost checksum being offload (two offloaded
213 * checksums are possible with UDP encapsulation).
78ea85f1
DB
214 */
215
60476372 216/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
217#define CHECKSUM_NONE 0
218#define CHECKSUM_UNNECESSARY 1
219#define CHECKSUM_COMPLETE 2
220#define CHECKSUM_PARTIAL 3
1da177e4 221
77cffe23
TH
222/* Maximum value in skb->csum_level */
223#define SKB_MAX_CSUM_LEVEL 3
224
0bec8c88 225#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 226#define SKB_WITH_OVERHEAD(X) \
deea84b0 227 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
228#define SKB_MAX_ORDER(X, ORDER) \
229 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
230#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
231#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
232
87fb4b7b
ED
233/* return minimum truesize of one skb containing X bytes of data */
234#define SKB_TRUESIZE(X) ((X) + \
235 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
236 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
237
1da177e4 238struct net_device;
716ea3a7 239struct scatterlist;
9c55e01c 240struct pipe_inode_info;
a8f820aa 241struct iov_iter;
fd11a83d 242struct napi_struct;
1da177e4 243
5f79e0f9 244#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
245struct nf_conntrack {
246 atomic_t use;
1da177e4 247};
5f79e0f9 248#endif
1da177e4 249
34666d46 250#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 251struct nf_bridge_info {
bf1ac5ca 252 atomic_t use;
3eaf4025
FW
253 enum {
254 BRNF_PROTO_UNCHANGED,
255 BRNF_PROTO_8021Q,
256 BRNF_PROTO_PPPOE
7fb48c5b 257 } orig_proto:8;
72b1e5e4
FW
258 u8 pkt_otherhost:1;
259 u8 in_prerouting:1;
260 u8 bridged_dnat:1;
411ffb4f 261 __u16 frag_max_size;
bf1ac5ca 262 struct net_device *physindev;
63cdbc06
FW
263
264 /* always valid & non-NULL from FORWARD on, for physdev match */
265 struct net_device *physoutdev;
7fb48c5b 266 union {
72b1e5e4 267 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
268 __be32 ipv4_daddr;
269 struct in6_addr ipv6_daddr;
72b1e5e4
FW
270
271 /* after prerouting + nat detected: store original source
272 * mac since neigh resolution overwrites it, only used while
273 * skb is out in neigh layer.
274 */
275 char neigh_header[8];
72b31f72 276 };
1da177e4
LT
277};
278#endif
279
1da177e4
LT
280struct sk_buff_head {
281 /* These two members must be first. */
282 struct sk_buff *next;
283 struct sk_buff *prev;
284
285 __u32 qlen;
286 spinlock_t lock;
287};
288
289struct sk_buff;
290
9d4dde52
IC
291/* To allow 64K frame to be packed as single skb without frag_list we
292 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
293 * buffers which do not start on a page boundary.
294 *
295 * Since GRO uses frags we allocate at least 16 regardless of page
296 * size.
a715dea3 297 */
9d4dde52 298#if (65536/PAGE_SIZE + 1) < 16
eec00954 299#define MAX_SKB_FRAGS 16UL
a715dea3 300#else
9d4dde52 301#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 302#endif
5f74f82e 303extern int sysctl_max_skb_frags;
1da177e4 304
3953c46c
MRL
305/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
306 * segment using its current segmentation instead.
307 */
308#define GSO_BY_FRAGS 0xFFFF
309
1da177e4
LT
310typedef struct skb_frag_struct skb_frag_t;
311
312struct skb_frag_struct {
a8605c60
IC
313 struct {
314 struct page *p;
315 } page;
cb4dfe56 316#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
317 __u32 page_offset;
318 __u32 size;
cb4dfe56
ED
319#else
320 __u16 page_offset;
321 __u16 size;
322#endif
1da177e4
LT
323};
324
9e903e08
ED
325static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326{
327 return frag->size;
328}
329
330static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
331{
332 frag->size = size;
333}
334
335static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
336{
337 frag->size += delta;
338}
339
340static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
341{
342 frag->size -= delta;
343}
344
ac45f602
PO
345#define HAVE_HW_TIME_STAMP
346
347/**
d3a21be8 348 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
349 * @hwtstamp: hardware time stamp transformed into duration
350 * since arbitrary point in time
ac45f602
PO
351 *
352 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 353 * skb->tstamp.
ac45f602
PO
354 *
355 * hwtstamps can only be compared against other hwtstamps from
356 * the same device.
357 *
358 * This structure is attached to packets as part of the
359 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
360 */
361struct skb_shared_hwtstamps {
362 ktime_t hwtstamp;
ac45f602
PO
363};
364
2244d07b
OH
365/* Definitions for tx_flags in struct skb_shared_info */
366enum {
367 /* generate hardware time stamp */
368 SKBTX_HW_TSTAMP = 1 << 0,
369
e7fd2885 370 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
371 SKBTX_SW_TSTAMP = 1 << 1,
372
373 /* device driver is going to provide hardware time stamp */
374 SKBTX_IN_PROGRESS = 1 << 2,
375
a6686f2f 376 /* device driver supports TX zero-copy buffers */
62b1a8ab 377 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
378
379 /* generate wifi status information (where possible) */
62b1a8ab 380 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
381
382 /* This indicates at least one fragment might be overwritten
383 * (as in vmsplice(), sendfile() ...)
384 * If we need to compute a TX checksum, we'll need to copy
385 * all frags to avoid possible bad checksum
386 */
387 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
388
389 /* generate software time stamp when entering packet scheduling */
390 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
391};
392
e1c8a607 393#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 394 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
395#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
396
a6686f2f
SM
397/*
398 * The callback notifies userspace to release buffers when skb DMA is done in
399 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
400 * The zerocopy_success argument is true if zero copy transmit occurred,
401 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
402 * The ctx field is used to track device context.
403 * The desc field is used to track userspace buffer index.
a6686f2f
SM
404 */
405struct ubuf_info {
e19d6763 406 void (*callback)(struct ubuf_info *, bool zerocopy_success);
ca8f4fb2 407 void *ctx;
a6686f2f 408 unsigned long desc;
ac45f602
PO
409};
410
1da177e4
LT
411/* This data is invariant across clones and lives at
412 * the end of the header data, ie. at skb->end.
413 */
414struct skb_shared_info {
9f42f126
IC
415 unsigned char nr_frags;
416 __u8 tx_flags;
7967168c
HX
417 unsigned short gso_size;
418 /* Warning: this field is not always filled in (UFO)! */
419 unsigned short gso_segs;
420 unsigned short gso_type;
1da177e4 421 struct sk_buff *frag_list;
ac45f602 422 struct skb_shared_hwtstamps hwtstamps;
09c2d251 423 u32 tskey;
9f42f126 424 __be32 ip6_frag_id;
ec7d2f2c
ED
425
426 /*
427 * Warning : all fields before dataref are cleared in __alloc_skb()
428 */
429 atomic_t dataref;
430
69e3c75f
JB
431 /* Intermediate layers must ensure that destructor_arg
432 * remains valid until skb destructor */
433 void * destructor_arg;
a6686f2f 434
fed66381
ED
435 /* must be last field, see pskb_expand_head() */
436 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
437};
438
439/* We divide dataref into two halves. The higher 16 bits hold references
440 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
441 * the entire skb->data. A clone of a headerless skb holds the length of
442 * the header in skb->hdr_len.
1da177e4
LT
443 *
444 * All users must obey the rule that the skb->data reference count must be
445 * greater than or equal to the payload reference count.
446 *
447 * Holding a reference to the payload part means that the user does not
448 * care about modifications to the header part of skb->data.
449 */
450#define SKB_DATAREF_SHIFT 16
451#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
452
d179cd12
DM
453
454enum {
c8753d55
VS
455 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
456 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
457 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
458};
459
7967168c
HX
460enum {
461 SKB_GSO_TCPV4 = 1 << 0,
f83ef8c0 462 SKB_GSO_UDP = 1 << 1,
576a30eb
HX
463
464 /* This indicates the skb is from an untrusted source. */
465 SKB_GSO_DODGY = 1 << 2,
b0da8537
MC
466
467 /* This indicates the tcp segment has CWR set. */
f83ef8c0
HX
468 SKB_GSO_TCP_ECN = 1 << 3,
469
cbc53e08 470 SKB_GSO_TCP_FIXEDID = 1 << 4,
01d5b2fc 471
cbc53e08 472 SKB_GSO_TCPV6 = 1 << 5,
68c33163 473
cbc53e08 474 SKB_GSO_FCOE = 1 << 6,
73136267 475
cbc53e08 476 SKB_GSO_GRE = 1 << 7,
0d89d203 477
cbc53e08 478 SKB_GSO_GRE_CSUM = 1 << 8,
cb32f511 479
7e13318d 480 SKB_GSO_IPXIP4 = 1 << 9,
61c1db7f 481
7e13318d 482 SKB_GSO_IPXIP6 = 1 << 10,
0f4f4ffa 483
cbc53e08 484 SKB_GSO_UDP_TUNNEL = 1 << 11,
4749c09c 485
cbc53e08
AD
486 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
487
802ab55a
AD
488 SKB_GSO_PARTIAL = 1 << 13,
489
490 SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
90017acc
MRL
491
492 SKB_GSO_SCTP = 1 << 15,
7967168c
HX
493};
494
2e07fa9c
ACM
495#if BITS_PER_LONG > 32
496#define NET_SKBUFF_DATA_USES_OFFSET 1
497#endif
498
499#ifdef NET_SKBUFF_DATA_USES_OFFSET
500typedef unsigned int sk_buff_data_t;
501#else
502typedef unsigned char *sk_buff_data_t;
503#endif
504
363ec392
ED
505/**
506 * struct skb_mstamp - multi resolution time stamps
507 * @stamp_us: timestamp in us resolution
508 * @stamp_jiffies: timestamp in jiffies
509 */
510struct skb_mstamp {
511 union {
512 u64 v64;
513 struct {
514 u32 stamp_us;
515 u32 stamp_jiffies;
516 };
517 };
518};
519
520/**
521 * skb_mstamp_get - get current timestamp
522 * @cl: place to store timestamps
523 */
524static inline void skb_mstamp_get(struct skb_mstamp *cl)
525{
526 u64 val = local_clock();
527
528 do_div(val, NSEC_PER_USEC);
529 cl->stamp_us = (u32)val;
530 cl->stamp_jiffies = (u32)jiffies;
531}
532
533/**
534 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
535 * @t1: pointer to newest sample
536 * @t0: pointer to oldest sample
537 */
538static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
539 const struct skb_mstamp *t0)
540{
541 s32 delta_us = t1->stamp_us - t0->stamp_us;
542 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
543
544 /* If delta_us is negative, this might be because interval is too big,
545 * or local_clock() drift is too big : fallback using jiffies.
546 */
547 if (delta_us <= 0 ||
548 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
549
550 delta_us = jiffies_to_usecs(delta_jiffies);
551
552 return delta_us;
553}
554
625a5e10
YC
555static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
556 const struct skb_mstamp *t0)
557{
558 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
559
560 if (!diff)
561 diff = t1->stamp_us - t0->stamp_us;
562 return diff > 0;
563}
363ec392 564
1da177e4
LT
565/**
566 * struct sk_buff - socket buffer
567 * @next: Next buffer in list
568 * @prev: Previous buffer in list
363ec392 569 * @tstamp: Time we arrived/left
56b17425 570 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 571 * @sk: Socket we are owned by
1da177e4 572 * @dev: Device we arrived on/are leaving by
d84e0bd7 573 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 574 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 575 * @sp: the security path, used for xfrm
1da177e4
LT
576 * @len: Length of actual data
577 * @data_len: Data length
578 * @mac_len: Length of link layer header
334a8132 579 * @hdr_len: writable header length of cloned skb
663ead3b
HX
580 * @csum: Checksum (must include start/offset pair)
581 * @csum_start: Offset from skb->head where checksumming should start
582 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 583 * @priority: Packet queueing priority
60ff7467 584 * @ignore_df: allow local fragmentation
1da177e4 585 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 586 * @ip_summed: Driver fed us an IP checksum
1da177e4 587 * @nohdr: Payload reference only, must not modify header
d84e0bd7 588 * @nfctinfo: Relationship of this skb to the connection
1da177e4 589 * @pkt_type: Packet class
c83c2486 590 * @fclone: skbuff clone status
c83c2486 591 * @ipvs_property: skbuff is owned by ipvs
31729363
RD
592 * @peeked: this packet has been seen already, so stats have been
593 * done for it, don't do them again
ba9dda3a 594 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
595 * @protocol: Packet protocol from driver
596 * @destructor: Destruct function
597 * @nfct: Associated connection, if any
1da177e4 598 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 599 * @skb_iif: ifindex of device we arrived on
1da177e4
LT
600 * @tc_index: Traffic control index
601 * @tc_verd: traffic control verdict
61b905da 602 * @hash: the packet hash
d84e0bd7 603 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 604 * @xmit_more: More SKBs are pending for this queue
553a5672 605 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 606 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 607 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 608 * ports.
a3b18ddb 609 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
610 * @wifi_acked_valid: wifi_acked was set
611 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 612 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
06021292 613 * @napi_id: id of the NAPI struct this skb came from
984bc16c 614 * @secmark: security marking
0c4f691f 615 * @offload_fwd_mark: fwding offload mark
d84e0bd7 616 * @mark: Generic packet mark
86a9bad3 617 * @vlan_proto: vlan encapsulation protocol
6aa895b0 618 * @vlan_tci: vlan tag control information
0d89d203 619 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
620 * @inner_transport_header: Inner transport layer header (encapsulation)
621 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 622 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
623 * @transport_header: Transport layer header
624 * @network_header: Network layer header
625 * @mac_header: Link layer header
626 * @tail: Tail pointer
627 * @end: End pointer
628 * @head: Head of buffer
629 * @data: Data head pointer
630 * @truesize: Buffer size
631 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
632 */
633
634struct sk_buff {
363ec392 635 union {
56b17425
ED
636 struct {
637 /* These two members must be first. */
638 struct sk_buff *next;
639 struct sk_buff *prev;
640
641 union {
642 ktime_t tstamp;
643 struct skb_mstamp skb_mstamp;
644 };
645 };
646 struct rb_node rbnode; /* used in netem & tcp stack */
363ec392 647 };
da3f5cf1 648 struct sock *sk;
1da177e4 649 struct net_device *dev;
1da177e4 650
1da177e4
LT
651 /*
652 * This is the control buffer. It is free to use for every
653 * layer. Please put your private variables there. If you
654 * want to keep them across layers you have to do a skb_clone()
655 * first. This is owned by whoever has the skb queued ATM.
656 */
da3f5cf1 657 char cb[48] __aligned(8);
1da177e4 658
7fee226a 659 unsigned long _skb_refdst;
b1937227 660 void (*destructor)(struct sk_buff *skb);
da3f5cf1
FF
661#ifdef CONFIG_XFRM
662 struct sec_path *sp;
b1937227
ED
663#endif
664#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
665 struct nf_conntrack *nfct;
666#endif
85224844 667#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 668 struct nf_bridge_info *nf_bridge;
da3f5cf1 669#endif
1da177e4 670 unsigned int len,
334a8132
PM
671 data_len;
672 __u16 mac_len,
673 hdr_len;
b1937227
ED
674
675 /* Following fields are _not_ copied in __copy_skb_header()
676 * Note that queue_mapping is here mostly to fill a hole.
677 */
fe55f6d5 678 kmemcheck_bitfield_begin(flags1);
b1937227
ED
679 __u16 queue_mapping;
680 __u8 cloned:1,
6869c4d8 681 nohdr:1,
b84f4cc9 682 fclone:2,
a59322be 683 peeked:1,
b1937227
ED
684 head_frag:1,
685 xmit_more:1;
686 /* one bit hole */
fe55f6d5 687 kmemcheck_bitfield_end(flags1);
4031ae6e 688
b1937227
ED
689 /* fields enclosed in headers_start/headers_end are copied
690 * using a single memcpy() in __copy_skb_header()
691 */
ebcf34f3 692 /* private: */
b1937227 693 __u32 headers_start[0];
ebcf34f3 694 /* public: */
4031ae6e 695
233577a2
HFS
696/* if you move pkt_type around you also must adapt those constants */
697#ifdef __BIG_ENDIAN_BITFIELD
698#define PKT_TYPE_MAX (7 << 5)
699#else
700#define PKT_TYPE_MAX 7
1da177e4 701#endif
233577a2 702#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 703
233577a2 704 __u8 __pkt_type_offset[0];
b1937227 705 __u8 pkt_type:3;
c93bdd0e 706 __u8 pfmemalloc:1;
b1937227
ED
707 __u8 ignore_df:1;
708 __u8 nfctinfo:3;
709
710 __u8 nf_trace:1;
711 __u8 ip_summed:2;
3853b584 712 __u8 ooo_okay:1;
61b905da 713 __u8 l4_hash:1;
a3b18ddb 714 __u8 sw_hash:1;
6e3e939f
JB
715 __u8 wifi_acked_valid:1;
716 __u8 wifi_acked:1;
b1937227 717
3bdc0eba 718 __u8 no_fcs:1;
77cffe23 719 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 720 __u8 encapsulation:1;
7e2b10c1 721 __u8 encap_hdr_csum:1;
5d0c2b95 722 __u8 csum_valid:1;
7e3cead5 723 __u8 csum_complete_sw:1;
b1937227
ED
724 __u8 csum_level:2;
725 __u8 csum_bad:1;
fe55f6d5 726
b1937227
ED
727#ifdef CONFIG_IPV6_NDISC_NODETYPE
728 __u8 ndisc_nodetype:2;
729#endif
730 __u8 ipvs_property:1;
8bce6d7d 731 __u8 inner_protocol_type:1;
e585f236
TH
732 __u8 remcsum_offload:1;
733 /* 3 or 5 bit hole */
b1937227
ED
734
735#ifdef CONFIG_NET_SCHED
736 __u16 tc_index; /* traffic control index */
737#ifdef CONFIG_NET_CLS_ACT
738 __u16 tc_verd; /* traffic control verdict */
739#endif
740#endif
fe55f6d5 741
b1937227
ED
742 union {
743 __wsum csum;
744 struct {
745 __u16 csum_start;
746 __u16 csum_offset;
747 };
748 };
749 __u32 priority;
750 int skb_iif;
751 __u32 hash;
752 __be16 vlan_proto;
753 __u16 vlan_tci;
2bd82484
ED
754#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
755 union {
756 unsigned int napi_id;
757 unsigned int sender_cpu;
758 };
97fc2f08 759#endif
0c4f691f 760 union {
984bc16c 761#ifdef CONFIG_NETWORK_SECMARK
0c4f691f
SF
762 __u32 secmark;
763#endif
764#ifdef CONFIG_NET_SWITCHDEV
765 __u32 offload_fwd_mark;
984bc16c 766#endif
0c4f691f
SF
767 };
768
3b885787
NH
769 union {
770 __u32 mark;
16fad69c 771 __u32 reserved_tailroom;
3b885787 772 };
1da177e4 773
8bce6d7d
TH
774 union {
775 __be16 inner_protocol;
776 __u8 inner_ipproto;
777 };
778
1a37e412
SH
779 __u16 inner_transport_header;
780 __u16 inner_network_header;
781 __u16 inner_mac_header;
b1937227
ED
782
783 __be16 protocol;
1a37e412
SH
784 __u16 transport_header;
785 __u16 network_header;
786 __u16 mac_header;
b1937227 787
ebcf34f3 788 /* private: */
b1937227 789 __u32 headers_end[0];
ebcf34f3 790 /* public: */
b1937227 791
1da177e4 792 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 793 sk_buff_data_t tail;
4305b541 794 sk_buff_data_t end;
1da177e4 795 unsigned char *head,
4305b541 796 *data;
27a884dc
ACM
797 unsigned int truesize;
798 atomic_t users;
1da177e4
LT
799};
800
801#ifdef __KERNEL__
802/*
803 * Handling routines are only of interest to the kernel
804 */
805#include <linux/slab.h>
806
1da177e4 807
c93bdd0e
MG
808#define SKB_ALLOC_FCLONE 0x01
809#define SKB_ALLOC_RX 0x02
fd11a83d 810#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
811
812/* Returns true if the skb was allocated from PFMEMALLOC reserves */
813static inline bool skb_pfmemalloc(const struct sk_buff *skb)
814{
815 return unlikely(skb->pfmemalloc);
816}
817
7fee226a
ED
818/*
819 * skb might have a dst pointer attached, refcounted or not.
820 * _skb_refdst low order bit is set if refcount was _not_ taken
821 */
822#define SKB_DST_NOREF 1UL
823#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
824
825/**
826 * skb_dst - returns skb dst_entry
827 * @skb: buffer
828 *
829 * Returns skb dst_entry, regardless of reference taken or not.
830 */
adf30907
ED
831static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
832{
7fee226a
ED
833 /* If refdst was not refcounted, check we still are in a
834 * rcu_read_lock section
835 */
836 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
837 !rcu_read_lock_held() &&
838 !rcu_read_lock_bh_held());
839 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
840}
841
7fee226a
ED
842/**
843 * skb_dst_set - sets skb dst
844 * @skb: buffer
845 * @dst: dst entry
846 *
847 * Sets skb dst, assuming a reference was taken on dst and should
848 * be released by skb_dst_drop()
849 */
adf30907
ED
850static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
851{
7fee226a
ED
852 skb->_skb_refdst = (unsigned long)dst;
853}
854
932bc4d7
JA
855/**
856 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
857 * @skb: buffer
858 * @dst: dst entry
859 *
860 * Sets skb dst, assuming a reference was not taken on dst.
861 * If dst entry is cached, we do not take reference and dst_release
862 * will be avoided by refdst_drop. If dst entry is not cached, we take
863 * reference, so that last dst_release can destroy the dst immediately.
864 */
865static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
866{
dbfc4fb7
HFS
867 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
868 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 869}
7fee226a
ED
870
871/**
25985edc 872 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
873 * @skb: buffer
874 */
875static inline bool skb_dst_is_noref(const struct sk_buff *skb)
876{
877 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
878}
879
511c3f92
ED
880static inline struct rtable *skb_rtable(const struct sk_buff *skb)
881{
adf30907 882 return (struct rtable *)skb_dst(skb);
511c3f92
ED
883}
884
8b10cab6
JHS
885/* For mangling skb->pkt_type from user space side from applications
886 * such as nft, tc, etc, we only allow a conservative subset of
887 * possible pkt_types to be set.
888*/
889static inline bool skb_pkt_type_ok(u32 ptype)
890{
891 return ptype <= PACKET_OTHERHOST;
892}
893
7965bd4d
JP
894void kfree_skb(struct sk_buff *skb);
895void kfree_skb_list(struct sk_buff *segs);
896void skb_tx_error(struct sk_buff *skb);
897void consume_skb(struct sk_buff *skb);
898void __kfree_skb(struct sk_buff *skb);
d7e8883c 899extern struct kmem_cache *skbuff_head_cache;
bad43ca8 900
7965bd4d
JP
901void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
902bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
903 bool *fragstolen, int *delta_truesize);
bad43ca8 904
7965bd4d
JP
905struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
906 int node);
2ea2f62c 907struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 908struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 909static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 910 gfp_t priority)
d179cd12 911{
564824b0 912 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
913}
914
2e4e4410
ED
915struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
916 unsigned long data_len,
917 int max_page_order,
918 int *errcode,
919 gfp_t gfp_mask);
920
d0bf4a9e
ED
921/* Layout of fast clones : [skb1][skb2][fclone_ref] */
922struct sk_buff_fclones {
923 struct sk_buff skb1;
924
925 struct sk_buff skb2;
926
927 atomic_t fclone_ref;
928};
929
930/**
931 * skb_fclone_busy - check if fclone is busy
932 * @skb: buffer
933 *
bda13fed 934 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
935 * Some drivers call skb_orphan() in their ndo_start_xmit(),
936 * so we also check that this didnt happen.
d0bf4a9e 937 */
39bb5e62
ED
938static inline bool skb_fclone_busy(const struct sock *sk,
939 const struct sk_buff *skb)
d0bf4a9e
ED
940{
941 const struct sk_buff_fclones *fclones;
942
943 fclones = container_of(skb, struct sk_buff_fclones, skb1);
944
945 return skb->fclone == SKB_FCLONE_ORIG &&
6ffe75eb 946 atomic_read(&fclones->fclone_ref) > 1 &&
39bb5e62 947 fclones->skb2.sk == sk;
d0bf4a9e
ED
948}
949
d179cd12 950static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 951 gfp_t priority)
d179cd12 952{
c93bdd0e 953 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
954}
955
7965bd4d 956struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
0ebd0ac5
PM
957static inline struct sk_buff *alloc_skb_head(gfp_t priority)
958{
959 return __alloc_skb_head(priority, -1);
960}
961
7965bd4d
JP
962struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
963int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
964struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
965struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
966struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
967 gfp_t gfp_mask, bool fclone);
968static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
969 gfp_t gfp_mask)
970{
971 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
972}
7965bd4d
JP
973
974int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
975struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
976 unsigned int headroom);
977struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
978 int newtailroom, gfp_t priority);
25a91d8d
FD
979int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
980 int offset, int len);
7965bd4d
JP
981int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
982 int len);
983int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
984int skb_pad(struct sk_buff *skb, int pad);
ead2ceb0 985#define dev_kfree_skb(a) consume_skb(a)
1da177e4 986
7965bd4d
JP
987int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
988 int getfrag(void *from, char *to, int offset,
989 int len, int odd, struct sk_buff *skb),
990 void *from, int length);
e89e9cf5 991
be12a1fe
HFS
992int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
993 int offset, size_t size);
994
d94d9fee 995struct skb_seq_state {
677e90ed
TG
996 __u32 lower_offset;
997 __u32 upper_offset;
998 __u32 frag_idx;
999 __u32 stepped_offset;
1000 struct sk_buff *root_skb;
1001 struct sk_buff *cur_skb;
1002 __u8 *frag_data;
1003};
1004
7965bd4d
JP
1005void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1006 unsigned int to, struct skb_seq_state *st);
1007unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1008 struct skb_seq_state *st);
1009void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1010
7965bd4d 1011unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1012 unsigned int to, struct ts_config *config);
3fc7e8a6 1013
09323cc4
TH
1014/*
1015 * Packet hash types specify the type of hash in skb_set_hash.
1016 *
1017 * Hash types refer to the protocol layer addresses which are used to
1018 * construct a packet's hash. The hashes are used to differentiate or identify
1019 * flows of the protocol layer for the hash type. Hash types are either
1020 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1021 *
1022 * Properties of hashes:
1023 *
1024 * 1) Two packets in different flows have different hash values
1025 * 2) Two packets in the same flow should have the same hash value
1026 *
1027 * A hash at a higher layer is considered to be more specific. A driver should
1028 * set the most specific hash possible.
1029 *
1030 * A driver cannot indicate a more specific hash than the layer at which a hash
1031 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1032 *
1033 * A driver may indicate a hash level which is less specific than the
1034 * actual layer the hash was computed on. For instance, a hash computed
1035 * at L4 may be considered an L3 hash. This should only be done if the
1036 * driver can't unambiguously determine that the HW computed the hash at
1037 * the higher layer. Note that the "should" in the second property above
1038 * permits this.
1039 */
1040enum pkt_hash_types {
1041 PKT_HASH_TYPE_NONE, /* Undefined type */
1042 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1043 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1044 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1045};
1046
bcc83839 1047static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1048{
bcc83839 1049 skb->hash = 0;
a3b18ddb 1050 skb->sw_hash = 0;
bcc83839
TH
1051 skb->l4_hash = 0;
1052}
1053
1054static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1055{
1056 if (!skb->l4_hash)
1057 skb_clear_hash(skb);
1058}
1059
1060static inline void
1061__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1062{
1063 skb->l4_hash = is_l4;
1064 skb->sw_hash = is_sw;
61b905da 1065 skb->hash = hash;
09323cc4
TH
1066}
1067
bcc83839
TH
1068static inline void
1069skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1070{
1071 /* Used by drivers to set hash from HW */
1072 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1073}
1074
1075static inline void
1076__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1077{
1078 __skb_set_hash(skb, hash, true, is_l4);
1079}
1080
e5276937 1081void __skb_get_hash(struct sk_buff *skb);
eb70db87 1082u32 __skb_get_hash_symmetric(struct sk_buff *skb);
e5276937
TH
1083u32 skb_get_poff(const struct sk_buff *skb);
1084u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1085 const struct flow_keys *keys, int hlen);
1086__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1087 void *data, int hlen_proto);
1088
1089static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1090 int thoff, u8 ip_proto)
1091{
1092 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1093}
1094
1095void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1096 const struct flow_dissector_key *key,
1097 unsigned int key_count);
1098
1099bool __skb_flow_dissect(const struct sk_buff *skb,
1100 struct flow_dissector *flow_dissector,
1101 void *target_container,
cd79a238
TH
1102 void *data, __be16 proto, int nhoff, int hlen,
1103 unsigned int flags);
e5276937
TH
1104
1105static inline bool skb_flow_dissect(const struct sk_buff *skb,
1106 struct flow_dissector *flow_dissector,
cd79a238 1107 void *target_container, unsigned int flags)
e5276937
TH
1108{
1109 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1110 NULL, 0, 0, 0, flags);
e5276937
TH
1111}
1112
1113static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1114 struct flow_keys *flow,
1115 unsigned int flags)
e5276937
TH
1116{
1117 memset(flow, 0, sizeof(*flow));
1118 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1119 NULL, 0, 0, 0, flags);
e5276937
TH
1120}
1121
1122static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1123 void *data, __be16 proto,
cd79a238
TH
1124 int nhoff, int hlen,
1125 unsigned int flags)
e5276937
TH
1126{
1127 memset(flow, 0, sizeof(*flow));
1128 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
cd79a238 1129 data, proto, nhoff, hlen, flags);
e5276937
TH
1130}
1131
3958afa1 1132static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1133{
a3b18ddb 1134 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1135 __skb_get_hash(skb);
bfb564e7 1136
61b905da 1137 return skb->hash;
bfb564e7
KK
1138}
1139
20a17bf6 1140__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
f70ea018 1141
20a17bf6 1142static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1143{
c6cc1ca7
TH
1144 if (!skb->l4_hash && !skb->sw_hash) {
1145 struct flow_keys keys;
de4c1f8b 1146 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1147
de4c1f8b 1148 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1149 }
f70ea018
TH
1150
1151 return skb->hash;
1152}
1153
20a17bf6 1154__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
f70ea018 1155
20a17bf6 1156static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
f70ea018 1157{
c6cc1ca7
TH
1158 if (!skb->l4_hash && !skb->sw_hash) {
1159 struct flow_keys keys;
de4c1f8b 1160 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
c6cc1ca7 1161
de4c1f8b 1162 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1163 }
f70ea018
TH
1164
1165 return skb->hash;
1166}
1167
50fb7992
TH
1168__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1169
57bdf7f4
TH
1170static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1171{
61b905da 1172 return skb->hash;
57bdf7f4
TH
1173}
1174
3df7a74e
TH
1175static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1176{
61b905da 1177 to->hash = from->hash;
a3b18ddb 1178 to->sw_hash = from->sw_hash;
61b905da 1179 to->l4_hash = from->l4_hash;
3df7a74e
TH
1180};
1181
4305b541
ACM
1182#ifdef NET_SKBUFF_DATA_USES_OFFSET
1183static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1184{
1185 return skb->head + skb->end;
1186}
ec47ea82
AD
1187
1188static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1189{
1190 return skb->end;
1191}
4305b541
ACM
1192#else
1193static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1194{
1195 return skb->end;
1196}
ec47ea82
AD
1197
1198static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1199{
1200 return skb->end - skb->head;
1201}
4305b541
ACM
1202#endif
1203
1da177e4 1204/* Internal */
4305b541 1205#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1206
ac45f602
PO
1207static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1208{
1209 return &skb_shinfo(skb)->hwtstamps;
1210}
1211
1da177e4
LT
1212/**
1213 * skb_queue_empty - check if a queue is empty
1214 * @list: queue head
1215 *
1216 * Returns true if the queue is empty, false otherwise.
1217 */
1218static inline int skb_queue_empty(const struct sk_buff_head *list)
1219{
fd44b93c 1220 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1221}
1222
fc7ebb21
DM
1223/**
1224 * skb_queue_is_last - check if skb is the last entry in the queue
1225 * @list: queue head
1226 * @skb: buffer
1227 *
1228 * Returns true if @skb is the last buffer on the list.
1229 */
1230static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1231 const struct sk_buff *skb)
1232{
fd44b93c 1233 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1234}
1235
832d11c5
IJ
1236/**
1237 * skb_queue_is_first - check if skb is the first entry in the queue
1238 * @list: queue head
1239 * @skb: buffer
1240 *
1241 * Returns true if @skb is the first buffer on the list.
1242 */
1243static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1244 const struct sk_buff *skb)
1245{
fd44b93c 1246 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1247}
1248
249c8b42
DM
1249/**
1250 * skb_queue_next - return the next packet in the queue
1251 * @list: queue head
1252 * @skb: current buffer
1253 *
1254 * Return the next packet in @list after @skb. It is only valid to
1255 * call this if skb_queue_is_last() evaluates to false.
1256 */
1257static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1258 const struct sk_buff *skb)
1259{
1260 /* This BUG_ON may seem severe, but if we just return then we
1261 * are going to dereference garbage.
1262 */
1263 BUG_ON(skb_queue_is_last(list, skb));
1264 return skb->next;
1265}
1266
832d11c5
IJ
1267/**
1268 * skb_queue_prev - return the prev packet in the queue
1269 * @list: queue head
1270 * @skb: current buffer
1271 *
1272 * Return the prev packet in @list before @skb. It is only valid to
1273 * call this if skb_queue_is_first() evaluates to false.
1274 */
1275static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1276 const struct sk_buff *skb)
1277{
1278 /* This BUG_ON may seem severe, but if we just return then we
1279 * are going to dereference garbage.
1280 */
1281 BUG_ON(skb_queue_is_first(list, skb));
1282 return skb->prev;
1283}
1284
1da177e4
LT
1285/**
1286 * skb_get - reference buffer
1287 * @skb: buffer to reference
1288 *
1289 * Makes another reference to a socket buffer and returns a pointer
1290 * to the buffer.
1291 */
1292static inline struct sk_buff *skb_get(struct sk_buff *skb)
1293{
1294 atomic_inc(&skb->users);
1295 return skb;
1296}
1297
1298/*
1299 * If users == 1, we are the only owner and are can avoid redundant
1300 * atomic change.
1301 */
1302
1da177e4
LT
1303/**
1304 * skb_cloned - is the buffer a clone
1305 * @skb: buffer to check
1306 *
1307 * Returns true if the buffer was generated with skb_clone() and is
1308 * one of multiple shared copies of the buffer. Cloned buffers are
1309 * shared data so must not be written to under normal circumstances.
1310 */
1311static inline int skb_cloned(const struct sk_buff *skb)
1312{
1313 return skb->cloned &&
1314 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1315}
1316
14bbd6a5
PS
1317static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1318{
d0164adc 1319 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1320
1321 if (skb_cloned(skb))
1322 return pskb_expand_head(skb, 0, 0, pri);
1323
1324 return 0;
1325}
1326
1da177e4
LT
1327/**
1328 * skb_header_cloned - is the header a clone
1329 * @skb: buffer to check
1330 *
1331 * Returns true if modifying the header part of the buffer requires
1332 * the data to be copied.
1333 */
1334static inline int skb_header_cloned(const struct sk_buff *skb)
1335{
1336 int dataref;
1337
1338 if (!skb->cloned)
1339 return 0;
1340
1341 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1342 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1343 return dataref != 1;
1344}
1345
9580bf2e
ED
1346static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1347{
1348 might_sleep_if(gfpflags_allow_blocking(pri));
1349
1350 if (skb_header_cloned(skb))
1351 return pskb_expand_head(skb, 0, 0, pri);
1352
1353 return 0;
1354}
1355
1da177e4
LT
1356/**
1357 * skb_header_release - release reference to header
1358 * @skb: buffer to operate on
1359 *
1360 * Drop a reference to the header part of the buffer. This is done
1361 * by acquiring a payload reference. You must not read from the header
1362 * part of skb->data after this.
f4a775d1 1363 * Note : Check if you can use __skb_header_release() instead.
1da177e4
LT
1364 */
1365static inline void skb_header_release(struct sk_buff *skb)
1366{
1367 BUG_ON(skb->nohdr);
1368 skb->nohdr = 1;
1369 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1370}
1371
f4a775d1
ED
1372/**
1373 * __skb_header_release - release reference to header
1374 * @skb: buffer to operate on
1375 *
1376 * Variant of skb_header_release() assuming skb is private to caller.
1377 * We can avoid one atomic operation.
1378 */
1379static inline void __skb_header_release(struct sk_buff *skb)
1380{
1381 skb->nohdr = 1;
1382 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1383}
1384
1385
1da177e4
LT
1386/**
1387 * skb_shared - is the buffer shared
1388 * @skb: buffer to check
1389 *
1390 * Returns true if more than one person has a reference to this
1391 * buffer.
1392 */
1393static inline int skb_shared(const struct sk_buff *skb)
1394{
1395 return atomic_read(&skb->users) != 1;
1396}
1397
1398/**
1399 * skb_share_check - check if buffer is shared and if so clone it
1400 * @skb: buffer to check
1401 * @pri: priority for memory allocation
1402 *
1403 * If the buffer is shared the buffer is cloned and the old copy
1404 * drops a reference. A new clone with a single reference is returned.
1405 * If the buffer is not shared the original buffer is returned. When
1406 * being called from interrupt status or with spinlocks held pri must
1407 * be GFP_ATOMIC.
1408 *
1409 * NULL is returned on a memory allocation failure.
1410 */
47061bc4 1411static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1412{
d0164adc 1413 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1414 if (skb_shared(skb)) {
1415 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1416
1417 if (likely(nskb))
1418 consume_skb(skb);
1419 else
1420 kfree_skb(skb);
1da177e4
LT
1421 skb = nskb;
1422 }
1423 return skb;
1424}
1425
1426/*
1427 * Copy shared buffers into a new sk_buff. We effectively do COW on
1428 * packets to handle cases where we have a local reader and forward
1429 * and a couple of other messy ones. The normal one is tcpdumping
1430 * a packet thats being forwarded.
1431 */
1432
1433/**
1434 * skb_unshare - make a copy of a shared buffer
1435 * @skb: buffer to check
1436 * @pri: priority for memory allocation
1437 *
1438 * If the socket buffer is a clone then this function creates a new
1439 * copy of the data, drops a reference count on the old copy and returns
1440 * the new copy with the reference count at 1. If the buffer is not a clone
1441 * the original buffer is returned. When called with a spinlock held or
1442 * from interrupt state @pri must be %GFP_ATOMIC
1443 *
1444 * %NULL is returned on a memory allocation failure.
1445 */
e2bf521d 1446static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1447 gfp_t pri)
1da177e4 1448{
d0164adc 1449 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1450 if (skb_cloned(skb)) {
1451 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1452
1453 /* Free our shared copy */
1454 if (likely(nskb))
1455 consume_skb(skb);
1456 else
1457 kfree_skb(skb);
1da177e4
LT
1458 skb = nskb;
1459 }
1460 return skb;
1461}
1462
1463/**
1a5778aa 1464 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1465 * @list_: list to peek at
1466 *
1467 * Peek an &sk_buff. Unlike most other operations you _MUST_
1468 * be careful with this one. A peek leaves the buffer on the
1469 * list and someone else may run off with it. You must hold
1470 * the appropriate locks or have a private queue to do this.
1471 *
1472 * Returns %NULL for an empty list or a pointer to the head element.
1473 * The reference count is not incremented and the reference is therefore
1474 * volatile. Use with caution.
1475 */
05bdd2f1 1476static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1477{
18d07000
ED
1478 struct sk_buff *skb = list_->next;
1479
1480 if (skb == (struct sk_buff *)list_)
1481 skb = NULL;
1482 return skb;
1da177e4
LT
1483}
1484
da5ef6e5
PE
1485/**
1486 * skb_peek_next - peek skb following the given one from a queue
1487 * @skb: skb to start from
1488 * @list_: list to peek at
1489 *
1490 * Returns %NULL when the end of the list is met or a pointer to the
1491 * next element. The reference count is not incremented and the
1492 * reference is therefore volatile. Use with caution.
1493 */
1494static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1495 const struct sk_buff_head *list_)
1496{
1497 struct sk_buff *next = skb->next;
18d07000 1498
da5ef6e5
PE
1499 if (next == (struct sk_buff *)list_)
1500 next = NULL;
1501 return next;
1502}
1503
1da177e4 1504/**
1a5778aa 1505 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1506 * @list_: list to peek at
1507 *
1508 * Peek an &sk_buff. Unlike most other operations you _MUST_
1509 * be careful with this one. A peek leaves the buffer on the
1510 * list and someone else may run off with it. You must hold
1511 * the appropriate locks or have a private queue to do this.
1512 *
1513 * Returns %NULL for an empty list or a pointer to the tail element.
1514 * The reference count is not incremented and the reference is therefore
1515 * volatile. Use with caution.
1516 */
05bdd2f1 1517static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1518{
18d07000
ED
1519 struct sk_buff *skb = list_->prev;
1520
1521 if (skb == (struct sk_buff *)list_)
1522 skb = NULL;
1523 return skb;
1524
1da177e4
LT
1525}
1526
1527/**
1528 * skb_queue_len - get queue length
1529 * @list_: list to measure
1530 *
1531 * Return the length of an &sk_buff queue.
1532 */
1533static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1534{
1535 return list_->qlen;
1536}
1537
67fed459
DM
1538/**
1539 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1540 * @list: queue to initialize
1541 *
1542 * This initializes only the list and queue length aspects of
1543 * an sk_buff_head object. This allows to initialize the list
1544 * aspects of an sk_buff_head without reinitializing things like
1545 * the spinlock. It can also be used for on-stack sk_buff_head
1546 * objects where the spinlock is known to not be used.
1547 */
1548static inline void __skb_queue_head_init(struct sk_buff_head *list)
1549{
1550 list->prev = list->next = (struct sk_buff *)list;
1551 list->qlen = 0;
1552}
1553
76f10ad0
AV
1554/*
1555 * This function creates a split out lock class for each invocation;
1556 * this is needed for now since a whole lot of users of the skb-queue
1557 * infrastructure in drivers have different locking usage (in hardirq)
1558 * than the networking core (in softirq only). In the long run either the
1559 * network layer or drivers should need annotation to consolidate the
1560 * main types of usage into 3 classes.
1561 */
1da177e4
LT
1562static inline void skb_queue_head_init(struct sk_buff_head *list)
1563{
1564 spin_lock_init(&list->lock);
67fed459 1565 __skb_queue_head_init(list);
1da177e4
LT
1566}
1567
c2ecba71
PE
1568static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1569 struct lock_class_key *class)
1570{
1571 skb_queue_head_init(list);
1572 lockdep_set_class(&list->lock, class);
1573}
1574
1da177e4 1575/*
bf299275 1576 * Insert an sk_buff on a list.
1da177e4
LT
1577 *
1578 * The "__skb_xxxx()" functions are the non-atomic ones that
1579 * can only be called with interrupts disabled.
1580 */
7965bd4d
JP
1581void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1582 struct sk_buff_head *list);
bf299275
GR
1583static inline void __skb_insert(struct sk_buff *newsk,
1584 struct sk_buff *prev, struct sk_buff *next,
1585 struct sk_buff_head *list)
1586{
1587 newsk->next = next;
1588 newsk->prev = prev;
1589 next->prev = prev->next = newsk;
1590 list->qlen++;
1591}
1da177e4 1592
67fed459
DM
1593static inline void __skb_queue_splice(const struct sk_buff_head *list,
1594 struct sk_buff *prev,
1595 struct sk_buff *next)
1596{
1597 struct sk_buff *first = list->next;
1598 struct sk_buff *last = list->prev;
1599
1600 first->prev = prev;
1601 prev->next = first;
1602
1603 last->next = next;
1604 next->prev = last;
1605}
1606
1607/**
1608 * skb_queue_splice - join two skb lists, this is designed for stacks
1609 * @list: the new list to add
1610 * @head: the place to add it in the first list
1611 */
1612static inline void skb_queue_splice(const struct sk_buff_head *list,
1613 struct sk_buff_head *head)
1614{
1615 if (!skb_queue_empty(list)) {
1616 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1617 head->qlen += list->qlen;
67fed459
DM
1618 }
1619}
1620
1621/**
d9619496 1622 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1623 * @list: the new list to add
1624 * @head: the place to add it in the first list
1625 *
1626 * The list at @list is reinitialised
1627 */
1628static inline void skb_queue_splice_init(struct sk_buff_head *list,
1629 struct sk_buff_head *head)
1630{
1631 if (!skb_queue_empty(list)) {
1632 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1633 head->qlen += list->qlen;
67fed459
DM
1634 __skb_queue_head_init(list);
1635 }
1636}
1637
1638/**
1639 * skb_queue_splice_tail - join two skb lists, each list being a queue
1640 * @list: the new list to add
1641 * @head: the place to add it in the first list
1642 */
1643static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1644 struct sk_buff_head *head)
1645{
1646 if (!skb_queue_empty(list)) {
1647 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1648 head->qlen += list->qlen;
67fed459
DM
1649 }
1650}
1651
1652/**
d9619496 1653 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1654 * @list: the new list to add
1655 * @head: the place to add it in the first list
1656 *
1657 * Each of the lists is a queue.
1658 * The list at @list is reinitialised
1659 */
1660static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1661 struct sk_buff_head *head)
1662{
1663 if (!skb_queue_empty(list)) {
1664 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1665 head->qlen += list->qlen;
67fed459
DM
1666 __skb_queue_head_init(list);
1667 }
1668}
1669
1da177e4 1670/**
300ce174 1671 * __skb_queue_after - queue a buffer at the list head
1da177e4 1672 * @list: list to use
300ce174 1673 * @prev: place after this buffer
1da177e4
LT
1674 * @newsk: buffer to queue
1675 *
300ce174 1676 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1677 * and you must therefore hold required locks before calling it.
1678 *
1679 * A buffer cannot be placed on two lists at the same time.
1680 */
300ce174
SH
1681static inline void __skb_queue_after(struct sk_buff_head *list,
1682 struct sk_buff *prev,
1683 struct sk_buff *newsk)
1da177e4 1684{
bf299275 1685 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1686}
1687
7965bd4d
JP
1688void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1689 struct sk_buff_head *list);
7de6c033 1690
f5572855
GR
1691static inline void __skb_queue_before(struct sk_buff_head *list,
1692 struct sk_buff *next,
1693 struct sk_buff *newsk)
1694{
1695 __skb_insert(newsk, next->prev, next, list);
1696}
1697
300ce174
SH
1698/**
1699 * __skb_queue_head - queue a buffer at the list head
1700 * @list: list to use
1701 * @newsk: buffer to queue
1702 *
1703 * Queue a buffer at the start of a list. This function takes no locks
1704 * and you must therefore hold required locks before calling it.
1705 *
1706 * A buffer cannot be placed on two lists at the same time.
1707 */
7965bd4d 1708void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1709static inline void __skb_queue_head(struct sk_buff_head *list,
1710 struct sk_buff *newsk)
1711{
1712 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1713}
1714
1da177e4
LT
1715/**
1716 * __skb_queue_tail - queue a buffer at the list tail
1717 * @list: list to use
1718 * @newsk: buffer to queue
1719 *
1720 * Queue a buffer at the end of a list. This function takes no locks
1721 * and you must therefore hold required locks before calling it.
1722 *
1723 * A buffer cannot be placed on two lists at the same time.
1724 */
7965bd4d 1725void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1726static inline void __skb_queue_tail(struct sk_buff_head *list,
1727 struct sk_buff *newsk)
1728{
f5572855 1729 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1730}
1731
1da177e4
LT
1732/*
1733 * remove sk_buff from list. _Must_ be called atomically, and with
1734 * the list known..
1735 */
7965bd4d 1736void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1737static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1738{
1739 struct sk_buff *next, *prev;
1740
1741 list->qlen--;
1742 next = skb->next;
1743 prev = skb->prev;
1744 skb->next = skb->prev = NULL;
1da177e4
LT
1745 next->prev = prev;
1746 prev->next = next;
1747}
1748
f525c06d
GR
1749/**
1750 * __skb_dequeue - remove from the head of the queue
1751 * @list: list to dequeue from
1752 *
1753 * Remove the head of the list. This function does not take any locks
1754 * so must be used with appropriate locks held only. The head item is
1755 * returned or %NULL if the list is empty.
1756 */
7965bd4d 1757struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1758static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1759{
1760 struct sk_buff *skb = skb_peek(list);
1761 if (skb)
1762 __skb_unlink(skb, list);
1763 return skb;
1764}
1da177e4
LT
1765
1766/**
1767 * __skb_dequeue_tail - remove from the tail of the queue
1768 * @list: list to dequeue from
1769 *
1770 * Remove the tail of the list. This function does not take any locks
1771 * so must be used with appropriate locks held only. The tail item is
1772 * returned or %NULL if the list is empty.
1773 */
7965bd4d 1774struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1775static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1776{
1777 struct sk_buff *skb = skb_peek_tail(list);
1778 if (skb)
1779 __skb_unlink(skb, list);
1780 return skb;
1781}
1782
1783
bdcc0924 1784static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1785{
1786 return skb->data_len;
1787}
1788
1789static inline unsigned int skb_headlen(const struct sk_buff *skb)
1790{
1791 return skb->len - skb->data_len;
1792}
1793
1794static inline int skb_pagelen(const struct sk_buff *skb)
1795{
1796 int i, len = 0;
1797
1798 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
9e903e08 1799 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1da177e4
LT
1800 return len + skb_headlen(skb);
1801}
1802
131ea667
IC
1803/**
1804 * __skb_fill_page_desc - initialise a paged fragment in an skb
1805 * @skb: buffer containing fragment to be initialised
1806 * @i: paged fragment index to initialise
1807 * @page: the page to use for this fragment
1808 * @off: the offset to the data with @page
1809 * @size: the length of the data
1810 *
1811 * Initialises the @i'th fragment of @skb to point to &size bytes at
1812 * offset @off within @page.
1813 *
1814 * Does not take any additional reference on the fragment.
1815 */
1816static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1817 struct page *page, int off, int size)
1da177e4
LT
1818{
1819 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1820
c48a11c7 1821 /*
2f064f34
MH
1822 * Propagate page pfmemalloc to the skb if we can. The problem is
1823 * that not all callers have unique ownership of the page but rely
1824 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1825 */
a8605c60 1826 frag->page.p = page;
1da177e4 1827 frag->page_offset = off;
9e903e08 1828 skb_frag_size_set(frag, size);
cca7af38
PE
1829
1830 page = compound_head(page);
2f064f34 1831 if (page_is_pfmemalloc(page))
cca7af38 1832 skb->pfmemalloc = true;
131ea667
IC
1833}
1834
1835/**
1836 * skb_fill_page_desc - initialise a paged fragment in an skb
1837 * @skb: buffer containing fragment to be initialised
1838 * @i: paged fragment index to initialise
1839 * @page: the page to use for this fragment
1840 * @off: the offset to the data with @page
1841 * @size: the length of the data
1842 *
1843 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1844 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1845 * addition updates @skb such that @i is the last fragment.
1846 *
1847 * Does not take any additional reference on the fragment.
1848 */
1849static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1850 struct page *page, int off, int size)
1851{
1852 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1853 skb_shinfo(skb)->nr_frags = i + 1;
1854}
1855
7965bd4d
JP
1856void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1857 int size, unsigned int truesize);
654bed16 1858
f8e617e1
JW
1859void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1860 unsigned int truesize);
1861
1da177e4 1862#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1863#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1864#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1865
27a884dc
ACM
1866#ifdef NET_SKBUFF_DATA_USES_OFFSET
1867static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1868{
1869 return skb->head + skb->tail;
1870}
1871
1872static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1873{
1874 skb->tail = skb->data - skb->head;
1875}
1876
1877static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1878{
1879 skb_reset_tail_pointer(skb);
1880 skb->tail += offset;
1881}
7cc46190 1882
27a884dc
ACM
1883#else /* NET_SKBUFF_DATA_USES_OFFSET */
1884static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1885{
1886 return skb->tail;
1887}
1888
1889static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1890{
1891 skb->tail = skb->data;
1892}
1893
1894static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1895{
1896 skb->tail = skb->data + offset;
1897}
4305b541 1898
27a884dc
ACM
1899#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1900
1da177e4
LT
1901/*
1902 * Add data to an sk_buff
1903 */
0c7ddf36 1904unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
7965bd4d 1905unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1906static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1907{
27a884dc 1908 unsigned char *tmp = skb_tail_pointer(skb);
1da177e4
LT
1909 SKB_LINEAR_ASSERT(skb);
1910 skb->tail += len;
1911 skb->len += len;
1912 return tmp;
1913}
1914
7965bd4d 1915unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1916static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1917{
1918 skb->data -= len;
1919 skb->len += len;
1920 return skb->data;
1921}
1922
7965bd4d 1923unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1924static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1925{
1926 skb->len -= len;
1927 BUG_ON(skb->len < skb->data_len);
1928 return skb->data += len;
1929}
1930
47d29646
DM
1931static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1932{
1933 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1934}
1935
7965bd4d 1936unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4
LT
1937
1938static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1939{
1940 if (len > skb_headlen(skb) &&
987c402a 1941 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
1942 return NULL;
1943 skb->len -= len;
1944 return skb->data += len;
1945}
1946
1947static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1948{
1949 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1950}
1951
1952static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1953{
1954 if (likely(len <= skb_headlen(skb)))
1955 return 1;
1956 if (unlikely(len > skb->len))
1957 return 0;
987c402a 1958 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
1959}
1960
1961/**
1962 * skb_headroom - bytes at buffer head
1963 * @skb: buffer to check
1964 *
1965 * Return the number of bytes of free space at the head of an &sk_buff.
1966 */
c2636b4d 1967static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
1968{
1969 return skb->data - skb->head;
1970}
1971
1972/**
1973 * skb_tailroom - bytes at buffer end
1974 * @skb: buffer to check
1975 *
1976 * Return the number of bytes of free space at the tail of an sk_buff
1977 */
1978static inline int skb_tailroom(const struct sk_buff *skb)
1979{
4305b541 1980 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
1981}
1982
a21d4572
ED
1983/**
1984 * skb_availroom - bytes at buffer end
1985 * @skb: buffer to check
1986 *
1987 * Return the number of bytes of free space at the tail of an sk_buff
1988 * allocated by sk_stream_alloc()
1989 */
1990static inline int skb_availroom(const struct sk_buff *skb)
1991{
16fad69c
ED
1992 if (skb_is_nonlinear(skb))
1993 return 0;
1994
1995 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
1996}
1997
1da177e4
LT
1998/**
1999 * skb_reserve - adjust headroom
2000 * @skb: buffer to alter
2001 * @len: bytes to move
2002 *
2003 * Increase the headroom of an empty &sk_buff by reducing the tail
2004 * room. This is only allowed for an empty buffer.
2005 */
8243126c 2006static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2007{
2008 skb->data += len;
2009 skb->tail += len;
2010}
2011
1837b2e2
BP
2012/**
2013 * skb_tailroom_reserve - adjust reserved_tailroom
2014 * @skb: buffer to alter
2015 * @mtu: maximum amount of headlen permitted
2016 * @needed_tailroom: minimum amount of reserved_tailroom
2017 *
2018 * Set reserved_tailroom so that headlen can be as large as possible but
2019 * not larger than mtu and tailroom cannot be smaller than
2020 * needed_tailroom.
2021 * The required headroom should already have been reserved before using
2022 * this function.
2023 */
2024static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2025 unsigned int needed_tailroom)
2026{
2027 SKB_LINEAR_ASSERT(skb);
2028 if (mtu < skb_tailroom(skb) - needed_tailroom)
2029 /* use at most mtu */
2030 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2031 else
2032 /* use up to all available space */
2033 skb->reserved_tailroom = needed_tailroom;
2034}
2035
8bce6d7d
TH
2036#define ENCAP_TYPE_ETHER 0
2037#define ENCAP_TYPE_IPPROTO 1
2038
2039static inline void skb_set_inner_protocol(struct sk_buff *skb,
2040 __be16 protocol)
2041{
2042 skb->inner_protocol = protocol;
2043 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2044}
2045
2046static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2047 __u8 ipproto)
2048{
2049 skb->inner_ipproto = ipproto;
2050 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2051}
2052
6a674e9c
JG
2053static inline void skb_reset_inner_headers(struct sk_buff *skb)
2054{
aefbd2b3 2055 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2056 skb->inner_network_header = skb->network_header;
2057 skb->inner_transport_header = skb->transport_header;
2058}
2059
0b5c9db1
JP
2060static inline void skb_reset_mac_len(struct sk_buff *skb)
2061{
2062 skb->mac_len = skb->network_header - skb->mac_header;
2063}
2064
6a674e9c
JG
2065static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2066 *skb)
2067{
2068 return skb->head + skb->inner_transport_header;
2069}
2070
55dc5a9f
TH
2071static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2072{
2073 return skb_inner_transport_header(skb) - skb->data;
2074}
2075
6a674e9c
JG
2076static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2077{
2078 skb->inner_transport_header = skb->data - skb->head;
2079}
2080
2081static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2082 const int offset)
2083{
2084 skb_reset_inner_transport_header(skb);
2085 skb->inner_transport_header += offset;
2086}
2087
2088static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2089{
2090 return skb->head + skb->inner_network_header;
2091}
2092
2093static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2094{
2095 skb->inner_network_header = skb->data - skb->head;
2096}
2097
2098static inline void skb_set_inner_network_header(struct sk_buff *skb,
2099 const int offset)
2100{
2101 skb_reset_inner_network_header(skb);
2102 skb->inner_network_header += offset;
2103}
2104
aefbd2b3
PS
2105static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2106{
2107 return skb->head + skb->inner_mac_header;
2108}
2109
2110static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2111{
2112 skb->inner_mac_header = skb->data - skb->head;
2113}
2114
2115static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2116 const int offset)
2117{
2118 skb_reset_inner_mac_header(skb);
2119 skb->inner_mac_header += offset;
2120}
fda55eca
ED
2121static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2122{
35d04610 2123 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2124}
2125
9c70220b
ACM
2126static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2127{
2e07fa9c 2128 return skb->head + skb->transport_header;
9c70220b
ACM
2129}
2130
badff6d0
ACM
2131static inline void skb_reset_transport_header(struct sk_buff *skb)
2132{
2e07fa9c 2133 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2134}
2135
967b05f6
ACM
2136static inline void skb_set_transport_header(struct sk_buff *skb,
2137 const int offset)
2138{
2e07fa9c
ACM
2139 skb_reset_transport_header(skb);
2140 skb->transport_header += offset;
ea2ae17d
ACM
2141}
2142
d56f90a7
ACM
2143static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2144{
2e07fa9c 2145 return skb->head + skb->network_header;
d56f90a7
ACM
2146}
2147
c1d2bbe1
ACM
2148static inline void skb_reset_network_header(struct sk_buff *skb)
2149{
2e07fa9c 2150 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2151}
2152
c14d2450
ACM
2153static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2154{
2e07fa9c
ACM
2155 skb_reset_network_header(skb);
2156 skb->network_header += offset;
c14d2450
ACM
2157}
2158
2e07fa9c 2159static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2160{
2e07fa9c 2161 return skb->head + skb->mac_header;
bbe735e4
ACM
2162}
2163
2e07fa9c 2164static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2165{
35d04610 2166 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2167}
2168
2169static inline void skb_reset_mac_header(struct sk_buff *skb)
2170{
2171 skb->mac_header = skb->data - skb->head;
2172}
2173
2174static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2175{
2176 skb_reset_mac_header(skb);
2177 skb->mac_header += offset;
2178}
2179
0e3da5bb
TT
2180static inline void skb_pop_mac_header(struct sk_buff *skb)
2181{
2182 skb->mac_header = skb->network_header;
2183}
2184
fbbdb8f0
YX
2185static inline void skb_probe_transport_header(struct sk_buff *skb,
2186 const int offset_hint)
2187{
2188 struct flow_keys keys;
2189
2190 if (skb_transport_header_was_set(skb))
2191 return;
cd79a238 2192 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
42aecaa9 2193 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2194 else
2195 skb_set_transport_header(skb, offset_hint);
2196}
2197
03606895
ED
2198static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2199{
2200 if (skb_mac_header_was_set(skb)) {
2201 const unsigned char *old_mac = skb_mac_header(skb);
2202
2203 skb_set_mac_header(skb, -skb->mac_len);
2204 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2205 }
2206}
2207
04fb451e
MM
2208static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2209{
2210 return skb->csum_start - skb_headroom(skb);
2211}
2212
08b64fcc
AD
2213static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2214{
2215 return skb->head + skb->csum_start;
2216}
2217
2e07fa9c
ACM
2218static inline int skb_transport_offset(const struct sk_buff *skb)
2219{
2220 return skb_transport_header(skb) - skb->data;
2221}
2222
2223static inline u32 skb_network_header_len(const struct sk_buff *skb)
2224{
2225 return skb->transport_header - skb->network_header;
2226}
2227
6a674e9c
JG
2228static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2229{
2230 return skb->inner_transport_header - skb->inner_network_header;
2231}
2232
2e07fa9c
ACM
2233static inline int skb_network_offset(const struct sk_buff *skb)
2234{
2235 return skb_network_header(skb) - skb->data;
2236}
48d49d0c 2237
6a674e9c
JG
2238static inline int skb_inner_network_offset(const struct sk_buff *skb)
2239{
2240 return skb_inner_network_header(skb) - skb->data;
2241}
2242
f9599ce1
CG
2243static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2244{
2245 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2246}
2247
1da177e4
LT
2248/*
2249 * CPUs often take a performance hit when accessing unaligned memory
2250 * locations. The actual performance hit varies, it can be small if the
2251 * hardware handles it or large if we have to take an exception and fix it
2252 * in software.
2253 *
2254 * Since an ethernet header is 14 bytes network drivers often end up with
2255 * the IP header at an unaligned offset. The IP header can be aligned by
2256 * shifting the start of the packet by 2 bytes. Drivers should do this
2257 * with:
2258 *
8660c124 2259 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2260 *
2261 * The downside to this alignment of the IP header is that the DMA is now
2262 * unaligned. On some architectures the cost of an unaligned DMA is high
2263 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2264 *
1da177e4
LT
2265 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2266 * to be overridden.
2267 */
2268#ifndef NET_IP_ALIGN
2269#define NET_IP_ALIGN 2
2270#endif
2271
025be81e
AB
2272/*
2273 * The networking layer reserves some headroom in skb data (via
2274 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2275 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2276 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2277 *
2278 * Unfortunately this headroom changes the DMA alignment of the resulting
2279 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2280 * on some architectures. An architecture can override this value,
2281 * perhaps setting it to a cacheline in size (since that will maintain
2282 * cacheline alignment of the DMA). It must be a power of 2.
2283 *
d6301d3d 2284 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2285 * headroom, you should not reduce this.
5933dd2f
ED
2286 *
2287 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2288 * to reduce average number of cache lines per packet.
2289 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2290 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2291 */
2292#ifndef NET_SKB_PAD
5933dd2f 2293#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2294#endif
2295
7965bd4d 2296int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2297
2298static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2299{
c4264f27 2300 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2301 WARN_ON(1);
2302 return;
2303 }
27a884dc
ACM
2304 skb->len = len;
2305 skb_set_tail_pointer(skb, len);
1da177e4
LT
2306}
2307
7965bd4d 2308void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2309
2310static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2311{
3cc0e873
HX
2312 if (skb->data_len)
2313 return ___pskb_trim(skb, len);
2314 __skb_trim(skb, len);
2315 return 0;
1da177e4
LT
2316}
2317
2318static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2319{
2320 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2321}
2322
e9fa4f7b
HX
2323/**
2324 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2325 * @skb: buffer to alter
2326 * @len: new length
2327 *
2328 * This is identical to pskb_trim except that the caller knows that
2329 * the skb is not cloned so we should never get an error due to out-
2330 * of-memory.
2331 */
2332static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2333{
2334 int err = pskb_trim(skb, len);
2335 BUG_ON(err);
2336}
2337
1da177e4
LT
2338/**
2339 * skb_orphan - orphan a buffer
2340 * @skb: buffer to orphan
2341 *
2342 * If a buffer currently has an owner then we call the owner's
2343 * destructor function and make the @skb unowned. The buffer continues
2344 * to exist but is no longer charged to its former owner.
2345 */
2346static inline void skb_orphan(struct sk_buff *skb)
2347{
c34a7612 2348 if (skb->destructor) {
1da177e4 2349 skb->destructor(skb);
c34a7612
ED
2350 skb->destructor = NULL;
2351 skb->sk = NULL;
376c7311
ED
2352 } else {
2353 BUG_ON(skb->sk);
c34a7612 2354 }
1da177e4
LT
2355}
2356
a353e0ce
MT
2357/**
2358 * skb_orphan_frags - orphan the frags contained in a buffer
2359 * @skb: buffer to orphan frags from
2360 * @gfp_mask: allocation mask for replacement pages
2361 *
2362 * For each frag in the SKB which needs a destructor (i.e. has an
2363 * owner) create a copy of that frag and release the original
2364 * page by calling the destructor.
2365 */
2366static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2367{
2368 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2369 return 0;
2370 return skb_copy_ubufs(skb, gfp_mask);
2371}
2372
1da177e4
LT
2373/**
2374 * __skb_queue_purge - empty a list
2375 * @list: list to empty
2376 *
2377 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2378 * the list and one reference dropped. This function does not take the
2379 * list lock and the caller must hold the relevant locks to use it.
2380 */
7965bd4d 2381void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2382static inline void __skb_queue_purge(struct sk_buff_head *list)
2383{
2384 struct sk_buff *skb;
2385 while ((skb = __skb_dequeue(list)) != NULL)
2386 kfree_skb(skb);
2387}
2388
7965bd4d 2389void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2390
7965bd4d
JP
2391struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2392 gfp_t gfp_mask);
8af27456
CH
2393
2394/**
2395 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2396 * @dev: network device to receive on
2397 * @length: length to allocate
2398 *
2399 * Allocate a new &sk_buff and assign it a usage count of one. The
2400 * buffer has unspecified headroom built in. Users should allocate
2401 * the headroom they think they need without accounting for the
2402 * built in space. The built in space is used for optimisations.
2403 *
2404 * %NULL is returned if there is no free memory. Although this function
2405 * allocates memory it can be called from an interrupt.
2406 */
2407static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2408 unsigned int length)
8af27456
CH
2409{
2410 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2411}
2412
6f532612
ED
2413/* legacy helper around __netdev_alloc_skb() */
2414static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2415 gfp_t gfp_mask)
2416{
2417 return __netdev_alloc_skb(NULL, length, gfp_mask);
2418}
2419
2420/* legacy helper around netdev_alloc_skb() */
2421static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2422{
2423 return netdev_alloc_skb(NULL, length);
2424}
2425
2426
4915a0de
ED
2427static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2428 unsigned int length, gfp_t gfp)
61321bbd 2429{
4915a0de 2430 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2431
2432 if (NET_IP_ALIGN && skb)
2433 skb_reserve(skb, NET_IP_ALIGN);
2434 return skb;
2435}
2436
4915a0de
ED
2437static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2438 unsigned int length)
2439{
2440 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2441}
2442
181edb2b
AD
2443static inline void skb_free_frag(void *addr)
2444{
2445 __free_page_frag(addr);
2446}
2447
ffde7328 2448void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2449struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2450 unsigned int length, gfp_t gfp_mask);
2451static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2452 unsigned int length)
2453{
2454 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2455}
795bb1c0
JDB
2456void napi_consume_skb(struct sk_buff *skb, int budget);
2457
2458void __kfree_skb_flush(void);
15fad714 2459void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2460
71dfda58
AD
2461/**
2462 * __dev_alloc_pages - allocate page for network Rx
2463 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2464 * @order: size of the allocation
2465 *
2466 * Allocate a new page.
2467 *
2468 * %NULL is returned if there is no free memory.
2469*/
2470static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2471 unsigned int order)
2472{
2473 /* This piece of code contains several assumptions.
2474 * 1. This is for device Rx, therefor a cold page is preferred.
2475 * 2. The expectation is the user wants a compound page.
2476 * 3. If requesting a order 0 page it will not be compound
2477 * due to the check to see if order has a value in prep_new_page
2478 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2479 * code in gfp_to_alloc_flags that should be enforcing this.
2480 */
2481 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2482
2483 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2484}
2485
2486static inline struct page *dev_alloc_pages(unsigned int order)
2487{
95829b3a 2488 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2489}
2490
2491/**
2492 * __dev_alloc_page - allocate a page for network Rx
2493 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2494 *
2495 * Allocate a new page.
2496 *
2497 * %NULL is returned if there is no free memory.
2498 */
2499static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2500{
2501 return __dev_alloc_pages(gfp_mask, 0);
2502}
2503
2504static inline struct page *dev_alloc_page(void)
2505{
95829b3a 2506 return dev_alloc_pages(0);
71dfda58
AD
2507}
2508
0614002b
MG
2509/**
2510 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2511 * @page: The page that was allocated from skb_alloc_page
2512 * @skb: The skb that may need pfmemalloc set
2513 */
2514static inline void skb_propagate_pfmemalloc(struct page *page,
2515 struct sk_buff *skb)
2516{
2f064f34 2517 if (page_is_pfmemalloc(page))
0614002b
MG
2518 skb->pfmemalloc = true;
2519}
2520
131ea667 2521/**
e227867f 2522 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2523 * @frag: the paged fragment
2524 *
2525 * Returns the &struct page associated with @frag.
2526 */
2527static inline struct page *skb_frag_page(const skb_frag_t *frag)
2528{
a8605c60 2529 return frag->page.p;
131ea667
IC
2530}
2531
2532/**
2533 * __skb_frag_ref - take an addition reference on a paged fragment.
2534 * @frag: the paged fragment
2535 *
2536 * Takes an additional reference on the paged fragment @frag.
2537 */
2538static inline void __skb_frag_ref(skb_frag_t *frag)
2539{
2540 get_page(skb_frag_page(frag));
2541}
2542
2543/**
2544 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2545 * @skb: the buffer
2546 * @f: the fragment offset.
2547 *
2548 * Takes an additional reference on the @f'th paged fragment of @skb.
2549 */
2550static inline void skb_frag_ref(struct sk_buff *skb, int f)
2551{
2552 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2553}
2554
2555/**
2556 * __skb_frag_unref - release a reference on a paged fragment.
2557 * @frag: the paged fragment
2558 *
2559 * Releases a reference on the paged fragment @frag.
2560 */
2561static inline void __skb_frag_unref(skb_frag_t *frag)
2562{
2563 put_page(skb_frag_page(frag));
2564}
2565
2566/**
2567 * skb_frag_unref - release a reference on a paged fragment of an skb.
2568 * @skb: the buffer
2569 * @f: the fragment offset
2570 *
2571 * Releases a reference on the @f'th paged fragment of @skb.
2572 */
2573static inline void skb_frag_unref(struct sk_buff *skb, int f)
2574{
2575 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2576}
2577
2578/**
2579 * skb_frag_address - gets the address of the data contained in a paged fragment
2580 * @frag: the paged fragment buffer
2581 *
2582 * Returns the address of the data within @frag. The page must already
2583 * be mapped.
2584 */
2585static inline void *skb_frag_address(const skb_frag_t *frag)
2586{
2587 return page_address(skb_frag_page(frag)) + frag->page_offset;
2588}
2589
2590/**
2591 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2592 * @frag: the paged fragment buffer
2593 *
2594 * Returns the address of the data within @frag. Checks that the page
2595 * is mapped and returns %NULL otherwise.
2596 */
2597static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2598{
2599 void *ptr = page_address(skb_frag_page(frag));
2600 if (unlikely(!ptr))
2601 return NULL;
2602
2603 return ptr + frag->page_offset;
2604}
2605
2606/**
2607 * __skb_frag_set_page - sets the page contained in a paged fragment
2608 * @frag: the paged fragment
2609 * @page: the page to set
2610 *
2611 * Sets the fragment @frag to contain @page.
2612 */
2613static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2614{
a8605c60 2615 frag->page.p = page;
131ea667
IC
2616}
2617
2618/**
2619 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2620 * @skb: the buffer
2621 * @f: the fragment offset
2622 * @page: the page to set
2623 *
2624 * Sets the @f'th fragment of @skb to contain @page.
2625 */
2626static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2627 struct page *page)
2628{
2629 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2630}
2631
400dfd3a
ED
2632bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2633
131ea667
IC
2634/**
2635 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2636 * @dev: the device to map the fragment to
131ea667
IC
2637 * @frag: the paged fragment to map
2638 * @offset: the offset within the fragment (starting at the
2639 * fragment's own offset)
2640 * @size: the number of bytes to map
f83347df 2641 * @dir: the direction of the mapping (%PCI_DMA_*)
131ea667
IC
2642 *
2643 * Maps the page associated with @frag to @device.
2644 */
2645static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2646 const skb_frag_t *frag,
2647 size_t offset, size_t size,
2648 enum dma_data_direction dir)
2649{
2650 return dma_map_page(dev, skb_frag_page(frag),
2651 frag->page_offset + offset, size, dir);
2652}
2653
117632e6
ED
2654static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2655 gfp_t gfp_mask)
2656{
2657 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2658}
2659
bad93e9d
OP
2660
2661static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2662 gfp_t gfp_mask)
2663{
2664 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2665}
2666
2667
334a8132
PM
2668/**
2669 * skb_clone_writable - is the header of a clone writable
2670 * @skb: buffer to check
2671 * @len: length up to which to write
2672 *
2673 * Returns true if modifying the header part of the cloned buffer
2674 * does not requires the data to be copied.
2675 */
05bdd2f1 2676static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2677{
2678 return !skb_header_cloned(skb) &&
2679 skb_headroom(skb) + len <= skb->hdr_len;
2680}
2681
3697649f
DB
2682static inline int skb_try_make_writable(struct sk_buff *skb,
2683 unsigned int write_len)
2684{
2685 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2686 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2687}
2688
d9cc2048
HX
2689static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2690 int cloned)
2691{
2692 int delta = 0;
2693
d9cc2048
HX
2694 if (headroom > skb_headroom(skb))
2695 delta = headroom - skb_headroom(skb);
2696
2697 if (delta || cloned)
2698 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2699 GFP_ATOMIC);
2700 return 0;
2701}
2702
1da177e4
LT
2703/**
2704 * skb_cow - copy header of skb when it is required
2705 * @skb: buffer to cow
2706 * @headroom: needed headroom
2707 *
2708 * If the skb passed lacks sufficient headroom or its data part
2709 * is shared, data is reallocated. If reallocation fails, an error
2710 * is returned and original skb is not changed.
2711 *
2712 * The result is skb with writable area skb->head...skb->tail
2713 * and at least @headroom of space at head.
2714 */
2715static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2716{
d9cc2048
HX
2717 return __skb_cow(skb, headroom, skb_cloned(skb));
2718}
1da177e4 2719
d9cc2048
HX
2720/**
2721 * skb_cow_head - skb_cow but only making the head writable
2722 * @skb: buffer to cow
2723 * @headroom: needed headroom
2724 *
2725 * This function is identical to skb_cow except that we replace the
2726 * skb_cloned check by skb_header_cloned. It should be used when
2727 * you only need to push on some header and do not need to modify
2728 * the data.
2729 */
2730static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2731{
2732 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2733}
2734
2735/**
2736 * skb_padto - pad an skbuff up to a minimal size
2737 * @skb: buffer to pad
2738 * @len: minimal length
2739 *
2740 * Pads up a buffer to ensure the trailing bytes exist and are
2741 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2742 * is untouched. Otherwise it is extended. Returns zero on
2743 * success. The skb is freed on error.
1da177e4 2744 */
5b057c6b 2745static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2746{
2747 unsigned int size = skb->len;
2748 if (likely(size >= len))
5b057c6b 2749 return 0;
987c402a 2750 return skb_pad(skb, len - size);
1da177e4
LT
2751}
2752
9c0c1124
AD
2753/**
2754 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2755 * @skb: buffer to pad
2756 * @len: minimal length
2757 *
2758 * Pads up a buffer to ensure the trailing bytes exist and are
2759 * blanked. If the buffer already contains sufficient data it
2760 * is untouched. Otherwise it is extended. Returns zero on
2761 * success. The skb is freed on error.
2762 */
2763static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2764{
2765 unsigned int size = skb->len;
2766
2767 if (unlikely(size < len)) {
2768 len -= size;
2769 if (skb_pad(skb, len))
2770 return -ENOMEM;
2771 __skb_put(skb, len);
2772 }
2773 return 0;
2774}
2775
1da177e4 2776static inline int skb_add_data(struct sk_buff *skb,
af2b040e 2777 struct iov_iter *from, int copy)
1da177e4
LT
2778{
2779 const int off = skb->len;
2780
2781 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e
AV
2782 __wsum csum = 0;
2783 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2784 &csum, from) == copy) {
1da177e4
LT
2785 skb->csum = csum_block_add(skb->csum, csum, off);
2786 return 0;
2787 }
af2b040e 2788 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
1da177e4
LT
2789 return 0;
2790
2791 __skb_trim(skb, off);
2792 return -EFAULT;
2793}
2794
38ba0a65
ED
2795static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2796 const struct page *page, int off)
1da177e4
LT
2797{
2798 if (i) {
9e903e08 2799 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 2800
ea2ab693 2801 return page == skb_frag_page(frag) &&
9e903e08 2802 off == frag->page_offset + skb_frag_size(frag);
1da177e4 2803 }
38ba0a65 2804 return false;
1da177e4
LT
2805}
2806
364c6bad
HX
2807static inline int __skb_linearize(struct sk_buff *skb)
2808{
2809 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2810}
2811
1da177e4
LT
2812/**
2813 * skb_linearize - convert paged skb to linear one
2814 * @skb: buffer to linarize
1da177e4
LT
2815 *
2816 * If there is no free memory -ENOMEM is returned, otherwise zero
2817 * is returned and the old skb data released.
2818 */
364c6bad
HX
2819static inline int skb_linearize(struct sk_buff *skb)
2820{
2821 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2822}
2823
cef401de
ED
2824/**
2825 * skb_has_shared_frag - can any frag be overwritten
2826 * @skb: buffer to test
2827 *
2828 * Return true if the skb has at least one frag that might be modified
2829 * by an external entity (as in vmsplice()/sendfile())
2830 */
2831static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2832{
c9af6db4
PS
2833 return skb_is_nonlinear(skb) &&
2834 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
2835}
2836
364c6bad
HX
2837/**
2838 * skb_linearize_cow - make sure skb is linear and writable
2839 * @skb: buffer to process
2840 *
2841 * If there is no free memory -ENOMEM is returned, otherwise zero
2842 * is returned and the old skb data released.
2843 */
2844static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 2845{
364c6bad
HX
2846 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2847 __skb_linearize(skb) : 0;
1da177e4
LT
2848}
2849
479ffccc
DB
2850static __always_inline void
2851__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2852 unsigned int off)
2853{
2854 if (skb->ip_summed == CHECKSUM_COMPLETE)
2855 skb->csum = csum_block_sub(skb->csum,
2856 csum_partial(start, len, 0), off);
2857 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2858 skb_checksum_start_offset(skb) < 0)
2859 skb->ip_summed = CHECKSUM_NONE;
2860}
2861
1da177e4
LT
2862/**
2863 * skb_postpull_rcsum - update checksum for received skb after pull
2864 * @skb: buffer to update
2865 * @start: start of data before pull
2866 * @len: length of data pulled
2867 *
2868 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
2869 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2870 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 2871 */
1da177e4 2872static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 2873 const void *start, unsigned int len)
1da177e4 2874{
479ffccc 2875 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
2876}
2877
479ffccc
DB
2878static __always_inline void
2879__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2880 unsigned int off)
2881{
2882 if (skb->ip_summed == CHECKSUM_COMPLETE)
2883 skb->csum = csum_block_add(skb->csum,
2884 csum_partial(start, len, 0), off);
2885}
cbb042f9 2886
479ffccc
DB
2887/**
2888 * skb_postpush_rcsum - update checksum for received skb after push
2889 * @skb: buffer to update
2890 * @start: start of data after push
2891 * @len: length of data pushed
2892 *
2893 * After doing a push on a received packet, you need to call this to
2894 * update the CHECKSUM_COMPLETE checksum.
2895 */
f8ffad69
DB
2896static inline void skb_postpush_rcsum(struct sk_buff *skb,
2897 const void *start, unsigned int len)
2898{
479ffccc 2899 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
2900}
2901
479ffccc
DB
2902unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2903
82a31b92
WC
2904/**
2905 * skb_push_rcsum - push skb and update receive checksum
2906 * @skb: buffer to update
2907 * @len: length of data pulled
2908 *
2909 * This function performs an skb_push on the packet and updates
2910 * the CHECKSUM_COMPLETE checksum. It should be used on
2911 * receive path processing instead of skb_push unless you know
2912 * that the checksum difference is zero (e.g., a valid IP header)
2913 * or you are setting ip_summed to CHECKSUM_NONE.
2914 */
2915static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2916 unsigned int len)
2917{
2918 skb_push(skb, len);
2919 skb_postpush_rcsum(skb, skb->data, len);
2920 return skb->data;
2921}
2922
7ce5a27f
DM
2923/**
2924 * pskb_trim_rcsum - trim received skb and update checksum
2925 * @skb: buffer to trim
2926 * @len: new length
2927 *
2928 * This is exactly the same as pskb_trim except that it ensures the
2929 * checksum of received packets are still valid after the operation.
2930 */
2931
2932static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2933{
2934 if (likely(len >= skb->len))
2935 return 0;
2936 if (skb->ip_summed == CHECKSUM_COMPLETE)
2937 skb->ip_summed = CHECKSUM_NONE;
2938 return __pskb_trim(skb, len);
2939}
2940
1da177e4
LT
2941#define skb_queue_walk(queue, skb) \
2942 for (skb = (queue)->next; \
a1e4891f 2943 skb != (struct sk_buff *)(queue); \
1da177e4
LT
2944 skb = skb->next)
2945
46f8914e
JC
2946#define skb_queue_walk_safe(queue, skb, tmp) \
2947 for (skb = (queue)->next, tmp = skb->next; \
2948 skb != (struct sk_buff *)(queue); \
2949 skb = tmp, tmp = skb->next)
2950
1164f52a 2951#define skb_queue_walk_from(queue, skb) \
a1e4891f 2952 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
2953 skb = skb->next)
2954
2955#define skb_queue_walk_from_safe(queue, skb, tmp) \
2956 for (tmp = skb->next; \
2957 skb != (struct sk_buff *)(queue); \
2958 skb = tmp, tmp = skb->next)
2959
300ce174
SH
2960#define skb_queue_reverse_walk(queue, skb) \
2961 for (skb = (queue)->prev; \
a1e4891f 2962 skb != (struct sk_buff *)(queue); \
300ce174
SH
2963 skb = skb->prev)
2964
686a2955
DM
2965#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2966 for (skb = (queue)->prev, tmp = skb->prev; \
2967 skb != (struct sk_buff *)(queue); \
2968 skb = tmp, tmp = skb->prev)
2969
2970#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2971 for (tmp = skb->prev; \
2972 skb != (struct sk_buff *)(queue); \
2973 skb = tmp, tmp = skb->prev)
1da177e4 2974
21dc3301 2975static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
2976{
2977 return skb_shinfo(skb)->frag_list != NULL;
2978}
2979
2980static inline void skb_frag_list_init(struct sk_buff *skb)
2981{
2982 skb_shinfo(skb)->frag_list = NULL;
2983}
2984
ee039871
DM
2985#define skb_walk_frags(skb, iter) \
2986 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2987
ea3793ee
RW
2988
2989int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2990 const struct sk_buff *skb);
2991struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
2992 int *peeked, int *off, int *err,
2993 struct sk_buff **last);
7965bd4d
JP
2994struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2995 int *peeked, int *off, int *err);
2996struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2997 int *err);
2998unsigned int datagram_poll(struct file *file, struct socket *sock,
2999 struct poll_table_struct *wait);
c0371da6
AV
3000int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3001 struct iov_iter *to, int size);
51f3d02b
DM
3002static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3003 struct msghdr *msg, int size)
3004{
e5a4b0bb 3005 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3006}
e5a4b0bb
AV
3007int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3008 struct msghdr *msg);
3a654f97
AV
3009int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3010 struct iov_iter *from, int len);
3a654f97 3011int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3012void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3013void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3014static inline void skb_free_datagram_locked(struct sock *sk,
3015 struct sk_buff *skb)
3016{
3017 __skb_free_datagram_locked(sk, skb, 0);
3018}
7965bd4d 3019int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3020int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3021int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3022__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3023 int len, __wsum csum);
a60e3cc7
HFS
3024ssize_t skb_socket_splice(struct sock *sk,
3025 struct pipe_inode_info *pipe,
3026 struct splice_pipe_desc *spd);
3027int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3028 struct pipe_inode_info *pipe, unsigned int len,
a60e3cc7
HFS
3029 unsigned int flags,
3030 ssize_t (*splice_cb)(struct sock *,
3031 struct pipe_inode_info *,
3032 struct splice_pipe_desc *));
7965bd4d 3033void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3034unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3035int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3036 int len, int hlen);
7965bd4d
JP
3037void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3038int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3039void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 3040unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
ae7ef81e 3041bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
7965bd4d 3042struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3043struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3044int skb_ensure_writable(struct sk_buff *skb, int write_len);
93515d53
JP
3045int skb_vlan_pop(struct sk_buff *skb);
3046int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3047struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3048 gfp_t gfp);
20380731 3049
6ce8e9ce
AV
3050static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3051{
21226abb 3052 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
6ce8e9ce
AV
3053}
3054
7eab8d9e
AV
3055static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3056{
e5a4b0bb 3057 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3058}
3059
2817a336
DB
3060struct skb_checksum_ops {
3061 __wsum (*update)(const void *mem, int len, __wsum wsum);
3062 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3063};
3064
3065__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3066 __wsum csum, const struct skb_checksum_ops *ops);
3067__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3068 __wsum csum);
3069
1e98a0f0
ED
3070static inline void * __must_check
3071__skb_header_pointer(const struct sk_buff *skb, int offset,
3072 int len, void *data, int hlen, void *buffer)
1da177e4 3073{
55820ee2 3074 if (hlen - offset >= len)
690e36e7 3075 return data + offset;
1da177e4 3076
690e36e7
DM
3077 if (!skb ||
3078 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3079 return NULL;
3080
3081 return buffer;
3082}
3083
1e98a0f0
ED
3084static inline void * __must_check
3085skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3086{
3087 return __skb_header_pointer(skb, offset, len, skb->data,
3088 skb_headlen(skb), buffer);
3089}
3090
4262e5cc
DB
3091/**
3092 * skb_needs_linearize - check if we need to linearize a given skb
3093 * depending on the given device features.
3094 * @skb: socket buffer to check
3095 * @features: net device features
3096 *
3097 * Returns true if either:
3098 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3099 * 2. skb is fragmented and the device does not support SG.
3100 */
3101static inline bool skb_needs_linearize(struct sk_buff *skb,
3102 netdev_features_t features)
3103{
3104 return skb_is_nonlinear(skb) &&
3105 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3106 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3107}
3108
d626f62b
ACM
3109static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3110 void *to,
3111 const unsigned int len)
3112{
3113 memcpy(to, skb->data, len);
3114}
3115
3116static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3117 const int offset, void *to,
3118 const unsigned int len)
3119{
3120 memcpy(to, skb->data + offset, len);
3121}
3122
27d7ff46
ACM
3123static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3124 const void *from,
3125 const unsigned int len)
3126{
3127 memcpy(skb->data, from, len);
3128}
3129
3130static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3131 const int offset,
3132 const void *from,
3133 const unsigned int len)
3134{
3135 memcpy(skb->data + offset, from, len);
3136}
3137
7965bd4d 3138void skb_init(void);
1da177e4 3139
ac45f602
PO
3140static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3141{
3142 return skb->tstamp;
3143}
3144
a61bbcf2
PM
3145/**
3146 * skb_get_timestamp - get timestamp from a skb
3147 * @skb: skb to get stamp from
3148 * @stamp: pointer to struct timeval to store stamp in
3149 *
3150 * Timestamps are stored in the skb as offsets to a base timestamp.
3151 * This function converts the offset back to a struct timeval and stores
3152 * it in stamp.
3153 */
ac45f602
PO
3154static inline void skb_get_timestamp(const struct sk_buff *skb,
3155 struct timeval *stamp)
a61bbcf2 3156{
b7aa0bf7 3157 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3158}
3159
ac45f602
PO
3160static inline void skb_get_timestampns(const struct sk_buff *skb,
3161 struct timespec *stamp)
3162{
3163 *stamp = ktime_to_timespec(skb->tstamp);
3164}
3165
b7aa0bf7 3166static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3167{
b7aa0bf7 3168 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3169}
3170
164891aa
SH
3171static inline ktime_t net_timedelta(ktime_t t)
3172{
3173 return ktime_sub(ktime_get_real(), t);
3174}
3175
b9ce204f
IJ
3176static inline ktime_t net_invalid_timestamp(void)
3177{
3178 return ktime_set(0, 0);
3179}
a61bbcf2 3180
62bccb8c
AD
3181struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3182
c1f19b51
RC
3183#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3184
7965bd4d
JP
3185void skb_clone_tx_timestamp(struct sk_buff *skb);
3186bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3187
3188#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3189
3190static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3191{
3192}
3193
3194static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3195{
3196 return false;
3197}
3198
3199#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3200
3201/**
3202 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3203 *
da92b194
RC
3204 * PHY drivers may accept clones of transmitted packets for
3205 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3206 * must call this function to return the skb back to the stack with a
3207 * timestamp.
da92b194 3208 *
c1f19b51 3209 * @skb: clone of the the original outgoing packet
7a76a021 3210 * @hwtstamps: hardware time stamps
c1f19b51
RC
3211 *
3212 */
3213void skb_complete_tx_timestamp(struct sk_buff *skb,
3214 struct skb_shared_hwtstamps *hwtstamps);
3215
e7fd2885
WB
3216void __skb_tstamp_tx(struct sk_buff *orig_skb,
3217 struct skb_shared_hwtstamps *hwtstamps,
3218 struct sock *sk, int tstype);
3219
ac45f602
PO
3220/**
3221 * skb_tstamp_tx - queue clone of skb with send time stamps
3222 * @orig_skb: the original outgoing packet
3223 * @hwtstamps: hardware time stamps, may be NULL if not available
3224 *
3225 * If the skb has a socket associated, then this function clones the
3226 * skb (thus sharing the actual data and optional structures), stores
3227 * the optional hardware time stamping information (if non NULL) or
3228 * generates a software time stamp (otherwise), then queues the clone
3229 * to the error queue of the socket. Errors are silently ignored.
3230 */
7965bd4d
JP
3231void skb_tstamp_tx(struct sk_buff *orig_skb,
3232 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3233
4507a715
RC
3234static inline void sw_tx_timestamp(struct sk_buff *skb)
3235{
2244d07b
OH
3236 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3237 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
4507a715
RC
3238 skb_tstamp_tx(skb, NULL);
3239}
3240
3241/**
3242 * skb_tx_timestamp() - Driver hook for transmit timestamping
3243 *
3244 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3245 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3246 *
73409f3b
DM
3247 * Specifically, one should make absolutely sure that this function is
3248 * called before TX completion of this packet can trigger. Otherwise
3249 * the packet could potentially already be freed.
3250 *
4507a715
RC
3251 * @skb: A socket buffer.
3252 */
3253static inline void skb_tx_timestamp(struct sk_buff *skb)
3254{
c1f19b51 3255 skb_clone_tx_timestamp(skb);
4507a715
RC
3256 sw_tx_timestamp(skb);
3257}
3258
6e3e939f
JB
3259/**
3260 * skb_complete_wifi_ack - deliver skb with wifi status
3261 *
3262 * @skb: the original outgoing packet
3263 * @acked: ack status
3264 *
3265 */
3266void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3267
7965bd4d
JP
3268__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3269__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3270
60476372
HX
3271static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3272{
6edec0e6
TH
3273 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3274 skb->csum_valid ||
3275 (skb->ip_summed == CHECKSUM_PARTIAL &&
3276 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3277}
3278
fb286bb2
HX
3279/**
3280 * skb_checksum_complete - Calculate checksum of an entire packet
3281 * @skb: packet to process
3282 *
3283 * This function calculates the checksum over the entire packet plus
3284 * the value of skb->csum. The latter can be used to supply the
3285 * checksum of a pseudo header as used by TCP/UDP. It returns the
3286 * checksum.
3287 *
3288 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3289 * this function can be used to verify that checksum on received
3290 * packets. In that case the function should return zero if the
3291 * checksum is correct. In particular, this function will return zero
3292 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3293 * hardware has already verified the correctness of the checksum.
3294 */
4381ca3c 3295static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3296{
60476372
HX
3297 return skb_csum_unnecessary(skb) ?
3298 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3299}
3300
77cffe23
TH
3301static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3302{
3303 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3304 if (skb->csum_level == 0)
3305 skb->ip_summed = CHECKSUM_NONE;
3306 else
3307 skb->csum_level--;
3308 }
3309}
3310
3311static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3312{
3313 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3314 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3315 skb->csum_level++;
3316 } else if (skb->ip_summed == CHECKSUM_NONE) {
3317 skb->ip_summed = CHECKSUM_UNNECESSARY;
3318 skb->csum_level = 0;
3319 }
3320}
3321
5a212329
TH
3322static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3323{
3324 /* Mark current checksum as bad (typically called from GRO
3325 * path). In the case that ip_summed is CHECKSUM_NONE
3326 * this must be the first checksum encountered in the packet.
3327 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3328 * checksum after the last one validated. For UDP, a zero
3329 * checksum can not be marked as bad.
3330 */
3331
3332 if (skb->ip_summed == CHECKSUM_NONE ||
3333 skb->ip_summed == CHECKSUM_UNNECESSARY)
3334 skb->csum_bad = 1;
3335}
3336
76ba0aae
TH
3337/* Check if we need to perform checksum complete validation.
3338 *
3339 * Returns true if checksum complete is needed, false otherwise
3340 * (either checksum is unnecessary or zero checksum is allowed).
3341 */
3342static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3343 bool zero_okay,
3344 __sum16 check)
3345{
5d0c2b95
TH
3346 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3347 skb->csum_valid = 1;
77cffe23 3348 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3349 return false;
3350 }
3351
3352 return true;
3353}
3354
3355/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3356 * in checksum_init.
3357 */
3358#define CHECKSUM_BREAK 76
3359
4e18b9ad
TH
3360/* Unset checksum-complete
3361 *
3362 * Unset checksum complete can be done when packet is being modified
3363 * (uncompressed for instance) and checksum-complete value is
3364 * invalidated.
3365 */
3366static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3367{
3368 if (skb->ip_summed == CHECKSUM_COMPLETE)
3369 skb->ip_summed = CHECKSUM_NONE;
3370}
3371
76ba0aae
TH
3372/* Validate (init) checksum based on checksum complete.
3373 *
3374 * Return values:
3375 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3376 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3377 * checksum is stored in skb->csum for use in __skb_checksum_complete
3378 * non-zero: value of invalid checksum
3379 *
3380 */
3381static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3382 bool complete,
3383 __wsum psum)
3384{
3385 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3386 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3387 skb->csum_valid = 1;
76ba0aae
TH
3388 return 0;
3389 }
5a212329
TH
3390 } else if (skb->csum_bad) {
3391 /* ip_summed == CHECKSUM_NONE in this case */
c91d4606 3392 return (__force __sum16)1;
76ba0aae
TH
3393 }
3394
3395 skb->csum = psum;
3396
5d0c2b95
TH
3397 if (complete || skb->len <= CHECKSUM_BREAK) {
3398 __sum16 csum;
3399
3400 csum = __skb_checksum_complete(skb);
3401 skb->csum_valid = !csum;
3402 return csum;
3403 }
76ba0aae
TH
3404
3405 return 0;
3406}
3407
3408static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3409{
3410 return 0;
3411}
3412
3413/* Perform checksum validate (init). Note that this is a macro since we only
3414 * want to calculate the pseudo header which is an input function if necessary.
3415 * First we try to validate without any computation (checksum unnecessary) and
3416 * then calculate based on checksum complete calling the function to compute
3417 * pseudo header.
3418 *
3419 * Return values:
3420 * 0: checksum is validated or try to in skb_checksum_complete
3421 * non-zero: value of invalid checksum
3422 */
3423#define __skb_checksum_validate(skb, proto, complete, \
3424 zero_okay, check, compute_pseudo) \
3425({ \
3426 __sum16 __ret = 0; \
5d0c2b95 3427 skb->csum_valid = 0; \
76ba0aae
TH
3428 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3429 __ret = __skb_checksum_validate_complete(skb, \
3430 complete, compute_pseudo(skb, proto)); \
3431 __ret; \
3432})
3433
3434#define skb_checksum_init(skb, proto, compute_pseudo) \
3435 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3436
3437#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3438 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3439
3440#define skb_checksum_validate(skb, proto, compute_pseudo) \
3441 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3442
3443#define skb_checksum_validate_zero_check(skb, proto, check, \
3444 compute_pseudo) \
096a4cfa 3445 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3446
3447#define skb_checksum_simple_validate(skb) \
3448 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3449
d96535a1
TH
3450static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3451{
3452 return (skb->ip_summed == CHECKSUM_NONE &&
3453 skb->csum_valid && !skb->csum_bad);
3454}
3455
3456static inline void __skb_checksum_convert(struct sk_buff *skb,
3457 __sum16 check, __wsum pseudo)
3458{
3459 skb->csum = ~pseudo;
3460 skb->ip_summed = CHECKSUM_COMPLETE;
3461}
3462
3463#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3464do { \
3465 if (__skb_checksum_convert_check(skb)) \
3466 __skb_checksum_convert(skb, check, \
3467 compute_pseudo(skb, proto)); \
3468} while (0)
3469
15e2396d
TH
3470static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3471 u16 start, u16 offset)
3472{
3473 skb->ip_summed = CHECKSUM_PARTIAL;
3474 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3475 skb->csum_offset = offset - start;
3476}
3477
dcdc8994
TH
3478/* Update skbuf and packet to reflect the remote checksum offload operation.
3479 * When called, ptr indicates the starting point for skb->csum when
3480 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3481 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3482 */
3483static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3484 int start, int offset, bool nopartial)
dcdc8994
TH
3485{
3486 __wsum delta;
3487
15e2396d
TH
3488 if (!nopartial) {
3489 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3490 return;
3491 }
3492
dcdc8994
TH
3493 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3494 __skb_checksum_complete(skb);
3495 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3496 }
3497
3498 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3499
3500 /* Adjust skb->csum since we changed the packet */
3501 skb->csum = csum_add(skb->csum, delta);
3502}
3503
5f79e0f9 3504#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3505void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3506static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3507{
3508 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3509 nf_conntrack_destroy(nfct);
1da177e4
LT
3510}
3511static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3512{
3513 if (nfct)
3514 atomic_inc(&nfct->use);
3515}
2fc72c7b 3516#endif
34666d46 3517#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3518static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3519{
3520 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3521 kfree(nf_bridge);
3522}
3523static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3524{
3525 if (nf_bridge)
3526 atomic_inc(&nf_bridge->use);
3527}
3528#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3529static inline void nf_reset(struct sk_buff *skb)
3530{
5f79e0f9 3531#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a193a4ab
PM
3532 nf_conntrack_put(skb->nfct);
3533 skb->nfct = NULL;
2fc72c7b 3534#endif
34666d46 3535#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3536 nf_bridge_put(skb->nf_bridge);
3537 skb->nf_bridge = NULL;
3538#endif
3539}
3540
124dff01
PM
3541static inline void nf_reset_trace(struct sk_buff *skb)
3542{
478b360a 3543#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3544 skb->nf_trace = 0;
3545#endif
a193a4ab
PM
3546}
3547
edda553c 3548/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3549static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3550 bool copy)
edda553c 3551{
5f79e0f9 3552#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
edda553c
YK
3553 dst->nfct = src->nfct;
3554 nf_conntrack_get(src->nfct);
b1937227
ED
3555 if (copy)
3556 dst->nfctinfo = src->nfctinfo;
2fc72c7b 3557#endif
34666d46 3558#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3559 dst->nf_bridge = src->nf_bridge;
3560 nf_bridge_get(src->nf_bridge);
3561#endif
478b360a 3562#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3563 if (copy)
3564 dst->nf_trace = src->nf_trace;
478b360a 3565#endif
edda553c
YK
3566}
3567
e7ac05f3
YK
3568static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3569{
e7ac05f3 3570#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 3571 nf_conntrack_put(dst->nfct);
2fc72c7b 3572#endif
34666d46 3573#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3574 nf_bridge_put(dst->nf_bridge);
3575#endif
b1937227 3576 __nf_copy(dst, src, true);
e7ac05f3
YK
3577}
3578
984bc16c
JM
3579#ifdef CONFIG_NETWORK_SECMARK
3580static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3581{
3582 to->secmark = from->secmark;
3583}
3584
3585static inline void skb_init_secmark(struct sk_buff *skb)
3586{
3587 skb->secmark = 0;
3588}
3589#else
3590static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3591{ }
3592
3593static inline void skb_init_secmark(struct sk_buff *skb)
3594{ }
3595#endif
3596
574f7194
EB
3597static inline bool skb_irq_freeable(const struct sk_buff *skb)
3598{
3599 return !skb->destructor &&
3600#if IS_ENABLED(CONFIG_XFRM)
3601 !skb->sp &&
3602#endif
3603#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3604 !skb->nfct &&
3605#endif
3606 !skb->_skb_refdst &&
3607 !skb_has_frag_list(skb);
3608}
3609
f25f4e44
PWJ
3610static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3611{
f25f4e44 3612 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3613}
3614
9247744e 3615static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3616{
4e3ab47a 3617 return skb->queue_mapping;
4e3ab47a
PE
3618}
3619
f25f4e44
PWJ
3620static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3621{
f25f4e44 3622 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3623}
3624
d5a9e24a
DM
3625static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3626{
3627 skb->queue_mapping = rx_queue + 1;
3628}
3629
9247744e 3630static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3631{
3632 return skb->queue_mapping - 1;
3633}
3634
9247744e 3635static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3636{
a02cec21 3637 return skb->queue_mapping != 0;
d5a9e24a
DM
3638}
3639
def8b4fa
AD
3640static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3641{
0b3d8e08 3642#ifdef CONFIG_XFRM
def8b4fa 3643 return skb->sp;
def8b4fa 3644#else
def8b4fa 3645 return NULL;
def8b4fa 3646#endif
0b3d8e08 3647}
def8b4fa 3648
68c33163
PS
3649/* Keeps track of mac header offset relative to skb->head.
3650 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3651 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3652 * tunnel skb it points to outer mac header.
3653 * Keeps track of level of encapsulation of network headers.
3654 */
68c33163 3655struct skb_gso_cb {
802ab55a
AD
3656 union {
3657 int mac_offset;
3658 int data_offset;
3659 };
3347c960 3660 int encap_level;
76443456 3661 __wsum csum;
7e2b10c1 3662 __u16 csum_start;
68c33163 3663};
9207f9d4
KK
3664#define SKB_SGO_CB_OFFSET 32
3665#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
3666
3667static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3668{
3669 return (skb_mac_header(inner_skb) - inner_skb->head) -
3670 SKB_GSO_CB(inner_skb)->mac_offset;
3671}
3672
1e2bd517
PS
3673static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3674{
3675 int new_headroom, headroom;
3676 int ret;
3677
3678 headroom = skb_headroom(skb);
3679 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3680 if (ret)
3681 return ret;
3682
3683 new_headroom = skb_headroom(skb);
3684 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3685 return 0;
3686}
3687
08b64fcc
AD
3688static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3689{
3690 /* Do not update partial checksums if remote checksum is enabled. */
3691 if (skb->remcsum_offload)
3692 return;
3693
3694 SKB_GSO_CB(skb)->csum = res;
3695 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3696}
3697
7e2b10c1
TH
3698/* Compute the checksum for a gso segment. First compute the checksum value
3699 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3700 * then add in skb->csum (checksum from csum_start to end of packet).
3701 * skb->csum and csum_start are then updated to reflect the checksum of the
3702 * resultant packet starting from the transport header-- the resultant checksum
3703 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3704 * header.
3705 */
3706static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3707{
76443456
AD
3708 unsigned char *csum_start = skb_transport_header(skb);
3709 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3710 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 3711
76443456
AD
3712 SKB_GSO_CB(skb)->csum = res;
3713 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 3714
76443456 3715 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
3716}
3717
bdcc0924 3718static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3719{
3720 return skb_shinfo(skb)->gso_size;
3721}
3722
36a8f39e 3723/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 3724static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
3725{
3726 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3727}
3728
7965bd4d 3729void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
3730
3731static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3732{
3733 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3734 * wanted then gso_type will be set. */
05bdd2f1
ED
3735 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3736
b78462eb
AD
3737 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3738 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
3739 __skb_warn_lro_forwarding(skb);
3740 return true;
3741 }
3742 return false;
3743}
3744
35fc92a9
HX
3745static inline void skb_forward_csum(struct sk_buff *skb)
3746{
3747 /* Unfortunately we don't support this one. Any brave souls? */
3748 if (skb->ip_summed == CHECKSUM_COMPLETE)
3749 skb->ip_summed = CHECKSUM_NONE;
3750}
3751
bc8acf2c
ED
3752/**
3753 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3754 * @skb: skb to check
3755 *
3756 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3757 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3758 * use this helper, to document places where we make this assertion.
3759 */
05bdd2f1 3760static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
3761{
3762#ifdef DEBUG
3763 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3764#endif
3765}
3766
f35d9d8a 3767bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 3768
ed1f50c3 3769int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
3770struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3771 unsigned int transport_len,
3772 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 3773
3a7c1ee4
AD
3774/**
3775 * skb_head_is_locked - Determine if the skb->head is locked down
3776 * @skb: skb to check
3777 *
3778 * The head on skbs build around a head frag can be removed if they are
3779 * not cloned. This function returns true if the skb head is locked down
3780 * due to either being allocated via kmalloc, or by being a clone with
3781 * multiple references to the head.
3782 */
3783static inline bool skb_head_is_locked(const struct sk_buff *skb)
3784{
3785 return !skb->head_frag || skb_cloned(skb);
3786}
fe6cc55f
FW
3787
3788/**
3789 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3790 *
3791 * @skb: GSO skb
3792 *
3793 * skb_gso_network_seglen is used to determine the real size of the
3794 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3795 *
3796 * The MAC/L2 header is not accounted for.
3797 */
3798static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3799{
3800 unsigned int hdr_len = skb_transport_header(skb) -
3801 skb_network_header(skb);
3802 return hdr_len + skb_gso_transport_seglen(skb);
3803}
ee122c79 3804
179bc67f
EC
3805/* Local Checksum Offload.
3806 * Compute outer checksum based on the assumption that the
3807 * inner checksum will be offloaded later.
e8ae7b00
EC
3808 * See Documentation/networking/checksum-offloads.txt for
3809 * explanation of how this works.
179bc67f
EC
3810 * Fill in outer checksum adjustment (e.g. with sum of outer
3811 * pseudo-header) before calling.
3812 * Also ensure that inner checksum is in linear data area.
3813 */
3814static inline __wsum lco_csum(struct sk_buff *skb)
3815{
9e74a6da
AD
3816 unsigned char *csum_start = skb_checksum_start(skb);
3817 unsigned char *l4_hdr = skb_transport_header(skb);
3818 __wsum partial;
179bc67f
EC
3819
3820 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
3821 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3822 skb->csum_offset));
3823
179bc67f 3824 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 3825 * adjustment filled in by caller) and return result.
179bc67f 3826 */
9e74a6da 3827 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
3828}
3829
1da177e4
LT
3830#endif /* __KERNEL__ */
3831#endif /* _LINUX_SKBUFF_H */