]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - include/linux/slab.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-jammy-kernel.git] / include / linux / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4 2/*
2e892f43
CL
3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
cde53535 5 * (C) SGI 2006, Christoph Lameter
2e892f43
CL
6 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
f1b6eb6e
CL
8 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
1da177e4
LT
10 */
11
12#ifndef _LINUX_SLAB_H
13#define _LINUX_SLAB_H
14
1b1cec4b 15#include <linux/gfp.h>
49b7f898 16#include <linux/overflow.h>
1b1cec4b 17#include <linux/types.h>
1f458cbf 18#include <linux/workqueue.h>
f0a3a24b 19#include <linux/percpu-refcount.h>
1f458cbf 20
1da177e4 21
2e892f43
CL
22/*
23 * Flags to pass to kmem_cache_create().
124dee09 24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
1da177e4 25 */
d50112ed 26/* DEBUG: Perform (expensive) checks on alloc/free */
4fd0b46e 27#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
d50112ed 28/* DEBUG: Red zone objs in a cache */
4fd0b46e 29#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
d50112ed 30/* DEBUG: Poison objects */
4fd0b46e 31#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
d50112ed 32/* Align objs on cache lines */
4fd0b46e 33#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
d50112ed 34/* Use GFP_DMA memory */
4fd0b46e 35#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
6d6ea1e9
NB
36/* Use GFP_DMA32 memory */
37#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
d50112ed 38/* DEBUG: Store the last owner for bug hunting */
4fd0b46e 39#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
d50112ed 40/* Panic if kmem_cache_create() fails */
4fd0b46e 41#define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
d7de4c1d 42/*
5f0d5a3a 43 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
d7de4c1d
PZ
44 *
45 * This delays freeing the SLAB page by a grace period, it does _NOT_
46 * delay object freeing. This means that if you do kmem_cache_free()
47 * that memory location is free to be reused at any time. Thus it may
48 * be possible to see another object there in the same RCU grace period.
49 *
50 * This feature only ensures the memory location backing the object
51 * stays valid, the trick to using this is relying on an independent
52 * object validation pass. Something like:
53 *
54 * rcu_read_lock()
55 * again:
56 * obj = lockless_lookup(key);
57 * if (obj) {
58 * if (!try_get_ref(obj)) // might fail for free objects
59 * goto again;
60 *
61 * if (obj->key != key) { // not the object we expected
62 * put_ref(obj);
63 * goto again;
64 * }
65 * }
66 * rcu_read_unlock();
67 *
68126702
JK
68 * This is useful if we need to approach a kernel structure obliquely,
69 * from its address obtained without the usual locking. We can lock
70 * the structure to stabilize it and check it's still at the given address,
71 * only if we can be sure that the memory has not been meanwhile reused
72 * for some other kind of object (which our subsystem's lock might corrupt).
73 *
74 * rcu_read_lock before reading the address, then rcu_read_unlock after
75 * taking the spinlock within the structure expected at that address.
5f0d5a3a
PM
76 *
77 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
d7de4c1d 78 */
d50112ed 79/* Defer freeing slabs to RCU */
4fd0b46e 80#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
d50112ed 81/* Spread some memory over cpuset */
4fd0b46e 82#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
d50112ed 83/* Trace allocations and frees */
4fd0b46e 84#define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
1da177e4 85
30327acf
TG
86/* Flag to prevent checks on free */
87#ifdef CONFIG_DEBUG_OBJECTS
4fd0b46e 88# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
30327acf 89#else
4fd0b46e 90# define SLAB_DEBUG_OBJECTS 0
30327acf
TG
91#endif
92
d50112ed 93/* Avoid kmemleak tracing */
4fd0b46e 94#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
d5cff635 95
d50112ed 96/* Fault injection mark */
4c13dd3b 97#ifdef CONFIG_FAILSLAB
4fd0b46e 98# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
4c13dd3b 99#else
4fd0b46e 100# define SLAB_FAILSLAB 0
4c13dd3b 101#endif
d50112ed 102/* Account to memcg */
84c07d11 103#ifdef CONFIG_MEMCG_KMEM
4fd0b46e 104# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
230e9fc2 105#else
4fd0b46e 106# define SLAB_ACCOUNT 0
230e9fc2 107#endif
2dff4405 108
7ed2f9e6 109#ifdef CONFIG_KASAN
4fd0b46e 110#define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
7ed2f9e6 111#else
4fd0b46e 112#define SLAB_KASAN 0
7ed2f9e6
AP
113#endif
114
e12ba74d 115/* The following flags affect the page allocator grouping pages by mobility */
d50112ed 116/* Objects are reclaimable */
4fd0b46e 117#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
e12ba74d 118#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
fcf8a1e4
WL
119
120/* Slab deactivation flag */
121#define SLAB_DEACTIVATED ((slab_flags_t __force)0x10000000U)
122
6cb8f913
CL
123/*
124 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
125 *
126 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
127 *
128 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
129 * Both make kfree a no-op.
130 */
131#define ZERO_SIZE_PTR ((void *)16)
132
1d4ec7b1 133#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
6cb8f913
CL
134 (unsigned long)ZERO_SIZE_PTR)
135
0316bec2 136#include <linux/kasan.h>
3b0efdfa 137
2633d7a0 138struct mem_cgroup;
2e892f43
CL
139/*
140 * struct kmem_cache related prototypes
141 */
142void __init kmem_cache_init(void);
fda90124 143bool slab_is_available(void);
1da177e4 144
2d891fbc
KC
145extern bool usercopy_fallback;
146
f4957d5b
AD
147struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
148 unsigned int align, slab_flags_t flags,
8eb8284b
DW
149 void (*ctor)(void *));
150struct kmem_cache *kmem_cache_create_usercopy(const char *name,
f4957d5b
AD
151 unsigned int size, unsigned int align,
152 slab_flags_t flags,
7bbdb81e 153 unsigned int useroffset, unsigned int usersize,
8eb8284b 154 void (*ctor)(void *));
2e892f43
CL
155void kmem_cache_destroy(struct kmem_cache *);
156int kmem_cache_shrink(struct kmem_cache *);
2a4db7eb
VD
157
158void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
fb2f2b0a 159void memcg_deactivate_kmem_caches(struct mem_cgroup *, struct mem_cgroup *);
2e892f43 160
0a31bd5f
CL
161/*
162 * Please use this macro to create slab caches. Simply specify the
163 * name of the structure and maybe some flags that are listed above.
164 *
165 * The alignment of the struct determines object alignment. If you
166 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
167 * then the objects will be properly aligned in SMP configurations.
168 */
8eb8284b
DW
169#define KMEM_CACHE(__struct, __flags) \
170 kmem_cache_create(#__struct, sizeof(struct __struct), \
171 __alignof__(struct __struct), (__flags), NULL)
172
173/*
174 * To whitelist a single field for copying to/from usercopy, use this
175 * macro instead for KMEM_CACHE() above.
176 */
177#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
178 kmem_cache_create_usercopy(#__struct, \
179 sizeof(struct __struct), \
180 __alignof__(struct __struct), (__flags), \
181 offsetof(struct __struct, __field), \
182 sizeof_field(struct __struct, __field), NULL)
0a31bd5f 183
34504667
CL
184/*
185 * Common kmalloc functions provided by all allocators
186 */
187void * __must_check __krealloc(const void *, size_t, gfp_t);
188void * __must_check krealloc(const void *, size_t, gfp_t);
189void kfree(const void *);
190void kzfree(const void *);
10d1f8cb 191size_t __ksize(const void *);
34504667
CL
192size_t ksize(const void *);
193
f5509cc1 194#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
f4e6e289
KC
195void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
196 bool to_user);
f5509cc1 197#else
f4e6e289
KC
198static inline void __check_heap_object(const void *ptr, unsigned long n,
199 struct page *page, bool to_user) { }
f5509cc1
KC
200#endif
201
c601fd69
CL
202/*
203 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
204 * alignment larger than the alignment of a 64-bit integer.
205 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
206 */
207#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
208#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
209#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
210#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
211#else
212#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
213#endif
214
94a58c36
RV
215/*
216 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
217 * Intended for arches that get misalignment faults even for 64 bit integer
218 * aligned buffers.
219 */
220#ifndef ARCH_SLAB_MINALIGN
221#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
222#endif
223
224/*
225 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
226 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
227 * aligned pointers.
228 */
229#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
230#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
231#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
232
0aa817f0 233/*
95a05b42
CL
234 * Kmalloc array related definitions
235 */
236
237#ifdef CONFIG_SLAB
238/*
239 * The largest kmalloc size supported by the SLAB allocators is
0aa817f0
CL
240 * 32 megabyte (2^25) or the maximum allocatable page order if that is
241 * less than 32 MB.
242 *
243 * WARNING: Its not easy to increase this value since the allocators have
244 * to do various tricks to work around compiler limitations in order to
245 * ensure proper constant folding.
246 */
debee076
CL
247#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
248 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
95a05b42 249#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
c601fd69 250#ifndef KMALLOC_SHIFT_LOW
95a05b42 251#define KMALLOC_SHIFT_LOW 5
c601fd69 252#endif
069e2b35
CL
253#endif
254
255#ifdef CONFIG_SLUB
95a05b42 256/*
433a91ff
DH
257 * SLUB directly allocates requests fitting in to an order-1 page
258 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
95a05b42
CL
259 */
260#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
bb1107f7 261#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
c601fd69 262#ifndef KMALLOC_SHIFT_LOW
95a05b42
CL
263#define KMALLOC_SHIFT_LOW 3
264#endif
c601fd69 265#endif
0aa817f0 266
069e2b35
CL
267#ifdef CONFIG_SLOB
268/*
433a91ff 269 * SLOB passes all requests larger than one page to the page allocator.
069e2b35
CL
270 * No kmalloc array is necessary since objects of different sizes can
271 * be allocated from the same page.
272 */
069e2b35 273#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
bb1107f7 274#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
069e2b35
CL
275#ifndef KMALLOC_SHIFT_LOW
276#define KMALLOC_SHIFT_LOW 3
277#endif
278#endif
279
95a05b42
CL
280/* Maximum allocatable size */
281#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
282/* Maximum size for which we actually use a slab cache */
283#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
284/* Maximum order allocatable via the slab allocagtor */
285#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
0aa817f0 286
ce6a5026
CL
287/*
288 * Kmalloc subsystem.
289 */
c601fd69 290#ifndef KMALLOC_MIN_SIZE
95a05b42 291#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
ce6a5026
CL
292#endif
293
24f870d8
JK
294/*
295 * This restriction comes from byte sized index implementation.
296 * Page size is normally 2^12 bytes and, in this case, if we want to use
297 * byte sized index which can represent 2^8 entries, the size of the object
298 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
299 * If minimum size of kmalloc is less than 16, we use it as minimum object
300 * size and give up to use byte sized index.
301 */
302#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
303 (KMALLOC_MIN_SIZE) : 16)
304
1291523f
VB
305/*
306 * Whenever changing this, take care of that kmalloc_type() and
307 * create_kmalloc_caches() still work as intended.
308 */
cc252eae
VB
309enum kmalloc_cache_type {
310 KMALLOC_NORMAL = 0,
1291523f 311 KMALLOC_RECLAIM,
cc252eae
VB
312#ifdef CONFIG_ZONE_DMA
313 KMALLOC_DMA,
314#endif
315 NR_KMALLOC_TYPES
316};
317
069e2b35 318#ifndef CONFIG_SLOB
cc252eae
VB
319extern struct kmem_cache *
320kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
321
322static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
323{
9425c58e 324#ifdef CONFIG_ZONE_DMA
4e45f712
VB
325 /*
326 * The most common case is KMALLOC_NORMAL, so test for it
327 * with a single branch for both flags.
328 */
329 if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0))
330 return KMALLOC_NORMAL;
1291523f
VB
331
332 /*
4e45f712
VB
333 * At least one of the flags has to be set. If both are, __GFP_DMA
334 * is more important.
1291523f 335 */
4e45f712
VB
336 return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM;
337#else
338 return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL;
339#endif
cc252eae
VB
340}
341
ce6a5026
CL
342/*
343 * Figure out which kmalloc slab an allocation of a certain size
344 * belongs to.
345 * 0 = zero alloc
346 * 1 = 65 .. 96 bytes
1ed58b60
RV
347 * 2 = 129 .. 192 bytes
348 * n = 2^(n-1)+1 .. 2^n
ce6a5026 349 */
36071a27 350static __always_inline unsigned int kmalloc_index(size_t size)
ce6a5026
CL
351{
352 if (!size)
353 return 0;
354
355 if (size <= KMALLOC_MIN_SIZE)
356 return KMALLOC_SHIFT_LOW;
357
358 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
359 return 1;
360 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
361 return 2;
362 if (size <= 8) return 3;
363 if (size <= 16) return 4;
364 if (size <= 32) return 5;
365 if (size <= 64) return 6;
366 if (size <= 128) return 7;
367 if (size <= 256) return 8;
368 if (size <= 512) return 9;
369 if (size <= 1024) return 10;
370 if (size <= 2 * 1024) return 11;
371 if (size <= 4 * 1024) return 12;
372 if (size <= 8 * 1024) return 13;
373 if (size <= 16 * 1024) return 14;
374 if (size <= 32 * 1024) return 15;
375 if (size <= 64 * 1024) return 16;
376 if (size <= 128 * 1024) return 17;
377 if (size <= 256 * 1024) return 18;
378 if (size <= 512 * 1024) return 19;
379 if (size <= 1024 * 1024) return 20;
380 if (size <= 2 * 1024 * 1024) return 21;
381 if (size <= 4 * 1024 * 1024) return 22;
382 if (size <= 8 * 1024 * 1024) return 23;
383 if (size <= 16 * 1024 * 1024) return 24;
384 if (size <= 32 * 1024 * 1024) return 25;
385 if (size <= 64 * 1024 * 1024) return 26;
386 BUG();
387
388 /* Will never be reached. Needed because the compiler may complain */
389 return -1;
390}
069e2b35 391#endif /* !CONFIG_SLOB */
ce6a5026 392
48a27055
RV
393void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
394void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
2a4db7eb 395void kmem_cache_free(struct kmem_cache *, void *);
f1b6eb6e 396
484748f0 397/*
9f706d68 398 * Bulk allocation and freeing operations. These are accelerated in an
484748f0
CL
399 * allocator specific way to avoid taking locks repeatedly or building
400 * metadata structures unnecessarily.
401 *
402 * Note that interrupts must be enabled when calling these functions.
403 */
404void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 405int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 406
ca257195
JDB
407/*
408 * Caller must not use kfree_bulk() on memory not originally allocated
409 * by kmalloc(), because the SLOB allocator cannot handle this.
410 */
411static __always_inline void kfree_bulk(size_t size, void **p)
412{
413 kmem_cache_free_bulk(NULL, size, p);
414}
415
f1b6eb6e 416#ifdef CONFIG_NUMA
48a27055
RV
417void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
418void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
f1b6eb6e
CL
419#else
420static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
421{
422 return __kmalloc(size, flags);
423}
424
425static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
426{
427 return kmem_cache_alloc(s, flags);
428}
429#endif
430
431#ifdef CONFIG_TRACING
48a27055 432extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
f1b6eb6e
CL
433
434#ifdef CONFIG_NUMA
435extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
436 gfp_t gfpflags,
48a27055 437 int node, size_t size) __assume_slab_alignment __malloc;
f1b6eb6e
CL
438#else
439static __always_inline void *
440kmem_cache_alloc_node_trace(struct kmem_cache *s,
441 gfp_t gfpflags,
442 int node, size_t size)
443{
444 return kmem_cache_alloc_trace(s, gfpflags, size);
445}
446#endif /* CONFIG_NUMA */
447
448#else /* CONFIG_TRACING */
449static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
450 gfp_t flags, size_t size)
451{
0316bec2
AR
452 void *ret = kmem_cache_alloc(s, flags);
453
0116523c 454 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 455 return ret;
f1b6eb6e
CL
456}
457
458static __always_inline void *
459kmem_cache_alloc_node_trace(struct kmem_cache *s,
460 gfp_t gfpflags,
461 int node, size_t size)
462{
0316bec2
AR
463 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
464
0116523c 465 ret = kasan_kmalloc(s, ret, size, gfpflags);
0316bec2 466 return ret;
f1b6eb6e
CL
467}
468#endif /* CONFIG_TRACING */
469
48a27055 470extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
f1b6eb6e
CL
471
472#ifdef CONFIG_TRACING
48a27055 473extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
f1b6eb6e
CL
474#else
475static __always_inline void *
476kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
477{
478 return kmalloc_order(size, flags, order);
479}
ce6a5026
CL
480#endif
481
f1b6eb6e
CL
482static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
483{
484 unsigned int order = get_order(size);
485 return kmalloc_order_trace(size, flags, order);
486}
487
488/**
489 * kmalloc - allocate memory
490 * @size: how many bytes of memory are required.
7e3528c3 491 * @flags: the type of memory to allocate.
f1b6eb6e
CL
492 *
493 * kmalloc is the normal method of allocating memory
494 * for objects smaller than page size in the kernel.
7e3528c3 495 *
59bb4798
VB
496 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
497 * bytes. For @size of power of two bytes, the alignment is also guaranteed
498 * to be at least to the size.
499 *
01598ba6
MR
500 * The @flags argument may be one of the GFP flags defined at
501 * include/linux/gfp.h and described at
502 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
7e3528c3 503 *
01598ba6 504 * The recommended usage of the @flags is described at
3870a237 505 * :ref:`Documentation/core-api/memory-allocation.rst <memory-allocation>`
7e3528c3 506 *
01598ba6 507 * Below is a brief outline of the most useful GFP flags
7e3528c3 508 *
01598ba6
MR
509 * %GFP_KERNEL
510 * Allocate normal kernel ram. May sleep.
7e3528c3 511 *
01598ba6
MR
512 * %GFP_NOWAIT
513 * Allocation will not sleep.
7e3528c3 514 *
01598ba6
MR
515 * %GFP_ATOMIC
516 * Allocation will not sleep. May use emergency pools.
7e3528c3 517 *
01598ba6
MR
518 * %GFP_HIGHUSER
519 * Allocate memory from high memory on behalf of user.
7e3528c3
RD
520 *
521 * Also it is possible to set different flags by OR'ing
522 * in one or more of the following additional @flags:
523 *
01598ba6
MR
524 * %__GFP_HIGH
525 * This allocation has high priority and may use emergency pools.
7e3528c3 526 *
01598ba6
MR
527 * %__GFP_NOFAIL
528 * Indicate that this allocation is in no way allowed to fail
529 * (think twice before using).
7e3528c3 530 *
01598ba6
MR
531 * %__GFP_NORETRY
532 * If memory is not immediately available,
533 * then give up at once.
7e3528c3 534 *
01598ba6
MR
535 * %__GFP_NOWARN
536 * If allocation fails, don't issue any warnings.
7e3528c3 537 *
01598ba6
MR
538 * %__GFP_RETRY_MAYFAIL
539 * Try really hard to succeed the allocation but fail
540 * eventually.
f1b6eb6e
CL
541 */
542static __always_inline void *kmalloc(size_t size, gfp_t flags)
543{
544 if (__builtin_constant_p(size)) {
cc252eae
VB
545#ifndef CONFIG_SLOB
546 unsigned int index;
547#endif
f1b6eb6e
CL
548 if (size > KMALLOC_MAX_CACHE_SIZE)
549 return kmalloc_large(size, flags);
550#ifndef CONFIG_SLOB
cc252eae 551 index = kmalloc_index(size);
f1b6eb6e 552
cc252eae
VB
553 if (!index)
554 return ZERO_SIZE_PTR;
f1b6eb6e 555
cc252eae
VB
556 return kmem_cache_alloc_trace(
557 kmalloc_caches[kmalloc_type(flags)][index],
558 flags, size);
f1b6eb6e
CL
559#endif
560 }
561 return __kmalloc(size, flags);
562}
563
f1b6eb6e
CL
564static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
565{
566#ifndef CONFIG_SLOB
567 if (__builtin_constant_p(size) &&
cc252eae 568 size <= KMALLOC_MAX_CACHE_SIZE) {
36071a27 569 unsigned int i = kmalloc_index(size);
f1b6eb6e
CL
570
571 if (!i)
572 return ZERO_SIZE_PTR;
573
cc252eae
VB
574 return kmem_cache_alloc_node_trace(
575 kmalloc_caches[kmalloc_type(flags)][i],
f1b6eb6e
CL
576 flags, node, size);
577 }
578#endif
579 return __kmalloc_node(size, flags, node);
580}
581
2633d7a0
GC
582int memcg_update_all_caches(int num_memcgs);
583
e7efa615
MO
584/**
585 * kmalloc_array - allocate memory for an array.
586 * @n: number of elements.
587 * @size: element size.
588 * @flags: the type of memory to allocate (see kmalloc).
800590f5 589 */
a8203725 590static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
1da177e4 591{
49b7f898
KC
592 size_t bytes;
593
594 if (unlikely(check_mul_overflow(n, size, &bytes)))
6193a2ff 595 return NULL;
91c6a05f 596 if (__builtin_constant_p(n) && __builtin_constant_p(size))
49b7f898
KC
597 return kmalloc(bytes, flags);
598 return __kmalloc(bytes, flags);
a8203725
XW
599}
600
601/**
602 * kcalloc - allocate memory for an array. The memory is set to zero.
603 * @n: number of elements.
604 * @size: element size.
605 * @flags: the type of memory to allocate (see kmalloc).
606 */
607static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
608{
609 return kmalloc_array(n, size, flags | __GFP_ZERO);
1da177e4
LT
610}
611
1d2c8eea
CH
612/*
613 * kmalloc_track_caller is a special version of kmalloc that records the
614 * calling function of the routine calling it for slab leak tracking instead
615 * of just the calling function (confusing, eh?).
616 * It's useful when the call to kmalloc comes from a widely-used standard
617 * allocator where we care about the real place the memory allocation
618 * request comes from.
619 */
ce71e27c 620extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
1d2c8eea 621#define kmalloc_track_caller(size, flags) \
ce71e27c 622 __kmalloc_track_caller(size, flags, _RET_IP_)
1da177e4 623
5799b255
JT
624static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
625 int node)
626{
49b7f898
KC
627 size_t bytes;
628
629 if (unlikely(check_mul_overflow(n, size, &bytes)))
5799b255
JT
630 return NULL;
631 if (__builtin_constant_p(n) && __builtin_constant_p(size))
49b7f898
KC
632 return kmalloc_node(bytes, flags, node);
633 return __kmalloc_node(bytes, flags, node);
5799b255
JT
634}
635
636static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
637{
638 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
639}
640
641
97e2bde4 642#ifdef CONFIG_NUMA
ce71e27c 643extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
8b98c169
CH
644#define kmalloc_node_track_caller(size, flags, node) \
645 __kmalloc_node_track_caller(size, flags, node, \
ce71e27c 646 _RET_IP_)
2e892f43 647
8b98c169 648#else /* CONFIG_NUMA */
8b98c169
CH
649
650#define kmalloc_node_track_caller(size, flags, node) \
651 kmalloc_track_caller(size, flags)
97e2bde4 652
dfcd3610 653#endif /* CONFIG_NUMA */
10cef602 654
81cda662
CL
655/*
656 * Shortcuts
657 */
658static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
659{
660 return kmem_cache_alloc(k, flags | __GFP_ZERO);
661}
662
663/**
664 * kzalloc - allocate memory. The memory is set to zero.
665 * @size: how many bytes of memory are required.
666 * @flags: the type of memory to allocate (see kmalloc).
667 */
668static inline void *kzalloc(size_t size, gfp_t flags)
669{
670 return kmalloc(size, flags | __GFP_ZERO);
671}
672
979b0fea
JL
673/**
674 * kzalloc_node - allocate zeroed memory from a particular memory node.
675 * @size: how many bytes of memory are required.
676 * @flags: the type of memory to allocate (see kmalloc).
677 * @node: memory node from which to allocate
678 */
679static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
680{
681 return kmalloc_node(size, flags | __GFP_ZERO, node);
682}
683
07f361b2 684unsigned int kmem_cache_size(struct kmem_cache *s);
7e85ee0c
PE
685void __init kmem_cache_init_late(void);
686
6731d4f1
SAS
687#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
688int slab_prepare_cpu(unsigned int cpu);
689int slab_dead_cpu(unsigned int cpu);
690#else
691#define slab_prepare_cpu NULL
692#define slab_dead_cpu NULL
693#endif
694
1da177e4 695#endif /* _LINUX_SLAB_H */