]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/skbuff.h
Merge branch 'bpf-next'
[mirror_ubuntu-bionic-kernel.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4
LT
22#include <linux/cache.h>
23
60063497 24#include <linux/atomic.h>
1da177e4
LT
25#include <asm/types.h>
26#include <linux/spinlock.h>
1da177e4 27#include <linux/net.h>
3fc7e8a6 28#include <linux/textsearch.h>
1da177e4 29#include <net/checksum.h>
a80958f4 30#include <linux/rcupdate.h>
97fc2f08 31#include <linux/dmaengine.h>
b7aa0bf7 32#include <linux/hrtimer.h>
131ea667 33#include <linux/dma-mapping.h>
c8f44aff 34#include <linux/netdev_features.h>
363ec392 35#include <linux/sched.h>
5203cd28 36#include <net/flow_keys.h>
1da177e4 37
78ea85f1
DB
38/* A. Checksumming of received packets by device.
39 *
40 * CHECKSUM_NONE:
41 *
42 * Device failed to checksum this packet e.g. due to lack of capabilities.
43 * The packet contains full (though not verified) checksum in packet but
44 * not in skb->csum. Thus, skb->csum is undefined in this case.
45 *
46 * CHECKSUM_UNNECESSARY:
47 *
48 * The hardware you're dealing with doesn't calculate the full checksum
49 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
50 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
51 * if their checksums are okay. skb->csum is still undefined in this case
52 * though. It is a bad option, but, unfortunately, nowadays most vendors do
53 * this. Apparently with the secret goal to sell you new devices, when you
54 * will add new protocol to your host, f.e. IPv6 8)
55 *
56 * CHECKSUM_UNNECESSARY is applicable to following protocols:
57 * TCP: IPv6 and IPv4.
58 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
59 * zero UDP checksum for either IPv4 or IPv6, the networking stack
60 * may perform further validation in this case.
61 * GRE: only if the checksum is present in the header.
62 * SCTP: indicates the CRC in SCTP header has been validated.
63 *
64 * skb->csum_level indicates the number of consecutive checksums found in
65 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
66 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
67 * and a device is able to verify the checksums for UDP (possibly zero),
68 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
69 * two. If the device were only able to verify the UDP checksum and not
70 * GRE, either because it doesn't support GRE checksum of because GRE
71 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
72 * not considered in this case).
78ea85f1
DB
73 *
74 * CHECKSUM_COMPLETE:
75 *
76 * This is the most generic way. The device supplied checksum of the _whole_
77 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
78 * hardware doesn't need to parse L3/L4 headers to implement this.
79 *
80 * Note: Even if device supports only some protocols, but is able to produce
81 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
82 *
83 * CHECKSUM_PARTIAL:
84 *
85 * This is identical to the case for output below. This may occur on a packet
86 * received directly from another Linux OS, e.g., a virtualized Linux kernel
87 * on the same host. The packet can be treated in the same way as
88 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
89 * checksum must be filled in by the OS or the hardware.
90 *
91 * B. Checksumming on output.
92 *
93 * CHECKSUM_NONE:
94 *
95 * The skb was already checksummed by the protocol, or a checksum is not
96 * required.
97 *
98 * CHECKSUM_PARTIAL:
99 *
100 * The device is required to checksum the packet as seen by hard_start_xmit()
101 * from skb->csum_start up to the end, and to record/write the checksum at
102 * offset skb->csum_start + skb->csum_offset.
103 *
104 * The device must show its capabilities in dev->features, set up at device
105 * setup time, e.g. netdev_features.h:
106 *
107 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
108 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
109 * IPv4. Sigh. Vendors like this way for an unknown reason.
110 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
111 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
112 * NETIF_F_... - Well, you get the picture.
113 *
114 * CHECKSUM_UNNECESSARY:
115 *
116 * Normally, the device will do per protocol specific checksumming. Protocol
117 * implementations that do not want the NIC to perform the checksum
118 * calculation should use this flag in their outgoing skbs.
119 *
120 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
121 * offload. Correspondingly, the FCoE protocol driver
122 * stack should use CHECKSUM_UNNECESSARY.
123 *
124 * Any questions? No questions, good. --ANK
125 */
126
60476372 127/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
128#define CHECKSUM_NONE 0
129#define CHECKSUM_UNNECESSARY 1
130#define CHECKSUM_COMPLETE 2
131#define CHECKSUM_PARTIAL 3
1da177e4 132
77cffe23
TH
133/* Maximum value in skb->csum_level */
134#define SKB_MAX_CSUM_LEVEL 3
135
0bec8c88 136#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 137#define SKB_WITH_OVERHEAD(X) \
deea84b0 138 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
139#define SKB_MAX_ORDER(X, ORDER) \
140 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
141#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
142#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
143
87fb4b7b
ED
144/* return minimum truesize of one skb containing X bytes of data */
145#define SKB_TRUESIZE(X) ((X) + \
146 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
147 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
148
1da177e4 149struct net_device;
716ea3a7 150struct scatterlist;
9c55e01c 151struct pipe_inode_info;
1da177e4 152
5f79e0f9 153#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
154struct nf_conntrack {
155 atomic_t use;
1da177e4 156};
5f79e0f9 157#endif
1da177e4 158
34666d46 159#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 160struct nf_bridge_info {
bf1ac5ca
ED
161 atomic_t use;
162 unsigned int mask;
163 struct net_device *physindev;
164 struct net_device *physoutdev;
165 unsigned long data[32 / sizeof(unsigned long)];
1da177e4
LT
166};
167#endif
168
1da177e4
LT
169struct sk_buff_head {
170 /* These two members must be first. */
171 struct sk_buff *next;
172 struct sk_buff *prev;
173
174 __u32 qlen;
175 spinlock_t lock;
176};
177
178struct sk_buff;
179
9d4dde52
IC
180/* To allow 64K frame to be packed as single skb without frag_list we
181 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
182 * buffers which do not start on a page boundary.
183 *
184 * Since GRO uses frags we allocate at least 16 regardless of page
185 * size.
a715dea3 186 */
9d4dde52 187#if (65536/PAGE_SIZE + 1) < 16
eec00954 188#define MAX_SKB_FRAGS 16UL
a715dea3 189#else
9d4dde52 190#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 191#endif
1da177e4
LT
192
193typedef struct skb_frag_struct skb_frag_t;
194
195struct skb_frag_struct {
a8605c60
IC
196 struct {
197 struct page *p;
198 } page;
cb4dfe56 199#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
200 __u32 page_offset;
201 __u32 size;
cb4dfe56
ED
202#else
203 __u16 page_offset;
204 __u16 size;
205#endif
1da177e4
LT
206};
207
9e903e08
ED
208static inline unsigned int skb_frag_size(const skb_frag_t *frag)
209{
210 return frag->size;
211}
212
213static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
214{
215 frag->size = size;
216}
217
218static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
219{
220 frag->size += delta;
221}
222
223static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
224{
225 frag->size -= delta;
226}
227
ac45f602
PO
228#define HAVE_HW_TIME_STAMP
229
230/**
d3a21be8 231 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
232 * @hwtstamp: hardware time stamp transformed into duration
233 * since arbitrary point in time
ac45f602
PO
234 *
235 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 236 * skb->tstamp.
ac45f602
PO
237 *
238 * hwtstamps can only be compared against other hwtstamps from
239 * the same device.
240 *
241 * This structure is attached to packets as part of the
242 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
243 */
244struct skb_shared_hwtstamps {
245 ktime_t hwtstamp;
ac45f602
PO
246};
247
2244d07b
OH
248/* Definitions for tx_flags in struct skb_shared_info */
249enum {
250 /* generate hardware time stamp */
251 SKBTX_HW_TSTAMP = 1 << 0,
252
e7fd2885 253 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
254 SKBTX_SW_TSTAMP = 1 << 1,
255
256 /* device driver is going to provide hardware time stamp */
257 SKBTX_IN_PROGRESS = 1 << 2,
258
a6686f2f 259 /* device driver supports TX zero-copy buffers */
62b1a8ab 260 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
261
262 /* generate wifi status information (where possible) */
62b1a8ab 263 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
264
265 /* This indicates at least one fragment might be overwritten
266 * (as in vmsplice(), sendfile() ...)
267 * If we need to compute a TX checksum, we'll need to copy
268 * all frags to avoid possible bad checksum
269 */
270 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
271
272 /* generate software time stamp when entering packet scheduling */
273 SKBTX_SCHED_TSTAMP = 1 << 6,
e1c8a607
WB
274
275 /* generate software timestamp on peer data acknowledgment */
276 SKBTX_ACK_TSTAMP = 1 << 7,
a6686f2f
SM
277};
278
e1c8a607
WB
279#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
280 SKBTX_SCHED_TSTAMP | \
281 SKBTX_ACK_TSTAMP)
f24b9be5
WB
282#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
283
a6686f2f
SM
284/*
285 * The callback notifies userspace to release buffers when skb DMA is done in
286 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
287 * The zerocopy_success argument is true if zero copy transmit occurred,
288 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
289 * The ctx field is used to track device context.
290 * The desc field is used to track userspace buffer index.
a6686f2f
SM
291 */
292struct ubuf_info {
e19d6763 293 void (*callback)(struct ubuf_info *, bool zerocopy_success);
ca8f4fb2 294 void *ctx;
a6686f2f 295 unsigned long desc;
ac45f602
PO
296};
297
1da177e4
LT
298/* This data is invariant across clones and lives at
299 * the end of the header data, ie. at skb->end.
300 */
301struct skb_shared_info {
9f42f126
IC
302 unsigned char nr_frags;
303 __u8 tx_flags;
7967168c
HX
304 unsigned short gso_size;
305 /* Warning: this field is not always filled in (UFO)! */
306 unsigned short gso_segs;
307 unsigned short gso_type;
1da177e4 308 struct sk_buff *frag_list;
ac45f602 309 struct skb_shared_hwtstamps hwtstamps;
09c2d251 310 u32 tskey;
9f42f126 311 __be32 ip6_frag_id;
ec7d2f2c
ED
312
313 /*
314 * Warning : all fields before dataref are cleared in __alloc_skb()
315 */
316 atomic_t dataref;
317
69e3c75f
JB
318 /* Intermediate layers must ensure that destructor_arg
319 * remains valid until skb destructor */
320 void * destructor_arg;
a6686f2f 321
fed66381
ED
322 /* must be last field, see pskb_expand_head() */
323 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
324};
325
326/* We divide dataref into two halves. The higher 16 bits hold references
327 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
328 * the entire skb->data. A clone of a headerless skb holds the length of
329 * the header in skb->hdr_len.
1da177e4
LT
330 *
331 * All users must obey the rule that the skb->data reference count must be
332 * greater than or equal to the payload reference count.
333 *
334 * Holding a reference to the payload part means that the user does not
335 * care about modifications to the header part of skb->data.
336 */
337#define SKB_DATAREF_SHIFT 16
338#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
339
d179cd12
DM
340
341enum {
342 SKB_FCLONE_UNAVAILABLE,
343 SKB_FCLONE_ORIG,
344 SKB_FCLONE_CLONE,
345};
346
7967168c
HX
347enum {
348 SKB_GSO_TCPV4 = 1 << 0,
f83ef8c0 349 SKB_GSO_UDP = 1 << 1,
576a30eb
HX
350
351 /* This indicates the skb is from an untrusted source. */
352 SKB_GSO_DODGY = 1 << 2,
b0da8537
MC
353
354 /* This indicates the tcp segment has CWR set. */
f83ef8c0
HX
355 SKB_GSO_TCP_ECN = 1 << 3,
356
357 SKB_GSO_TCPV6 = 1 << 4,
01d5b2fc
CL
358
359 SKB_GSO_FCOE = 1 << 5,
68c33163
PS
360
361 SKB_GSO_GRE = 1 << 6,
73136267 362
4b28252c 363 SKB_GSO_GRE_CSUM = 1 << 7,
0d89d203 364
4b28252c 365 SKB_GSO_IPIP = 1 << 8,
cb32f511 366
4b28252c 367 SKB_GSO_SIT = 1 << 9,
61c1db7f 368
4b28252c 369 SKB_GSO_UDP_TUNNEL = 1 << 10,
0f4f4ffa
TH
370
371 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
4749c09c 372
4b28252c
TH
373 SKB_GSO_MPLS = 1 << 12,
374
7967168c
HX
375};
376
2e07fa9c
ACM
377#if BITS_PER_LONG > 32
378#define NET_SKBUFF_DATA_USES_OFFSET 1
379#endif
380
381#ifdef NET_SKBUFF_DATA_USES_OFFSET
382typedef unsigned int sk_buff_data_t;
383#else
384typedef unsigned char *sk_buff_data_t;
385#endif
386
363ec392
ED
387/**
388 * struct skb_mstamp - multi resolution time stamps
389 * @stamp_us: timestamp in us resolution
390 * @stamp_jiffies: timestamp in jiffies
391 */
392struct skb_mstamp {
393 union {
394 u64 v64;
395 struct {
396 u32 stamp_us;
397 u32 stamp_jiffies;
398 };
399 };
400};
401
402/**
403 * skb_mstamp_get - get current timestamp
404 * @cl: place to store timestamps
405 */
406static inline void skb_mstamp_get(struct skb_mstamp *cl)
407{
408 u64 val = local_clock();
409
410 do_div(val, NSEC_PER_USEC);
411 cl->stamp_us = (u32)val;
412 cl->stamp_jiffies = (u32)jiffies;
413}
414
415/**
416 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
417 * @t1: pointer to newest sample
418 * @t0: pointer to oldest sample
419 */
420static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
421 const struct skb_mstamp *t0)
422{
423 s32 delta_us = t1->stamp_us - t0->stamp_us;
424 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
425
426 /* If delta_us is negative, this might be because interval is too big,
427 * or local_clock() drift is too big : fallback using jiffies.
428 */
429 if (delta_us <= 0 ||
430 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
431
432 delta_us = jiffies_to_usecs(delta_jiffies);
433
434 return delta_us;
435}
436
437
1da177e4
LT
438/**
439 * struct sk_buff - socket buffer
440 * @next: Next buffer in list
441 * @prev: Previous buffer in list
363ec392 442 * @tstamp: Time we arrived/left
d84e0bd7 443 * @sk: Socket we are owned by
1da177e4 444 * @dev: Device we arrived on/are leaving by
d84e0bd7 445 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 446 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 447 * @sp: the security path, used for xfrm
1da177e4
LT
448 * @len: Length of actual data
449 * @data_len: Data length
450 * @mac_len: Length of link layer header
334a8132 451 * @hdr_len: writable header length of cloned skb
663ead3b
HX
452 * @csum: Checksum (must include start/offset pair)
453 * @csum_start: Offset from skb->head where checksumming should start
454 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 455 * @priority: Packet queueing priority
60ff7467 456 * @ignore_df: allow local fragmentation
1da177e4 457 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 458 * @ip_summed: Driver fed us an IP checksum
1da177e4 459 * @nohdr: Payload reference only, must not modify header
d84e0bd7 460 * @nfctinfo: Relationship of this skb to the connection
1da177e4 461 * @pkt_type: Packet class
c83c2486 462 * @fclone: skbuff clone status
c83c2486 463 * @ipvs_property: skbuff is owned by ipvs
31729363
RD
464 * @peeked: this packet has been seen already, so stats have been
465 * done for it, don't do them again
ba9dda3a 466 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
467 * @protocol: Packet protocol from driver
468 * @destructor: Destruct function
469 * @nfct: Associated connection, if any
1da177e4 470 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 471 * @skb_iif: ifindex of device we arrived on
1da177e4
LT
472 * @tc_index: Traffic control index
473 * @tc_verd: traffic control verdict
61b905da 474 * @hash: the packet hash
d84e0bd7 475 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 476 * @xmit_more: More SKBs are pending for this queue
553a5672 477 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 478 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 479 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 480 * ports.
a3b18ddb 481 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
482 * @wifi_acked_valid: wifi_acked was set
483 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 484 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
f4b8ea78
RD
485 * @dma_cookie: a cookie to one of several possible DMA operations
486 * done by skb DMA functions
06021292 487 * @napi_id: id of the NAPI struct this skb came from
984bc16c 488 * @secmark: security marking
d84e0bd7
DB
489 * @mark: Generic packet mark
490 * @dropcount: total number of sk_receive_queue overflows
86a9bad3 491 * @vlan_proto: vlan encapsulation protocol
6aa895b0 492 * @vlan_tci: vlan tag control information
0d89d203 493 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
494 * @inner_transport_header: Inner transport layer header (encapsulation)
495 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 496 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
497 * @transport_header: Transport layer header
498 * @network_header: Network layer header
499 * @mac_header: Link layer header
500 * @tail: Tail pointer
501 * @end: End pointer
502 * @head: Head of buffer
503 * @data: Data head pointer
504 * @truesize: Buffer size
505 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
506 */
507
508struct sk_buff {
509 /* These two members must be first. */
510 struct sk_buff *next;
511 struct sk_buff *prev;
512
363ec392
ED
513 union {
514 ktime_t tstamp;
515 struct skb_mstamp skb_mstamp;
516 };
da3f5cf1
FF
517
518 struct sock *sk;
1da177e4 519 struct net_device *dev;
1da177e4 520
1da177e4
LT
521 /*
522 * This is the control buffer. It is free to use for every
523 * layer. Please put your private variables there. If you
524 * want to keep them across layers you have to do a skb_clone()
525 * first. This is owned by whoever has the skb queued ATM.
526 */
da3f5cf1 527 char cb[48] __aligned(8);
1da177e4 528
7fee226a 529 unsigned long _skb_refdst;
b1937227 530 void (*destructor)(struct sk_buff *skb);
da3f5cf1
FF
531#ifdef CONFIG_XFRM
532 struct sec_path *sp;
b1937227
ED
533#endif
534#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
535 struct nf_conntrack *nfct;
536#endif
85224844 537#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 538 struct nf_bridge_info *nf_bridge;
da3f5cf1 539#endif
1da177e4 540 unsigned int len,
334a8132
PM
541 data_len;
542 __u16 mac_len,
543 hdr_len;
b1937227
ED
544
545 /* Following fields are _not_ copied in __copy_skb_header()
546 * Note that queue_mapping is here mostly to fill a hole.
547 */
fe55f6d5 548 kmemcheck_bitfield_begin(flags1);
b1937227
ED
549 __u16 queue_mapping;
550 __u8 cloned:1,
6869c4d8 551 nohdr:1,
b1937227
ED
552 fclone:2,
553 peeked:1,
554 head_frag:1,
555 xmit_more:1;
556 /* one bit hole */
557 kmemcheck_bitfield_end(flags1);
558
b1937227
ED
559 /* fields enclosed in headers_start/headers_end are copied
560 * using a single memcpy() in __copy_skb_header()
561 */
562 __u32 headers_start[0];
233577a2
HFS
563
564/* if you move pkt_type around you also must adapt those constants */
565#ifdef __BIG_ENDIAN_BITFIELD
566#define PKT_TYPE_MAX (7 << 5)
567#else
568#define PKT_TYPE_MAX 7
569#endif
570#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
571
572 __u8 __pkt_type_offset[0];
b1937227 573 __u8 pkt_type:3;
c93bdd0e 574 __u8 pfmemalloc:1;
b1937227
ED
575 __u8 ignore_df:1;
576 __u8 nfctinfo:3;
577
578 __u8 nf_trace:1;
579 __u8 ip_summed:2;
3853b584 580 __u8 ooo_okay:1;
61b905da 581 __u8 l4_hash:1;
a3b18ddb 582 __u8 sw_hash:1;
6e3e939f
JB
583 __u8 wifi_acked_valid:1;
584 __u8 wifi_acked:1;
b1937227 585
3bdc0eba 586 __u8 no_fcs:1;
77cffe23 587 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 588 __u8 encapsulation:1;
7e2b10c1 589 __u8 encap_hdr_csum:1;
5d0c2b95 590 __u8 csum_valid:1;
7e3cead5 591 __u8 csum_complete_sw:1;
b1937227
ED
592 __u8 csum_level:2;
593 __u8 csum_bad:1;
fe55f6d5 594
b1937227
ED
595#ifdef CONFIG_IPV6_NDISC_NODETYPE
596 __u8 ndisc_nodetype:2;
597#endif
598 __u8 ipvs_property:1;
599 /* 5 or 7 bit hole */
600
601#ifdef CONFIG_NET_SCHED
602 __u16 tc_index; /* traffic control index */
603#ifdef CONFIG_NET_CLS_ACT
604 __u16 tc_verd; /* traffic control verdict */
605#endif
606#endif
607
608 union {
609 __wsum csum;
610 struct {
611 __u16 csum_start;
612 __u16 csum_offset;
613 };
614 };
615 __u32 priority;
616 int skb_iif;
617 __u32 hash;
618 __be16 vlan_proto;
619 __u16 vlan_tci;
e0d1095a 620#if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
06021292
ET
621 union {
622 unsigned int napi_id;
623 dma_cookie_t dma_cookie;
624 };
97fc2f08 625#endif
984bc16c
JM
626#ifdef CONFIG_NETWORK_SECMARK
627 __u32 secmark;
628#endif
3b885787
NH
629 union {
630 __u32 mark;
631 __u32 dropcount;
16fad69c 632 __u32 reserved_tailroom;
3b885787 633 };
1da177e4 634
0d89d203 635 __be16 inner_protocol;
1a37e412
SH
636 __u16 inner_transport_header;
637 __u16 inner_network_header;
638 __u16 inner_mac_header;
b1937227
ED
639
640 __be16 protocol;
1a37e412
SH
641 __u16 transport_header;
642 __u16 network_header;
643 __u16 mac_header;
b1937227
ED
644
645 __u32 headers_end[0];
646
1da177e4 647 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 648 sk_buff_data_t tail;
4305b541 649 sk_buff_data_t end;
1da177e4 650 unsigned char *head,
4305b541 651 *data;
27a884dc
ACM
652 unsigned int truesize;
653 atomic_t users;
1da177e4
LT
654};
655
656#ifdef __KERNEL__
657/*
658 * Handling routines are only of interest to the kernel
659 */
660#include <linux/slab.h>
661
1da177e4 662
c93bdd0e
MG
663#define SKB_ALLOC_FCLONE 0x01
664#define SKB_ALLOC_RX 0x02
665
666/* Returns true if the skb was allocated from PFMEMALLOC reserves */
667static inline bool skb_pfmemalloc(const struct sk_buff *skb)
668{
669 return unlikely(skb->pfmemalloc);
670}
671
7fee226a
ED
672/*
673 * skb might have a dst pointer attached, refcounted or not.
674 * _skb_refdst low order bit is set if refcount was _not_ taken
675 */
676#define SKB_DST_NOREF 1UL
677#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
678
679/**
680 * skb_dst - returns skb dst_entry
681 * @skb: buffer
682 *
683 * Returns skb dst_entry, regardless of reference taken or not.
684 */
adf30907
ED
685static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
686{
7fee226a
ED
687 /* If refdst was not refcounted, check we still are in a
688 * rcu_read_lock section
689 */
690 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
691 !rcu_read_lock_held() &&
692 !rcu_read_lock_bh_held());
693 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
694}
695
7fee226a
ED
696/**
697 * skb_dst_set - sets skb dst
698 * @skb: buffer
699 * @dst: dst entry
700 *
701 * Sets skb dst, assuming a reference was taken on dst and should
702 * be released by skb_dst_drop()
703 */
adf30907
ED
704static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
705{
7fee226a
ED
706 skb->_skb_refdst = (unsigned long)dst;
707}
708
7965bd4d
JP
709void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
710 bool force);
932bc4d7
JA
711
712/**
713 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
714 * @skb: buffer
715 * @dst: dst entry
716 *
717 * Sets skb dst, assuming a reference was not taken on dst.
718 * If dst entry is cached, we do not take reference and dst_release
719 * will be avoided by refdst_drop. If dst entry is not cached, we take
720 * reference, so that last dst_release can destroy the dst immediately.
721 */
722static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
723{
724 __skb_dst_set_noref(skb, dst, false);
725}
726
727/**
728 * skb_dst_set_noref_force - sets skb dst, without taking reference
729 * @skb: buffer
730 * @dst: dst entry
731 *
732 * Sets skb dst, assuming a reference was not taken on dst.
733 * No reference is taken and no dst_release will be called. While for
734 * cached dsts deferred reclaim is a basic feature, for entries that are
735 * not cached it is caller's job to guarantee that last dst_release for
736 * provided dst happens when nobody uses it, eg. after a RCU grace period.
737 */
738static inline void skb_dst_set_noref_force(struct sk_buff *skb,
739 struct dst_entry *dst)
740{
741 __skb_dst_set_noref(skb, dst, true);
742}
7fee226a
ED
743
744/**
25985edc 745 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
746 * @skb: buffer
747 */
748static inline bool skb_dst_is_noref(const struct sk_buff *skb)
749{
750 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
751}
752
511c3f92
ED
753static inline struct rtable *skb_rtable(const struct sk_buff *skb)
754{
adf30907 755 return (struct rtable *)skb_dst(skb);
511c3f92
ED
756}
757
7965bd4d
JP
758void kfree_skb(struct sk_buff *skb);
759void kfree_skb_list(struct sk_buff *segs);
760void skb_tx_error(struct sk_buff *skb);
761void consume_skb(struct sk_buff *skb);
762void __kfree_skb(struct sk_buff *skb);
d7e8883c 763extern struct kmem_cache *skbuff_head_cache;
bad43ca8 764
7965bd4d
JP
765void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
766bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
767 bool *fragstolen, int *delta_truesize);
bad43ca8 768
7965bd4d
JP
769struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
770 int node);
771struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 772static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 773 gfp_t priority)
d179cd12 774{
564824b0 775 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
776}
777
2e4e4410
ED
778struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
779 unsigned long data_len,
780 int max_page_order,
781 int *errcode,
782 gfp_t gfp_mask);
783
d0bf4a9e
ED
784/* Layout of fast clones : [skb1][skb2][fclone_ref] */
785struct sk_buff_fclones {
786 struct sk_buff skb1;
787
788 struct sk_buff skb2;
789
790 atomic_t fclone_ref;
791};
792
793/**
794 * skb_fclone_busy - check if fclone is busy
795 * @skb: buffer
796 *
797 * Returns true is skb is a fast clone, and its clone is not freed.
798 */
799static inline bool skb_fclone_busy(const struct sk_buff *skb)
800{
801 const struct sk_buff_fclones *fclones;
802
803 fclones = container_of(skb, struct sk_buff_fclones, skb1);
804
805 return skb->fclone == SKB_FCLONE_ORIG &&
806 fclones->skb2.fclone == SKB_FCLONE_CLONE;
807}
808
d179cd12 809static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 810 gfp_t priority)
d179cd12 811{
c93bdd0e 812 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
813}
814
7965bd4d 815struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
0ebd0ac5
PM
816static inline struct sk_buff *alloc_skb_head(gfp_t priority)
817{
818 return __alloc_skb_head(priority, -1);
819}
820
7965bd4d
JP
821struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
822int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
823struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
824struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
825struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
826 gfp_t gfp_mask, bool fclone);
827static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
828 gfp_t gfp_mask)
829{
830 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
831}
7965bd4d
JP
832
833int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
834struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
835 unsigned int headroom);
836struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
837 int newtailroom, gfp_t priority);
25a91d8d
FD
838int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
839 int offset, int len);
7965bd4d
JP
840int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
841 int len);
842int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
843int skb_pad(struct sk_buff *skb, int pad);
ead2ceb0 844#define dev_kfree_skb(a) consume_skb(a)
1da177e4 845
7965bd4d
JP
846int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
847 int getfrag(void *from, char *to, int offset,
848 int len, int odd, struct sk_buff *skb),
849 void *from, int length);
e89e9cf5 850
d94d9fee 851struct skb_seq_state {
677e90ed
TG
852 __u32 lower_offset;
853 __u32 upper_offset;
854 __u32 frag_idx;
855 __u32 stepped_offset;
856 struct sk_buff *root_skb;
857 struct sk_buff *cur_skb;
858 __u8 *frag_data;
859};
860
7965bd4d
JP
861void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
862 unsigned int to, struct skb_seq_state *st);
863unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
864 struct skb_seq_state *st);
865void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 866
7965bd4d
JP
867unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
868 unsigned int to, struct ts_config *config,
869 struct ts_state *state);
3fc7e8a6 870
09323cc4
TH
871/*
872 * Packet hash types specify the type of hash in skb_set_hash.
873 *
874 * Hash types refer to the protocol layer addresses which are used to
875 * construct a packet's hash. The hashes are used to differentiate or identify
876 * flows of the protocol layer for the hash type. Hash types are either
877 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
878 *
879 * Properties of hashes:
880 *
881 * 1) Two packets in different flows have different hash values
882 * 2) Two packets in the same flow should have the same hash value
883 *
884 * A hash at a higher layer is considered to be more specific. A driver should
885 * set the most specific hash possible.
886 *
887 * A driver cannot indicate a more specific hash than the layer at which a hash
888 * was computed. For instance an L3 hash cannot be set as an L4 hash.
889 *
890 * A driver may indicate a hash level which is less specific than the
891 * actual layer the hash was computed on. For instance, a hash computed
892 * at L4 may be considered an L3 hash. This should only be done if the
893 * driver can't unambiguously determine that the HW computed the hash at
894 * the higher layer. Note that the "should" in the second property above
895 * permits this.
896 */
897enum pkt_hash_types {
898 PKT_HASH_TYPE_NONE, /* Undefined type */
899 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
900 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
901 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
902};
903
904static inline void
905skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
906{
61b905da 907 skb->l4_hash = (type == PKT_HASH_TYPE_L4);
a3b18ddb 908 skb->sw_hash = 0;
61b905da 909 skb->hash = hash;
09323cc4
TH
910}
911
3958afa1
TH
912void __skb_get_hash(struct sk_buff *skb);
913static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 914{
a3b18ddb 915 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 916 __skb_get_hash(skb);
bfb564e7 917
61b905da 918 return skb->hash;
bfb564e7
KK
919}
920
57bdf7f4
TH
921static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
922{
61b905da 923 return skb->hash;
57bdf7f4
TH
924}
925
7539fadc
TH
926static inline void skb_clear_hash(struct sk_buff *skb)
927{
61b905da 928 skb->hash = 0;
a3b18ddb 929 skb->sw_hash = 0;
61b905da 930 skb->l4_hash = 0;
7539fadc
TH
931}
932
933static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
934{
61b905da 935 if (!skb->l4_hash)
7539fadc
TH
936 skb_clear_hash(skb);
937}
938
3df7a74e
TH
939static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
940{
61b905da 941 to->hash = from->hash;
a3b18ddb 942 to->sw_hash = from->sw_hash;
61b905da 943 to->l4_hash = from->l4_hash;
3df7a74e
TH
944};
945
4305b541
ACM
946#ifdef NET_SKBUFF_DATA_USES_OFFSET
947static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
948{
949 return skb->head + skb->end;
950}
ec47ea82
AD
951
952static inline unsigned int skb_end_offset(const struct sk_buff *skb)
953{
954 return skb->end;
955}
4305b541
ACM
956#else
957static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
958{
959 return skb->end;
960}
ec47ea82
AD
961
962static inline unsigned int skb_end_offset(const struct sk_buff *skb)
963{
964 return skb->end - skb->head;
965}
4305b541
ACM
966#endif
967
1da177e4 968/* Internal */
4305b541 969#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 970
ac45f602
PO
971static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
972{
973 return &skb_shinfo(skb)->hwtstamps;
974}
975
1da177e4
LT
976/**
977 * skb_queue_empty - check if a queue is empty
978 * @list: queue head
979 *
980 * Returns true if the queue is empty, false otherwise.
981 */
982static inline int skb_queue_empty(const struct sk_buff_head *list)
983{
fd44b93c 984 return list->next == (const struct sk_buff *) list;
1da177e4
LT
985}
986
fc7ebb21
DM
987/**
988 * skb_queue_is_last - check if skb is the last entry in the queue
989 * @list: queue head
990 * @skb: buffer
991 *
992 * Returns true if @skb is the last buffer on the list.
993 */
994static inline bool skb_queue_is_last(const struct sk_buff_head *list,
995 const struct sk_buff *skb)
996{
fd44b93c 997 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
998}
999
832d11c5
IJ
1000/**
1001 * skb_queue_is_first - check if skb is the first entry in the queue
1002 * @list: queue head
1003 * @skb: buffer
1004 *
1005 * Returns true if @skb is the first buffer on the list.
1006 */
1007static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1008 const struct sk_buff *skb)
1009{
fd44b93c 1010 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1011}
1012
249c8b42
DM
1013/**
1014 * skb_queue_next - return the next packet in the queue
1015 * @list: queue head
1016 * @skb: current buffer
1017 *
1018 * Return the next packet in @list after @skb. It is only valid to
1019 * call this if skb_queue_is_last() evaluates to false.
1020 */
1021static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1022 const struct sk_buff *skb)
1023{
1024 /* This BUG_ON may seem severe, but if we just return then we
1025 * are going to dereference garbage.
1026 */
1027 BUG_ON(skb_queue_is_last(list, skb));
1028 return skb->next;
1029}
1030
832d11c5
IJ
1031/**
1032 * skb_queue_prev - return the prev packet in the queue
1033 * @list: queue head
1034 * @skb: current buffer
1035 *
1036 * Return the prev packet in @list before @skb. It is only valid to
1037 * call this if skb_queue_is_first() evaluates to false.
1038 */
1039static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1040 const struct sk_buff *skb)
1041{
1042 /* This BUG_ON may seem severe, but if we just return then we
1043 * are going to dereference garbage.
1044 */
1045 BUG_ON(skb_queue_is_first(list, skb));
1046 return skb->prev;
1047}
1048
1da177e4
LT
1049/**
1050 * skb_get - reference buffer
1051 * @skb: buffer to reference
1052 *
1053 * Makes another reference to a socket buffer and returns a pointer
1054 * to the buffer.
1055 */
1056static inline struct sk_buff *skb_get(struct sk_buff *skb)
1057{
1058 atomic_inc(&skb->users);
1059 return skb;
1060}
1061
1062/*
1063 * If users == 1, we are the only owner and are can avoid redundant
1064 * atomic change.
1065 */
1066
1da177e4
LT
1067/**
1068 * skb_cloned - is the buffer a clone
1069 * @skb: buffer to check
1070 *
1071 * Returns true if the buffer was generated with skb_clone() and is
1072 * one of multiple shared copies of the buffer. Cloned buffers are
1073 * shared data so must not be written to under normal circumstances.
1074 */
1075static inline int skb_cloned(const struct sk_buff *skb)
1076{
1077 return skb->cloned &&
1078 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1079}
1080
14bbd6a5
PS
1081static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1082{
1083 might_sleep_if(pri & __GFP_WAIT);
1084
1085 if (skb_cloned(skb))
1086 return pskb_expand_head(skb, 0, 0, pri);
1087
1088 return 0;
1089}
1090
1da177e4
LT
1091/**
1092 * skb_header_cloned - is the header a clone
1093 * @skb: buffer to check
1094 *
1095 * Returns true if modifying the header part of the buffer requires
1096 * the data to be copied.
1097 */
1098static inline int skb_header_cloned(const struct sk_buff *skb)
1099{
1100 int dataref;
1101
1102 if (!skb->cloned)
1103 return 0;
1104
1105 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1106 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1107 return dataref != 1;
1108}
1109
1110/**
1111 * skb_header_release - release reference to header
1112 * @skb: buffer to operate on
1113 *
1114 * Drop a reference to the header part of the buffer. This is done
1115 * by acquiring a payload reference. You must not read from the header
1116 * part of skb->data after this.
f4a775d1 1117 * Note : Check if you can use __skb_header_release() instead.
1da177e4
LT
1118 */
1119static inline void skb_header_release(struct sk_buff *skb)
1120{
1121 BUG_ON(skb->nohdr);
1122 skb->nohdr = 1;
1123 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1124}
1125
f4a775d1
ED
1126/**
1127 * __skb_header_release - release reference to header
1128 * @skb: buffer to operate on
1129 *
1130 * Variant of skb_header_release() assuming skb is private to caller.
1131 * We can avoid one atomic operation.
1132 */
1133static inline void __skb_header_release(struct sk_buff *skb)
1134{
1135 skb->nohdr = 1;
1136 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1137}
1138
1139
1da177e4
LT
1140/**
1141 * skb_shared - is the buffer shared
1142 * @skb: buffer to check
1143 *
1144 * Returns true if more than one person has a reference to this
1145 * buffer.
1146 */
1147static inline int skb_shared(const struct sk_buff *skb)
1148{
1149 return atomic_read(&skb->users) != 1;
1150}
1151
1152/**
1153 * skb_share_check - check if buffer is shared and if so clone it
1154 * @skb: buffer to check
1155 * @pri: priority for memory allocation
1156 *
1157 * If the buffer is shared the buffer is cloned and the old copy
1158 * drops a reference. A new clone with a single reference is returned.
1159 * If the buffer is not shared the original buffer is returned. When
1160 * being called from interrupt status or with spinlocks held pri must
1161 * be GFP_ATOMIC.
1162 *
1163 * NULL is returned on a memory allocation failure.
1164 */
47061bc4 1165static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4
LT
1166{
1167 might_sleep_if(pri & __GFP_WAIT);
1168 if (skb_shared(skb)) {
1169 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1170
1171 if (likely(nskb))
1172 consume_skb(skb);
1173 else
1174 kfree_skb(skb);
1da177e4
LT
1175 skb = nskb;
1176 }
1177 return skb;
1178}
1179
1180/*
1181 * Copy shared buffers into a new sk_buff. We effectively do COW on
1182 * packets to handle cases where we have a local reader and forward
1183 * and a couple of other messy ones. The normal one is tcpdumping
1184 * a packet thats being forwarded.
1185 */
1186
1187/**
1188 * skb_unshare - make a copy of a shared buffer
1189 * @skb: buffer to check
1190 * @pri: priority for memory allocation
1191 *
1192 * If the socket buffer is a clone then this function creates a new
1193 * copy of the data, drops a reference count on the old copy and returns
1194 * the new copy with the reference count at 1. If the buffer is not a clone
1195 * the original buffer is returned. When called with a spinlock held or
1196 * from interrupt state @pri must be %GFP_ATOMIC
1197 *
1198 * %NULL is returned on a memory allocation failure.
1199 */
e2bf521d 1200static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1201 gfp_t pri)
1da177e4
LT
1202{
1203 might_sleep_if(pri & __GFP_WAIT);
1204 if (skb_cloned(skb)) {
1205 struct sk_buff *nskb = skb_copy(skb, pri);
1206 kfree_skb(skb); /* Free our shared copy */
1207 skb = nskb;
1208 }
1209 return skb;
1210}
1211
1212/**
1a5778aa 1213 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1214 * @list_: list to peek at
1215 *
1216 * Peek an &sk_buff. Unlike most other operations you _MUST_
1217 * be careful with this one. A peek leaves the buffer on the
1218 * list and someone else may run off with it. You must hold
1219 * the appropriate locks or have a private queue to do this.
1220 *
1221 * Returns %NULL for an empty list or a pointer to the head element.
1222 * The reference count is not incremented and the reference is therefore
1223 * volatile. Use with caution.
1224 */
05bdd2f1 1225static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1226{
18d07000
ED
1227 struct sk_buff *skb = list_->next;
1228
1229 if (skb == (struct sk_buff *)list_)
1230 skb = NULL;
1231 return skb;
1da177e4
LT
1232}
1233
da5ef6e5
PE
1234/**
1235 * skb_peek_next - peek skb following the given one from a queue
1236 * @skb: skb to start from
1237 * @list_: list to peek at
1238 *
1239 * Returns %NULL when the end of the list is met or a pointer to the
1240 * next element. The reference count is not incremented and the
1241 * reference is therefore volatile. Use with caution.
1242 */
1243static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1244 const struct sk_buff_head *list_)
1245{
1246 struct sk_buff *next = skb->next;
18d07000 1247
da5ef6e5
PE
1248 if (next == (struct sk_buff *)list_)
1249 next = NULL;
1250 return next;
1251}
1252
1da177e4 1253/**
1a5778aa 1254 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1255 * @list_: list to peek at
1256 *
1257 * Peek an &sk_buff. Unlike most other operations you _MUST_
1258 * be careful with this one. A peek leaves the buffer on the
1259 * list and someone else may run off with it. You must hold
1260 * the appropriate locks or have a private queue to do this.
1261 *
1262 * Returns %NULL for an empty list or a pointer to the tail element.
1263 * The reference count is not incremented and the reference is therefore
1264 * volatile. Use with caution.
1265 */
05bdd2f1 1266static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1267{
18d07000
ED
1268 struct sk_buff *skb = list_->prev;
1269
1270 if (skb == (struct sk_buff *)list_)
1271 skb = NULL;
1272 return skb;
1273
1da177e4
LT
1274}
1275
1276/**
1277 * skb_queue_len - get queue length
1278 * @list_: list to measure
1279 *
1280 * Return the length of an &sk_buff queue.
1281 */
1282static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1283{
1284 return list_->qlen;
1285}
1286
67fed459
DM
1287/**
1288 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1289 * @list: queue to initialize
1290 *
1291 * This initializes only the list and queue length aspects of
1292 * an sk_buff_head object. This allows to initialize the list
1293 * aspects of an sk_buff_head without reinitializing things like
1294 * the spinlock. It can also be used for on-stack sk_buff_head
1295 * objects where the spinlock is known to not be used.
1296 */
1297static inline void __skb_queue_head_init(struct sk_buff_head *list)
1298{
1299 list->prev = list->next = (struct sk_buff *)list;
1300 list->qlen = 0;
1301}
1302
76f10ad0
AV
1303/*
1304 * This function creates a split out lock class for each invocation;
1305 * this is needed for now since a whole lot of users of the skb-queue
1306 * infrastructure in drivers have different locking usage (in hardirq)
1307 * than the networking core (in softirq only). In the long run either the
1308 * network layer or drivers should need annotation to consolidate the
1309 * main types of usage into 3 classes.
1310 */
1da177e4
LT
1311static inline void skb_queue_head_init(struct sk_buff_head *list)
1312{
1313 spin_lock_init(&list->lock);
67fed459 1314 __skb_queue_head_init(list);
1da177e4
LT
1315}
1316
c2ecba71
PE
1317static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1318 struct lock_class_key *class)
1319{
1320 skb_queue_head_init(list);
1321 lockdep_set_class(&list->lock, class);
1322}
1323
1da177e4 1324/*
bf299275 1325 * Insert an sk_buff on a list.
1da177e4
LT
1326 *
1327 * The "__skb_xxxx()" functions are the non-atomic ones that
1328 * can only be called with interrupts disabled.
1329 */
7965bd4d
JP
1330void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1331 struct sk_buff_head *list);
bf299275
GR
1332static inline void __skb_insert(struct sk_buff *newsk,
1333 struct sk_buff *prev, struct sk_buff *next,
1334 struct sk_buff_head *list)
1335{
1336 newsk->next = next;
1337 newsk->prev = prev;
1338 next->prev = prev->next = newsk;
1339 list->qlen++;
1340}
1da177e4 1341
67fed459
DM
1342static inline void __skb_queue_splice(const struct sk_buff_head *list,
1343 struct sk_buff *prev,
1344 struct sk_buff *next)
1345{
1346 struct sk_buff *first = list->next;
1347 struct sk_buff *last = list->prev;
1348
1349 first->prev = prev;
1350 prev->next = first;
1351
1352 last->next = next;
1353 next->prev = last;
1354}
1355
1356/**
1357 * skb_queue_splice - join two skb lists, this is designed for stacks
1358 * @list: the new list to add
1359 * @head: the place to add it in the first list
1360 */
1361static inline void skb_queue_splice(const struct sk_buff_head *list,
1362 struct sk_buff_head *head)
1363{
1364 if (!skb_queue_empty(list)) {
1365 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1366 head->qlen += list->qlen;
67fed459
DM
1367 }
1368}
1369
1370/**
d9619496 1371 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1372 * @list: the new list to add
1373 * @head: the place to add it in the first list
1374 *
1375 * The list at @list is reinitialised
1376 */
1377static inline void skb_queue_splice_init(struct sk_buff_head *list,
1378 struct sk_buff_head *head)
1379{
1380 if (!skb_queue_empty(list)) {
1381 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1382 head->qlen += list->qlen;
67fed459
DM
1383 __skb_queue_head_init(list);
1384 }
1385}
1386
1387/**
1388 * skb_queue_splice_tail - join two skb lists, each list being a queue
1389 * @list: the new list to add
1390 * @head: the place to add it in the first list
1391 */
1392static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1393 struct sk_buff_head *head)
1394{
1395 if (!skb_queue_empty(list)) {
1396 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1397 head->qlen += list->qlen;
67fed459
DM
1398 }
1399}
1400
1401/**
d9619496 1402 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1403 * @list: the new list to add
1404 * @head: the place to add it in the first list
1405 *
1406 * Each of the lists is a queue.
1407 * The list at @list is reinitialised
1408 */
1409static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1410 struct sk_buff_head *head)
1411{
1412 if (!skb_queue_empty(list)) {
1413 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1414 head->qlen += list->qlen;
67fed459
DM
1415 __skb_queue_head_init(list);
1416 }
1417}
1418
1da177e4 1419/**
300ce174 1420 * __skb_queue_after - queue a buffer at the list head
1da177e4 1421 * @list: list to use
300ce174 1422 * @prev: place after this buffer
1da177e4
LT
1423 * @newsk: buffer to queue
1424 *
300ce174 1425 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1426 * and you must therefore hold required locks before calling it.
1427 *
1428 * A buffer cannot be placed on two lists at the same time.
1429 */
300ce174
SH
1430static inline void __skb_queue_after(struct sk_buff_head *list,
1431 struct sk_buff *prev,
1432 struct sk_buff *newsk)
1da177e4 1433{
bf299275 1434 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1435}
1436
7965bd4d
JP
1437void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1438 struct sk_buff_head *list);
7de6c033 1439
f5572855
GR
1440static inline void __skb_queue_before(struct sk_buff_head *list,
1441 struct sk_buff *next,
1442 struct sk_buff *newsk)
1443{
1444 __skb_insert(newsk, next->prev, next, list);
1445}
1446
300ce174
SH
1447/**
1448 * __skb_queue_head - queue a buffer at the list head
1449 * @list: list to use
1450 * @newsk: buffer to queue
1451 *
1452 * Queue a buffer at the start of a list. This function takes no locks
1453 * and you must therefore hold required locks before calling it.
1454 *
1455 * A buffer cannot be placed on two lists at the same time.
1456 */
7965bd4d 1457void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1458static inline void __skb_queue_head(struct sk_buff_head *list,
1459 struct sk_buff *newsk)
1460{
1461 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1462}
1463
1da177e4
LT
1464/**
1465 * __skb_queue_tail - queue a buffer at the list tail
1466 * @list: list to use
1467 * @newsk: buffer to queue
1468 *
1469 * Queue a buffer at the end of a list. This function takes no locks
1470 * and you must therefore hold required locks before calling it.
1471 *
1472 * A buffer cannot be placed on two lists at the same time.
1473 */
7965bd4d 1474void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1475static inline void __skb_queue_tail(struct sk_buff_head *list,
1476 struct sk_buff *newsk)
1477{
f5572855 1478 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1479}
1480
1da177e4
LT
1481/*
1482 * remove sk_buff from list. _Must_ be called atomically, and with
1483 * the list known..
1484 */
7965bd4d 1485void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1486static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1487{
1488 struct sk_buff *next, *prev;
1489
1490 list->qlen--;
1491 next = skb->next;
1492 prev = skb->prev;
1493 skb->next = skb->prev = NULL;
1da177e4
LT
1494 next->prev = prev;
1495 prev->next = next;
1496}
1497
f525c06d
GR
1498/**
1499 * __skb_dequeue - remove from the head of the queue
1500 * @list: list to dequeue from
1501 *
1502 * Remove the head of the list. This function does not take any locks
1503 * so must be used with appropriate locks held only. The head item is
1504 * returned or %NULL if the list is empty.
1505 */
7965bd4d 1506struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1507static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1508{
1509 struct sk_buff *skb = skb_peek(list);
1510 if (skb)
1511 __skb_unlink(skb, list);
1512 return skb;
1513}
1da177e4
LT
1514
1515/**
1516 * __skb_dequeue_tail - remove from the tail of the queue
1517 * @list: list to dequeue from
1518 *
1519 * Remove the tail of the list. This function does not take any locks
1520 * so must be used with appropriate locks held only. The tail item is
1521 * returned or %NULL if the list is empty.
1522 */
7965bd4d 1523struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1524static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1525{
1526 struct sk_buff *skb = skb_peek_tail(list);
1527 if (skb)
1528 __skb_unlink(skb, list);
1529 return skb;
1530}
1531
1532
bdcc0924 1533static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1534{
1535 return skb->data_len;
1536}
1537
1538static inline unsigned int skb_headlen(const struct sk_buff *skb)
1539{
1540 return skb->len - skb->data_len;
1541}
1542
1543static inline int skb_pagelen(const struct sk_buff *skb)
1544{
1545 int i, len = 0;
1546
1547 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
9e903e08 1548 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1da177e4
LT
1549 return len + skb_headlen(skb);
1550}
1551
131ea667
IC
1552/**
1553 * __skb_fill_page_desc - initialise a paged fragment in an skb
1554 * @skb: buffer containing fragment to be initialised
1555 * @i: paged fragment index to initialise
1556 * @page: the page to use for this fragment
1557 * @off: the offset to the data with @page
1558 * @size: the length of the data
1559 *
1560 * Initialises the @i'th fragment of @skb to point to &size bytes at
1561 * offset @off within @page.
1562 *
1563 * Does not take any additional reference on the fragment.
1564 */
1565static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1566 struct page *page, int off, int size)
1da177e4
LT
1567{
1568 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1569
c48a11c7
MG
1570 /*
1571 * Propagate page->pfmemalloc to the skb if we can. The problem is
1572 * that not all callers have unique ownership of the page. If
1573 * pfmemalloc is set, we check the mapping as a mapping implies
1574 * page->index is set (index and pfmemalloc share space).
1575 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1576 * do not lose pfmemalloc information as the pages would not be
1577 * allocated using __GFP_MEMALLOC.
1578 */
a8605c60 1579 frag->page.p = page;
1da177e4 1580 frag->page_offset = off;
9e903e08 1581 skb_frag_size_set(frag, size);
cca7af38
PE
1582
1583 page = compound_head(page);
1584 if (page->pfmemalloc && !page->mapping)
1585 skb->pfmemalloc = true;
131ea667
IC
1586}
1587
1588/**
1589 * skb_fill_page_desc - initialise a paged fragment in an skb
1590 * @skb: buffer containing fragment to be initialised
1591 * @i: paged fragment index to initialise
1592 * @page: the page to use for this fragment
1593 * @off: the offset to the data with @page
1594 * @size: the length of the data
1595 *
1596 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1597 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1598 * addition updates @skb such that @i is the last fragment.
1599 *
1600 * Does not take any additional reference on the fragment.
1601 */
1602static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1603 struct page *page, int off, int size)
1604{
1605 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1606 skb_shinfo(skb)->nr_frags = i + 1;
1607}
1608
7965bd4d
JP
1609void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1610 int size, unsigned int truesize);
654bed16 1611
f8e617e1
JW
1612void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1613 unsigned int truesize);
1614
1da177e4 1615#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1616#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1617#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1618
27a884dc
ACM
1619#ifdef NET_SKBUFF_DATA_USES_OFFSET
1620static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1621{
1622 return skb->head + skb->tail;
1623}
1624
1625static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1626{
1627 skb->tail = skb->data - skb->head;
1628}
1629
1630static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1631{
1632 skb_reset_tail_pointer(skb);
1633 skb->tail += offset;
1634}
7cc46190 1635
27a884dc
ACM
1636#else /* NET_SKBUFF_DATA_USES_OFFSET */
1637static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1638{
1639 return skb->tail;
1640}
1641
1642static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1643{
1644 skb->tail = skb->data;
1645}
1646
1647static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1648{
1649 skb->tail = skb->data + offset;
1650}
4305b541 1651
27a884dc
ACM
1652#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1653
1da177e4
LT
1654/*
1655 * Add data to an sk_buff
1656 */
0c7ddf36 1657unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
7965bd4d 1658unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1659static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1660{
27a884dc 1661 unsigned char *tmp = skb_tail_pointer(skb);
1da177e4
LT
1662 SKB_LINEAR_ASSERT(skb);
1663 skb->tail += len;
1664 skb->len += len;
1665 return tmp;
1666}
1667
7965bd4d 1668unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1669static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1670{
1671 skb->data -= len;
1672 skb->len += len;
1673 return skb->data;
1674}
1675
7965bd4d 1676unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1677static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1678{
1679 skb->len -= len;
1680 BUG_ON(skb->len < skb->data_len);
1681 return skb->data += len;
1682}
1683
47d29646
DM
1684static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1685{
1686 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1687}
1688
7965bd4d 1689unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4
LT
1690
1691static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1692{
1693 if (len > skb_headlen(skb) &&
987c402a 1694 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
1695 return NULL;
1696 skb->len -= len;
1697 return skb->data += len;
1698}
1699
1700static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1701{
1702 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1703}
1704
1705static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1706{
1707 if (likely(len <= skb_headlen(skb)))
1708 return 1;
1709 if (unlikely(len > skb->len))
1710 return 0;
987c402a 1711 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
1712}
1713
1714/**
1715 * skb_headroom - bytes at buffer head
1716 * @skb: buffer to check
1717 *
1718 * Return the number of bytes of free space at the head of an &sk_buff.
1719 */
c2636b4d 1720static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
1721{
1722 return skb->data - skb->head;
1723}
1724
1725/**
1726 * skb_tailroom - bytes at buffer end
1727 * @skb: buffer to check
1728 *
1729 * Return the number of bytes of free space at the tail of an sk_buff
1730 */
1731static inline int skb_tailroom(const struct sk_buff *skb)
1732{
4305b541 1733 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
1734}
1735
a21d4572
ED
1736/**
1737 * skb_availroom - bytes at buffer end
1738 * @skb: buffer to check
1739 *
1740 * Return the number of bytes of free space at the tail of an sk_buff
1741 * allocated by sk_stream_alloc()
1742 */
1743static inline int skb_availroom(const struct sk_buff *skb)
1744{
16fad69c
ED
1745 if (skb_is_nonlinear(skb))
1746 return 0;
1747
1748 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
1749}
1750
1da177e4
LT
1751/**
1752 * skb_reserve - adjust headroom
1753 * @skb: buffer to alter
1754 * @len: bytes to move
1755 *
1756 * Increase the headroom of an empty &sk_buff by reducing the tail
1757 * room. This is only allowed for an empty buffer.
1758 */
8243126c 1759static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
1760{
1761 skb->data += len;
1762 skb->tail += len;
1763}
1764
6a674e9c
JG
1765static inline void skb_reset_inner_headers(struct sk_buff *skb)
1766{
aefbd2b3 1767 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
1768 skb->inner_network_header = skb->network_header;
1769 skb->inner_transport_header = skb->transport_header;
1770}
1771
0b5c9db1
JP
1772static inline void skb_reset_mac_len(struct sk_buff *skb)
1773{
1774 skb->mac_len = skb->network_header - skb->mac_header;
1775}
1776
6a674e9c
JG
1777static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1778 *skb)
1779{
1780 return skb->head + skb->inner_transport_header;
1781}
1782
1783static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1784{
1785 skb->inner_transport_header = skb->data - skb->head;
1786}
1787
1788static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1789 const int offset)
1790{
1791 skb_reset_inner_transport_header(skb);
1792 skb->inner_transport_header += offset;
1793}
1794
1795static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1796{
1797 return skb->head + skb->inner_network_header;
1798}
1799
1800static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1801{
1802 skb->inner_network_header = skb->data - skb->head;
1803}
1804
1805static inline void skb_set_inner_network_header(struct sk_buff *skb,
1806 const int offset)
1807{
1808 skb_reset_inner_network_header(skb);
1809 skb->inner_network_header += offset;
1810}
1811
aefbd2b3
PS
1812static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1813{
1814 return skb->head + skb->inner_mac_header;
1815}
1816
1817static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1818{
1819 skb->inner_mac_header = skb->data - skb->head;
1820}
1821
1822static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1823 const int offset)
1824{
1825 skb_reset_inner_mac_header(skb);
1826 skb->inner_mac_header += offset;
1827}
fda55eca
ED
1828static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1829{
35d04610 1830 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
1831}
1832
9c70220b
ACM
1833static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1834{
2e07fa9c 1835 return skb->head + skb->transport_header;
9c70220b
ACM
1836}
1837
badff6d0
ACM
1838static inline void skb_reset_transport_header(struct sk_buff *skb)
1839{
2e07fa9c 1840 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
1841}
1842
967b05f6
ACM
1843static inline void skb_set_transport_header(struct sk_buff *skb,
1844 const int offset)
1845{
2e07fa9c
ACM
1846 skb_reset_transport_header(skb);
1847 skb->transport_header += offset;
ea2ae17d
ACM
1848}
1849
d56f90a7
ACM
1850static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1851{
2e07fa9c 1852 return skb->head + skb->network_header;
d56f90a7
ACM
1853}
1854
c1d2bbe1
ACM
1855static inline void skb_reset_network_header(struct sk_buff *skb)
1856{
2e07fa9c 1857 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
1858}
1859
c14d2450
ACM
1860static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1861{
2e07fa9c
ACM
1862 skb_reset_network_header(skb);
1863 skb->network_header += offset;
c14d2450
ACM
1864}
1865
2e07fa9c 1866static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 1867{
2e07fa9c 1868 return skb->head + skb->mac_header;
bbe735e4
ACM
1869}
1870
2e07fa9c 1871static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 1872{
35d04610 1873 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
1874}
1875
1876static inline void skb_reset_mac_header(struct sk_buff *skb)
1877{
1878 skb->mac_header = skb->data - skb->head;
1879}
1880
1881static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1882{
1883 skb_reset_mac_header(skb);
1884 skb->mac_header += offset;
1885}
1886
0e3da5bb
TT
1887static inline void skb_pop_mac_header(struct sk_buff *skb)
1888{
1889 skb->mac_header = skb->network_header;
1890}
1891
fbbdb8f0
YX
1892static inline void skb_probe_transport_header(struct sk_buff *skb,
1893 const int offset_hint)
1894{
1895 struct flow_keys keys;
1896
1897 if (skb_transport_header_was_set(skb))
1898 return;
1899 else if (skb_flow_dissect(skb, &keys))
1900 skb_set_transport_header(skb, keys.thoff);
1901 else
1902 skb_set_transport_header(skb, offset_hint);
1903}
1904
03606895
ED
1905static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1906{
1907 if (skb_mac_header_was_set(skb)) {
1908 const unsigned char *old_mac = skb_mac_header(skb);
1909
1910 skb_set_mac_header(skb, -skb->mac_len);
1911 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1912 }
1913}
1914
04fb451e
MM
1915static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1916{
1917 return skb->csum_start - skb_headroom(skb);
1918}
1919
2e07fa9c
ACM
1920static inline int skb_transport_offset(const struct sk_buff *skb)
1921{
1922 return skb_transport_header(skb) - skb->data;
1923}
1924
1925static inline u32 skb_network_header_len(const struct sk_buff *skb)
1926{
1927 return skb->transport_header - skb->network_header;
1928}
1929
6a674e9c
JG
1930static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1931{
1932 return skb->inner_transport_header - skb->inner_network_header;
1933}
1934
2e07fa9c
ACM
1935static inline int skb_network_offset(const struct sk_buff *skb)
1936{
1937 return skb_network_header(skb) - skb->data;
1938}
48d49d0c 1939
6a674e9c
JG
1940static inline int skb_inner_network_offset(const struct sk_buff *skb)
1941{
1942 return skb_inner_network_header(skb) - skb->data;
1943}
1944
f9599ce1
CG
1945static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1946{
1947 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1948}
1949
1da177e4
LT
1950/*
1951 * CPUs often take a performance hit when accessing unaligned memory
1952 * locations. The actual performance hit varies, it can be small if the
1953 * hardware handles it or large if we have to take an exception and fix it
1954 * in software.
1955 *
1956 * Since an ethernet header is 14 bytes network drivers often end up with
1957 * the IP header at an unaligned offset. The IP header can be aligned by
1958 * shifting the start of the packet by 2 bytes. Drivers should do this
1959 * with:
1960 *
8660c124 1961 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
1962 *
1963 * The downside to this alignment of the IP header is that the DMA is now
1964 * unaligned. On some architectures the cost of an unaligned DMA is high
1965 * and this cost outweighs the gains made by aligning the IP header.
8660c124 1966 *
1da177e4
LT
1967 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1968 * to be overridden.
1969 */
1970#ifndef NET_IP_ALIGN
1971#define NET_IP_ALIGN 2
1972#endif
1973
025be81e
AB
1974/*
1975 * The networking layer reserves some headroom in skb data (via
1976 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1977 * the header has to grow. In the default case, if the header has to grow
d6301d3d 1978 * 32 bytes or less we avoid the reallocation.
025be81e
AB
1979 *
1980 * Unfortunately this headroom changes the DMA alignment of the resulting
1981 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1982 * on some architectures. An architecture can override this value,
1983 * perhaps setting it to a cacheline in size (since that will maintain
1984 * cacheline alignment of the DMA). It must be a power of 2.
1985 *
d6301d3d 1986 * Various parts of the networking layer expect at least 32 bytes of
025be81e 1987 * headroom, you should not reduce this.
5933dd2f
ED
1988 *
1989 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1990 * to reduce average number of cache lines per packet.
1991 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 1992 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
1993 */
1994#ifndef NET_SKB_PAD
5933dd2f 1995#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
1996#endif
1997
7965bd4d 1998int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1999
2000static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2001{
c4264f27 2002 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2003 WARN_ON(1);
2004 return;
2005 }
27a884dc
ACM
2006 skb->len = len;
2007 skb_set_tail_pointer(skb, len);
1da177e4
LT
2008}
2009
7965bd4d 2010void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2011
2012static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2013{
3cc0e873
HX
2014 if (skb->data_len)
2015 return ___pskb_trim(skb, len);
2016 __skb_trim(skb, len);
2017 return 0;
1da177e4
LT
2018}
2019
2020static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2021{
2022 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2023}
2024
e9fa4f7b
HX
2025/**
2026 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2027 * @skb: buffer to alter
2028 * @len: new length
2029 *
2030 * This is identical to pskb_trim except that the caller knows that
2031 * the skb is not cloned so we should never get an error due to out-
2032 * of-memory.
2033 */
2034static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2035{
2036 int err = pskb_trim(skb, len);
2037 BUG_ON(err);
2038}
2039
1da177e4
LT
2040/**
2041 * skb_orphan - orphan a buffer
2042 * @skb: buffer to orphan
2043 *
2044 * If a buffer currently has an owner then we call the owner's
2045 * destructor function and make the @skb unowned. The buffer continues
2046 * to exist but is no longer charged to its former owner.
2047 */
2048static inline void skb_orphan(struct sk_buff *skb)
2049{
c34a7612 2050 if (skb->destructor) {
1da177e4 2051 skb->destructor(skb);
c34a7612
ED
2052 skb->destructor = NULL;
2053 skb->sk = NULL;
376c7311
ED
2054 } else {
2055 BUG_ON(skb->sk);
c34a7612 2056 }
1da177e4
LT
2057}
2058
a353e0ce
MT
2059/**
2060 * skb_orphan_frags - orphan the frags contained in a buffer
2061 * @skb: buffer to orphan frags from
2062 * @gfp_mask: allocation mask for replacement pages
2063 *
2064 * For each frag in the SKB which needs a destructor (i.e. has an
2065 * owner) create a copy of that frag and release the original
2066 * page by calling the destructor.
2067 */
2068static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2069{
2070 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2071 return 0;
2072 return skb_copy_ubufs(skb, gfp_mask);
2073}
2074
1da177e4
LT
2075/**
2076 * __skb_queue_purge - empty a list
2077 * @list: list to empty
2078 *
2079 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2080 * the list and one reference dropped. This function does not take the
2081 * list lock and the caller must hold the relevant locks to use it.
2082 */
7965bd4d 2083void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2084static inline void __skb_queue_purge(struct sk_buff_head *list)
2085{
2086 struct sk_buff *skb;
2087 while ((skb = __skb_dequeue(list)) != NULL)
2088 kfree_skb(skb);
2089}
2090
e5e67305
AD
2091#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2092#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2093#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
2094
7965bd4d 2095void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2096
7965bd4d
JP
2097struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2098 gfp_t gfp_mask);
8af27456
CH
2099
2100/**
2101 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2102 * @dev: network device to receive on
2103 * @length: length to allocate
2104 *
2105 * Allocate a new &sk_buff and assign it a usage count of one. The
2106 * buffer has unspecified headroom built in. Users should allocate
2107 * the headroom they think they need without accounting for the
2108 * built in space. The built in space is used for optimisations.
2109 *
2110 * %NULL is returned if there is no free memory. Although this function
2111 * allocates memory it can be called from an interrupt.
2112 */
2113static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2114 unsigned int length)
8af27456
CH
2115{
2116 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2117}
2118
6f532612
ED
2119/* legacy helper around __netdev_alloc_skb() */
2120static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2121 gfp_t gfp_mask)
2122{
2123 return __netdev_alloc_skb(NULL, length, gfp_mask);
2124}
2125
2126/* legacy helper around netdev_alloc_skb() */
2127static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2128{
2129 return netdev_alloc_skb(NULL, length);
2130}
2131
2132
4915a0de
ED
2133static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2134 unsigned int length, gfp_t gfp)
61321bbd 2135{
4915a0de 2136 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2137
2138 if (NET_IP_ALIGN && skb)
2139 skb_reserve(skb, NET_IP_ALIGN);
2140 return skb;
2141}
2142
4915a0de
ED
2143static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2144 unsigned int length)
2145{
2146 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2147}
2148
bc6fc9fa
FF
2149/**
2150 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
0614002b
MG
2151 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2152 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2153 * @order: size of the allocation
2154 *
2155 * Allocate a new page.
2156 *
2157 * %NULL is returned if there is no free memory.
2158*/
2159static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2160 struct sk_buff *skb,
2161 unsigned int order)
2162{
2163 struct page *page;
2164
2165 gfp_mask |= __GFP_COLD;
2166
2167 if (!(gfp_mask & __GFP_NOMEMALLOC))
2168 gfp_mask |= __GFP_MEMALLOC;
2169
2170 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2171 if (skb && page && page->pfmemalloc)
2172 skb->pfmemalloc = true;
2173
2174 return page;
2175}
2176
2177/**
2178 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2179 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2180 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2181 *
2182 * Allocate a new page.
2183 *
2184 * %NULL is returned if there is no free memory.
2185 */
2186static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2187 struct sk_buff *skb)
2188{
2189 return __skb_alloc_pages(gfp_mask, skb, 0);
2190}
2191
2192/**
2193 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2194 * @page: The page that was allocated from skb_alloc_page
2195 * @skb: The skb that may need pfmemalloc set
2196 */
2197static inline void skb_propagate_pfmemalloc(struct page *page,
2198 struct sk_buff *skb)
2199{
2200 if (page && page->pfmemalloc)
2201 skb->pfmemalloc = true;
2202}
2203
131ea667 2204/**
e227867f 2205 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2206 * @frag: the paged fragment
2207 *
2208 * Returns the &struct page associated with @frag.
2209 */
2210static inline struct page *skb_frag_page(const skb_frag_t *frag)
2211{
a8605c60 2212 return frag->page.p;
131ea667
IC
2213}
2214
2215/**
2216 * __skb_frag_ref - take an addition reference on a paged fragment.
2217 * @frag: the paged fragment
2218 *
2219 * Takes an additional reference on the paged fragment @frag.
2220 */
2221static inline void __skb_frag_ref(skb_frag_t *frag)
2222{
2223 get_page(skb_frag_page(frag));
2224}
2225
2226/**
2227 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2228 * @skb: the buffer
2229 * @f: the fragment offset.
2230 *
2231 * Takes an additional reference on the @f'th paged fragment of @skb.
2232 */
2233static inline void skb_frag_ref(struct sk_buff *skb, int f)
2234{
2235 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2236}
2237
2238/**
2239 * __skb_frag_unref - release a reference on a paged fragment.
2240 * @frag: the paged fragment
2241 *
2242 * Releases a reference on the paged fragment @frag.
2243 */
2244static inline void __skb_frag_unref(skb_frag_t *frag)
2245{
2246 put_page(skb_frag_page(frag));
2247}
2248
2249/**
2250 * skb_frag_unref - release a reference on a paged fragment of an skb.
2251 * @skb: the buffer
2252 * @f: the fragment offset
2253 *
2254 * Releases a reference on the @f'th paged fragment of @skb.
2255 */
2256static inline void skb_frag_unref(struct sk_buff *skb, int f)
2257{
2258 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2259}
2260
2261/**
2262 * skb_frag_address - gets the address of the data contained in a paged fragment
2263 * @frag: the paged fragment buffer
2264 *
2265 * Returns the address of the data within @frag. The page must already
2266 * be mapped.
2267 */
2268static inline void *skb_frag_address(const skb_frag_t *frag)
2269{
2270 return page_address(skb_frag_page(frag)) + frag->page_offset;
2271}
2272
2273/**
2274 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2275 * @frag: the paged fragment buffer
2276 *
2277 * Returns the address of the data within @frag. Checks that the page
2278 * is mapped and returns %NULL otherwise.
2279 */
2280static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2281{
2282 void *ptr = page_address(skb_frag_page(frag));
2283 if (unlikely(!ptr))
2284 return NULL;
2285
2286 return ptr + frag->page_offset;
2287}
2288
2289/**
2290 * __skb_frag_set_page - sets the page contained in a paged fragment
2291 * @frag: the paged fragment
2292 * @page: the page to set
2293 *
2294 * Sets the fragment @frag to contain @page.
2295 */
2296static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2297{
a8605c60 2298 frag->page.p = page;
131ea667
IC
2299}
2300
2301/**
2302 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2303 * @skb: the buffer
2304 * @f: the fragment offset
2305 * @page: the page to set
2306 *
2307 * Sets the @f'th fragment of @skb to contain @page.
2308 */
2309static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2310 struct page *page)
2311{
2312 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2313}
2314
400dfd3a
ED
2315bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2316
131ea667
IC
2317/**
2318 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2319 * @dev: the device to map the fragment to
131ea667
IC
2320 * @frag: the paged fragment to map
2321 * @offset: the offset within the fragment (starting at the
2322 * fragment's own offset)
2323 * @size: the number of bytes to map
f83347df 2324 * @dir: the direction of the mapping (%PCI_DMA_*)
131ea667
IC
2325 *
2326 * Maps the page associated with @frag to @device.
2327 */
2328static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2329 const skb_frag_t *frag,
2330 size_t offset, size_t size,
2331 enum dma_data_direction dir)
2332{
2333 return dma_map_page(dev, skb_frag_page(frag),
2334 frag->page_offset + offset, size, dir);
2335}
2336
117632e6
ED
2337static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2338 gfp_t gfp_mask)
2339{
2340 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2341}
2342
bad93e9d
OP
2343
2344static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2345 gfp_t gfp_mask)
2346{
2347 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2348}
2349
2350
334a8132
PM
2351/**
2352 * skb_clone_writable - is the header of a clone writable
2353 * @skb: buffer to check
2354 * @len: length up to which to write
2355 *
2356 * Returns true if modifying the header part of the cloned buffer
2357 * does not requires the data to be copied.
2358 */
05bdd2f1 2359static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2360{
2361 return !skb_header_cloned(skb) &&
2362 skb_headroom(skb) + len <= skb->hdr_len;
2363}
2364
d9cc2048
HX
2365static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2366 int cloned)
2367{
2368 int delta = 0;
2369
d9cc2048
HX
2370 if (headroom > skb_headroom(skb))
2371 delta = headroom - skb_headroom(skb);
2372
2373 if (delta || cloned)
2374 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2375 GFP_ATOMIC);
2376 return 0;
2377}
2378
1da177e4
LT
2379/**
2380 * skb_cow - copy header of skb when it is required
2381 * @skb: buffer to cow
2382 * @headroom: needed headroom
2383 *
2384 * If the skb passed lacks sufficient headroom or its data part
2385 * is shared, data is reallocated. If reallocation fails, an error
2386 * is returned and original skb is not changed.
2387 *
2388 * The result is skb with writable area skb->head...skb->tail
2389 * and at least @headroom of space at head.
2390 */
2391static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2392{
d9cc2048
HX
2393 return __skb_cow(skb, headroom, skb_cloned(skb));
2394}
1da177e4 2395
d9cc2048
HX
2396/**
2397 * skb_cow_head - skb_cow but only making the head writable
2398 * @skb: buffer to cow
2399 * @headroom: needed headroom
2400 *
2401 * This function is identical to skb_cow except that we replace the
2402 * skb_cloned check by skb_header_cloned. It should be used when
2403 * you only need to push on some header and do not need to modify
2404 * the data.
2405 */
2406static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2407{
2408 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2409}
2410
2411/**
2412 * skb_padto - pad an skbuff up to a minimal size
2413 * @skb: buffer to pad
2414 * @len: minimal length
2415 *
2416 * Pads up a buffer to ensure the trailing bytes exist and are
2417 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2418 * is untouched. Otherwise it is extended. Returns zero on
2419 * success. The skb is freed on error.
1da177e4
LT
2420 */
2421
5b057c6b 2422static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2423{
2424 unsigned int size = skb->len;
2425 if (likely(size >= len))
5b057c6b 2426 return 0;
987c402a 2427 return skb_pad(skb, len - size);
1da177e4
LT
2428}
2429
2430static inline int skb_add_data(struct sk_buff *skb,
2431 char __user *from, int copy)
2432{
2433 const int off = skb->len;
2434
2435 if (skb->ip_summed == CHECKSUM_NONE) {
2436 int err = 0;
5084205f 2437 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1da177e4
LT
2438 copy, 0, &err);
2439 if (!err) {
2440 skb->csum = csum_block_add(skb->csum, csum, off);
2441 return 0;
2442 }
2443 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2444 return 0;
2445
2446 __skb_trim(skb, off);
2447 return -EFAULT;
2448}
2449
38ba0a65
ED
2450static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2451 const struct page *page, int off)
1da177e4
LT
2452{
2453 if (i) {
9e903e08 2454 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 2455
ea2ab693 2456 return page == skb_frag_page(frag) &&
9e903e08 2457 off == frag->page_offset + skb_frag_size(frag);
1da177e4 2458 }
38ba0a65 2459 return false;
1da177e4
LT
2460}
2461
364c6bad
HX
2462static inline int __skb_linearize(struct sk_buff *skb)
2463{
2464 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2465}
2466
1da177e4
LT
2467/**
2468 * skb_linearize - convert paged skb to linear one
2469 * @skb: buffer to linarize
1da177e4
LT
2470 *
2471 * If there is no free memory -ENOMEM is returned, otherwise zero
2472 * is returned and the old skb data released.
2473 */
364c6bad
HX
2474static inline int skb_linearize(struct sk_buff *skb)
2475{
2476 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2477}
2478
cef401de
ED
2479/**
2480 * skb_has_shared_frag - can any frag be overwritten
2481 * @skb: buffer to test
2482 *
2483 * Return true if the skb has at least one frag that might be modified
2484 * by an external entity (as in vmsplice()/sendfile())
2485 */
2486static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2487{
c9af6db4
PS
2488 return skb_is_nonlinear(skb) &&
2489 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
2490}
2491
364c6bad
HX
2492/**
2493 * skb_linearize_cow - make sure skb is linear and writable
2494 * @skb: buffer to process
2495 *
2496 * If there is no free memory -ENOMEM is returned, otherwise zero
2497 * is returned and the old skb data released.
2498 */
2499static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 2500{
364c6bad
HX
2501 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2502 __skb_linearize(skb) : 0;
1da177e4
LT
2503}
2504
2505/**
2506 * skb_postpull_rcsum - update checksum for received skb after pull
2507 * @skb: buffer to update
2508 * @start: start of data before pull
2509 * @len: length of data pulled
2510 *
2511 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
2512 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2513 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4
LT
2514 */
2515
2516static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 2517 const void *start, unsigned int len)
1da177e4 2518{
84fa7933 2519 if (skb->ip_summed == CHECKSUM_COMPLETE)
1da177e4
LT
2520 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2521}
2522
cbb042f9
HX
2523unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2524
7ce5a27f
DM
2525/**
2526 * pskb_trim_rcsum - trim received skb and update checksum
2527 * @skb: buffer to trim
2528 * @len: new length
2529 *
2530 * This is exactly the same as pskb_trim except that it ensures the
2531 * checksum of received packets are still valid after the operation.
2532 */
2533
2534static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2535{
2536 if (likely(len >= skb->len))
2537 return 0;
2538 if (skb->ip_summed == CHECKSUM_COMPLETE)
2539 skb->ip_summed = CHECKSUM_NONE;
2540 return __pskb_trim(skb, len);
2541}
2542
1da177e4
LT
2543#define skb_queue_walk(queue, skb) \
2544 for (skb = (queue)->next; \
a1e4891f 2545 skb != (struct sk_buff *)(queue); \
1da177e4
LT
2546 skb = skb->next)
2547
46f8914e
JC
2548#define skb_queue_walk_safe(queue, skb, tmp) \
2549 for (skb = (queue)->next, tmp = skb->next; \
2550 skb != (struct sk_buff *)(queue); \
2551 skb = tmp, tmp = skb->next)
2552
1164f52a 2553#define skb_queue_walk_from(queue, skb) \
a1e4891f 2554 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
2555 skb = skb->next)
2556
2557#define skb_queue_walk_from_safe(queue, skb, tmp) \
2558 for (tmp = skb->next; \
2559 skb != (struct sk_buff *)(queue); \
2560 skb = tmp, tmp = skb->next)
2561
300ce174
SH
2562#define skb_queue_reverse_walk(queue, skb) \
2563 for (skb = (queue)->prev; \
a1e4891f 2564 skb != (struct sk_buff *)(queue); \
300ce174
SH
2565 skb = skb->prev)
2566
686a2955
DM
2567#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2568 for (skb = (queue)->prev, tmp = skb->prev; \
2569 skb != (struct sk_buff *)(queue); \
2570 skb = tmp, tmp = skb->prev)
2571
2572#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2573 for (tmp = skb->prev; \
2574 skb != (struct sk_buff *)(queue); \
2575 skb = tmp, tmp = skb->prev)
1da177e4 2576
21dc3301 2577static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
2578{
2579 return skb_shinfo(skb)->frag_list != NULL;
2580}
2581
2582static inline void skb_frag_list_init(struct sk_buff *skb)
2583{
2584 skb_shinfo(skb)->frag_list = NULL;
2585}
2586
2587static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2588{
2589 frag->next = skb_shinfo(skb)->frag_list;
2590 skb_shinfo(skb)->frag_list = frag;
2591}
2592
2593#define skb_walk_frags(skb, iter) \
2594 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2595
7965bd4d
JP
2596struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2597 int *peeked, int *off, int *err);
2598struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2599 int *err);
2600unsigned int datagram_poll(struct file *file, struct socket *sock,
2601 struct poll_table_struct *wait);
2602int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
2603 struct iovec *to, int size);
2604int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
2605 struct iovec *iov);
2606int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
2607 const struct iovec *from, int from_offset,
2608 int len);
2609int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
2610 int offset, size_t count);
2611int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
2612 const struct iovec *to, int to_offset,
2613 int size);
2614void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2615void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2616int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
2617int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2618int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2619__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2620 int len, __wsum csum);
2621int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2622 struct pipe_inode_info *pipe, unsigned int len,
2623 unsigned int flags);
2624void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 2625unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
2626int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2627 int len, int hlen);
7965bd4d
JP
2628void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2629int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2630void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 2631unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
7965bd4d 2632struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 2633struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
20380731 2634
2817a336
DB
2635struct skb_checksum_ops {
2636 __wsum (*update)(const void *mem, int len, __wsum wsum);
2637 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2638};
2639
2640__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2641 __wsum csum, const struct skb_checksum_ops *ops);
2642__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2643 __wsum csum);
2644
690e36e7
DM
2645static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2646 int len, void *data, int hlen, void *buffer)
1da177e4 2647{
55820ee2 2648 if (hlen - offset >= len)
690e36e7 2649 return data + offset;
1da177e4 2650
690e36e7
DM
2651 if (!skb ||
2652 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
2653 return NULL;
2654
2655 return buffer;
2656}
2657
690e36e7
DM
2658static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2659 int len, void *buffer)
2660{
2661 return __skb_header_pointer(skb, offset, len, skb->data,
2662 skb_headlen(skb), buffer);
2663}
2664
4262e5cc
DB
2665/**
2666 * skb_needs_linearize - check if we need to linearize a given skb
2667 * depending on the given device features.
2668 * @skb: socket buffer to check
2669 * @features: net device features
2670 *
2671 * Returns true if either:
2672 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2673 * 2. skb is fragmented and the device does not support SG.
2674 */
2675static inline bool skb_needs_linearize(struct sk_buff *skb,
2676 netdev_features_t features)
2677{
2678 return skb_is_nonlinear(skb) &&
2679 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2680 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2681}
2682
d626f62b
ACM
2683static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2684 void *to,
2685 const unsigned int len)
2686{
2687 memcpy(to, skb->data, len);
2688}
2689
2690static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2691 const int offset, void *to,
2692 const unsigned int len)
2693{
2694 memcpy(to, skb->data + offset, len);
2695}
2696
27d7ff46
ACM
2697static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2698 const void *from,
2699 const unsigned int len)
2700{
2701 memcpy(skb->data, from, len);
2702}
2703
2704static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2705 const int offset,
2706 const void *from,
2707 const unsigned int len)
2708{
2709 memcpy(skb->data + offset, from, len);
2710}
2711
7965bd4d 2712void skb_init(void);
1da177e4 2713
ac45f602
PO
2714static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2715{
2716 return skb->tstamp;
2717}
2718
a61bbcf2
PM
2719/**
2720 * skb_get_timestamp - get timestamp from a skb
2721 * @skb: skb to get stamp from
2722 * @stamp: pointer to struct timeval to store stamp in
2723 *
2724 * Timestamps are stored in the skb as offsets to a base timestamp.
2725 * This function converts the offset back to a struct timeval and stores
2726 * it in stamp.
2727 */
ac45f602
PO
2728static inline void skb_get_timestamp(const struct sk_buff *skb,
2729 struct timeval *stamp)
a61bbcf2 2730{
b7aa0bf7 2731 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
2732}
2733
ac45f602
PO
2734static inline void skb_get_timestampns(const struct sk_buff *skb,
2735 struct timespec *stamp)
2736{
2737 *stamp = ktime_to_timespec(skb->tstamp);
2738}
2739
b7aa0bf7 2740static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 2741{
b7aa0bf7 2742 skb->tstamp = ktime_get_real();
a61bbcf2
PM
2743}
2744
164891aa
SH
2745static inline ktime_t net_timedelta(ktime_t t)
2746{
2747 return ktime_sub(ktime_get_real(), t);
2748}
2749
b9ce204f
IJ
2750static inline ktime_t net_invalid_timestamp(void)
2751{
2752 return ktime_set(0, 0);
2753}
a61bbcf2 2754
62bccb8c
AD
2755struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2756
c1f19b51
RC
2757#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2758
7965bd4d
JP
2759void skb_clone_tx_timestamp(struct sk_buff *skb);
2760bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
2761
2762#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2763
2764static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2765{
2766}
2767
2768static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2769{
2770 return false;
2771}
2772
2773#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2774
2775/**
2776 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2777 *
da92b194
RC
2778 * PHY drivers may accept clones of transmitted packets for
2779 * timestamping via their phy_driver.txtstamp method. These drivers
2780 * must call this function to return the skb back to the stack, with
2781 * or without a timestamp.
2782 *
c1f19b51 2783 * @skb: clone of the the original outgoing packet
da92b194 2784 * @hwtstamps: hardware time stamps, may be NULL if not available
c1f19b51
RC
2785 *
2786 */
2787void skb_complete_tx_timestamp(struct sk_buff *skb,
2788 struct skb_shared_hwtstamps *hwtstamps);
2789
e7fd2885
WB
2790void __skb_tstamp_tx(struct sk_buff *orig_skb,
2791 struct skb_shared_hwtstamps *hwtstamps,
2792 struct sock *sk, int tstype);
2793
ac45f602
PO
2794/**
2795 * skb_tstamp_tx - queue clone of skb with send time stamps
2796 * @orig_skb: the original outgoing packet
2797 * @hwtstamps: hardware time stamps, may be NULL if not available
2798 *
2799 * If the skb has a socket associated, then this function clones the
2800 * skb (thus sharing the actual data and optional structures), stores
2801 * the optional hardware time stamping information (if non NULL) or
2802 * generates a software time stamp (otherwise), then queues the clone
2803 * to the error queue of the socket. Errors are silently ignored.
2804 */
7965bd4d
JP
2805void skb_tstamp_tx(struct sk_buff *orig_skb,
2806 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 2807
4507a715
RC
2808static inline void sw_tx_timestamp(struct sk_buff *skb)
2809{
2244d07b
OH
2810 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2811 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
4507a715
RC
2812 skb_tstamp_tx(skb, NULL);
2813}
2814
2815/**
2816 * skb_tx_timestamp() - Driver hook for transmit timestamping
2817 *
2818 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 2819 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 2820 *
73409f3b
DM
2821 * Specifically, one should make absolutely sure that this function is
2822 * called before TX completion of this packet can trigger. Otherwise
2823 * the packet could potentially already be freed.
2824 *
4507a715
RC
2825 * @skb: A socket buffer.
2826 */
2827static inline void skb_tx_timestamp(struct sk_buff *skb)
2828{
c1f19b51 2829 skb_clone_tx_timestamp(skb);
4507a715
RC
2830 sw_tx_timestamp(skb);
2831}
2832
6e3e939f
JB
2833/**
2834 * skb_complete_wifi_ack - deliver skb with wifi status
2835 *
2836 * @skb: the original outgoing packet
2837 * @acked: ack status
2838 *
2839 */
2840void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2841
7965bd4d
JP
2842__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2843__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 2844
60476372
HX
2845static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2846{
5d0c2b95 2847 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
60476372
HX
2848}
2849
fb286bb2
HX
2850/**
2851 * skb_checksum_complete - Calculate checksum of an entire packet
2852 * @skb: packet to process
2853 *
2854 * This function calculates the checksum over the entire packet plus
2855 * the value of skb->csum. The latter can be used to supply the
2856 * checksum of a pseudo header as used by TCP/UDP. It returns the
2857 * checksum.
2858 *
2859 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2860 * this function can be used to verify that checksum on received
2861 * packets. In that case the function should return zero if the
2862 * checksum is correct. In particular, this function will return zero
2863 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2864 * hardware has already verified the correctness of the checksum.
2865 */
4381ca3c 2866static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 2867{
60476372
HX
2868 return skb_csum_unnecessary(skb) ?
2869 0 : __skb_checksum_complete(skb);
fb286bb2
HX
2870}
2871
77cffe23
TH
2872static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2873{
2874 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2875 if (skb->csum_level == 0)
2876 skb->ip_summed = CHECKSUM_NONE;
2877 else
2878 skb->csum_level--;
2879 }
2880}
2881
2882static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2883{
2884 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2885 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2886 skb->csum_level++;
2887 } else if (skb->ip_summed == CHECKSUM_NONE) {
2888 skb->ip_summed = CHECKSUM_UNNECESSARY;
2889 skb->csum_level = 0;
2890 }
2891}
2892
5a212329
TH
2893static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2894{
2895 /* Mark current checksum as bad (typically called from GRO
2896 * path). In the case that ip_summed is CHECKSUM_NONE
2897 * this must be the first checksum encountered in the packet.
2898 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2899 * checksum after the last one validated. For UDP, a zero
2900 * checksum can not be marked as bad.
2901 */
2902
2903 if (skb->ip_summed == CHECKSUM_NONE ||
2904 skb->ip_summed == CHECKSUM_UNNECESSARY)
2905 skb->csum_bad = 1;
2906}
2907
76ba0aae
TH
2908/* Check if we need to perform checksum complete validation.
2909 *
2910 * Returns true if checksum complete is needed, false otherwise
2911 * (either checksum is unnecessary or zero checksum is allowed).
2912 */
2913static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
2914 bool zero_okay,
2915 __sum16 check)
2916{
5d0c2b95
TH
2917 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
2918 skb->csum_valid = 1;
77cffe23 2919 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
2920 return false;
2921 }
2922
2923 return true;
2924}
2925
2926/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
2927 * in checksum_init.
2928 */
2929#define CHECKSUM_BREAK 76
2930
2931/* Validate (init) checksum based on checksum complete.
2932 *
2933 * Return values:
2934 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
2935 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
2936 * checksum is stored in skb->csum for use in __skb_checksum_complete
2937 * non-zero: value of invalid checksum
2938 *
2939 */
2940static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
2941 bool complete,
2942 __wsum psum)
2943{
2944 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2945 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 2946 skb->csum_valid = 1;
76ba0aae
TH
2947 return 0;
2948 }
5a212329
TH
2949 } else if (skb->csum_bad) {
2950 /* ip_summed == CHECKSUM_NONE in this case */
2951 return 1;
76ba0aae
TH
2952 }
2953
2954 skb->csum = psum;
2955
5d0c2b95
TH
2956 if (complete || skb->len <= CHECKSUM_BREAK) {
2957 __sum16 csum;
2958
2959 csum = __skb_checksum_complete(skb);
2960 skb->csum_valid = !csum;
2961 return csum;
2962 }
76ba0aae
TH
2963
2964 return 0;
2965}
2966
2967static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
2968{
2969 return 0;
2970}
2971
2972/* Perform checksum validate (init). Note that this is a macro since we only
2973 * want to calculate the pseudo header which is an input function if necessary.
2974 * First we try to validate without any computation (checksum unnecessary) and
2975 * then calculate based on checksum complete calling the function to compute
2976 * pseudo header.
2977 *
2978 * Return values:
2979 * 0: checksum is validated or try to in skb_checksum_complete
2980 * non-zero: value of invalid checksum
2981 */
2982#define __skb_checksum_validate(skb, proto, complete, \
2983 zero_okay, check, compute_pseudo) \
2984({ \
2985 __sum16 __ret = 0; \
5d0c2b95 2986 skb->csum_valid = 0; \
76ba0aae
TH
2987 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
2988 __ret = __skb_checksum_validate_complete(skb, \
2989 complete, compute_pseudo(skb, proto)); \
2990 __ret; \
2991})
2992
2993#define skb_checksum_init(skb, proto, compute_pseudo) \
2994 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
2995
2996#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
2997 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
2998
2999#define skb_checksum_validate(skb, proto, compute_pseudo) \
3000 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3001
3002#define skb_checksum_validate_zero_check(skb, proto, check, \
3003 compute_pseudo) \
3004 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
3005
3006#define skb_checksum_simple_validate(skb) \
3007 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3008
d96535a1
TH
3009static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3010{
3011 return (skb->ip_summed == CHECKSUM_NONE &&
3012 skb->csum_valid && !skb->csum_bad);
3013}
3014
3015static inline void __skb_checksum_convert(struct sk_buff *skb,
3016 __sum16 check, __wsum pseudo)
3017{
3018 skb->csum = ~pseudo;
3019 skb->ip_summed = CHECKSUM_COMPLETE;
3020}
3021
3022#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3023do { \
3024 if (__skb_checksum_convert_check(skb)) \
3025 __skb_checksum_convert(skb, check, \
3026 compute_pseudo(skb, proto)); \
3027} while (0)
3028
5f79e0f9 3029#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3030void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3031static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3032{
3033 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3034 nf_conntrack_destroy(nfct);
1da177e4
LT
3035}
3036static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3037{
3038 if (nfct)
3039 atomic_inc(&nfct->use);
3040}
2fc72c7b 3041#endif
34666d46 3042#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3043static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3044{
3045 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3046 kfree(nf_bridge);
3047}
3048static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3049{
3050 if (nf_bridge)
3051 atomic_inc(&nf_bridge->use);
3052}
3053#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3054static inline void nf_reset(struct sk_buff *skb)
3055{
5f79e0f9 3056#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a193a4ab
PM
3057 nf_conntrack_put(skb->nfct);
3058 skb->nfct = NULL;
2fc72c7b 3059#endif
34666d46 3060#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3061 nf_bridge_put(skb->nf_bridge);
3062 skb->nf_bridge = NULL;
3063#endif
3064}
3065
124dff01
PM
3066static inline void nf_reset_trace(struct sk_buff *skb)
3067{
478b360a 3068#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3069 skb->nf_trace = 0;
3070#endif
a193a4ab
PM
3071}
3072
edda553c 3073/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3074static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3075 bool copy)
edda553c 3076{
5f79e0f9 3077#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
edda553c
YK
3078 dst->nfct = src->nfct;
3079 nf_conntrack_get(src->nfct);
b1937227
ED
3080 if (copy)
3081 dst->nfctinfo = src->nfctinfo;
2fc72c7b 3082#endif
34666d46 3083#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3084 dst->nf_bridge = src->nf_bridge;
3085 nf_bridge_get(src->nf_bridge);
3086#endif
478b360a 3087#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3088 if (copy)
3089 dst->nf_trace = src->nf_trace;
478b360a 3090#endif
edda553c
YK
3091}
3092
e7ac05f3
YK
3093static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3094{
e7ac05f3 3095#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 3096 nf_conntrack_put(dst->nfct);
2fc72c7b 3097#endif
34666d46 3098#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3099 nf_bridge_put(dst->nf_bridge);
3100#endif
b1937227 3101 __nf_copy(dst, src, true);
e7ac05f3
YK
3102}
3103
984bc16c
JM
3104#ifdef CONFIG_NETWORK_SECMARK
3105static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3106{
3107 to->secmark = from->secmark;
3108}
3109
3110static inline void skb_init_secmark(struct sk_buff *skb)
3111{
3112 skb->secmark = 0;
3113}
3114#else
3115static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3116{ }
3117
3118static inline void skb_init_secmark(struct sk_buff *skb)
3119{ }
3120#endif
3121
574f7194
EB
3122static inline bool skb_irq_freeable(const struct sk_buff *skb)
3123{
3124 return !skb->destructor &&
3125#if IS_ENABLED(CONFIG_XFRM)
3126 !skb->sp &&
3127#endif
3128#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3129 !skb->nfct &&
3130#endif
3131 !skb->_skb_refdst &&
3132 !skb_has_frag_list(skb);
3133}
3134
f25f4e44
PWJ
3135static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3136{
f25f4e44 3137 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3138}
3139
9247744e 3140static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3141{
4e3ab47a 3142 return skb->queue_mapping;
4e3ab47a
PE
3143}
3144
f25f4e44
PWJ
3145static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3146{
f25f4e44 3147 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3148}
3149
d5a9e24a
DM
3150static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3151{
3152 skb->queue_mapping = rx_queue + 1;
3153}
3154
9247744e 3155static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3156{
3157 return skb->queue_mapping - 1;
3158}
3159
9247744e 3160static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3161{
a02cec21 3162 return skb->queue_mapping != 0;
d5a9e24a
DM
3163}
3164
0e001614 3165u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
7965bd4d 3166 unsigned int num_tx_queues);
9247744e 3167
def8b4fa
AD
3168static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3169{
0b3d8e08 3170#ifdef CONFIG_XFRM
def8b4fa 3171 return skb->sp;
def8b4fa 3172#else
def8b4fa 3173 return NULL;
def8b4fa 3174#endif
0b3d8e08 3175}
def8b4fa 3176
68c33163
PS
3177/* Keeps track of mac header offset relative to skb->head.
3178 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3179 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3180 * tunnel skb it points to outer mac header.
3181 * Keeps track of level of encapsulation of network headers.
3182 */
68c33163 3183struct skb_gso_cb {
3347c960
ED
3184 int mac_offset;
3185 int encap_level;
7e2b10c1 3186 __u16 csum_start;
68c33163
PS
3187};
3188#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3189
3190static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3191{
3192 return (skb_mac_header(inner_skb) - inner_skb->head) -
3193 SKB_GSO_CB(inner_skb)->mac_offset;
3194}
3195
1e2bd517
PS
3196static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3197{
3198 int new_headroom, headroom;
3199 int ret;
3200
3201 headroom = skb_headroom(skb);
3202 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3203 if (ret)
3204 return ret;
3205
3206 new_headroom = skb_headroom(skb);
3207 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3208 return 0;
3209}
3210
7e2b10c1
TH
3211/* Compute the checksum for a gso segment. First compute the checksum value
3212 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3213 * then add in skb->csum (checksum from csum_start to end of packet).
3214 * skb->csum and csum_start are then updated to reflect the checksum of the
3215 * resultant packet starting from the transport header-- the resultant checksum
3216 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3217 * header.
3218 */
3219static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3220{
3221 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3222 skb_transport_offset(skb);
3223 __u16 csum;
3224
3225 csum = csum_fold(csum_partial(skb_transport_header(skb),
3226 plen, skb->csum));
3227 skb->csum = res;
3228 SKB_GSO_CB(skb)->csum_start -= plen;
3229
3230 return csum;
3231}
3232
bdcc0924 3233static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3234{
3235 return skb_shinfo(skb)->gso_size;
3236}
3237
36a8f39e 3238/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 3239static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
3240{
3241 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3242}
3243
7965bd4d 3244void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
3245
3246static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3247{
3248 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3249 * wanted then gso_type will be set. */
05bdd2f1
ED
3250 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3251
b78462eb
AD
3252 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3253 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
3254 __skb_warn_lro_forwarding(skb);
3255 return true;
3256 }
3257 return false;
3258}
3259
35fc92a9
HX
3260static inline void skb_forward_csum(struct sk_buff *skb)
3261{
3262 /* Unfortunately we don't support this one. Any brave souls? */
3263 if (skb->ip_summed == CHECKSUM_COMPLETE)
3264 skb->ip_summed = CHECKSUM_NONE;
3265}
3266
bc8acf2c
ED
3267/**
3268 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3269 * @skb: skb to check
3270 *
3271 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3272 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3273 * use this helper, to document places where we make this assertion.
3274 */
05bdd2f1 3275static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
3276{
3277#ifdef DEBUG
3278 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3279#endif
3280}
3281
f35d9d8a 3282bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 3283
ed1f50c3
PD
3284int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3285
56193d1b
AD
3286u32 skb_get_poff(const struct sk_buff *skb);
3287u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3288 const struct flow_keys *keys, int hlen);
f77668dc 3289
3a7c1ee4
AD
3290/**
3291 * skb_head_is_locked - Determine if the skb->head is locked down
3292 * @skb: skb to check
3293 *
3294 * The head on skbs build around a head frag can be removed if they are
3295 * not cloned. This function returns true if the skb head is locked down
3296 * due to either being allocated via kmalloc, or by being a clone with
3297 * multiple references to the head.
3298 */
3299static inline bool skb_head_is_locked(const struct sk_buff *skb)
3300{
3301 return !skb->head_frag || skb_cloned(skb);
3302}
fe6cc55f
FW
3303
3304/**
3305 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3306 *
3307 * @skb: GSO skb
3308 *
3309 * skb_gso_network_seglen is used to determine the real size of the
3310 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3311 *
3312 * The MAC/L2 header is not accounted for.
3313 */
3314static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3315{
3316 unsigned int hdr_len = skb_transport_header(skb) -
3317 skb_network_header(skb);
3318 return hdr_len + skb_gso_transport_seglen(skb);
3319}
1da177e4
LT
3320#endif /* __KERNEL__ */
3321#endif /* _LINUX_SKBUFF_H */