]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/slab.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-bionic-kernel.git] / include / linux / slab.h
CommitLineData
1da177e4 1/*
2e892f43
CL
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
cde53535 4 * (C) SGI 2006, Christoph Lameter
2e892f43
CL
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
f1b6eb6e
CL
7 * (C) Linux Foundation 2008-2013
8 * Unified interface for all slab allocators
1da177e4
LT
9 */
10
11#ifndef _LINUX_SLAB_H
12#define _LINUX_SLAB_H
13
1b1cec4b 14#include <linux/gfp.h>
1b1cec4b 15#include <linux/types.h>
1f458cbf
GC
16#include <linux/workqueue.h>
17
1da177e4 18
2e892f43
CL
19/*
20 * Flags to pass to kmem_cache_create().
124dee09 21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
1da177e4 22 */
55935a34 23#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
55935a34
CL
24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
2e892f43 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
2e892f43 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
2e892f43 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
d7de4c1d
PZ
30/*
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32 *
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
37 *
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
41 *
42 * rcu_read_lock()
43 * again:
44 * obj = lockless_lookup(key);
45 * if (obj) {
46 * if (!try_get_ref(obj)) // might fail for free objects
47 * goto again;
48 *
49 * if (obj->key != key) { // not the object we expected
50 * put_ref(obj);
51 * goto again;
52 * }
53 * }
54 * rcu_read_unlock();
55 *
68126702
JK
56 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
61 *
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
d7de4c1d 64 */
2e892f43 65#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
101a5001 66#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
81819f0f 67#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
1da177e4 68
30327acf
TG
69/* Flag to prevent checks on free */
70#ifdef CONFIG_DEBUG_OBJECTS
71# define SLAB_DEBUG_OBJECTS 0x00400000UL
72#else
73# define SLAB_DEBUG_OBJECTS 0x00000000UL
74#endif
75
d5cff635
CM
76#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
77
2dff4405
VN
78/* Don't track use of uninitialized memory */
79#ifdef CONFIG_KMEMCHECK
80# define SLAB_NOTRACK 0x01000000UL
81#else
82# define SLAB_NOTRACK 0x00000000UL
83#endif
4c13dd3b
DM
84#ifdef CONFIG_FAILSLAB
85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
86#else
87# define SLAB_FAILSLAB 0x00000000UL
88#endif
2dff4405 89
e12ba74d
MG
90/* The following flags affect the page allocator grouping pages by mobility */
91#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
92#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
6cb8f913
CL
93/*
94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
95 *
96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
97 *
98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
99 * Both make kfree a no-op.
100 */
101#define ZERO_SIZE_PTR ((void *)16)
102
1d4ec7b1 103#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
6cb8f913
CL
104 (unsigned long)ZERO_SIZE_PTR)
105
f1b6eb6e 106#include <linux/kmemleak.h>
0316bec2 107#include <linux/kasan.h>
3b0efdfa 108
2633d7a0 109struct mem_cgroup;
2e892f43
CL
110/*
111 * struct kmem_cache related prototypes
112 */
113void __init kmem_cache_init(void);
fda90124 114bool slab_is_available(void);
1da177e4 115
2e892f43 116struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
ebe29738 117 unsigned long,
51cc5068 118 void (*)(void *));
2e892f43
CL
119void kmem_cache_destroy(struct kmem_cache *);
120int kmem_cache_shrink(struct kmem_cache *);
2a4db7eb
VD
121
122void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
123void memcg_deactivate_kmem_caches(struct mem_cgroup *);
124void memcg_destroy_kmem_caches(struct mem_cgroup *);
2e892f43 125
0a31bd5f
CL
126/*
127 * Please use this macro to create slab caches. Simply specify the
128 * name of the structure and maybe some flags that are listed above.
129 *
130 * The alignment of the struct determines object alignment. If you
131 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
132 * then the objects will be properly aligned in SMP configurations.
133 */
134#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
135 sizeof(struct __struct), __alignof__(struct __struct),\
20c2df83 136 (__flags), NULL)
0a31bd5f 137
34504667
CL
138/*
139 * Common kmalloc functions provided by all allocators
140 */
141void * __must_check __krealloc(const void *, size_t, gfp_t);
142void * __must_check krealloc(const void *, size_t, gfp_t);
143void kfree(const void *);
144void kzfree(const void *);
145size_t ksize(const void *);
146
c601fd69
CL
147/*
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than the alignment of a 64-bit integer.
150 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
151 */
152#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
153#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
154#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
155#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
156#else
157#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158#endif
159
0aa817f0 160/*
95a05b42
CL
161 * Kmalloc array related definitions
162 */
163
164#ifdef CONFIG_SLAB
165/*
166 * The largest kmalloc size supported by the SLAB allocators is
0aa817f0
CL
167 * 32 megabyte (2^25) or the maximum allocatable page order if that is
168 * less than 32 MB.
169 *
170 * WARNING: Its not easy to increase this value since the allocators have
171 * to do various tricks to work around compiler limitations in order to
172 * ensure proper constant folding.
173 */
debee076
CL
174#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
175 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
95a05b42 176#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
c601fd69 177#ifndef KMALLOC_SHIFT_LOW
95a05b42 178#define KMALLOC_SHIFT_LOW 5
c601fd69 179#endif
069e2b35
CL
180#endif
181
182#ifdef CONFIG_SLUB
95a05b42 183/*
433a91ff
DH
184 * SLUB directly allocates requests fitting in to an order-1 page
185 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
95a05b42
CL
186 */
187#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
188#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
c601fd69 189#ifndef KMALLOC_SHIFT_LOW
95a05b42
CL
190#define KMALLOC_SHIFT_LOW 3
191#endif
c601fd69 192#endif
0aa817f0 193
069e2b35
CL
194#ifdef CONFIG_SLOB
195/*
433a91ff 196 * SLOB passes all requests larger than one page to the page allocator.
069e2b35
CL
197 * No kmalloc array is necessary since objects of different sizes can
198 * be allocated from the same page.
199 */
069e2b35 200#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
433a91ff 201#define KMALLOC_SHIFT_MAX 30
069e2b35
CL
202#ifndef KMALLOC_SHIFT_LOW
203#define KMALLOC_SHIFT_LOW 3
204#endif
205#endif
206
95a05b42
CL
207/* Maximum allocatable size */
208#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
209/* Maximum size for which we actually use a slab cache */
210#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
211/* Maximum order allocatable via the slab allocagtor */
212#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
0aa817f0 213
ce6a5026
CL
214/*
215 * Kmalloc subsystem.
216 */
c601fd69 217#ifndef KMALLOC_MIN_SIZE
95a05b42 218#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
ce6a5026
CL
219#endif
220
24f870d8
JK
221/*
222 * This restriction comes from byte sized index implementation.
223 * Page size is normally 2^12 bytes and, in this case, if we want to use
224 * byte sized index which can represent 2^8 entries, the size of the object
225 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
226 * If minimum size of kmalloc is less than 16, we use it as minimum object
227 * size and give up to use byte sized index.
228 */
229#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
230 (KMALLOC_MIN_SIZE) : 16)
231
069e2b35 232#ifndef CONFIG_SLOB
9425c58e
CL
233extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
234#ifdef CONFIG_ZONE_DMA
235extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
236#endif
237
ce6a5026
CL
238/*
239 * Figure out which kmalloc slab an allocation of a certain size
240 * belongs to.
241 * 0 = zero alloc
242 * 1 = 65 .. 96 bytes
1ed58b60
RV
243 * 2 = 129 .. 192 bytes
244 * n = 2^(n-1)+1 .. 2^n
ce6a5026
CL
245 */
246static __always_inline int kmalloc_index(size_t size)
247{
248 if (!size)
249 return 0;
250
251 if (size <= KMALLOC_MIN_SIZE)
252 return KMALLOC_SHIFT_LOW;
253
254 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
255 return 1;
256 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
257 return 2;
258 if (size <= 8) return 3;
259 if (size <= 16) return 4;
260 if (size <= 32) return 5;
261 if (size <= 64) return 6;
262 if (size <= 128) return 7;
263 if (size <= 256) return 8;
264 if (size <= 512) return 9;
265 if (size <= 1024) return 10;
266 if (size <= 2 * 1024) return 11;
267 if (size <= 4 * 1024) return 12;
268 if (size <= 8 * 1024) return 13;
269 if (size <= 16 * 1024) return 14;
270 if (size <= 32 * 1024) return 15;
271 if (size <= 64 * 1024) return 16;
272 if (size <= 128 * 1024) return 17;
273 if (size <= 256 * 1024) return 18;
274 if (size <= 512 * 1024) return 19;
275 if (size <= 1024 * 1024) return 20;
276 if (size <= 2 * 1024 * 1024) return 21;
277 if (size <= 4 * 1024 * 1024) return 22;
278 if (size <= 8 * 1024 * 1024) return 23;
279 if (size <= 16 * 1024 * 1024) return 24;
280 if (size <= 32 * 1024 * 1024) return 25;
281 if (size <= 64 * 1024 * 1024) return 26;
282 BUG();
283
284 /* Will never be reached. Needed because the compiler may complain */
285 return -1;
286}
069e2b35 287#endif /* !CONFIG_SLOB */
ce6a5026 288
f1b6eb6e
CL
289void *__kmalloc(size_t size, gfp_t flags);
290void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags);
2a4db7eb 291void kmem_cache_free(struct kmem_cache *, void *);
f1b6eb6e 292
484748f0
CL
293/*
294 * Bulk allocation and freeing operations. These are accellerated in an
295 * allocator specific way to avoid taking locks repeatedly or building
296 * metadata structures unnecessarily.
297 *
298 * Note that interrupts must be enabled when calling these functions.
299 */
300void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
301bool kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
302
f1b6eb6e
CL
303#ifdef CONFIG_NUMA
304void *__kmalloc_node(size_t size, gfp_t flags, int node);
305void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
306#else
307static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
308{
309 return __kmalloc(size, flags);
310}
311
312static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
313{
314 return kmem_cache_alloc(s, flags);
315}
316#endif
317
318#ifdef CONFIG_TRACING
319extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
320
321#ifdef CONFIG_NUMA
322extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
323 gfp_t gfpflags,
324 int node, size_t size);
325#else
326static __always_inline void *
327kmem_cache_alloc_node_trace(struct kmem_cache *s,
328 gfp_t gfpflags,
329 int node, size_t size)
330{
331 return kmem_cache_alloc_trace(s, gfpflags, size);
332}
333#endif /* CONFIG_NUMA */
334
335#else /* CONFIG_TRACING */
336static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
337 gfp_t flags, size_t size)
338{
0316bec2
AR
339 void *ret = kmem_cache_alloc(s, flags);
340
341 kasan_kmalloc(s, ret, size);
342 return ret;
f1b6eb6e
CL
343}
344
345static __always_inline void *
346kmem_cache_alloc_node_trace(struct kmem_cache *s,
347 gfp_t gfpflags,
348 int node, size_t size)
349{
0316bec2
AR
350 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
351
352 kasan_kmalloc(s, ret, size);
353 return ret;
f1b6eb6e
CL
354}
355#endif /* CONFIG_TRACING */
356
52383431 357extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order);
f1b6eb6e
CL
358
359#ifdef CONFIG_TRACING
360extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
361#else
362static __always_inline void *
363kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
364{
365 return kmalloc_order(size, flags, order);
366}
ce6a5026
CL
367#endif
368
f1b6eb6e
CL
369static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
370{
371 unsigned int order = get_order(size);
372 return kmalloc_order_trace(size, flags, order);
373}
374
375/**
376 * kmalloc - allocate memory
377 * @size: how many bytes of memory are required.
7e3528c3 378 * @flags: the type of memory to allocate.
f1b6eb6e
CL
379 *
380 * kmalloc is the normal method of allocating memory
381 * for objects smaller than page size in the kernel.
7e3528c3
RD
382 *
383 * The @flags argument may be one of:
384 *
385 * %GFP_USER - Allocate memory on behalf of user. May sleep.
386 *
387 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
388 *
389 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
390 * For example, use this inside interrupt handlers.
391 *
392 * %GFP_HIGHUSER - Allocate pages from high memory.
393 *
394 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
395 *
396 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
397 *
398 * %GFP_NOWAIT - Allocation will not sleep.
399 *
e97ca8e5 400 * %__GFP_THISNODE - Allocate node-local memory only.
7e3528c3
RD
401 *
402 * %GFP_DMA - Allocation suitable for DMA.
403 * Should only be used for kmalloc() caches. Otherwise, use a
404 * slab created with SLAB_DMA.
405 *
406 * Also it is possible to set different flags by OR'ing
407 * in one or more of the following additional @flags:
408 *
409 * %__GFP_COLD - Request cache-cold pages instead of
410 * trying to return cache-warm pages.
411 *
412 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
413 *
414 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
415 * (think twice before using).
416 *
417 * %__GFP_NORETRY - If memory is not immediately available,
418 * then give up at once.
419 *
420 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
421 *
422 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
423 *
424 * There are other flags available as well, but these are not intended
425 * for general use, and so are not documented here. For a full list of
426 * potential flags, always refer to linux/gfp.h.
f1b6eb6e
CL
427 */
428static __always_inline void *kmalloc(size_t size, gfp_t flags)
429{
430 if (__builtin_constant_p(size)) {
431 if (size > KMALLOC_MAX_CACHE_SIZE)
432 return kmalloc_large(size, flags);
433#ifndef CONFIG_SLOB
434 if (!(flags & GFP_DMA)) {
435 int index = kmalloc_index(size);
436
437 if (!index)
438 return ZERO_SIZE_PTR;
439
440 return kmem_cache_alloc_trace(kmalloc_caches[index],
441 flags, size);
442 }
443#endif
444 }
445 return __kmalloc(size, flags);
446}
447
ce6a5026
CL
448/*
449 * Determine size used for the nth kmalloc cache.
450 * return size or 0 if a kmalloc cache for that
451 * size does not exist
452 */
453static __always_inline int kmalloc_size(int n)
454{
069e2b35 455#ifndef CONFIG_SLOB
ce6a5026
CL
456 if (n > 2)
457 return 1 << n;
458
459 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
460 return 96;
461
462 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
463 return 192;
069e2b35 464#endif
ce6a5026
CL
465 return 0;
466}
ce6a5026 467
f1b6eb6e
CL
468static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
469{
470#ifndef CONFIG_SLOB
471 if (__builtin_constant_p(size) &&
23774a2f 472 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
f1b6eb6e
CL
473 int i = kmalloc_index(size);
474
475 if (!i)
476 return ZERO_SIZE_PTR;
477
478 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
479 flags, node, size);
480 }
481#endif
482 return __kmalloc_node(size, flags, node);
483}
484
90810645
CL
485/*
486 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
487 * Intended for arches that get misalignment faults even for 64 bit integer
488 * aligned buffers.
489 */
3192b920
CL
490#ifndef ARCH_SLAB_MINALIGN
491#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
492#endif
f7ce3190
VD
493
494struct memcg_cache_array {
495 struct rcu_head rcu;
496 struct kmem_cache *entries[0];
497};
498
ba6c496e
GC
499/*
500 * This is the main placeholder for memcg-related information in kmem caches.
ba6c496e
GC
501 * Both the root cache and the child caches will have it. For the root cache,
502 * this will hold a dynamically allocated array large enough to hold
f8570263
VD
503 * information about the currently limited memcgs in the system. To allow the
504 * array to be accessed without taking any locks, on relocation we free the old
505 * version only after a grace period.
ba6c496e
GC
506 *
507 * Child caches will hold extra metadata needed for its operation. Fields are:
508 *
509 * @memcg: pointer to the memcg this cache belongs to
2633d7a0 510 * @root_cache: pointer to the global, root cache, this cache was derived from
426589f5
VD
511 *
512 * Both root and child caches of the same kind are linked into a list chained
513 * through @list.
ba6c496e
GC
514 */
515struct memcg_cache_params {
516 bool is_root_cache;
426589f5 517 struct list_head list;
ba6c496e 518 union {
f7ce3190 519 struct memcg_cache_array __rcu *memcg_caches;
2633d7a0
GC
520 struct {
521 struct mem_cgroup *memcg;
2633d7a0
GC
522 struct kmem_cache *root_cache;
523 };
ba6c496e
GC
524 };
525};
526
2633d7a0
GC
527int memcg_update_all_caches(int num_memcgs);
528
e7efa615
MO
529/**
530 * kmalloc_array - allocate memory for an array.
531 * @n: number of elements.
532 * @size: element size.
533 * @flags: the type of memory to allocate (see kmalloc).
800590f5 534 */
a8203725 535static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
1da177e4 536{
a3860c1c 537 if (size != 0 && n > SIZE_MAX / size)
6193a2ff 538 return NULL;
a8203725
XW
539 return __kmalloc(n * size, flags);
540}
541
542/**
543 * kcalloc - allocate memory for an array. The memory is set to zero.
544 * @n: number of elements.
545 * @size: element size.
546 * @flags: the type of memory to allocate (see kmalloc).
547 */
548static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
549{
550 return kmalloc_array(n, size, flags | __GFP_ZERO);
1da177e4
LT
551}
552
1d2c8eea
CH
553/*
554 * kmalloc_track_caller is a special version of kmalloc that records the
555 * calling function of the routine calling it for slab leak tracking instead
556 * of just the calling function (confusing, eh?).
557 * It's useful when the call to kmalloc comes from a widely-used standard
558 * allocator where we care about the real place the memory allocation
559 * request comes from.
560 */
ce71e27c 561extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
1d2c8eea 562#define kmalloc_track_caller(size, flags) \
ce71e27c 563 __kmalloc_track_caller(size, flags, _RET_IP_)
1da177e4 564
97e2bde4 565#ifdef CONFIG_NUMA
ce71e27c 566extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
8b98c169
CH
567#define kmalloc_node_track_caller(size, flags, node) \
568 __kmalloc_node_track_caller(size, flags, node, \
ce71e27c 569 _RET_IP_)
2e892f43 570
8b98c169 571#else /* CONFIG_NUMA */
8b98c169
CH
572
573#define kmalloc_node_track_caller(size, flags, node) \
574 kmalloc_track_caller(size, flags)
97e2bde4 575
dfcd3610 576#endif /* CONFIG_NUMA */
10cef602 577
81cda662
CL
578/*
579 * Shortcuts
580 */
581static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
582{
583 return kmem_cache_alloc(k, flags | __GFP_ZERO);
584}
585
586/**
587 * kzalloc - allocate memory. The memory is set to zero.
588 * @size: how many bytes of memory are required.
589 * @flags: the type of memory to allocate (see kmalloc).
590 */
591static inline void *kzalloc(size_t size, gfp_t flags)
592{
593 return kmalloc(size, flags | __GFP_ZERO);
594}
595
979b0fea
JL
596/**
597 * kzalloc_node - allocate zeroed memory from a particular memory node.
598 * @size: how many bytes of memory are required.
599 * @flags: the type of memory to allocate (see kmalloc).
600 * @node: memory node from which to allocate
601 */
602static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
603{
604 return kmalloc_node(size, flags | __GFP_ZERO, node);
605}
606
07f361b2 607unsigned int kmem_cache_size(struct kmem_cache *s);
7e85ee0c
PE
608void __init kmem_cache_init_late(void);
609
1da177e4 610#endif /* _LINUX_SLAB_H */