]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/slab.h
8021q: fix a potential memory leak
[mirror_ubuntu-bionic-kernel.git] / include / linux / slab.h
CommitLineData
1da177e4 1/*
2e892f43
CL
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
cde53535 4 * (C) SGI 2006, Christoph Lameter
2e892f43
CL
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
f1b6eb6e
CL
7 * (C) Linux Foundation 2008-2013
8 * Unified interface for all slab allocators
1da177e4
LT
9 */
10
11#ifndef _LINUX_SLAB_H
12#define _LINUX_SLAB_H
13
1b1cec4b 14#include <linux/gfp.h>
1b1cec4b 15#include <linux/types.h>
1f458cbf
GC
16#include <linux/workqueue.h>
17
1da177e4 18
2e892f43
CL
19/*
20 * Flags to pass to kmem_cache_create().
21 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
1da177e4 22 */
55935a34 23#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
55935a34
CL
24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
2e892f43 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
2e892f43 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
2e892f43 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
d7de4c1d
PZ
30/*
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32 *
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
37 *
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
41 *
42 * rcu_read_lock()
43 * again:
44 * obj = lockless_lookup(key);
45 * if (obj) {
46 * if (!try_get_ref(obj)) // might fail for free objects
47 * goto again;
48 *
49 * if (obj->key != key) { // not the object we expected
50 * put_ref(obj);
51 * goto again;
52 * }
53 * }
54 * rcu_read_unlock();
55 *
68126702
JK
56 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
61 *
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
d7de4c1d 64 */
2e892f43 65#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
101a5001 66#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
81819f0f 67#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
1da177e4 68
30327acf
TG
69/* Flag to prevent checks on free */
70#ifdef CONFIG_DEBUG_OBJECTS
71# define SLAB_DEBUG_OBJECTS 0x00400000UL
72#else
73# define SLAB_DEBUG_OBJECTS 0x00000000UL
74#endif
75
d5cff635
CM
76#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
77
2dff4405
VN
78/* Don't track use of uninitialized memory */
79#ifdef CONFIG_KMEMCHECK
80# define SLAB_NOTRACK 0x01000000UL
81#else
82# define SLAB_NOTRACK 0x00000000UL
83#endif
4c13dd3b
DM
84#ifdef CONFIG_FAILSLAB
85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
86#else
87# define SLAB_FAILSLAB 0x00000000UL
88#endif
2dff4405 89
e12ba74d
MG
90/* The following flags affect the page allocator grouping pages by mobility */
91#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
92#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
6cb8f913
CL
93/*
94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
95 *
96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
97 *
98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
99 * Both make kfree a no-op.
100 */
101#define ZERO_SIZE_PTR ((void *)16)
102
1d4ec7b1 103#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
6cb8f913
CL
104 (unsigned long)ZERO_SIZE_PTR)
105
f1b6eb6e 106#include <linux/kmemleak.h>
3b0efdfa 107
2633d7a0 108struct mem_cgroup;
2e892f43
CL
109/*
110 * struct kmem_cache related prototypes
111 */
112void __init kmem_cache_init(void);
81819f0f 113int slab_is_available(void);
1da177e4 114
2e892f43 115struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
ebe29738 116 unsigned long,
51cc5068 117 void (*)(void *));
794b1248 118#ifdef CONFIG_MEMCG_KMEM
776ed0f0 119struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *,
073ee1c6
VD
120 struct kmem_cache *,
121 const char *);
794b1248 122#endif
2e892f43
CL
123void kmem_cache_destroy(struct kmem_cache *);
124int kmem_cache_shrink(struct kmem_cache *);
2e892f43 125void kmem_cache_free(struct kmem_cache *, void *);
2e892f43 126
0a31bd5f
CL
127/*
128 * Please use this macro to create slab caches. Simply specify the
129 * name of the structure and maybe some flags that are listed above.
130 *
131 * The alignment of the struct determines object alignment. If you
132 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
133 * then the objects will be properly aligned in SMP configurations.
134 */
135#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
136 sizeof(struct __struct), __alignof__(struct __struct),\
20c2df83 137 (__flags), NULL)
0a31bd5f 138
34504667
CL
139/*
140 * Common kmalloc functions provided by all allocators
141 */
142void * __must_check __krealloc(const void *, size_t, gfp_t);
143void * __must_check krealloc(const void *, size_t, gfp_t);
144void kfree(const void *);
145void kzfree(const void *);
146size_t ksize(const void *);
147
c601fd69
CL
148/*
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than the alignment of a 64-bit integer.
151 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
152 */
153#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
154#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
155#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
156#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
157#else
158#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
159#endif
160
ce6a5026
CL
161#ifdef CONFIG_SLOB
162/*
163 * Common fields provided in kmem_cache by all slab allocators
164 * This struct is either used directly by the allocator (SLOB)
165 * or the allocator must include definitions for all fields
166 * provided in kmem_cache_common in their definition of kmem_cache.
167 *
168 * Once we can do anonymous structs (C11 standard) we could put a
169 * anonymous struct definition in these allocators so that the
170 * separate allocations in the kmem_cache structure of SLAB and
171 * SLUB is no longer needed.
172 */
173struct kmem_cache {
174 unsigned int object_size;/* The original size of the object */
175 unsigned int size; /* The aligned/padded/added on size */
176 unsigned int align; /* Alignment as calculated */
177 unsigned long flags; /* Active flags on the slab */
178 const char *name; /* Slab name for sysfs */
179 int refcount; /* Use counter */
180 void (*ctor)(void *); /* Called on object slot creation */
181 struct list_head list; /* List of all slab caches on the system */
182};
183
069e2b35 184#endif /* CONFIG_SLOB */
ce6a5026 185
0aa817f0 186/*
95a05b42
CL
187 * Kmalloc array related definitions
188 */
189
190#ifdef CONFIG_SLAB
191/*
192 * The largest kmalloc size supported by the SLAB allocators is
0aa817f0
CL
193 * 32 megabyte (2^25) or the maximum allocatable page order if that is
194 * less than 32 MB.
195 *
196 * WARNING: Its not easy to increase this value since the allocators have
197 * to do various tricks to work around compiler limitations in order to
198 * ensure proper constant folding.
199 */
debee076
CL
200#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
201 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
95a05b42 202#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
c601fd69 203#ifndef KMALLOC_SHIFT_LOW
95a05b42 204#define KMALLOC_SHIFT_LOW 5
c601fd69 205#endif
069e2b35
CL
206#endif
207
208#ifdef CONFIG_SLUB
95a05b42 209/*
433a91ff
DH
210 * SLUB directly allocates requests fitting in to an order-1 page
211 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
95a05b42
CL
212 */
213#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
214#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
c601fd69 215#ifndef KMALLOC_SHIFT_LOW
95a05b42
CL
216#define KMALLOC_SHIFT_LOW 3
217#endif
c601fd69 218#endif
0aa817f0 219
069e2b35
CL
220#ifdef CONFIG_SLOB
221/*
433a91ff 222 * SLOB passes all requests larger than one page to the page allocator.
069e2b35
CL
223 * No kmalloc array is necessary since objects of different sizes can
224 * be allocated from the same page.
225 */
069e2b35 226#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
433a91ff 227#define KMALLOC_SHIFT_MAX 30
069e2b35
CL
228#ifndef KMALLOC_SHIFT_LOW
229#define KMALLOC_SHIFT_LOW 3
230#endif
231#endif
232
95a05b42
CL
233/* Maximum allocatable size */
234#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
235/* Maximum size for which we actually use a slab cache */
236#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
237/* Maximum order allocatable via the slab allocagtor */
238#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
0aa817f0 239
ce6a5026
CL
240/*
241 * Kmalloc subsystem.
242 */
c601fd69 243#ifndef KMALLOC_MIN_SIZE
95a05b42 244#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
ce6a5026
CL
245#endif
246
24f870d8
JK
247/*
248 * This restriction comes from byte sized index implementation.
249 * Page size is normally 2^12 bytes and, in this case, if we want to use
250 * byte sized index which can represent 2^8 entries, the size of the object
251 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
252 * If minimum size of kmalloc is less than 16, we use it as minimum object
253 * size and give up to use byte sized index.
254 */
255#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
256 (KMALLOC_MIN_SIZE) : 16)
257
069e2b35 258#ifndef CONFIG_SLOB
9425c58e
CL
259extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
260#ifdef CONFIG_ZONE_DMA
261extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
262#endif
263
ce6a5026
CL
264/*
265 * Figure out which kmalloc slab an allocation of a certain size
266 * belongs to.
267 * 0 = zero alloc
268 * 1 = 65 .. 96 bytes
269 * 2 = 120 .. 192 bytes
270 * n = 2^(n-1) .. 2^n -1
271 */
272static __always_inline int kmalloc_index(size_t size)
273{
274 if (!size)
275 return 0;
276
277 if (size <= KMALLOC_MIN_SIZE)
278 return KMALLOC_SHIFT_LOW;
279
280 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
281 return 1;
282 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
283 return 2;
284 if (size <= 8) return 3;
285 if (size <= 16) return 4;
286 if (size <= 32) return 5;
287 if (size <= 64) return 6;
288 if (size <= 128) return 7;
289 if (size <= 256) return 8;
290 if (size <= 512) return 9;
291 if (size <= 1024) return 10;
292 if (size <= 2 * 1024) return 11;
293 if (size <= 4 * 1024) return 12;
294 if (size <= 8 * 1024) return 13;
295 if (size <= 16 * 1024) return 14;
296 if (size <= 32 * 1024) return 15;
297 if (size <= 64 * 1024) return 16;
298 if (size <= 128 * 1024) return 17;
299 if (size <= 256 * 1024) return 18;
300 if (size <= 512 * 1024) return 19;
301 if (size <= 1024 * 1024) return 20;
302 if (size <= 2 * 1024 * 1024) return 21;
303 if (size <= 4 * 1024 * 1024) return 22;
304 if (size <= 8 * 1024 * 1024) return 23;
305 if (size <= 16 * 1024 * 1024) return 24;
306 if (size <= 32 * 1024 * 1024) return 25;
307 if (size <= 64 * 1024 * 1024) return 26;
308 BUG();
309
310 /* Will never be reached. Needed because the compiler may complain */
311 return -1;
312}
069e2b35 313#endif /* !CONFIG_SLOB */
ce6a5026 314
f1b6eb6e
CL
315void *__kmalloc(size_t size, gfp_t flags);
316void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags);
317
318#ifdef CONFIG_NUMA
319void *__kmalloc_node(size_t size, gfp_t flags, int node);
320void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
321#else
322static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
323{
324 return __kmalloc(size, flags);
325}
326
327static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
328{
329 return kmem_cache_alloc(s, flags);
330}
331#endif
332
333#ifdef CONFIG_TRACING
334extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
335
336#ifdef CONFIG_NUMA
337extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
338 gfp_t gfpflags,
339 int node, size_t size);
340#else
341static __always_inline void *
342kmem_cache_alloc_node_trace(struct kmem_cache *s,
343 gfp_t gfpflags,
344 int node, size_t size)
345{
346 return kmem_cache_alloc_trace(s, gfpflags, size);
347}
348#endif /* CONFIG_NUMA */
349
350#else /* CONFIG_TRACING */
351static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
352 gfp_t flags, size_t size)
353{
354 return kmem_cache_alloc(s, flags);
355}
356
357static __always_inline void *
358kmem_cache_alloc_node_trace(struct kmem_cache *s,
359 gfp_t gfpflags,
360 int node, size_t size)
361{
362 return kmem_cache_alloc_node(s, gfpflags, node);
363}
364#endif /* CONFIG_TRACING */
365
ce6a5026
CL
366#ifdef CONFIG_SLAB
367#include <linux/slab_def.h>
069e2b35
CL
368#endif
369
370#ifdef CONFIG_SLUB
ce6a5026 371#include <linux/slub_def.h>
069e2b35
CL
372#endif
373
52383431 374extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order);
f1b6eb6e
CL
375
376#ifdef CONFIG_TRACING
377extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
378#else
379static __always_inline void *
380kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
381{
382 return kmalloc_order(size, flags, order);
383}
ce6a5026
CL
384#endif
385
f1b6eb6e
CL
386static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
387{
388 unsigned int order = get_order(size);
389 return kmalloc_order_trace(size, flags, order);
390}
391
392/**
393 * kmalloc - allocate memory
394 * @size: how many bytes of memory are required.
7e3528c3 395 * @flags: the type of memory to allocate.
f1b6eb6e
CL
396 *
397 * kmalloc is the normal method of allocating memory
398 * for objects smaller than page size in the kernel.
7e3528c3
RD
399 *
400 * The @flags argument may be one of:
401 *
402 * %GFP_USER - Allocate memory on behalf of user. May sleep.
403 *
404 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
405 *
406 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
407 * For example, use this inside interrupt handlers.
408 *
409 * %GFP_HIGHUSER - Allocate pages from high memory.
410 *
411 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
412 *
413 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
414 *
415 * %GFP_NOWAIT - Allocation will not sleep.
416 *
e97ca8e5 417 * %__GFP_THISNODE - Allocate node-local memory only.
7e3528c3
RD
418 *
419 * %GFP_DMA - Allocation suitable for DMA.
420 * Should only be used for kmalloc() caches. Otherwise, use a
421 * slab created with SLAB_DMA.
422 *
423 * Also it is possible to set different flags by OR'ing
424 * in one or more of the following additional @flags:
425 *
426 * %__GFP_COLD - Request cache-cold pages instead of
427 * trying to return cache-warm pages.
428 *
429 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
430 *
431 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
432 * (think twice before using).
433 *
434 * %__GFP_NORETRY - If memory is not immediately available,
435 * then give up at once.
436 *
437 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
438 *
439 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
440 *
441 * There are other flags available as well, but these are not intended
442 * for general use, and so are not documented here. For a full list of
443 * potential flags, always refer to linux/gfp.h.
f1b6eb6e
CL
444 */
445static __always_inline void *kmalloc(size_t size, gfp_t flags)
446{
447 if (__builtin_constant_p(size)) {
448 if (size > KMALLOC_MAX_CACHE_SIZE)
449 return kmalloc_large(size, flags);
450#ifndef CONFIG_SLOB
451 if (!(flags & GFP_DMA)) {
452 int index = kmalloc_index(size);
453
454 if (!index)
455 return ZERO_SIZE_PTR;
456
457 return kmem_cache_alloc_trace(kmalloc_caches[index],
458 flags, size);
459 }
460#endif
461 }
462 return __kmalloc(size, flags);
463}
464
ce6a5026
CL
465/*
466 * Determine size used for the nth kmalloc cache.
467 * return size or 0 if a kmalloc cache for that
468 * size does not exist
469 */
470static __always_inline int kmalloc_size(int n)
471{
069e2b35 472#ifndef CONFIG_SLOB
ce6a5026
CL
473 if (n > 2)
474 return 1 << n;
475
476 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
477 return 96;
478
479 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
480 return 192;
069e2b35 481#endif
ce6a5026
CL
482 return 0;
483}
ce6a5026 484
f1b6eb6e
CL
485static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
486{
487#ifndef CONFIG_SLOB
488 if (__builtin_constant_p(size) &&
23774a2f 489 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
f1b6eb6e
CL
490 int i = kmalloc_index(size);
491
492 if (!i)
493 return ZERO_SIZE_PTR;
494
495 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
496 flags, node, size);
497 }
498#endif
499 return __kmalloc_node(size, flags, node);
500}
501
90810645
CL
502/*
503 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
504 * Intended for arches that get misalignment faults even for 64 bit integer
505 * aligned buffers.
506 */
3192b920
CL
507#ifndef ARCH_SLAB_MINALIGN
508#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
509#endif
ba6c496e
GC
510/*
511 * This is the main placeholder for memcg-related information in kmem caches.
512 * struct kmem_cache will hold a pointer to it, so the memory cost while
513 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
514 * would otherwise be if that would be bundled in kmem_cache: we'll need an
515 * extra pointer chase. But the trade off clearly lays in favor of not
516 * penalizing non-users.
517 *
518 * Both the root cache and the child caches will have it. For the root cache,
519 * this will hold a dynamically allocated array large enough to hold
f8570263
VD
520 * information about the currently limited memcgs in the system. To allow the
521 * array to be accessed without taking any locks, on relocation we free the old
522 * version only after a grace period.
ba6c496e
GC
523 *
524 * Child caches will hold extra metadata needed for its operation. Fields are:
525 *
526 * @memcg: pointer to the memcg this cache belongs to
2633d7a0
GC
527 * @list: list_head for the list of all caches in this memcg
528 * @root_cache: pointer to the global, root cache, this cache was derived from
1f458cbf 529 * @nr_pages: number of pages that belongs to this cache.
ba6c496e
GC
530 */
531struct memcg_cache_params {
532 bool is_root_cache;
533 union {
f8570263
VD
534 struct {
535 struct rcu_head rcu_head;
536 struct kmem_cache *memcg_caches[0];
537 };
2633d7a0
GC
538 struct {
539 struct mem_cgroup *memcg;
540 struct list_head list;
541 struct kmem_cache *root_cache;
1f458cbf 542 atomic_t nr_pages;
2633d7a0 543 };
ba6c496e
GC
544 };
545};
546
2633d7a0
GC
547int memcg_update_all_caches(int num_memcgs);
548
749c5415
GC
549struct seq_file;
550int cache_show(struct kmem_cache *s, struct seq_file *m);
551void print_slabinfo_header(struct seq_file *m);
552
e7efa615
MO
553/**
554 * kmalloc_array - allocate memory for an array.
555 * @n: number of elements.
556 * @size: element size.
557 * @flags: the type of memory to allocate (see kmalloc).
800590f5 558 */
a8203725 559static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
1da177e4 560{
a3860c1c 561 if (size != 0 && n > SIZE_MAX / size)
6193a2ff 562 return NULL;
a8203725
XW
563 return __kmalloc(n * size, flags);
564}
565
566/**
567 * kcalloc - allocate memory for an array. The memory is set to zero.
568 * @n: number of elements.
569 * @size: element size.
570 * @flags: the type of memory to allocate (see kmalloc).
571 */
572static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
573{
574 return kmalloc_array(n, size, flags | __GFP_ZERO);
1da177e4
LT
575}
576
1d2c8eea
CH
577/*
578 * kmalloc_track_caller is a special version of kmalloc that records the
579 * calling function of the routine calling it for slab leak tracking instead
580 * of just the calling function (confusing, eh?).
581 * It's useful when the call to kmalloc comes from a widely-used standard
582 * allocator where we care about the real place the memory allocation
583 * request comes from.
584 */
7adde04a 585#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
f3f74101
EG
586 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
587 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
ce71e27c 588extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
1d2c8eea 589#define kmalloc_track_caller(size, flags) \
ce71e27c 590 __kmalloc_track_caller(size, flags, _RET_IP_)
2e892f43
CL
591#else
592#define kmalloc_track_caller(size, flags) \
593 __kmalloc(size, flags)
594#endif /* DEBUG_SLAB */
1da177e4 595
97e2bde4 596#ifdef CONFIG_NUMA
8b98c169
CH
597/*
598 * kmalloc_node_track_caller is a special version of kmalloc_node that
599 * records the calling function of the routine calling it for slab leak
600 * tracking instead of just the calling function (confusing, eh?).
601 * It's useful when the call to kmalloc_node comes from a widely-used
602 * standard allocator where we care about the real place the memory
603 * allocation request comes from.
604 */
7adde04a 605#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
f3f74101
EG
606 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
607 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
ce71e27c 608extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
8b98c169
CH
609#define kmalloc_node_track_caller(size, flags, node) \
610 __kmalloc_node_track_caller(size, flags, node, \
ce71e27c 611 _RET_IP_)
2e892f43
CL
612#else
613#define kmalloc_node_track_caller(size, flags, node) \
614 __kmalloc_node(size, flags, node)
8b98c169 615#endif
2e892f43 616
8b98c169 617#else /* CONFIG_NUMA */
8b98c169
CH
618
619#define kmalloc_node_track_caller(size, flags, node) \
620 kmalloc_track_caller(size, flags)
97e2bde4 621
dfcd3610 622#endif /* CONFIG_NUMA */
10cef602 623
81cda662
CL
624/*
625 * Shortcuts
626 */
627static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
628{
629 return kmem_cache_alloc(k, flags | __GFP_ZERO);
630}
631
632/**
633 * kzalloc - allocate memory. The memory is set to zero.
634 * @size: how many bytes of memory are required.
635 * @flags: the type of memory to allocate (see kmalloc).
636 */
637static inline void *kzalloc(size_t size, gfp_t flags)
638{
639 return kmalloc(size, flags | __GFP_ZERO);
640}
641
979b0fea
JL
642/**
643 * kzalloc_node - allocate zeroed memory from a particular memory node.
644 * @size: how many bytes of memory are required.
645 * @flags: the type of memory to allocate (see kmalloc).
646 * @node: memory node from which to allocate
647 */
648static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
649{
650 return kmalloc_node(size, flags | __GFP_ZERO, node);
651}
652
242860a4
EG
653/*
654 * Determine the size of a slab object
655 */
656static inline unsigned int kmem_cache_size(struct kmem_cache *s)
657{
658 return s->object_size;
659}
660
7e85ee0c
PE
661void __init kmem_cache_init_late(void);
662
1da177e4 663#endif /* _LINUX_SLAB_H */