]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/skbuff.h
udp: do fwd memory scheduling on dequeue
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4 22#include <linux/cache.h>
56b17425 23#include <linux/rbtree.h>
51f3d02b 24#include <linux/socket.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
1bd758eb 37#include <net/flow_dissector.h>
a60e3cc7 38#include <linux/splice.h>
72b31f72 39#include <linux/in6.h>
8b10cab6 40#include <linux/if_packet.h>
f70ea018 41#include <net/flow.h>
1da177e4 42
7a6ae71b
TH
43/* The interface for checksum offload between the stack and networking drivers
44 * is as follows...
45 *
46 * A. IP checksum related features
47 *
48 * Drivers advertise checksum offload capabilities in the features of a device.
49 * From the stack's point of view these are capabilities offered by the driver,
50 * a driver typically only advertises features that it is capable of offloading
51 * to its device.
52 *
53 * The checksum related features are:
54 *
55 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
56 * IP (one's complement) checksum for any combination
57 * of protocols or protocol layering. The checksum is
58 * computed and set in a packet per the CHECKSUM_PARTIAL
59 * interface (see below).
60 *
61 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
62 * TCP or UDP packets over IPv4. These are specifically
63 * unencapsulated packets of the form IPv4|TCP or
64 * IPv4|UDP where the Protocol field in the IPv4 header
65 * is TCP or UDP. The IPv4 header may contain IP options
66 * This feature cannot be set in features for a device
67 * with NETIF_F_HW_CSUM also set. This feature is being
68 * DEPRECATED (see below).
69 *
70 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
71 * TCP or UDP packets over IPv6. These are specifically
72 * unencapsulated packets of the form IPv6|TCP or
73 * IPv4|UDP where the Next Header field in the IPv6
74 * header is either TCP or UDP. IPv6 extension headers
75 * are not supported with this feature. This feature
76 * cannot be set in features for a device with
77 * NETIF_F_HW_CSUM also set. This feature is being
78 * DEPRECATED (see below).
79 *
80 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
81 * This flag is used only used to disable the RX checksum
82 * feature for a device. The stack will accept receive
83 * checksum indication in packets received on a device
84 * regardless of whether NETIF_F_RXCSUM is set.
85 *
86 * B. Checksumming of received packets by device. Indication of checksum
87 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
88 *
89 * CHECKSUM_NONE:
90 *
7a6ae71b 91 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
92 * The packet contains full (though not verified) checksum in packet but
93 * not in skb->csum. Thus, skb->csum is undefined in this case.
94 *
95 * CHECKSUM_UNNECESSARY:
96 *
97 * The hardware you're dealing with doesn't calculate the full checksum
98 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
99 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
100 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
101 * though. A driver or device must never modify the checksum field in the
102 * packet even if checksum is verified.
77cffe23
TH
103 *
104 * CHECKSUM_UNNECESSARY is applicable to following protocols:
105 * TCP: IPv6 and IPv4.
106 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
107 * zero UDP checksum for either IPv4 or IPv6, the networking stack
108 * may perform further validation in this case.
109 * GRE: only if the checksum is present in the header.
110 * SCTP: indicates the CRC in SCTP header has been validated.
111 *
112 * skb->csum_level indicates the number of consecutive checksums found in
113 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
114 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
115 * and a device is able to verify the checksums for UDP (possibly zero),
116 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
117 * two. If the device were only able to verify the UDP checksum and not
118 * GRE, either because it doesn't support GRE checksum of because GRE
119 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
120 * not considered in this case).
78ea85f1
DB
121 *
122 * CHECKSUM_COMPLETE:
123 *
124 * This is the most generic way. The device supplied checksum of the _whole_
125 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
126 * hardware doesn't need to parse L3/L4 headers to implement this.
127 *
128 * Note: Even if device supports only some protocols, but is able to produce
129 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
130 *
131 * CHECKSUM_PARTIAL:
132 *
6edec0e6
TH
133 * A checksum is set up to be offloaded to a device as described in the
134 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 135 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
136 * on the same host, or it may be set in the input path in GRO or remote
137 * checksum offload. For the purposes of checksum verification, the checksum
138 * referred to by skb->csum_start + skb->csum_offset and any preceding
139 * checksums in the packet are considered verified. Any checksums in the
140 * packet that are after the checksum being offloaded are not considered to
141 * be verified.
78ea85f1 142 *
7a6ae71b
TH
143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
145 *
146 * CHECKSUM_PARTIAL:
147 *
7a6ae71b 148 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 149 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
150 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
151 * csum_start and csum_offset values are valid values given the length and
152 * offset of the packet, however they should not attempt to validate that the
153 * checksum refers to a legitimate transport layer checksum-- it is the
154 * purview of the stack to validate that csum_start and csum_offset are set
155 * correctly.
156 *
157 * When the stack requests checksum offload for a packet, the driver MUST
158 * ensure that the checksum is set correctly. A driver can either offload the
159 * checksum calculation to the device, or call skb_checksum_help (in the case
160 * that the device does not support offload for a particular checksum).
161 *
162 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
164 * checksum offload capability. If a device has limited checksum capabilities
165 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
166 * described above) a helper function can be called to resolve
167 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
168 * function takes a spec argument that describes the protocol layer that is
169 * supported for checksum offload and can be called for each packet. If a
170 * packet does not match the specification for offload, skb_checksum_help
171 * is called to resolve the checksum.
78ea85f1 172 *
7a6ae71b 173 * CHECKSUM_NONE:
78ea85f1 174 *
7a6ae71b
TH
175 * The skb was already checksummed by the protocol, or a checksum is not
176 * required.
78ea85f1
DB
177 *
178 * CHECKSUM_UNNECESSARY:
179 *
7a6ae71b
TH
180 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
181 * output.
78ea85f1 182 *
7a6ae71b
TH
183 * CHECKSUM_COMPLETE:
184 * Not used in checksum output. If a driver observes a packet with this value
185 * set in skbuff, if should treat as CHECKSUM_NONE being set.
186 *
187 * D. Non-IP checksum (CRC) offloads
188 *
189 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
190 * offloading the SCTP CRC in a packet. To perform this offload the stack
191 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
192 * accordingly. Note the there is no indication in the skbuff that the
193 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
194 * both IP checksum offload and SCTP CRC offload must verify which offload
195 * is configured for a packet presumably by inspecting packet headers.
196 *
197 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
198 * offloading the FCOE CRC in a packet. To perform this offload the stack
199 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
200 * accordingly. Note the there is no indication in the skbuff that the
201 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
202 * both IP checksum offload and FCOE CRC offload must verify which offload
203 * is configured for a packet presumably by inspecting packet headers.
204 *
205 * E. Checksumming on output with GSO.
206 *
207 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
208 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
209 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
210 * part of the GSO operation is implied. If a checksum is being offloaded
211 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
212 * are set to refer to the outermost checksum being offload (two offloaded
213 * checksums are possible with UDP encapsulation).
78ea85f1
DB
214 */
215
60476372 216/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
217#define CHECKSUM_NONE 0
218#define CHECKSUM_UNNECESSARY 1
219#define CHECKSUM_COMPLETE 2
220#define CHECKSUM_PARTIAL 3
1da177e4 221
77cffe23
TH
222/* Maximum value in skb->csum_level */
223#define SKB_MAX_CSUM_LEVEL 3
224
0bec8c88 225#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 226#define SKB_WITH_OVERHEAD(X) \
deea84b0 227 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
228#define SKB_MAX_ORDER(X, ORDER) \
229 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
230#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
231#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
232
87fb4b7b
ED
233/* return minimum truesize of one skb containing X bytes of data */
234#define SKB_TRUESIZE(X) ((X) + \
235 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
236 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
237
1da177e4 238struct net_device;
716ea3a7 239struct scatterlist;
9c55e01c 240struct pipe_inode_info;
a8f820aa 241struct iov_iter;
fd11a83d 242struct napi_struct;
1da177e4 243
5f79e0f9 244#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
245struct nf_conntrack {
246 atomic_t use;
1da177e4 247};
5f79e0f9 248#endif
1da177e4 249
34666d46 250#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 251struct nf_bridge_info {
bf1ac5ca 252 atomic_t use;
3eaf4025
FW
253 enum {
254 BRNF_PROTO_UNCHANGED,
255 BRNF_PROTO_8021Q,
256 BRNF_PROTO_PPPOE
7fb48c5b 257 } orig_proto:8;
72b1e5e4
FW
258 u8 pkt_otherhost:1;
259 u8 in_prerouting:1;
260 u8 bridged_dnat:1;
411ffb4f 261 __u16 frag_max_size;
bf1ac5ca 262 struct net_device *physindev;
63cdbc06
FW
263
264 /* always valid & non-NULL from FORWARD on, for physdev match */
265 struct net_device *physoutdev;
7fb48c5b 266 union {
72b1e5e4 267 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
268 __be32 ipv4_daddr;
269 struct in6_addr ipv6_daddr;
72b1e5e4
FW
270
271 /* after prerouting + nat detected: store original source
272 * mac since neigh resolution overwrites it, only used while
273 * skb is out in neigh layer.
274 */
275 char neigh_header[8];
72b31f72 276 };
1da177e4
LT
277};
278#endif
279
1da177e4
LT
280struct sk_buff_head {
281 /* These two members must be first. */
282 struct sk_buff *next;
283 struct sk_buff *prev;
284
285 __u32 qlen;
286 spinlock_t lock;
287};
288
289struct sk_buff;
290
9d4dde52
IC
291/* To allow 64K frame to be packed as single skb without frag_list we
292 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
293 * buffers which do not start on a page boundary.
294 *
295 * Since GRO uses frags we allocate at least 16 regardless of page
296 * size.
a715dea3 297 */
9d4dde52 298#if (65536/PAGE_SIZE + 1) < 16
eec00954 299#define MAX_SKB_FRAGS 16UL
a715dea3 300#else
9d4dde52 301#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 302#endif
5f74f82e 303extern int sysctl_max_skb_frags;
1da177e4 304
3953c46c
MRL
305/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
306 * segment using its current segmentation instead.
307 */
308#define GSO_BY_FRAGS 0xFFFF
309
1da177e4
LT
310typedef struct skb_frag_struct skb_frag_t;
311
312struct skb_frag_struct {
a8605c60
IC
313 struct {
314 struct page *p;
315 } page;
cb4dfe56 316#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
317 __u32 page_offset;
318 __u32 size;
cb4dfe56
ED
319#else
320 __u16 page_offset;
321 __u16 size;
322#endif
1da177e4
LT
323};
324
9e903e08
ED
325static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326{
327 return frag->size;
328}
329
330static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
331{
332 frag->size = size;
333}
334
335static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
336{
337 frag->size += delta;
338}
339
340static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
341{
342 frag->size -= delta;
343}
344
ac45f602
PO
345#define HAVE_HW_TIME_STAMP
346
347/**
d3a21be8 348 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
349 * @hwtstamp: hardware time stamp transformed into duration
350 * since arbitrary point in time
ac45f602
PO
351 *
352 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 353 * skb->tstamp.
ac45f602
PO
354 *
355 * hwtstamps can only be compared against other hwtstamps from
356 * the same device.
357 *
358 * This structure is attached to packets as part of the
359 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
360 */
361struct skb_shared_hwtstamps {
362 ktime_t hwtstamp;
ac45f602
PO
363};
364
2244d07b
OH
365/* Definitions for tx_flags in struct skb_shared_info */
366enum {
367 /* generate hardware time stamp */
368 SKBTX_HW_TSTAMP = 1 << 0,
369
e7fd2885 370 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
371 SKBTX_SW_TSTAMP = 1 << 1,
372
373 /* device driver is going to provide hardware time stamp */
374 SKBTX_IN_PROGRESS = 1 << 2,
375
a6686f2f 376 /* device driver supports TX zero-copy buffers */
62b1a8ab 377 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
378
379 /* generate wifi status information (where possible) */
62b1a8ab 380 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
381
382 /* This indicates at least one fragment might be overwritten
383 * (as in vmsplice(), sendfile() ...)
384 * If we need to compute a TX checksum, we'll need to copy
385 * all frags to avoid possible bad checksum
386 */
387 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
388
389 /* generate software time stamp when entering packet scheduling */
390 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
391};
392
e1c8a607 393#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 394 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
395#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
396
a6686f2f
SM
397/*
398 * The callback notifies userspace to release buffers when skb DMA is done in
399 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
400 * The zerocopy_success argument is true if zero copy transmit occurred,
401 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
402 * The ctx field is used to track device context.
403 * The desc field is used to track userspace buffer index.
a6686f2f
SM
404 */
405struct ubuf_info {
e19d6763 406 void (*callback)(struct ubuf_info *, bool zerocopy_success);
ca8f4fb2 407 void *ctx;
a6686f2f 408 unsigned long desc;
ac45f602
PO
409};
410
1da177e4
LT
411/* This data is invariant across clones and lives at
412 * the end of the header data, ie. at skb->end.
413 */
414struct skb_shared_info {
9f42f126
IC
415 unsigned char nr_frags;
416 __u8 tx_flags;
7967168c
HX
417 unsigned short gso_size;
418 /* Warning: this field is not always filled in (UFO)! */
419 unsigned short gso_segs;
420 unsigned short gso_type;
1da177e4 421 struct sk_buff *frag_list;
ac45f602 422 struct skb_shared_hwtstamps hwtstamps;
09c2d251 423 u32 tskey;
9f42f126 424 __be32 ip6_frag_id;
ec7d2f2c
ED
425
426 /*
427 * Warning : all fields before dataref are cleared in __alloc_skb()
428 */
429 atomic_t dataref;
430
69e3c75f
JB
431 /* Intermediate layers must ensure that destructor_arg
432 * remains valid until skb destructor */
433 void * destructor_arg;
a6686f2f 434
fed66381
ED
435 /* must be last field, see pskb_expand_head() */
436 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
437};
438
439/* We divide dataref into two halves. The higher 16 bits hold references
440 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
441 * the entire skb->data. A clone of a headerless skb holds the length of
442 * the header in skb->hdr_len.
1da177e4
LT
443 *
444 * All users must obey the rule that the skb->data reference count must be
445 * greater than or equal to the payload reference count.
446 *
447 * Holding a reference to the payload part means that the user does not
448 * care about modifications to the header part of skb->data.
449 */
450#define SKB_DATAREF_SHIFT 16
451#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
452
d179cd12
DM
453
454enum {
c8753d55
VS
455 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
456 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
457 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
458};
459
7967168c
HX
460enum {
461 SKB_GSO_TCPV4 = 1 << 0,
f83ef8c0 462 SKB_GSO_UDP = 1 << 1,
576a30eb
HX
463
464 /* This indicates the skb is from an untrusted source. */
465 SKB_GSO_DODGY = 1 << 2,
b0da8537
MC
466
467 /* This indicates the tcp segment has CWR set. */
f83ef8c0
HX
468 SKB_GSO_TCP_ECN = 1 << 3,
469
cbc53e08 470 SKB_GSO_TCP_FIXEDID = 1 << 4,
01d5b2fc 471
cbc53e08 472 SKB_GSO_TCPV6 = 1 << 5,
68c33163 473
cbc53e08 474 SKB_GSO_FCOE = 1 << 6,
73136267 475
cbc53e08 476 SKB_GSO_GRE = 1 << 7,
0d89d203 477
cbc53e08 478 SKB_GSO_GRE_CSUM = 1 << 8,
cb32f511 479
7e13318d 480 SKB_GSO_IPXIP4 = 1 << 9,
61c1db7f 481
7e13318d 482 SKB_GSO_IPXIP6 = 1 << 10,
0f4f4ffa 483
cbc53e08 484 SKB_GSO_UDP_TUNNEL = 1 << 11,
4749c09c 485
cbc53e08
AD
486 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
487
802ab55a
AD
488 SKB_GSO_PARTIAL = 1 << 13,
489
490 SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
90017acc
MRL
491
492 SKB_GSO_SCTP = 1 << 15,
7967168c
HX
493};
494
2e07fa9c
ACM
495#if BITS_PER_LONG > 32
496#define NET_SKBUFF_DATA_USES_OFFSET 1
497#endif
498
499#ifdef NET_SKBUFF_DATA_USES_OFFSET
500typedef unsigned int sk_buff_data_t;
501#else
502typedef unsigned char *sk_buff_data_t;
503#endif
504
363ec392
ED
505/**
506 * struct skb_mstamp - multi resolution time stamps
507 * @stamp_us: timestamp in us resolution
508 * @stamp_jiffies: timestamp in jiffies
509 */
510struct skb_mstamp {
511 union {
512 u64 v64;
513 struct {
514 u32 stamp_us;
515 u32 stamp_jiffies;
516 };
517 };
518};
519
520/**
521 * skb_mstamp_get - get current timestamp
522 * @cl: place to store timestamps
523 */
524static inline void skb_mstamp_get(struct skb_mstamp *cl)
525{
526 u64 val = local_clock();
527
528 do_div(val, NSEC_PER_USEC);
529 cl->stamp_us = (u32)val;
530 cl->stamp_jiffies = (u32)jiffies;
531}
532
533/**
534 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
535 * @t1: pointer to newest sample
536 * @t0: pointer to oldest sample
537 */
538static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
539 const struct skb_mstamp *t0)
540{
541 s32 delta_us = t1->stamp_us - t0->stamp_us;
542 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
543
544 /* If delta_us is negative, this might be because interval is too big,
545 * or local_clock() drift is too big : fallback using jiffies.
546 */
547 if (delta_us <= 0 ||
548 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
549
550 delta_us = jiffies_to_usecs(delta_jiffies);
551
552 return delta_us;
553}
554
625a5e10
YC
555static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
556 const struct skb_mstamp *t0)
557{
558 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
559
560 if (!diff)
561 diff = t1->stamp_us - t0->stamp_us;
562 return diff > 0;
563}
363ec392 564
1da177e4
LT
565/**
566 * struct sk_buff - socket buffer
567 * @next: Next buffer in list
568 * @prev: Previous buffer in list
363ec392 569 * @tstamp: Time we arrived/left
56b17425 570 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 571 * @sk: Socket we are owned by
1da177e4 572 * @dev: Device we arrived on/are leaving by
d84e0bd7 573 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 574 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 575 * @sp: the security path, used for xfrm
1da177e4
LT
576 * @len: Length of actual data
577 * @data_len: Data length
578 * @mac_len: Length of link layer header
334a8132 579 * @hdr_len: writable header length of cloned skb
663ead3b
HX
580 * @csum: Checksum (must include start/offset pair)
581 * @csum_start: Offset from skb->head where checksumming should start
582 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 583 * @priority: Packet queueing priority
60ff7467 584 * @ignore_df: allow local fragmentation
1da177e4 585 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 586 * @ip_summed: Driver fed us an IP checksum
1da177e4 587 * @nohdr: Payload reference only, must not modify header
d84e0bd7 588 * @nfctinfo: Relationship of this skb to the connection
1da177e4 589 * @pkt_type: Packet class
c83c2486 590 * @fclone: skbuff clone status
c83c2486 591 * @ipvs_property: skbuff is owned by ipvs
31729363
RD
592 * @peeked: this packet has been seen already, so stats have been
593 * done for it, don't do them again
ba9dda3a 594 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
595 * @protocol: Packet protocol from driver
596 * @destructor: Destruct function
597 * @nfct: Associated connection, if any
1da177e4 598 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 599 * @skb_iif: ifindex of device we arrived on
1da177e4
LT
600 * @tc_index: Traffic control index
601 * @tc_verd: traffic control verdict
61b905da 602 * @hash: the packet hash
d84e0bd7 603 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 604 * @xmit_more: More SKBs are pending for this queue
553a5672 605 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 606 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 607 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 608 * ports.
a3b18ddb 609 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
610 * @wifi_acked_valid: wifi_acked was set
611 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 612 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
06021292 613 * @napi_id: id of the NAPI struct this skb came from
984bc16c 614 * @secmark: security marking
d84e0bd7 615 * @mark: Generic packet mark
86a9bad3 616 * @vlan_proto: vlan encapsulation protocol
6aa895b0 617 * @vlan_tci: vlan tag control information
0d89d203 618 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
619 * @inner_transport_header: Inner transport layer header (encapsulation)
620 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 621 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
622 * @transport_header: Transport layer header
623 * @network_header: Network layer header
624 * @mac_header: Link layer header
625 * @tail: Tail pointer
626 * @end: End pointer
627 * @head: Head of buffer
628 * @data: Data head pointer
629 * @truesize: Buffer size
630 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
631 */
632
633struct sk_buff {
363ec392 634 union {
56b17425
ED
635 struct {
636 /* These two members must be first. */
637 struct sk_buff *next;
638 struct sk_buff *prev;
639
640 union {
641 ktime_t tstamp;
642 struct skb_mstamp skb_mstamp;
643 };
644 };
645 struct rb_node rbnode; /* used in netem & tcp stack */
363ec392 646 };
da3f5cf1 647 struct sock *sk;
1da177e4 648 struct net_device *dev;
1da177e4 649
1da177e4
LT
650 /*
651 * This is the control buffer. It is free to use for every
652 * layer. Please put your private variables there. If you
653 * want to keep them across layers you have to do a skb_clone()
654 * first. This is owned by whoever has the skb queued ATM.
655 */
da3f5cf1 656 char cb[48] __aligned(8);
1da177e4 657
7fee226a 658 unsigned long _skb_refdst;
b1937227 659 void (*destructor)(struct sk_buff *skb);
da3f5cf1
FF
660#ifdef CONFIG_XFRM
661 struct sec_path *sp;
b1937227
ED
662#endif
663#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
664 struct nf_conntrack *nfct;
665#endif
85224844 666#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 667 struct nf_bridge_info *nf_bridge;
da3f5cf1 668#endif
1da177e4 669 unsigned int len,
334a8132
PM
670 data_len;
671 __u16 mac_len,
672 hdr_len;
b1937227
ED
673
674 /* Following fields are _not_ copied in __copy_skb_header()
675 * Note that queue_mapping is here mostly to fill a hole.
676 */
fe55f6d5 677 kmemcheck_bitfield_begin(flags1);
b1937227 678 __u16 queue_mapping;
36bbef52
DB
679
680/* if you move cloned around you also must adapt those constants */
681#ifdef __BIG_ENDIAN_BITFIELD
682#define CLONED_MASK (1 << 7)
683#else
684#define CLONED_MASK 1
685#endif
686#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
687
688 __u8 __cloned_offset[0];
b1937227 689 __u8 cloned:1,
6869c4d8 690 nohdr:1,
b84f4cc9 691 fclone:2,
a59322be 692 peeked:1,
b1937227 693 head_frag:1,
36bbef52
DB
694 xmit_more:1,
695 __unused:1; /* one bit hole */
fe55f6d5 696 kmemcheck_bitfield_end(flags1);
4031ae6e 697
b1937227
ED
698 /* fields enclosed in headers_start/headers_end are copied
699 * using a single memcpy() in __copy_skb_header()
700 */
ebcf34f3 701 /* private: */
b1937227 702 __u32 headers_start[0];
ebcf34f3 703 /* public: */
4031ae6e 704
233577a2
HFS
705/* if you move pkt_type around you also must adapt those constants */
706#ifdef __BIG_ENDIAN_BITFIELD
707#define PKT_TYPE_MAX (7 << 5)
708#else
709#define PKT_TYPE_MAX 7
1da177e4 710#endif
233577a2 711#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 712
233577a2 713 __u8 __pkt_type_offset[0];
b1937227 714 __u8 pkt_type:3;
c93bdd0e 715 __u8 pfmemalloc:1;
b1937227
ED
716 __u8 ignore_df:1;
717 __u8 nfctinfo:3;
718
719 __u8 nf_trace:1;
720 __u8 ip_summed:2;
3853b584 721 __u8 ooo_okay:1;
61b905da 722 __u8 l4_hash:1;
a3b18ddb 723 __u8 sw_hash:1;
6e3e939f
JB
724 __u8 wifi_acked_valid:1;
725 __u8 wifi_acked:1;
b1937227 726
3bdc0eba 727 __u8 no_fcs:1;
77cffe23 728 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 729 __u8 encapsulation:1;
7e2b10c1 730 __u8 encap_hdr_csum:1;
5d0c2b95 731 __u8 csum_valid:1;
7e3cead5 732 __u8 csum_complete_sw:1;
b1937227
ED
733 __u8 csum_level:2;
734 __u8 csum_bad:1;
fe55f6d5 735
b1937227
ED
736#ifdef CONFIG_IPV6_NDISC_NODETYPE
737 __u8 ndisc_nodetype:2;
738#endif
739 __u8 ipvs_property:1;
8bce6d7d 740 __u8 inner_protocol_type:1;
e585f236 741 __u8 remcsum_offload:1;
6bc506b4
IS
742#ifdef CONFIG_NET_SWITCHDEV
743 __u8 offload_fwd_mark:1;
744#endif
745 /* 2, 4 or 5 bit hole */
b1937227
ED
746
747#ifdef CONFIG_NET_SCHED
748 __u16 tc_index; /* traffic control index */
749#ifdef CONFIG_NET_CLS_ACT
750 __u16 tc_verd; /* traffic control verdict */
751#endif
752#endif
fe55f6d5 753
b1937227
ED
754 union {
755 __wsum csum;
756 struct {
757 __u16 csum_start;
758 __u16 csum_offset;
759 };
760 };
761 __u32 priority;
762 int skb_iif;
763 __u32 hash;
764 __be16 vlan_proto;
765 __u16 vlan_tci;
2bd82484
ED
766#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
767 union {
768 unsigned int napi_id;
769 unsigned int sender_cpu;
770 };
97fc2f08 771#endif
984bc16c 772#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 773 __u32 secmark;
0c4f691f 774#endif
0c4f691f 775
3b885787
NH
776 union {
777 __u32 mark;
16fad69c 778 __u32 reserved_tailroom;
3b885787 779 };
1da177e4 780
8bce6d7d
TH
781 union {
782 __be16 inner_protocol;
783 __u8 inner_ipproto;
784 };
785
1a37e412
SH
786 __u16 inner_transport_header;
787 __u16 inner_network_header;
788 __u16 inner_mac_header;
b1937227
ED
789
790 __be16 protocol;
1a37e412
SH
791 __u16 transport_header;
792 __u16 network_header;
793 __u16 mac_header;
b1937227 794
ebcf34f3 795 /* private: */
b1937227 796 __u32 headers_end[0];
ebcf34f3 797 /* public: */
b1937227 798
1da177e4 799 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 800 sk_buff_data_t tail;
4305b541 801 sk_buff_data_t end;
1da177e4 802 unsigned char *head,
4305b541 803 *data;
27a884dc
ACM
804 unsigned int truesize;
805 atomic_t users;
1da177e4
LT
806};
807
808#ifdef __KERNEL__
809/*
810 * Handling routines are only of interest to the kernel
811 */
812#include <linux/slab.h>
813
1da177e4 814
c93bdd0e
MG
815#define SKB_ALLOC_FCLONE 0x01
816#define SKB_ALLOC_RX 0x02
fd11a83d 817#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
818
819/* Returns true if the skb was allocated from PFMEMALLOC reserves */
820static inline bool skb_pfmemalloc(const struct sk_buff *skb)
821{
822 return unlikely(skb->pfmemalloc);
823}
824
7fee226a
ED
825/*
826 * skb might have a dst pointer attached, refcounted or not.
827 * _skb_refdst low order bit is set if refcount was _not_ taken
828 */
829#define SKB_DST_NOREF 1UL
830#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
831
832/**
833 * skb_dst - returns skb dst_entry
834 * @skb: buffer
835 *
836 * Returns skb dst_entry, regardless of reference taken or not.
837 */
adf30907
ED
838static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
839{
7fee226a
ED
840 /* If refdst was not refcounted, check we still are in a
841 * rcu_read_lock section
842 */
843 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
844 !rcu_read_lock_held() &&
845 !rcu_read_lock_bh_held());
846 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
847}
848
7fee226a
ED
849/**
850 * skb_dst_set - sets skb dst
851 * @skb: buffer
852 * @dst: dst entry
853 *
854 * Sets skb dst, assuming a reference was taken on dst and should
855 * be released by skb_dst_drop()
856 */
adf30907
ED
857static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
858{
7fee226a
ED
859 skb->_skb_refdst = (unsigned long)dst;
860}
861
932bc4d7
JA
862/**
863 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
864 * @skb: buffer
865 * @dst: dst entry
866 *
867 * Sets skb dst, assuming a reference was not taken on dst.
868 * If dst entry is cached, we do not take reference and dst_release
869 * will be avoided by refdst_drop. If dst entry is not cached, we take
870 * reference, so that last dst_release can destroy the dst immediately.
871 */
872static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
873{
dbfc4fb7
HFS
874 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
875 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 876}
7fee226a
ED
877
878/**
25985edc 879 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
880 * @skb: buffer
881 */
882static inline bool skb_dst_is_noref(const struct sk_buff *skb)
883{
884 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
885}
886
511c3f92
ED
887static inline struct rtable *skb_rtable(const struct sk_buff *skb)
888{
adf30907 889 return (struct rtable *)skb_dst(skb);
511c3f92
ED
890}
891
8b10cab6
JHS
892/* For mangling skb->pkt_type from user space side from applications
893 * such as nft, tc, etc, we only allow a conservative subset of
894 * possible pkt_types to be set.
895*/
896static inline bool skb_pkt_type_ok(u32 ptype)
897{
898 return ptype <= PACKET_OTHERHOST;
899}
900
7965bd4d
JP
901void kfree_skb(struct sk_buff *skb);
902void kfree_skb_list(struct sk_buff *segs);
903void skb_tx_error(struct sk_buff *skb);
904void consume_skb(struct sk_buff *skb);
905void __kfree_skb(struct sk_buff *skb);
d7e8883c 906extern struct kmem_cache *skbuff_head_cache;
bad43ca8 907
7965bd4d
JP
908void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
909bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
910 bool *fragstolen, int *delta_truesize);
bad43ca8 911
7965bd4d
JP
912struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
913 int node);
2ea2f62c 914struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 915struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 916static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 917 gfp_t priority)
d179cd12 918{
564824b0 919 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
920}
921
2e4e4410
ED
922struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
923 unsigned long data_len,
924 int max_page_order,
925 int *errcode,
926 gfp_t gfp_mask);
927
d0bf4a9e
ED
928/* Layout of fast clones : [skb1][skb2][fclone_ref] */
929struct sk_buff_fclones {
930 struct sk_buff skb1;
931
932 struct sk_buff skb2;
933
934 atomic_t fclone_ref;
935};
936
937/**
938 * skb_fclone_busy - check if fclone is busy
293de7de 939 * @sk: socket
d0bf4a9e
ED
940 * @skb: buffer
941 *
bda13fed 942 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
943 * Some drivers call skb_orphan() in their ndo_start_xmit(),
944 * so we also check that this didnt happen.
d0bf4a9e 945 */
39bb5e62
ED
946static inline bool skb_fclone_busy(const struct sock *sk,
947 const struct sk_buff *skb)
d0bf4a9e
ED
948{
949 const struct sk_buff_fclones *fclones;
950
951 fclones = container_of(skb, struct sk_buff_fclones, skb1);
952
953 return skb->fclone == SKB_FCLONE_ORIG &&
6ffe75eb 954 atomic_read(&fclones->fclone_ref) > 1 &&
39bb5e62 955 fclones->skb2.sk == sk;
d0bf4a9e
ED
956}
957
d179cd12 958static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 959 gfp_t priority)
d179cd12 960{
c93bdd0e 961 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
962}
963
7965bd4d 964struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
0ebd0ac5
PM
965static inline struct sk_buff *alloc_skb_head(gfp_t priority)
966{
967 return __alloc_skb_head(priority, -1);
968}
969
7965bd4d
JP
970struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
971int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
972struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
973struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
974struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
975 gfp_t gfp_mask, bool fclone);
976static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
977 gfp_t gfp_mask)
978{
979 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
980}
7965bd4d
JP
981
982int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
983struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
984 unsigned int headroom);
985struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
986 int newtailroom, gfp_t priority);
25a91d8d
FD
987int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
988 int offset, int len);
7965bd4d
JP
989int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
990 int len);
991int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
992int skb_pad(struct sk_buff *skb, int pad);
ead2ceb0 993#define dev_kfree_skb(a) consume_skb(a)
1da177e4 994
7965bd4d
JP
995int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
996 int getfrag(void *from, char *to, int offset,
997 int len, int odd, struct sk_buff *skb),
998 void *from, int length);
e89e9cf5 999
be12a1fe
HFS
1000int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1001 int offset, size_t size);
1002
d94d9fee 1003struct skb_seq_state {
677e90ed
TG
1004 __u32 lower_offset;
1005 __u32 upper_offset;
1006 __u32 frag_idx;
1007 __u32 stepped_offset;
1008 struct sk_buff *root_skb;
1009 struct sk_buff *cur_skb;
1010 __u8 *frag_data;
1011};
1012
7965bd4d
JP
1013void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1014 unsigned int to, struct skb_seq_state *st);
1015unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1016 struct skb_seq_state *st);
1017void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1018
7965bd4d 1019unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1020 unsigned int to, struct ts_config *config);
3fc7e8a6 1021
09323cc4
TH
1022/*
1023 * Packet hash types specify the type of hash in skb_set_hash.
1024 *
1025 * Hash types refer to the protocol layer addresses which are used to
1026 * construct a packet's hash. The hashes are used to differentiate or identify
1027 * flows of the protocol layer for the hash type. Hash types are either
1028 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1029 *
1030 * Properties of hashes:
1031 *
1032 * 1) Two packets in different flows have different hash values
1033 * 2) Two packets in the same flow should have the same hash value
1034 *
1035 * A hash at a higher layer is considered to be more specific. A driver should
1036 * set the most specific hash possible.
1037 *
1038 * A driver cannot indicate a more specific hash than the layer at which a hash
1039 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1040 *
1041 * A driver may indicate a hash level which is less specific than the
1042 * actual layer the hash was computed on. For instance, a hash computed
1043 * at L4 may be considered an L3 hash. This should only be done if the
1044 * driver can't unambiguously determine that the HW computed the hash at
1045 * the higher layer. Note that the "should" in the second property above
1046 * permits this.
1047 */
1048enum pkt_hash_types {
1049 PKT_HASH_TYPE_NONE, /* Undefined type */
1050 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1051 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1052 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1053};
1054
bcc83839 1055static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1056{
bcc83839 1057 skb->hash = 0;
a3b18ddb 1058 skb->sw_hash = 0;
bcc83839
TH
1059 skb->l4_hash = 0;
1060}
1061
1062static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1063{
1064 if (!skb->l4_hash)
1065 skb_clear_hash(skb);
1066}
1067
1068static inline void
1069__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1070{
1071 skb->l4_hash = is_l4;
1072 skb->sw_hash = is_sw;
61b905da 1073 skb->hash = hash;
09323cc4
TH
1074}
1075
bcc83839
TH
1076static inline void
1077skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1078{
1079 /* Used by drivers to set hash from HW */
1080 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1081}
1082
1083static inline void
1084__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1085{
1086 __skb_set_hash(skb, hash, true, is_l4);
1087}
1088
e5276937 1089void __skb_get_hash(struct sk_buff *skb);
b917783c 1090u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1091u32 skb_get_poff(const struct sk_buff *skb);
1092u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1093 const struct flow_keys *keys, int hlen);
1094__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1095 void *data, int hlen_proto);
1096
1097static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1098 int thoff, u8 ip_proto)
1099{
1100 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1101}
1102
1103void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1104 const struct flow_dissector_key *key,
1105 unsigned int key_count);
1106
1107bool __skb_flow_dissect(const struct sk_buff *skb,
1108 struct flow_dissector *flow_dissector,
1109 void *target_container,
cd79a238
TH
1110 void *data, __be16 proto, int nhoff, int hlen,
1111 unsigned int flags);
e5276937
TH
1112
1113static inline bool skb_flow_dissect(const struct sk_buff *skb,
1114 struct flow_dissector *flow_dissector,
cd79a238 1115 void *target_container, unsigned int flags)
e5276937
TH
1116{
1117 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1118 NULL, 0, 0, 0, flags);
e5276937
TH
1119}
1120
1121static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1122 struct flow_keys *flow,
1123 unsigned int flags)
e5276937
TH
1124{
1125 memset(flow, 0, sizeof(*flow));
1126 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1127 NULL, 0, 0, 0, flags);
e5276937
TH
1128}
1129
1130static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1131 void *data, __be16 proto,
cd79a238
TH
1132 int nhoff, int hlen,
1133 unsigned int flags)
e5276937
TH
1134{
1135 memset(flow, 0, sizeof(*flow));
1136 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
cd79a238 1137 data, proto, nhoff, hlen, flags);
e5276937
TH
1138}
1139
3958afa1 1140static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1141{
a3b18ddb 1142 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1143 __skb_get_hash(skb);
bfb564e7 1144
61b905da 1145 return skb->hash;
bfb564e7
KK
1146}
1147
20a17bf6 1148__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
f70ea018 1149
20a17bf6 1150static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1151{
c6cc1ca7
TH
1152 if (!skb->l4_hash && !skb->sw_hash) {
1153 struct flow_keys keys;
de4c1f8b 1154 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1155
de4c1f8b 1156 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1157 }
f70ea018
TH
1158
1159 return skb->hash;
1160}
1161
20a17bf6 1162__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
f70ea018 1163
20a17bf6 1164static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
f70ea018 1165{
c6cc1ca7
TH
1166 if (!skb->l4_hash && !skb->sw_hash) {
1167 struct flow_keys keys;
de4c1f8b 1168 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
c6cc1ca7 1169
de4c1f8b 1170 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1171 }
f70ea018
TH
1172
1173 return skb->hash;
1174}
1175
50fb7992
TH
1176__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1177
57bdf7f4
TH
1178static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1179{
61b905da 1180 return skb->hash;
57bdf7f4
TH
1181}
1182
3df7a74e
TH
1183static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1184{
61b905da 1185 to->hash = from->hash;
a3b18ddb 1186 to->sw_hash = from->sw_hash;
61b905da 1187 to->l4_hash = from->l4_hash;
3df7a74e
TH
1188};
1189
4305b541
ACM
1190#ifdef NET_SKBUFF_DATA_USES_OFFSET
1191static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1192{
1193 return skb->head + skb->end;
1194}
ec47ea82
AD
1195
1196static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1197{
1198 return skb->end;
1199}
4305b541
ACM
1200#else
1201static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1202{
1203 return skb->end;
1204}
ec47ea82
AD
1205
1206static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1207{
1208 return skb->end - skb->head;
1209}
4305b541
ACM
1210#endif
1211
1da177e4 1212/* Internal */
4305b541 1213#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1214
ac45f602
PO
1215static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1216{
1217 return &skb_shinfo(skb)->hwtstamps;
1218}
1219
1da177e4
LT
1220/**
1221 * skb_queue_empty - check if a queue is empty
1222 * @list: queue head
1223 *
1224 * Returns true if the queue is empty, false otherwise.
1225 */
1226static inline int skb_queue_empty(const struct sk_buff_head *list)
1227{
fd44b93c 1228 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1229}
1230
fc7ebb21
DM
1231/**
1232 * skb_queue_is_last - check if skb is the last entry in the queue
1233 * @list: queue head
1234 * @skb: buffer
1235 *
1236 * Returns true if @skb is the last buffer on the list.
1237 */
1238static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1239 const struct sk_buff *skb)
1240{
fd44b93c 1241 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1242}
1243
832d11c5
IJ
1244/**
1245 * skb_queue_is_first - check if skb is the first entry in the queue
1246 * @list: queue head
1247 * @skb: buffer
1248 *
1249 * Returns true if @skb is the first buffer on the list.
1250 */
1251static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1252 const struct sk_buff *skb)
1253{
fd44b93c 1254 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1255}
1256
249c8b42
DM
1257/**
1258 * skb_queue_next - return the next packet in the queue
1259 * @list: queue head
1260 * @skb: current buffer
1261 *
1262 * Return the next packet in @list after @skb. It is only valid to
1263 * call this if skb_queue_is_last() evaluates to false.
1264 */
1265static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1266 const struct sk_buff *skb)
1267{
1268 /* This BUG_ON may seem severe, but if we just return then we
1269 * are going to dereference garbage.
1270 */
1271 BUG_ON(skb_queue_is_last(list, skb));
1272 return skb->next;
1273}
1274
832d11c5
IJ
1275/**
1276 * skb_queue_prev - return the prev packet in the queue
1277 * @list: queue head
1278 * @skb: current buffer
1279 *
1280 * Return the prev packet in @list before @skb. It is only valid to
1281 * call this if skb_queue_is_first() evaluates to false.
1282 */
1283static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1284 const struct sk_buff *skb)
1285{
1286 /* This BUG_ON may seem severe, but if we just return then we
1287 * are going to dereference garbage.
1288 */
1289 BUG_ON(skb_queue_is_first(list, skb));
1290 return skb->prev;
1291}
1292
1da177e4
LT
1293/**
1294 * skb_get - reference buffer
1295 * @skb: buffer to reference
1296 *
1297 * Makes another reference to a socket buffer and returns a pointer
1298 * to the buffer.
1299 */
1300static inline struct sk_buff *skb_get(struct sk_buff *skb)
1301{
1302 atomic_inc(&skb->users);
1303 return skb;
1304}
1305
1306/*
1307 * If users == 1, we are the only owner and are can avoid redundant
1308 * atomic change.
1309 */
1310
1da177e4
LT
1311/**
1312 * skb_cloned - is the buffer a clone
1313 * @skb: buffer to check
1314 *
1315 * Returns true if the buffer was generated with skb_clone() and is
1316 * one of multiple shared copies of the buffer. Cloned buffers are
1317 * shared data so must not be written to under normal circumstances.
1318 */
1319static inline int skb_cloned(const struct sk_buff *skb)
1320{
1321 return skb->cloned &&
1322 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1323}
1324
14bbd6a5
PS
1325static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1326{
d0164adc 1327 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1328
1329 if (skb_cloned(skb))
1330 return pskb_expand_head(skb, 0, 0, pri);
1331
1332 return 0;
1333}
1334
1da177e4
LT
1335/**
1336 * skb_header_cloned - is the header a clone
1337 * @skb: buffer to check
1338 *
1339 * Returns true if modifying the header part of the buffer requires
1340 * the data to be copied.
1341 */
1342static inline int skb_header_cloned(const struct sk_buff *skb)
1343{
1344 int dataref;
1345
1346 if (!skb->cloned)
1347 return 0;
1348
1349 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1350 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1351 return dataref != 1;
1352}
1353
9580bf2e
ED
1354static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1355{
1356 might_sleep_if(gfpflags_allow_blocking(pri));
1357
1358 if (skb_header_cloned(skb))
1359 return pskb_expand_head(skb, 0, 0, pri);
1360
1361 return 0;
1362}
1363
1da177e4
LT
1364/**
1365 * skb_header_release - release reference to header
1366 * @skb: buffer to operate on
1367 *
1368 * Drop a reference to the header part of the buffer. This is done
1369 * by acquiring a payload reference. You must not read from the header
1370 * part of skb->data after this.
f4a775d1 1371 * Note : Check if you can use __skb_header_release() instead.
1da177e4
LT
1372 */
1373static inline void skb_header_release(struct sk_buff *skb)
1374{
1375 BUG_ON(skb->nohdr);
1376 skb->nohdr = 1;
1377 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1378}
1379
f4a775d1
ED
1380/**
1381 * __skb_header_release - release reference to header
1382 * @skb: buffer to operate on
1383 *
1384 * Variant of skb_header_release() assuming skb is private to caller.
1385 * We can avoid one atomic operation.
1386 */
1387static inline void __skb_header_release(struct sk_buff *skb)
1388{
1389 skb->nohdr = 1;
1390 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1391}
1392
1393
1da177e4
LT
1394/**
1395 * skb_shared - is the buffer shared
1396 * @skb: buffer to check
1397 *
1398 * Returns true if more than one person has a reference to this
1399 * buffer.
1400 */
1401static inline int skb_shared(const struct sk_buff *skb)
1402{
1403 return atomic_read(&skb->users) != 1;
1404}
1405
1406/**
1407 * skb_share_check - check if buffer is shared and if so clone it
1408 * @skb: buffer to check
1409 * @pri: priority for memory allocation
1410 *
1411 * If the buffer is shared the buffer is cloned and the old copy
1412 * drops a reference. A new clone with a single reference is returned.
1413 * If the buffer is not shared the original buffer is returned. When
1414 * being called from interrupt status or with spinlocks held pri must
1415 * be GFP_ATOMIC.
1416 *
1417 * NULL is returned on a memory allocation failure.
1418 */
47061bc4 1419static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1420{
d0164adc 1421 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1422 if (skb_shared(skb)) {
1423 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1424
1425 if (likely(nskb))
1426 consume_skb(skb);
1427 else
1428 kfree_skb(skb);
1da177e4
LT
1429 skb = nskb;
1430 }
1431 return skb;
1432}
1433
1434/*
1435 * Copy shared buffers into a new sk_buff. We effectively do COW on
1436 * packets to handle cases where we have a local reader and forward
1437 * and a couple of other messy ones. The normal one is tcpdumping
1438 * a packet thats being forwarded.
1439 */
1440
1441/**
1442 * skb_unshare - make a copy of a shared buffer
1443 * @skb: buffer to check
1444 * @pri: priority for memory allocation
1445 *
1446 * If the socket buffer is a clone then this function creates a new
1447 * copy of the data, drops a reference count on the old copy and returns
1448 * the new copy with the reference count at 1. If the buffer is not a clone
1449 * the original buffer is returned. When called with a spinlock held or
1450 * from interrupt state @pri must be %GFP_ATOMIC
1451 *
1452 * %NULL is returned on a memory allocation failure.
1453 */
e2bf521d 1454static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1455 gfp_t pri)
1da177e4 1456{
d0164adc 1457 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1458 if (skb_cloned(skb)) {
1459 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1460
1461 /* Free our shared copy */
1462 if (likely(nskb))
1463 consume_skb(skb);
1464 else
1465 kfree_skb(skb);
1da177e4
LT
1466 skb = nskb;
1467 }
1468 return skb;
1469}
1470
1471/**
1a5778aa 1472 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1473 * @list_: list to peek at
1474 *
1475 * Peek an &sk_buff. Unlike most other operations you _MUST_
1476 * be careful with this one. A peek leaves the buffer on the
1477 * list and someone else may run off with it. You must hold
1478 * the appropriate locks or have a private queue to do this.
1479 *
1480 * Returns %NULL for an empty list or a pointer to the head element.
1481 * The reference count is not incremented and the reference is therefore
1482 * volatile. Use with caution.
1483 */
05bdd2f1 1484static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1485{
18d07000
ED
1486 struct sk_buff *skb = list_->next;
1487
1488 if (skb == (struct sk_buff *)list_)
1489 skb = NULL;
1490 return skb;
1da177e4
LT
1491}
1492
da5ef6e5
PE
1493/**
1494 * skb_peek_next - peek skb following the given one from a queue
1495 * @skb: skb to start from
1496 * @list_: list to peek at
1497 *
1498 * Returns %NULL when the end of the list is met or a pointer to the
1499 * next element. The reference count is not incremented and the
1500 * reference is therefore volatile. Use with caution.
1501 */
1502static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1503 const struct sk_buff_head *list_)
1504{
1505 struct sk_buff *next = skb->next;
18d07000 1506
da5ef6e5
PE
1507 if (next == (struct sk_buff *)list_)
1508 next = NULL;
1509 return next;
1510}
1511
1da177e4 1512/**
1a5778aa 1513 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1514 * @list_: list to peek at
1515 *
1516 * Peek an &sk_buff. Unlike most other operations you _MUST_
1517 * be careful with this one. A peek leaves the buffer on the
1518 * list and someone else may run off with it. You must hold
1519 * the appropriate locks or have a private queue to do this.
1520 *
1521 * Returns %NULL for an empty list or a pointer to the tail element.
1522 * The reference count is not incremented and the reference is therefore
1523 * volatile. Use with caution.
1524 */
05bdd2f1 1525static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1526{
18d07000
ED
1527 struct sk_buff *skb = list_->prev;
1528
1529 if (skb == (struct sk_buff *)list_)
1530 skb = NULL;
1531 return skb;
1532
1da177e4
LT
1533}
1534
1535/**
1536 * skb_queue_len - get queue length
1537 * @list_: list to measure
1538 *
1539 * Return the length of an &sk_buff queue.
1540 */
1541static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1542{
1543 return list_->qlen;
1544}
1545
67fed459
DM
1546/**
1547 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1548 * @list: queue to initialize
1549 *
1550 * This initializes only the list and queue length aspects of
1551 * an sk_buff_head object. This allows to initialize the list
1552 * aspects of an sk_buff_head without reinitializing things like
1553 * the spinlock. It can also be used for on-stack sk_buff_head
1554 * objects where the spinlock is known to not be used.
1555 */
1556static inline void __skb_queue_head_init(struct sk_buff_head *list)
1557{
1558 list->prev = list->next = (struct sk_buff *)list;
1559 list->qlen = 0;
1560}
1561
76f10ad0
AV
1562/*
1563 * This function creates a split out lock class for each invocation;
1564 * this is needed for now since a whole lot of users of the skb-queue
1565 * infrastructure in drivers have different locking usage (in hardirq)
1566 * than the networking core (in softirq only). In the long run either the
1567 * network layer or drivers should need annotation to consolidate the
1568 * main types of usage into 3 classes.
1569 */
1da177e4
LT
1570static inline void skb_queue_head_init(struct sk_buff_head *list)
1571{
1572 spin_lock_init(&list->lock);
67fed459 1573 __skb_queue_head_init(list);
1da177e4
LT
1574}
1575
c2ecba71
PE
1576static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1577 struct lock_class_key *class)
1578{
1579 skb_queue_head_init(list);
1580 lockdep_set_class(&list->lock, class);
1581}
1582
1da177e4 1583/*
bf299275 1584 * Insert an sk_buff on a list.
1da177e4
LT
1585 *
1586 * The "__skb_xxxx()" functions are the non-atomic ones that
1587 * can only be called with interrupts disabled.
1588 */
7965bd4d
JP
1589void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1590 struct sk_buff_head *list);
bf299275
GR
1591static inline void __skb_insert(struct sk_buff *newsk,
1592 struct sk_buff *prev, struct sk_buff *next,
1593 struct sk_buff_head *list)
1594{
1595 newsk->next = next;
1596 newsk->prev = prev;
1597 next->prev = prev->next = newsk;
1598 list->qlen++;
1599}
1da177e4 1600
67fed459
DM
1601static inline void __skb_queue_splice(const struct sk_buff_head *list,
1602 struct sk_buff *prev,
1603 struct sk_buff *next)
1604{
1605 struct sk_buff *first = list->next;
1606 struct sk_buff *last = list->prev;
1607
1608 first->prev = prev;
1609 prev->next = first;
1610
1611 last->next = next;
1612 next->prev = last;
1613}
1614
1615/**
1616 * skb_queue_splice - join two skb lists, this is designed for stacks
1617 * @list: the new list to add
1618 * @head: the place to add it in the first list
1619 */
1620static inline void skb_queue_splice(const struct sk_buff_head *list,
1621 struct sk_buff_head *head)
1622{
1623 if (!skb_queue_empty(list)) {
1624 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1625 head->qlen += list->qlen;
67fed459
DM
1626 }
1627}
1628
1629/**
d9619496 1630 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1631 * @list: the new list to add
1632 * @head: the place to add it in the first list
1633 *
1634 * The list at @list is reinitialised
1635 */
1636static inline void skb_queue_splice_init(struct sk_buff_head *list,
1637 struct sk_buff_head *head)
1638{
1639 if (!skb_queue_empty(list)) {
1640 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1641 head->qlen += list->qlen;
67fed459
DM
1642 __skb_queue_head_init(list);
1643 }
1644}
1645
1646/**
1647 * skb_queue_splice_tail - join two skb lists, each list being a queue
1648 * @list: the new list to add
1649 * @head: the place to add it in the first list
1650 */
1651static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1652 struct sk_buff_head *head)
1653{
1654 if (!skb_queue_empty(list)) {
1655 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1656 head->qlen += list->qlen;
67fed459
DM
1657 }
1658}
1659
1660/**
d9619496 1661 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1662 * @list: the new list to add
1663 * @head: the place to add it in the first list
1664 *
1665 * Each of the lists is a queue.
1666 * The list at @list is reinitialised
1667 */
1668static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1669 struct sk_buff_head *head)
1670{
1671 if (!skb_queue_empty(list)) {
1672 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1673 head->qlen += list->qlen;
67fed459
DM
1674 __skb_queue_head_init(list);
1675 }
1676}
1677
1da177e4 1678/**
300ce174 1679 * __skb_queue_after - queue a buffer at the list head
1da177e4 1680 * @list: list to use
300ce174 1681 * @prev: place after this buffer
1da177e4
LT
1682 * @newsk: buffer to queue
1683 *
300ce174 1684 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1685 * and you must therefore hold required locks before calling it.
1686 *
1687 * A buffer cannot be placed on two lists at the same time.
1688 */
300ce174
SH
1689static inline void __skb_queue_after(struct sk_buff_head *list,
1690 struct sk_buff *prev,
1691 struct sk_buff *newsk)
1da177e4 1692{
bf299275 1693 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1694}
1695
7965bd4d
JP
1696void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1697 struct sk_buff_head *list);
7de6c033 1698
f5572855
GR
1699static inline void __skb_queue_before(struct sk_buff_head *list,
1700 struct sk_buff *next,
1701 struct sk_buff *newsk)
1702{
1703 __skb_insert(newsk, next->prev, next, list);
1704}
1705
300ce174
SH
1706/**
1707 * __skb_queue_head - queue a buffer at the list head
1708 * @list: list to use
1709 * @newsk: buffer to queue
1710 *
1711 * Queue a buffer at the start of a list. This function takes no locks
1712 * and you must therefore hold required locks before calling it.
1713 *
1714 * A buffer cannot be placed on two lists at the same time.
1715 */
7965bd4d 1716void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1717static inline void __skb_queue_head(struct sk_buff_head *list,
1718 struct sk_buff *newsk)
1719{
1720 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1721}
1722
1da177e4
LT
1723/**
1724 * __skb_queue_tail - queue a buffer at the list tail
1725 * @list: list to use
1726 * @newsk: buffer to queue
1727 *
1728 * Queue a buffer at the end of a list. This function takes no locks
1729 * and you must therefore hold required locks before calling it.
1730 *
1731 * A buffer cannot be placed on two lists at the same time.
1732 */
7965bd4d 1733void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1734static inline void __skb_queue_tail(struct sk_buff_head *list,
1735 struct sk_buff *newsk)
1736{
f5572855 1737 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1738}
1739
1da177e4
LT
1740/*
1741 * remove sk_buff from list. _Must_ be called atomically, and with
1742 * the list known..
1743 */
7965bd4d 1744void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1745static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1746{
1747 struct sk_buff *next, *prev;
1748
1749 list->qlen--;
1750 next = skb->next;
1751 prev = skb->prev;
1752 skb->next = skb->prev = NULL;
1da177e4
LT
1753 next->prev = prev;
1754 prev->next = next;
1755}
1756
f525c06d
GR
1757/**
1758 * __skb_dequeue - remove from the head of the queue
1759 * @list: list to dequeue from
1760 *
1761 * Remove the head of the list. This function does not take any locks
1762 * so must be used with appropriate locks held only. The head item is
1763 * returned or %NULL if the list is empty.
1764 */
7965bd4d 1765struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1766static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1767{
1768 struct sk_buff *skb = skb_peek(list);
1769 if (skb)
1770 __skb_unlink(skb, list);
1771 return skb;
1772}
1da177e4
LT
1773
1774/**
1775 * __skb_dequeue_tail - remove from the tail of the queue
1776 * @list: list to dequeue from
1777 *
1778 * Remove the tail of the list. This function does not take any locks
1779 * so must be used with appropriate locks held only. The tail item is
1780 * returned or %NULL if the list is empty.
1781 */
7965bd4d 1782struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1783static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1784{
1785 struct sk_buff *skb = skb_peek_tail(list);
1786 if (skb)
1787 __skb_unlink(skb, list);
1788 return skb;
1789}
1790
1791
bdcc0924 1792static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1793{
1794 return skb->data_len;
1795}
1796
1797static inline unsigned int skb_headlen(const struct sk_buff *skb)
1798{
1799 return skb->len - skb->data_len;
1800}
1801
1802static inline int skb_pagelen(const struct sk_buff *skb)
1803{
1804 int i, len = 0;
1805
1806 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
9e903e08 1807 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1da177e4
LT
1808 return len + skb_headlen(skb);
1809}
1810
131ea667
IC
1811/**
1812 * __skb_fill_page_desc - initialise a paged fragment in an skb
1813 * @skb: buffer containing fragment to be initialised
1814 * @i: paged fragment index to initialise
1815 * @page: the page to use for this fragment
1816 * @off: the offset to the data with @page
1817 * @size: the length of the data
1818 *
1819 * Initialises the @i'th fragment of @skb to point to &size bytes at
1820 * offset @off within @page.
1821 *
1822 * Does not take any additional reference on the fragment.
1823 */
1824static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1825 struct page *page, int off, int size)
1da177e4
LT
1826{
1827 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1828
c48a11c7 1829 /*
2f064f34
MH
1830 * Propagate page pfmemalloc to the skb if we can. The problem is
1831 * that not all callers have unique ownership of the page but rely
1832 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1833 */
a8605c60 1834 frag->page.p = page;
1da177e4 1835 frag->page_offset = off;
9e903e08 1836 skb_frag_size_set(frag, size);
cca7af38
PE
1837
1838 page = compound_head(page);
2f064f34 1839 if (page_is_pfmemalloc(page))
cca7af38 1840 skb->pfmemalloc = true;
131ea667
IC
1841}
1842
1843/**
1844 * skb_fill_page_desc - initialise a paged fragment in an skb
1845 * @skb: buffer containing fragment to be initialised
1846 * @i: paged fragment index to initialise
1847 * @page: the page to use for this fragment
1848 * @off: the offset to the data with @page
1849 * @size: the length of the data
1850 *
1851 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1852 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1853 * addition updates @skb such that @i is the last fragment.
1854 *
1855 * Does not take any additional reference on the fragment.
1856 */
1857static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1858 struct page *page, int off, int size)
1859{
1860 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1861 skb_shinfo(skb)->nr_frags = i + 1;
1862}
1863
7965bd4d
JP
1864void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1865 int size, unsigned int truesize);
654bed16 1866
f8e617e1
JW
1867void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1868 unsigned int truesize);
1869
1da177e4 1870#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1871#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1872#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1873
27a884dc
ACM
1874#ifdef NET_SKBUFF_DATA_USES_OFFSET
1875static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1876{
1877 return skb->head + skb->tail;
1878}
1879
1880static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1881{
1882 skb->tail = skb->data - skb->head;
1883}
1884
1885static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1886{
1887 skb_reset_tail_pointer(skb);
1888 skb->tail += offset;
1889}
7cc46190 1890
27a884dc
ACM
1891#else /* NET_SKBUFF_DATA_USES_OFFSET */
1892static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1893{
1894 return skb->tail;
1895}
1896
1897static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1898{
1899 skb->tail = skb->data;
1900}
1901
1902static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1903{
1904 skb->tail = skb->data + offset;
1905}
4305b541 1906
27a884dc
ACM
1907#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1908
1da177e4
LT
1909/*
1910 * Add data to an sk_buff
1911 */
0c7ddf36 1912unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
7965bd4d 1913unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1914static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1915{
27a884dc 1916 unsigned char *tmp = skb_tail_pointer(skb);
1da177e4
LT
1917 SKB_LINEAR_ASSERT(skb);
1918 skb->tail += len;
1919 skb->len += len;
1920 return tmp;
1921}
1922
7965bd4d 1923unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1924static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1925{
1926 skb->data -= len;
1927 skb->len += len;
1928 return skb->data;
1929}
1930
7965bd4d 1931unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1932static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1933{
1934 skb->len -= len;
1935 BUG_ON(skb->len < skb->data_len);
1936 return skb->data += len;
1937}
1938
47d29646
DM
1939static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1940{
1941 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1942}
1943
7965bd4d 1944unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4
LT
1945
1946static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1947{
1948 if (len > skb_headlen(skb) &&
987c402a 1949 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
1950 return NULL;
1951 skb->len -= len;
1952 return skb->data += len;
1953}
1954
1955static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1956{
1957 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1958}
1959
1960static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1961{
1962 if (likely(len <= skb_headlen(skb)))
1963 return 1;
1964 if (unlikely(len > skb->len))
1965 return 0;
987c402a 1966 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
1967}
1968
1969/**
1970 * skb_headroom - bytes at buffer head
1971 * @skb: buffer to check
1972 *
1973 * Return the number of bytes of free space at the head of an &sk_buff.
1974 */
c2636b4d 1975static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
1976{
1977 return skb->data - skb->head;
1978}
1979
1980/**
1981 * skb_tailroom - bytes at buffer end
1982 * @skb: buffer to check
1983 *
1984 * Return the number of bytes of free space at the tail of an sk_buff
1985 */
1986static inline int skb_tailroom(const struct sk_buff *skb)
1987{
4305b541 1988 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
1989}
1990
a21d4572
ED
1991/**
1992 * skb_availroom - bytes at buffer end
1993 * @skb: buffer to check
1994 *
1995 * Return the number of bytes of free space at the tail of an sk_buff
1996 * allocated by sk_stream_alloc()
1997 */
1998static inline int skb_availroom(const struct sk_buff *skb)
1999{
16fad69c
ED
2000 if (skb_is_nonlinear(skb))
2001 return 0;
2002
2003 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2004}
2005
1da177e4
LT
2006/**
2007 * skb_reserve - adjust headroom
2008 * @skb: buffer to alter
2009 * @len: bytes to move
2010 *
2011 * Increase the headroom of an empty &sk_buff by reducing the tail
2012 * room. This is only allowed for an empty buffer.
2013 */
8243126c 2014static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2015{
2016 skb->data += len;
2017 skb->tail += len;
2018}
2019
1837b2e2
BP
2020/**
2021 * skb_tailroom_reserve - adjust reserved_tailroom
2022 * @skb: buffer to alter
2023 * @mtu: maximum amount of headlen permitted
2024 * @needed_tailroom: minimum amount of reserved_tailroom
2025 *
2026 * Set reserved_tailroom so that headlen can be as large as possible but
2027 * not larger than mtu and tailroom cannot be smaller than
2028 * needed_tailroom.
2029 * The required headroom should already have been reserved before using
2030 * this function.
2031 */
2032static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2033 unsigned int needed_tailroom)
2034{
2035 SKB_LINEAR_ASSERT(skb);
2036 if (mtu < skb_tailroom(skb) - needed_tailroom)
2037 /* use at most mtu */
2038 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2039 else
2040 /* use up to all available space */
2041 skb->reserved_tailroom = needed_tailroom;
2042}
2043
8bce6d7d
TH
2044#define ENCAP_TYPE_ETHER 0
2045#define ENCAP_TYPE_IPPROTO 1
2046
2047static inline void skb_set_inner_protocol(struct sk_buff *skb,
2048 __be16 protocol)
2049{
2050 skb->inner_protocol = protocol;
2051 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2052}
2053
2054static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2055 __u8 ipproto)
2056{
2057 skb->inner_ipproto = ipproto;
2058 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2059}
2060
6a674e9c
JG
2061static inline void skb_reset_inner_headers(struct sk_buff *skb)
2062{
aefbd2b3 2063 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2064 skb->inner_network_header = skb->network_header;
2065 skb->inner_transport_header = skb->transport_header;
2066}
2067
0b5c9db1
JP
2068static inline void skb_reset_mac_len(struct sk_buff *skb)
2069{
2070 skb->mac_len = skb->network_header - skb->mac_header;
2071}
2072
6a674e9c
JG
2073static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2074 *skb)
2075{
2076 return skb->head + skb->inner_transport_header;
2077}
2078
55dc5a9f
TH
2079static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2080{
2081 return skb_inner_transport_header(skb) - skb->data;
2082}
2083
6a674e9c
JG
2084static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2085{
2086 skb->inner_transport_header = skb->data - skb->head;
2087}
2088
2089static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2090 const int offset)
2091{
2092 skb_reset_inner_transport_header(skb);
2093 skb->inner_transport_header += offset;
2094}
2095
2096static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2097{
2098 return skb->head + skb->inner_network_header;
2099}
2100
2101static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2102{
2103 skb->inner_network_header = skb->data - skb->head;
2104}
2105
2106static inline void skb_set_inner_network_header(struct sk_buff *skb,
2107 const int offset)
2108{
2109 skb_reset_inner_network_header(skb);
2110 skb->inner_network_header += offset;
2111}
2112
aefbd2b3
PS
2113static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2114{
2115 return skb->head + skb->inner_mac_header;
2116}
2117
2118static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2119{
2120 skb->inner_mac_header = skb->data - skb->head;
2121}
2122
2123static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2124 const int offset)
2125{
2126 skb_reset_inner_mac_header(skb);
2127 skb->inner_mac_header += offset;
2128}
fda55eca
ED
2129static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2130{
35d04610 2131 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2132}
2133
9c70220b
ACM
2134static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2135{
2e07fa9c 2136 return skb->head + skb->transport_header;
9c70220b
ACM
2137}
2138
badff6d0
ACM
2139static inline void skb_reset_transport_header(struct sk_buff *skb)
2140{
2e07fa9c 2141 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2142}
2143
967b05f6
ACM
2144static inline void skb_set_transport_header(struct sk_buff *skb,
2145 const int offset)
2146{
2e07fa9c
ACM
2147 skb_reset_transport_header(skb);
2148 skb->transport_header += offset;
ea2ae17d
ACM
2149}
2150
d56f90a7
ACM
2151static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2152{
2e07fa9c 2153 return skb->head + skb->network_header;
d56f90a7
ACM
2154}
2155
c1d2bbe1
ACM
2156static inline void skb_reset_network_header(struct sk_buff *skb)
2157{
2e07fa9c 2158 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2159}
2160
c14d2450
ACM
2161static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2162{
2e07fa9c
ACM
2163 skb_reset_network_header(skb);
2164 skb->network_header += offset;
c14d2450
ACM
2165}
2166
2e07fa9c 2167static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2168{
2e07fa9c 2169 return skb->head + skb->mac_header;
bbe735e4
ACM
2170}
2171
2e07fa9c 2172static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2173{
35d04610 2174 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2175}
2176
2177static inline void skb_reset_mac_header(struct sk_buff *skb)
2178{
2179 skb->mac_header = skb->data - skb->head;
2180}
2181
2182static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2183{
2184 skb_reset_mac_header(skb);
2185 skb->mac_header += offset;
2186}
2187
0e3da5bb
TT
2188static inline void skb_pop_mac_header(struct sk_buff *skb)
2189{
2190 skb->mac_header = skb->network_header;
2191}
2192
fbbdb8f0
YX
2193static inline void skb_probe_transport_header(struct sk_buff *skb,
2194 const int offset_hint)
2195{
2196 struct flow_keys keys;
2197
2198 if (skb_transport_header_was_set(skb))
2199 return;
cd79a238 2200 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
42aecaa9 2201 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2202 else
2203 skb_set_transport_header(skb, offset_hint);
2204}
2205
03606895
ED
2206static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2207{
2208 if (skb_mac_header_was_set(skb)) {
2209 const unsigned char *old_mac = skb_mac_header(skb);
2210
2211 skb_set_mac_header(skb, -skb->mac_len);
2212 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2213 }
2214}
2215
04fb451e
MM
2216static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2217{
2218 return skb->csum_start - skb_headroom(skb);
2219}
2220
08b64fcc
AD
2221static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2222{
2223 return skb->head + skb->csum_start;
2224}
2225
2e07fa9c
ACM
2226static inline int skb_transport_offset(const struct sk_buff *skb)
2227{
2228 return skb_transport_header(skb) - skb->data;
2229}
2230
2231static inline u32 skb_network_header_len(const struct sk_buff *skb)
2232{
2233 return skb->transport_header - skb->network_header;
2234}
2235
6a674e9c
JG
2236static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2237{
2238 return skb->inner_transport_header - skb->inner_network_header;
2239}
2240
2e07fa9c
ACM
2241static inline int skb_network_offset(const struct sk_buff *skb)
2242{
2243 return skb_network_header(skb) - skb->data;
2244}
48d49d0c 2245
6a674e9c
JG
2246static inline int skb_inner_network_offset(const struct sk_buff *skb)
2247{
2248 return skb_inner_network_header(skb) - skb->data;
2249}
2250
f9599ce1
CG
2251static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2252{
2253 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2254}
2255
1da177e4
LT
2256/*
2257 * CPUs often take a performance hit when accessing unaligned memory
2258 * locations. The actual performance hit varies, it can be small if the
2259 * hardware handles it or large if we have to take an exception and fix it
2260 * in software.
2261 *
2262 * Since an ethernet header is 14 bytes network drivers often end up with
2263 * the IP header at an unaligned offset. The IP header can be aligned by
2264 * shifting the start of the packet by 2 bytes. Drivers should do this
2265 * with:
2266 *
8660c124 2267 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2268 *
2269 * The downside to this alignment of the IP header is that the DMA is now
2270 * unaligned. On some architectures the cost of an unaligned DMA is high
2271 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2272 *
1da177e4
LT
2273 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2274 * to be overridden.
2275 */
2276#ifndef NET_IP_ALIGN
2277#define NET_IP_ALIGN 2
2278#endif
2279
025be81e
AB
2280/*
2281 * The networking layer reserves some headroom in skb data (via
2282 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2283 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2284 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2285 *
2286 * Unfortunately this headroom changes the DMA alignment of the resulting
2287 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2288 * on some architectures. An architecture can override this value,
2289 * perhaps setting it to a cacheline in size (since that will maintain
2290 * cacheline alignment of the DMA). It must be a power of 2.
2291 *
d6301d3d 2292 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2293 * headroom, you should not reduce this.
5933dd2f
ED
2294 *
2295 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2296 * to reduce average number of cache lines per packet.
2297 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2298 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2299 */
2300#ifndef NET_SKB_PAD
5933dd2f 2301#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2302#endif
2303
7965bd4d 2304int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2305
5293efe6 2306static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2307{
c4264f27 2308 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2309 WARN_ON(1);
2310 return;
2311 }
27a884dc
ACM
2312 skb->len = len;
2313 skb_set_tail_pointer(skb, len);
1da177e4
LT
2314}
2315
5293efe6
DB
2316static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2317{
2318 __skb_set_length(skb, len);
2319}
2320
7965bd4d 2321void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2322
2323static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2324{
3cc0e873
HX
2325 if (skb->data_len)
2326 return ___pskb_trim(skb, len);
2327 __skb_trim(skb, len);
2328 return 0;
1da177e4
LT
2329}
2330
2331static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2332{
2333 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2334}
2335
e9fa4f7b
HX
2336/**
2337 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2338 * @skb: buffer to alter
2339 * @len: new length
2340 *
2341 * This is identical to pskb_trim except that the caller knows that
2342 * the skb is not cloned so we should never get an error due to out-
2343 * of-memory.
2344 */
2345static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2346{
2347 int err = pskb_trim(skb, len);
2348 BUG_ON(err);
2349}
2350
5293efe6
DB
2351static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2352{
2353 unsigned int diff = len - skb->len;
2354
2355 if (skb_tailroom(skb) < diff) {
2356 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2357 GFP_ATOMIC);
2358 if (ret)
2359 return ret;
2360 }
2361 __skb_set_length(skb, len);
2362 return 0;
2363}
2364
1da177e4
LT
2365/**
2366 * skb_orphan - orphan a buffer
2367 * @skb: buffer to orphan
2368 *
2369 * If a buffer currently has an owner then we call the owner's
2370 * destructor function and make the @skb unowned. The buffer continues
2371 * to exist but is no longer charged to its former owner.
2372 */
2373static inline void skb_orphan(struct sk_buff *skb)
2374{
c34a7612 2375 if (skb->destructor) {
1da177e4 2376 skb->destructor(skb);
c34a7612
ED
2377 skb->destructor = NULL;
2378 skb->sk = NULL;
376c7311
ED
2379 } else {
2380 BUG_ON(skb->sk);
c34a7612 2381 }
1da177e4
LT
2382}
2383
a353e0ce
MT
2384/**
2385 * skb_orphan_frags - orphan the frags contained in a buffer
2386 * @skb: buffer to orphan frags from
2387 * @gfp_mask: allocation mask for replacement pages
2388 *
2389 * For each frag in the SKB which needs a destructor (i.e. has an
2390 * owner) create a copy of that frag and release the original
2391 * page by calling the destructor.
2392 */
2393static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2394{
2395 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2396 return 0;
2397 return skb_copy_ubufs(skb, gfp_mask);
2398}
2399
1da177e4
LT
2400/**
2401 * __skb_queue_purge - empty a list
2402 * @list: list to empty
2403 *
2404 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2405 * the list and one reference dropped. This function does not take the
2406 * list lock and the caller must hold the relevant locks to use it.
2407 */
7965bd4d 2408void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2409static inline void __skb_queue_purge(struct sk_buff_head *list)
2410{
2411 struct sk_buff *skb;
2412 while ((skb = __skb_dequeue(list)) != NULL)
2413 kfree_skb(skb);
2414}
2415
9f5afeae
YW
2416void skb_rbtree_purge(struct rb_root *root);
2417
7965bd4d 2418void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2419
7965bd4d
JP
2420struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2421 gfp_t gfp_mask);
8af27456
CH
2422
2423/**
2424 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2425 * @dev: network device to receive on
2426 * @length: length to allocate
2427 *
2428 * Allocate a new &sk_buff and assign it a usage count of one. The
2429 * buffer has unspecified headroom built in. Users should allocate
2430 * the headroom they think they need without accounting for the
2431 * built in space. The built in space is used for optimisations.
2432 *
2433 * %NULL is returned if there is no free memory. Although this function
2434 * allocates memory it can be called from an interrupt.
2435 */
2436static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2437 unsigned int length)
8af27456
CH
2438{
2439 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2440}
2441
6f532612
ED
2442/* legacy helper around __netdev_alloc_skb() */
2443static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2444 gfp_t gfp_mask)
2445{
2446 return __netdev_alloc_skb(NULL, length, gfp_mask);
2447}
2448
2449/* legacy helper around netdev_alloc_skb() */
2450static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2451{
2452 return netdev_alloc_skb(NULL, length);
2453}
2454
2455
4915a0de
ED
2456static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2457 unsigned int length, gfp_t gfp)
61321bbd 2458{
4915a0de 2459 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2460
2461 if (NET_IP_ALIGN && skb)
2462 skb_reserve(skb, NET_IP_ALIGN);
2463 return skb;
2464}
2465
4915a0de
ED
2466static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2467 unsigned int length)
2468{
2469 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2470}
2471
181edb2b
AD
2472static inline void skb_free_frag(void *addr)
2473{
2474 __free_page_frag(addr);
2475}
2476
ffde7328 2477void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2478struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2479 unsigned int length, gfp_t gfp_mask);
2480static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2481 unsigned int length)
2482{
2483 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2484}
795bb1c0
JDB
2485void napi_consume_skb(struct sk_buff *skb, int budget);
2486
2487void __kfree_skb_flush(void);
15fad714 2488void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2489
71dfda58
AD
2490/**
2491 * __dev_alloc_pages - allocate page for network Rx
2492 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2493 * @order: size of the allocation
2494 *
2495 * Allocate a new page.
2496 *
2497 * %NULL is returned if there is no free memory.
2498*/
2499static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2500 unsigned int order)
2501{
2502 /* This piece of code contains several assumptions.
2503 * 1. This is for device Rx, therefor a cold page is preferred.
2504 * 2. The expectation is the user wants a compound page.
2505 * 3. If requesting a order 0 page it will not be compound
2506 * due to the check to see if order has a value in prep_new_page
2507 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2508 * code in gfp_to_alloc_flags that should be enforcing this.
2509 */
2510 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2511
2512 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2513}
2514
2515static inline struct page *dev_alloc_pages(unsigned int order)
2516{
95829b3a 2517 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2518}
2519
2520/**
2521 * __dev_alloc_page - allocate a page for network Rx
2522 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2523 *
2524 * Allocate a new page.
2525 *
2526 * %NULL is returned if there is no free memory.
2527 */
2528static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2529{
2530 return __dev_alloc_pages(gfp_mask, 0);
2531}
2532
2533static inline struct page *dev_alloc_page(void)
2534{
95829b3a 2535 return dev_alloc_pages(0);
71dfda58
AD
2536}
2537
0614002b
MG
2538/**
2539 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2540 * @page: The page that was allocated from skb_alloc_page
2541 * @skb: The skb that may need pfmemalloc set
2542 */
2543static inline void skb_propagate_pfmemalloc(struct page *page,
2544 struct sk_buff *skb)
2545{
2f064f34 2546 if (page_is_pfmemalloc(page))
0614002b
MG
2547 skb->pfmemalloc = true;
2548}
2549
131ea667 2550/**
e227867f 2551 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2552 * @frag: the paged fragment
2553 *
2554 * Returns the &struct page associated with @frag.
2555 */
2556static inline struct page *skb_frag_page(const skb_frag_t *frag)
2557{
a8605c60 2558 return frag->page.p;
131ea667
IC
2559}
2560
2561/**
2562 * __skb_frag_ref - take an addition reference on a paged fragment.
2563 * @frag: the paged fragment
2564 *
2565 * Takes an additional reference on the paged fragment @frag.
2566 */
2567static inline void __skb_frag_ref(skb_frag_t *frag)
2568{
2569 get_page(skb_frag_page(frag));
2570}
2571
2572/**
2573 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2574 * @skb: the buffer
2575 * @f: the fragment offset.
2576 *
2577 * Takes an additional reference on the @f'th paged fragment of @skb.
2578 */
2579static inline void skb_frag_ref(struct sk_buff *skb, int f)
2580{
2581 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2582}
2583
2584/**
2585 * __skb_frag_unref - release a reference on a paged fragment.
2586 * @frag: the paged fragment
2587 *
2588 * Releases a reference on the paged fragment @frag.
2589 */
2590static inline void __skb_frag_unref(skb_frag_t *frag)
2591{
2592 put_page(skb_frag_page(frag));
2593}
2594
2595/**
2596 * skb_frag_unref - release a reference on a paged fragment of an skb.
2597 * @skb: the buffer
2598 * @f: the fragment offset
2599 *
2600 * Releases a reference on the @f'th paged fragment of @skb.
2601 */
2602static inline void skb_frag_unref(struct sk_buff *skb, int f)
2603{
2604 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2605}
2606
2607/**
2608 * skb_frag_address - gets the address of the data contained in a paged fragment
2609 * @frag: the paged fragment buffer
2610 *
2611 * Returns the address of the data within @frag. The page must already
2612 * be mapped.
2613 */
2614static inline void *skb_frag_address(const skb_frag_t *frag)
2615{
2616 return page_address(skb_frag_page(frag)) + frag->page_offset;
2617}
2618
2619/**
2620 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2621 * @frag: the paged fragment buffer
2622 *
2623 * Returns the address of the data within @frag. Checks that the page
2624 * is mapped and returns %NULL otherwise.
2625 */
2626static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2627{
2628 void *ptr = page_address(skb_frag_page(frag));
2629 if (unlikely(!ptr))
2630 return NULL;
2631
2632 return ptr + frag->page_offset;
2633}
2634
2635/**
2636 * __skb_frag_set_page - sets the page contained in a paged fragment
2637 * @frag: the paged fragment
2638 * @page: the page to set
2639 *
2640 * Sets the fragment @frag to contain @page.
2641 */
2642static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2643{
a8605c60 2644 frag->page.p = page;
131ea667
IC
2645}
2646
2647/**
2648 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2649 * @skb: the buffer
2650 * @f: the fragment offset
2651 * @page: the page to set
2652 *
2653 * Sets the @f'th fragment of @skb to contain @page.
2654 */
2655static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2656 struct page *page)
2657{
2658 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2659}
2660
400dfd3a
ED
2661bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2662
131ea667
IC
2663/**
2664 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2665 * @dev: the device to map the fragment to
131ea667
IC
2666 * @frag: the paged fragment to map
2667 * @offset: the offset within the fragment (starting at the
2668 * fragment's own offset)
2669 * @size: the number of bytes to map
f83347df 2670 * @dir: the direction of the mapping (%PCI_DMA_*)
131ea667
IC
2671 *
2672 * Maps the page associated with @frag to @device.
2673 */
2674static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2675 const skb_frag_t *frag,
2676 size_t offset, size_t size,
2677 enum dma_data_direction dir)
2678{
2679 return dma_map_page(dev, skb_frag_page(frag),
2680 frag->page_offset + offset, size, dir);
2681}
2682
117632e6
ED
2683static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2684 gfp_t gfp_mask)
2685{
2686 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2687}
2688
bad93e9d
OP
2689
2690static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2691 gfp_t gfp_mask)
2692{
2693 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2694}
2695
2696
334a8132
PM
2697/**
2698 * skb_clone_writable - is the header of a clone writable
2699 * @skb: buffer to check
2700 * @len: length up to which to write
2701 *
2702 * Returns true if modifying the header part of the cloned buffer
2703 * does not requires the data to be copied.
2704 */
05bdd2f1 2705static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2706{
2707 return !skb_header_cloned(skb) &&
2708 skb_headroom(skb) + len <= skb->hdr_len;
2709}
2710
3697649f
DB
2711static inline int skb_try_make_writable(struct sk_buff *skb,
2712 unsigned int write_len)
2713{
2714 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2715 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2716}
2717
d9cc2048
HX
2718static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2719 int cloned)
2720{
2721 int delta = 0;
2722
d9cc2048
HX
2723 if (headroom > skb_headroom(skb))
2724 delta = headroom - skb_headroom(skb);
2725
2726 if (delta || cloned)
2727 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2728 GFP_ATOMIC);
2729 return 0;
2730}
2731
1da177e4
LT
2732/**
2733 * skb_cow - copy header of skb when it is required
2734 * @skb: buffer to cow
2735 * @headroom: needed headroom
2736 *
2737 * If the skb passed lacks sufficient headroom or its data part
2738 * is shared, data is reallocated. If reallocation fails, an error
2739 * is returned and original skb is not changed.
2740 *
2741 * The result is skb with writable area skb->head...skb->tail
2742 * and at least @headroom of space at head.
2743 */
2744static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2745{
d9cc2048
HX
2746 return __skb_cow(skb, headroom, skb_cloned(skb));
2747}
1da177e4 2748
d9cc2048
HX
2749/**
2750 * skb_cow_head - skb_cow but only making the head writable
2751 * @skb: buffer to cow
2752 * @headroom: needed headroom
2753 *
2754 * This function is identical to skb_cow except that we replace the
2755 * skb_cloned check by skb_header_cloned. It should be used when
2756 * you only need to push on some header and do not need to modify
2757 * the data.
2758 */
2759static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2760{
2761 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2762}
2763
2764/**
2765 * skb_padto - pad an skbuff up to a minimal size
2766 * @skb: buffer to pad
2767 * @len: minimal length
2768 *
2769 * Pads up a buffer to ensure the trailing bytes exist and are
2770 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2771 * is untouched. Otherwise it is extended. Returns zero on
2772 * success. The skb is freed on error.
1da177e4 2773 */
5b057c6b 2774static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2775{
2776 unsigned int size = skb->len;
2777 if (likely(size >= len))
5b057c6b 2778 return 0;
987c402a 2779 return skb_pad(skb, len - size);
1da177e4
LT
2780}
2781
9c0c1124
AD
2782/**
2783 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2784 * @skb: buffer to pad
2785 * @len: minimal length
2786 *
2787 * Pads up a buffer to ensure the trailing bytes exist and are
2788 * blanked. If the buffer already contains sufficient data it
2789 * is untouched. Otherwise it is extended. Returns zero on
2790 * success. The skb is freed on error.
2791 */
2792static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2793{
2794 unsigned int size = skb->len;
2795
2796 if (unlikely(size < len)) {
2797 len -= size;
2798 if (skb_pad(skb, len))
2799 return -ENOMEM;
2800 __skb_put(skb, len);
2801 }
2802 return 0;
2803}
2804
1da177e4 2805static inline int skb_add_data(struct sk_buff *skb,
af2b040e 2806 struct iov_iter *from, int copy)
1da177e4
LT
2807{
2808 const int off = skb->len;
2809
2810 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e
AV
2811 __wsum csum = 0;
2812 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2813 &csum, from) == copy) {
1da177e4
LT
2814 skb->csum = csum_block_add(skb->csum, csum, off);
2815 return 0;
2816 }
af2b040e 2817 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
1da177e4
LT
2818 return 0;
2819
2820 __skb_trim(skb, off);
2821 return -EFAULT;
2822}
2823
38ba0a65
ED
2824static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2825 const struct page *page, int off)
1da177e4
LT
2826{
2827 if (i) {
9e903e08 2828 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 2829
ea2ab693 2830 return page == skb_frag_page(frag) &&
9e903e08 2831 off == frag->page_offset + skb_frag_size(frag);
1da177e4 2832 }
38ba0a65 2833 return false;
1da177e4
LT
2834}
2835
364c6bad
HX
2836static inline int __skb_linearize(struct sk_buff *skb)
2837{
2838 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2839}
2840
1da177e4
LT
2841/**
2842 * skb_linearize - convert paged skb to linear one
2843 * @skb: buffer to linarize
1da177e4
LT
2844 *
2845 * If there is no free memory -ENOMEM is returned, otherwise zero
2846 * is returned and the old skb data released.
2847 */
364c6bad
HX
2848static inline int skb_linearize(struct sk_buff *skb)
2849{
2850 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2851}
2852
cef401de
ED
2853/**
2854 * skb_has_shared_frag - can any frag be overwritten
2855 * @skb: buffer to test
2856 *
2857 * Return true if the skb has at least one frag that might be modified
2858 * by an external entity (as in vmsplice()/sendfile())
2859 */
2860static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2861{
c9af6db4
PS
2862 return skb_is_nonlinear(skb) &&
2863 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
2864}
2865
364c6bad
HX
2866/**
2867 * skb_linearize_cow - make sure skb is linear and writable
2868 * @skb: buffer to process
2869 *
2870 * If there is no free memory -ENOMEM is returned, otherwise zero
2871 * is returned and the old skb data released.
2872 */
2873static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 2874{
364c6bad
HX
2875 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2876 __skb_linearize(skb) : 0;
1da177e4
LT
2877}
2878
479ffccc
DB
2879static __always_inline void
2880__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2881 unsigned int off)
2882{
2883 if (skb->ip_summed == CHECKSUM_COMPLETE)
2884 skb->csum = csum_block_sub(skb->csum,
2885 csum_partial(start, len, 0), off);
2886 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2887 skb_checksum_start_offset(skb) < 0)
2888 skb->ip_summed = CHECKSUM_NONE;
2889}
2890
1da177e4
LT
2891/**
2892 * skb_postpull_rcsum - update checksum for received skb after pull
2893 * @skb: buffer to update
2894 * @start: start of data before pull
2895 * @len: length of data pulled
2896 *
2897 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
2898 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2899 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 2900 */
1da177e4 2901static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 2902 const void *start, unsigned int len)
1da177e4 2903{
479ffccc 2904 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
2905}
2906
479ffccc
DB
2907static __always_inline void
2908__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2909 unsigned int off)
2910{
2911 if (skb->ip_summed == CHECKSUM_COMPLETE)
2912 skb->csum = csum_block_add(skb->csum,
2913 csum_partial(start, len, 0), off);
2914}
cbb042f9 2915
479ffccc
DB
2916/**
2917 * skb_postpush_rcsum - update checksum for received skb after push
2918 * @skb: buffer to update
2919 * @start: start of data after push
2920 * @len: length of data pushed
2921 *
2922 * After doing a push on a received packet, you need to call this to
2923 * update the CHECKSUM_COMPLETE checksum.
2924 */
f8ffad69
DB
2925static inline void skb_postpush_rcsum(struct sk_buff *skb,
2926 const void *start, unsigned int len)
2927{
479ffccc 2928 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
2929}
2930
479ffccc
DB
2931unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2932
82a31b92
WC
2933/**
2934 * skb_push_rcsum - push skb and update receive checksum
2935 * @skb: buffer to update
2936 * @len: length of data pulled
2937 *
2938 * This function performs an skb_push on the packet and updates
2939 * the CHECKSUM_COMPLETE checksum. It should be used on
2940 * receive path processing instead of skb_push unless you know
2941 * that the checksum difference is zero (e.g., a valid IP header)
2942 * or you are setting ip_summed to CHECKSUM_NONE.
2943 */
2944static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2945 unsigned int len)
2946{
2947 skb_push(skb, len);
2948 skb_postpush_rcsum(skb, skb->data, len);
2949 return skb->data;
2950}
2951
7ce5a27f
DM
2952/**
2953 * pskb_trim_rcsum - trim received skb and update checksum
2954 * @skb: buffer to trim
2955 * @len: new length
2956 *
2957 * This is exactly the same as pskb_trim except that it ensures the
2958 * checksum of received packets are still valid after the operation.
2959 */
2960
2961static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2962{
2963 if (likely(len >= skb->len))
2964 return 0;
2965 if (skb->ip_summed == CHECKSUM_COMPLETE)
2966 skb->ip_summed = CHECKSUM_NONE;
2967 return __pskb_trim(skb, len);
2968}
2969
5293efe6
DB
2970static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2971{
2972 if (skb->ip_summed == CHECKSUM_COMPLETE)
2973 skb->ip_summed = CHECKSUM_NONE;
2974 __skb_trim(skb, len);
2975 return 0;
2976}
2977
2978static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
2979{
2980 if (skb->ip_summed == CHECKSUM_COMPLETE)
2981 skb->ip_summed = CHECKSUM_NONE;
2982 return __skb_grow(skb, len);
2983}
2984
1da177e4
LT
2985#define skb_queue_walk(queue, skb) \
2986 for (skb = (queue)->next; \
a1e4891f 2987 skb != (struct sk_buff *)(queue); \
1da177e4
LT
2988 skb = skb->next)
2989
46f8914e
JC
2990#define skb_queue_walk_safe(queue, skb, tmp) \
2991 for (skb = (queue)->next, tmp = skb->next; \
2992 skb != (struct sk_buff *)(queue); \
2993 skb = tmp, tmp = skb->next)
2994
1164f52a 2995#define skb_queue_walk_from(queue, skb) \
a1e4891f 2996 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
2997 skb = skb->next)
2998
2999#define skb_queue_walk_from_safe(queue, skb, tmp) \
3000 for (tmp = skb->next; \
3001 skb != (struct sk_buff *)(queue); \
3002 skb = tmp, tmp = skb->next)
3003
300ce174
SH
3004#define skb_queue_reverse_walk(queue, skb) \
3005 for (skb = (queue)->prev; \
a1e4891f 3006 skb != (struct sk_buff *)(queue); \
300ce174
SH
3007 skb = skb->prev)
3008
686a2955
DM
3009#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3010 for (skb = (queue)->prev, tmp = skb->prev; \
3011 skb != (struct sk_buff *)(queue); \
3012 skb = tmp, tmp = skb->prev)
3013
3014#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3015 for (tmp = skb->prev; \
3016 skb != (struct sk_buff *)(queue); \
3017 skb = tmp, tmp = skb->prev)
1da177e4 3018
21dc3301 3019static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3020{
3021 return skb_shinfo(skb)->frag_list != NULL;
3022}
3023
3024static inline void skb_frag_list_init(struct sk_buff *skb)
3025{
3026 skb_shinfo(skb)->frag_list = NULL;
3027}
3028
ee039871
DM
3029#define skb_walk_frags(skb, iter) \
3030 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3031
ea3793ee
RW
3032
3033int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3034 const struct sk_buff *skb);
3035struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3036 void (*destructor)(struct sock *sk,
3037 struct sk_buff *skb),
ea3793ee
RW
3038 int *peeked, int *off, int *err,
3039 struct sk_buff **last);
7965bd4d 3040struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3041 void (*destructor)(struct sock *sk,
3042 struct sk_buff *skb),
7965bd4d
JP
3043 int *peeked, int *off, int *err);
3044struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3045 int *err);
3046unsigned int datagram_poll(struct file *file, struct socket *sock,
3047 struct poll_table_struct *wait);
c0371da6
AV
3048int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3049 struct iov_iter *to, int size);
51f3d02b
DM
3050static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3051 struct msghdr *msg, int size)
3052{
e5a4b0bb 3053 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3054}
e5a4b0bb
AV
3055int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3056 struct msghdr *msg);
3a654f97
AV
3057int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3058 struct iov_iter *from, int len);
3a654f97 3059int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3060void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3061void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3062static inline void skb_free_datagram_locked(struct sock *sk,
3063 struct sk_buff *skb)
3064{
3065 __skb_free_datagram_locked(sk, skb, 0);
3066}
7965bd4d 3067int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3068int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3069int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3070__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3071 int len, __wsum csum);
a60e3cc7 3072int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3073 struct pipe_inode_info *pipe, unsigned int len,
25869262 3074 unsigned int flags);
7965bd4d 3075void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3076unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3077int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3078 int len, int hlen);
7965bd4d
JP
3079void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3080int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3081void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 3082unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
ae7ef81e 3083bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
7965bd4d 3084struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3085struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3086int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3087int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3088int skb_vlan_pop(struct sk_buff *skb);
3089int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3090struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3091 gfp_t gfp);
20380731 3092
6ce8e9ce
AV
3093static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3094{
21226abb 3095 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
6ce8e9ce
AV
3096}
3097
7eab8d9e
AV
3098static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3099{
e5a4b0bb 3100 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3101}
3102
2817a336
DB
3103struct skb_checksum_ops {
3104 __wsum (*update)(const void *mem, int len, __wsum wsum);
3105 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3106};
3107
3108__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3109 __wsum csum, const struct skb_checksum_ops *ops);
3110__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3111 __wsum csum);
3112
1e98a0f0
ED
3113static inline void * __must_check
3114__skb_header_pointer(const struct sk_buff *skb, int offset,
3115 int len, void *data, int hlen, void *buffer)
1da177e4 3116{
55820ee2 3117 if (hlen - offset >= len)
690e36e7 3118 return data + offset;
1da177e4 3119
690e36e7
DM
3120 if (!skb ||
3121 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3122 return NULL;
3123
3124 return buffer;
3125}
3126
1e98a0f0
ED
3127static inline void * __must_check
3128skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3129{
3130 return __skb_header_pointer(skb, offset, len, skb->data,
3131 skb_headlen(skb), buffer);
3132}
3133
4262e5cc
DB
3134/**
3135 * skb_needs_linearize - check if we need to linearize a given skb
3136 * depending on the given device features.
3137 * @skb: socket buffer to check
3138 * @features: net device features
3139 *
3140 * Returns true if either:
3141 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3142 * 2. skb is fragmented and the device does not support SG.
3143 */
3144static inline bool skb_needs_linearize(struct sk_buff *skb,
3145 netdev_features_t features)
3146{
3147 return skb_is_nonlinear(skb) &&
3148 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3149 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3150}
3151
d626f62b
ACM
3152static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3153 void *to,
3154 const unsigned int len)
3155{
3156 memcpy(to, skb->data, len);
3157}
3158
3159static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3160 const int offset, void *to,
3161 const unsigned int len)
3162{
3163 memcpy(to, skb->data + offset, len);
3164}
3165
27d7ff46
ACM
3166static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3167 const void *from,
3168 const unsigned int len)
3169{
3170 memcpy(skb->data, from, len);
3171}
3172
3173static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3174 const int offset,
3175 const void *from,
3176 const unsigned int len)
3177{
3178 memcpy(skb->data + offset, from, len);
3179}
3180
7965bd4d 3181void skb_init(void);
1da177e4 3182
ac45f602
PO
3183static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3184{
3185 return skb->tstamp;
3186}
3187
a61bbcf2
PM
3188/**
3189 * skb_get_timestamp - get timestamp from a skb
3190 * @skb: skb to get stamp from
3191 * @stamp: pointer to struct timeval to store stamp in
3192 *
3193 * Timestamps are stored in the skb as offsets to a base timestamp.
3194 * This function converts the offset back to a struct timeval and stores
3195 * it in stamp.
3196 */
ac45f602
PO
3197static inline void skb_get_timestamp(const struct sk_buff *skb,
3198 struct timeval *stamp)
a61bbcf2 3199{
b7aa0bf7 3200 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3201}
3202
ac45f602
PO
3203static inline void skb_get_timestampns(const struct sk_buff *skb,
3204 struct timespec *stamp)
3205{
3206 *stamp = ktime_to_timespec(skb->tstamp);
3207}
3208
b7aa0bf7 3209static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3210{
b7aa0bf7 3211 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3212}
3213
164891aa
SH
3214static inline ktime_t net_timedelta(ktime_t t)
3215{
3216 return ktime_sub(ktime_get_real(), t);
3217}
3218
b9ce204f
IJ
3219static inline ktime_t net_invalid_timestamp(void)
3220{
3221 return ktime_set(0, 0);
3222}
a61bbcf2 3223
62bccb8c
AD
3224struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3225
c1f19b51
RC
3226#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3227
7965bd4d
JP
3228void skb_clone_tx_timestamp(struct sk_buff *skb);
3229bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3230
3231#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3232
3233static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3234{
3235}
3236
3237static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3238{
3239 return false;
3240}
3241
3242#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3243
3244/**
3245 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3246 *
da92b194
RC
3247 * PHY drivers may accept clones of transmitted packets for
3248 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3249 * must call this function to return the skb back to the stack with a
3250 * timestamp.
da92b194 3251 *
c1f19b51 3252 * @skb: clone of the the original outgoing packet
7a76a021 3253 * @hwtstamps: hardware time stamps
c1f19b51
RC
3254 *
3255 */
3256void skb_complete_tx_timestamp(struct sk_buff *skb,
3257 struct skb_shared_hwtstamps *hwtstamps);
3258
e7fd2885
WB
3259void __skb_tstamp_tx(struct sk_buff *orig_skb,
3260 struct skb_shared_hwtstamps *hwtstamps,
3261 struct sock *sk, int tstype);
3262
ac45f602
PO
3263/**
3264 * skb_tstamp_tx - queue clone of skb with send time stamps
3265 * @orig_skb: the original outgoing packet
3266 * @hwtstamps: hardware time stamps, may be NULL if not available
3267 *
3268 * If the skb has a socket associated, then this function clones the
3269 * skb (thus sharing the actual data and optional structures), stores
3270 * the optional hardware time stamping information (if non NULL) or
3271 * generates a software time stamp (otherwise), then queues the clone
3272 * to the error queue of the socket. Errors are silently ignored.
3273 */
7965bd4d
JP
3274void skb_tstamp_tx(struct sk_buff *orig_skb,
3275 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3276
4507a715
RC
3277static inline void sw_tx_timestamp(struct sk_buff *skb)
3278{
2244d07b
OH
3279 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3280 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
4507a715
RC
3281 skb_tstamp_tx(skb, NULL);
3282}
3283
3284/**
3285 * skb_tx_timestamp() - Driver hook for transmit timestamping
3286 *
3287 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3288 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3289 *
73409f3b
DM
3290 * Specifically, one should make absolutely sure that this function is
3291 * called before TX completion of this packet can trigger. Otherwise
3292 * the packet could potentially already be freed.
3293 *
4507a715
RC
3294 * @skb: A socket buffer.
3295 */
3296static inline void skb_tx_timestamp(struct sk_buff *skb)
3297{
c1f19b51 3298 skb_clone_tx_timestamp(skb);
4507a715
RC
3299 sw_tx_timestamp(skb);
3300}
3301
6e3e939f
JB
3302/**
3303 * skb_complete_wifi_ack - deliver skb with wifi status
3304 *
3305 * @skb: the original outgoing packet
3306 * @acked: ack status
3307 *
3308 */
3309void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3310
7965bd4d
JP
3311__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3312__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3313
60476372
HX
3314static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3315{
6edec0e6
TH
3316 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3317 skb->csum_valid ||
3318 (skb->ip_summed == CHECKSUM_PARTIAL &&
3319 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3320}
3321
fb286bb2
HX
3322/**
3323 * skb_checksum_complete - Calculate checksum of an entire packet
3324 * @skb: packet to process
3325 *
3326 * This function calculates the checksum over the entire packet plus
3327 * the value of skb->csum. The latter can be used to supply the
3328 * checksum of a pseudo header as used by TCP/UDP. It returns the
3329 * checksum.
3330 *
3331 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3332 * this function can be used to verify that checksum on received
3333 * packets. In that case the function should return zero if the
3334 * checksum is correct. In particular, this function will return zero
3335 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3336 * hardware has already verified the correctness of the checksum.
3337 */
4381ca3c 3338static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3339{
60476372
HX
3340 return skb_csum_unnecessary(skb) ?
3341 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3342}
3343
77cffe23
TH
3344static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3345{
3346 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3347 if (skb->csum_level == 0)
3348 skb->ip_summed = CHECKSUM_NONE;
3349 else
3350 skb->csum_level--;
3351 }
3352}
3353
3354static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3355{
3356 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3357 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3358 skb->csum_level++;
3359 } else if (skb->ip_summed == CHECKSUM_NONE) {
3360 skb->ip_summed = CHECKSUM_UNNECESSARY;
3361 skb->csum_level = 0;
3362 }
3363}
3364
5a212329
TH
3365static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3366{
3367 /* Mark current checksum as bad (typically called from GRO
3368 * path). In the case that ip_summed is CHECKSUM_NONE
3369 * this must be the first checksum encountered in the packet.
3370 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3371 * checksum after the last one validated. For UDP, a zero
3372 * checksum can not be marked as bad.
3373 */
3374
3375 if (skb->ip_summed == CHECKSUM_NONE ||
3376 skb->ip_summed == CHECKSUM_UNNECESSARY)
3377 skb->csum_bad = 1;
3378}
3379
76ba0aae
TH
3380/* Check if we need to perform checksum complete validation.
3381 *
3382 * Returns true if checksum complete is needed, false otherwise
3383 * (either checksum is unnecessary or zero checksum is allowed).
3384 */
3385static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3386 bool zero_okay,
3387 __sum16 check)
3388{
5d0c2b95
TH
3389 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3390 skb->csum_valid = 1;
77cffe23 3391 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3392 return false;
3393 }
3394
3395 return true;
3396}
3397
3398/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3399 * in checksum_init.
3400 */
3401#define CHECKSUM_BREAK 76
3402
4e18b9ad
TH
3403/* Unset checksum-complete
3404 *
3405 * Unset checksum complete can be done when packet is being modified
3406 * (uncompressed for instance) and checksum-complete value is
3407 * invalidated.
3408 */
3409static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3410{
3411 if (skb->ip_summed == CHECKSUM_COMPLETE)
3412 skb->ip_summed = CHECKSUM_NONE;
3413}
3414
76ba0aae
TH
3415/* Validate (init) checksum based on checksum complete.
3416 *
3417 * Return values:
3418 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3419 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3420 * checksum is stored in skb->csum for use in __skb_checksum_complete
3421 * non-zero: value of invalid checksum
3422 *
3423 */
3424static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3425 bool complete,
3426 __wsum psum)
3427{
3428 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3429 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3430 skb->csum_valid = 1;
76ba0aae
TH
3431 return 0;
3432 }
5a212329
TH
3433 } else if (skb->csum_bad) {
3434 /* ip_summed == CHECKSUM_NONE in this case */
c91d4606 3435 return (__force __sum16)1;
76ba0aae
TH
3436 }
3437
3438 skb->csum = psum;
3439
5d0c2b95
TH
3440 if (complete || skb->len <= CHECKSUM_BREAK) {
3441 __sum16 csum;
3442
3443 csum = __skb_checksum_complete(skb);
3444 skb->csum_valid = !csum;
3445 return csum;
3446 }
76ba0aae
TH
3447
3448 return 0;
3449}
3450
3451static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3452{
3453 return 0;
3454}
3455
3456/* Perform checksum validate (init). Note that this is a macro since we only
3457 * want to calculate the pseudo header which is an input function if necessary.
3458 * First we try to validate without any computation (checksum unnecessary) and
3459 * then calculate based on checksum complete calling the function to compute
3460 * pseudo header.
3461 *
3462 * Return values:
3463 * 0: checksum is validated or try to in skb_checksum_complete
3464 * non-zero: value of invalid checksum
3465 */
3466#define __skb_checksum_validate(skb, proto, complete, \
3467 zero_okay, check, compute_pseudo) \
3468({ \
3469 __sum16 __ret = 0; \
5d0c2b95 3470 skb->csum_valid = 0; \
76ba0aae
TH
3471 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3472 __ret = __skb_checksum_validate_complete(skb, \
3473 complete, compute_pseudo(skb, proto)); \
3474 __ret; \
3475})
3476
3477#define skb_checksum_init(skb, proto, compute_pseudo) \
3478 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3479
3480#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3481 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3482
3483#define skb_checksum_validate(skb, proto, compute_pseudo) \
3484 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3485
3486#define skb_checksum_validate_zero_check(skb, proto, check, \
3487 compute_pseudo) \
096a4cfa 3488 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3489
3490#define skb_checksum_simple_validate(skb) \
3491 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3492
d96535a1
TH
3493static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3494{
3495 return (skb->ip_summed == CHECKSUM_NONE &&
3496 skb->csum_valid && !skb->csum_bad);
3497}
3498
3499static inline void __skb_checksum_convert(struct sk_buff *skb,
3500 __sum16 check, __wsum pseudo)
3501{
3502 skb->csum = ~pseudo;
3503 skb->ip_summed = CHECKSUM_COMPLETE;
3504}
3505
3506#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3507do { \
3508 if (__skb_checksum_convert_check(skb)) \
3509 __skb_checksum_convert(skb, check, \
3510 compute_pseudo(skb, proto)); \
3511} while (0)
3512
15e2396d
TH
3513static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3514 u16 start, u16 offset)
3515{
3516 skb->ip_summed = CHECKSUM_PARTIAL;
3517 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3518 skb->csum_offset = offset - start;
3519}
3520
dcdc8994
TH
3521/* Update skbuf and packet to reflect the remote checksum offload operation.
3522 * When called, ptr indicates the starting point for skb->csum when
3523 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3524 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3525 */
3526static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3527 int start, int offset, bool nopartial)
dcdc8994
TH
3528{
3529 __wsum delta;
3530
15e2396d
TH
3531 if (!nopartial) {
3532 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3533 return;
3534 }
3535
dcdc8994
TH
3536 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3537 __skb_checksum_complete(skb);
3538 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3539 }
3540
3541 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3542
3543 /* Adjust skb->csum since we changed the packet */
3544 skb->csum = csum_add(skb->csum, delta);
3545}
3546
5f79e0f9 3547#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3548void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3549static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3550{
3551 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3552 nf_conntrack_destroy(nfct);
1da177e4
LT
3553}
3554static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3555{
3556 if (nfct)
3557 atomic_inc(&nfct->use);
3558}
2fc72c7b 3559#endif
34666d46 3560#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3561static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3562{
3563 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3564 kfree(nf_bridge);
3565}
3566static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3567{
3568 if (nf_bridge)
3569 atomic_inc(&nf_bridge->use);
3570}
3571#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3572static inline void nf_reset(struct sk_buff *skb)
3573{
5f79e0f9 3574#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a193a4ab
PM
3575 nf_conntrack_put(skb->nfct);
3576 skb->nfct = NULL;
2fc72c7b 3577#endif
34666d46 3578#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3579 nf_bridge_put(skb->nf_bridge);
3580 skb->nf_bridge = NULL;
3581#endif
3582}
3583
124dff01
PM
3584static inline void nf_reset_trace(struct sk_buff *skb)
3585{
478b360a 3586#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3587 skb->nf_trace = 0;
3588#endif
a193a4ab
PM
3589}
3590
edda553c 3591/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3592static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3593 bool copy)
edda553c 3594{
5f79e0f9 3595#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
edda553c
YK
3596 dst->nfct = src->nfct;
3597 nf_conntrack_get(src->nfct);
b1937227
ED
3598 if (copy)
3599 dst->nfctinfo = src->nfctinfo;
2fc72c7b 3600#endif
34666d46 3601#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3602 dst->nf_bridge = src->nf_bridge;
3603 nf_bridge_get(src->nf_bridge);
3604#endif
478b360a 3605#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3606 if (copy)
3607 dst->nf_trace = src->nf_trace;
478b360a 3608#endif
edda553c
YK
3609}
3610
e7ac05f3
YK
3611static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3612{
e7ac05f3 3613#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 3614 nf_conntrack_put(dst->nfct);
2fc72c7b 3615#endif
34666d46 3616#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3617 nf_bridge_put(dst->nf_bridge);
3618#endif
b1937227 3619 __nf_copy(dst, src, true);
e7ac05f3
YK
3620}
3621
984bc16c
JM
3622#ifdef CONFIG_NETWORK_SECMARK
3623static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3624{
3625 to->secmark = from->secmark;
3626}
3627
3628static inline void skb_init_secmark(struct sk_buff *skb)
3629{
3630 skb->secmark = 0;
3631}
3632#else
3633static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3634{ }
3635
3636static inline void skb_init_secmark(struct sk_buff *skb)
3637{ }
3638#endif
3639
574f7194
EB
3640static inline bool skb_irq_freeable(const struct sk_buff *skb)
3641{
3642 return !skb->destructor &&
3643#if IS_ENABLED(CONFIG_XFRM)
3644 !skb->sp &&
3645#endif
3646#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3647 !skb->nfct &&
3648#endif
3649 !skb->_skb_refdst &&
3650 !skb_has_frag_list(skb);
3651}
3652
f25f4e44
PWJ
3653static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3654{
f25f4e44 3655 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3656}
3657
9247744e 3658static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3659{
4e3ab47a 3660 return skb->queue_mapping;
4e3ab47a
PE
3661}
3662
f25f4e44
PWJ
3663static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3664{
f25f4e44 3665 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3666}
3667
d5a9e24a
DM
3668static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3669{
3670 skb->queue_mapping = rx_queue + 1;
3671}
3672
9247744e 3673static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3674{
3675 return skb->queue_mapping - 1;
3676}
3677
9247744e 3678static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3679{
a02cec21 3680 return skb->queue_mapping != 0;
d5a9e24a
DM
3681}
3682
def8b4fa
AD
3683static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3684{
0b3d8e08 3685#ifdef CONFIG_XFRM
def8b4fa 3686 return skb->sp;
def8b4fa 3687#else
def8b4fa 3688 return NULL;
def8b4fa 3689#endif
0b3d8e08 3690}
def8b4fa 3691
68c33163
PS
3692/* Keeps track of mac header offset relative to skb->head.
3693 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3694 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3695 * tunnel skb it points to outer mac header.
3696 * Keeps track of level of encapsulation of network headers.
3697 */
68c33163 3698struct skb_gso_cb {
802ab55a
AD
3699 union {
3700 int mac_offset;
3701 int data_offset;
3702 };
3347c960 3703 int encap_level;
76443456 3704 __wsum csum;
7e2b10c1 3705 __u16 csum_start;
68c33163 3706};
9207f9d4
KK
3707#define SKB_SGO_CB_OFFSET 32
3708#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
3709
3710static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3711{
3712 return (skb_mac_header(inner_skb) - inner_skb->head) -
3713 SKB_GSO_CB(inner_skb)->mac_offset;
3714}
3715
1e2bd517
PS
3716static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3717{
3718 int new_headroom, headroom;
3719 int ret;
3720
3721 headroom = skb_headroom(skb);
3722 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3723 if (ret)
3724 return ret;
3725
3726 new_headroom = skb_headroom(skb);
3727 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3728 return 0;
3729}
3730
08b64fcc
AD
3731static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3732{
3733 /* Do not update partial checksums if remote checksum is enabled. */
3734 if (skb->remcsum_offload)
3735 return;
3736
3737 SKB_GSO_CB(skb)->csum = res;
3738 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3739}
3740
7e2b10c1
TH
3741/* Compute the checksum for a gso segment. First compute the checksum value
3742 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3743 * then add in skb->csum (checksum from csum_start to end of packet).
3744 * skb->csum and csum_start are then updated to reflect the checksum of the
3745 * resultant packet starting from the transport header-- the resultant checksum
3746 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3747 * header.
3748 */
3749static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3750{
76443456
AD
3751 unsigned char *csum_start = skb_transport_header(skb);
3752 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3753 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 3754
76443456
AD
3755 SKB_GSO_CB(skb)->csum = res;
3756 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 3757
76443456 3758 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
3759}
3760
bdcc0924 3761static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3762{
3763 return skb_shinfo(skb)->gso_size;
3764}
3765
36a8f39e 3766/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 3767static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
3768{
3769 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3770}
3771
5293efe6
DB
3772static inline void skb_gso_reset(struct sk_buff *skb)
3773{
3774 skb_shinfo(skb)->gso_size = 0;
3775 skb_shinfo(skb)->gso_segs = 0;
3776 skb_shinfo(skb)->gso_type = 0;
3777}
3778
7965bd4d 3779void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
3780
3781static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3782{
3783 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3784 * wanted then gso_type will be set. */
05bdd2f1
ED
3785 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3786
b78462eb
AD
3787 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3788 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
3789 __skb_warn_lro_forwarding(skb);
3790 return true;
3791 }
3792 return false;
3793}
3794
35fc92a9
HX
3795static inline void skb_forward_csum(struct sk_buff *skb)
3796{
3797 /* Unfortunately we don't support this one. Any brave souls? */
3798 if (skb->ip_summed == CHECKSUM_COMPLETE)
3799 skb->ip_summed = CHECKSUM_NONE;
3800}
3801
bc8acf2c
ED
3802/**
3803 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3804 * @skb: skb to check
3805 *
3806 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3807 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3808 * use this helper, to document places where we make this assertion.
3809 */
05bdd2f1 3810static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
3811{
3812#ifdef DEBUG
3813 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3814#endif
3815}
3816
f35d9d8a 3817bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 3818
ed1f50c3 3819int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
3820struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3821 unsigned int transport_len,
3822 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 3823
3a7c1ee4
AD
3824/**
3825 * skb_head_is_locked - Determine if the skb->head is locked down
3826 * @skb: skb to check
3827 *
3828 * The head on skbs build around a head frag can be removed if they are
3829 * not cloned. This function returns true if the skb head is locked down
3830 * due to either being allocated via kmalloc, or by being a clone with
3831 * multiple references to the head.
3832 */
3833static inline bool skb_head_is_locked(const struct sk_buff *skb)
3834{
3835 return !skb->head_frag || skb_cloned(skb);
3836}
fe6cc55f
FW
3837
3838/**
3839 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3840 *
3841 * @skb: GSO skb
3842 *
3843 * skb_gso_network_seglen is used to determine the real size of the
3844 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3845 *
3846 * The MAC/L2 header is not accounted for.
3847 */
3848static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3849{
3850 unsigned int hdr_len = skb_transport_header(skb) -
3851 skb_network_header(skb);
3852 return hdr_len + skb_gso_transport_seglen(skb);
3853}
ee122c79 3854
179bc67f
EC
3855/* Local Checksum Offload.
3856 * Compute outer checksum based on the assumption that the
3857 * inner checksum will be offloaded later.
e8ae7b00
EC
3858 * See Documentation/networking/checksum-offloads.txt for
3859 * explanation of how this works.
179bc67f
EC
3860 * Fill in outer checksum adjustment (e.g. with sum of outer
3861 * pseudo-header) before calling.
3862 * Also ensure that inner checksum is in linear data area.
3863 */
3864static inline __wsum lco_csum(struct sk_buff *skb)
3865{
9e74a6da
AD
3866 unsigned char *csum_start = skb_checksum_start(skb);
3867 unsigned char *l4_hdr = skb_transport_header(skb);
3868 __wsum partial;
179bc67f
EC
3869
3870 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
3871 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3872 skb->csum_offset));
3873
179bc67f 3874 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 3875 * adjustment filled in by caller) and return result.
179bc67f 3876 */
9e74a6da 3877 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
3878}
3879
1da177e4
LT
3880#endif /* __KERNEL__ */
3881#endif /* _LINUX_SKBUFF_H */