]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/slab.h
memcg: only account kmem allocations marked as __GFP_ACCOUNT
[mirror_ubuntu-bionic-kernel.git] / include / linux / slab.h
CommitLineData
1da177e4 1/*
2e892f43
CL
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
cde53535 4 * (C) SGI 2006, Christoph Lameter
2e892f43
CL
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
f1b6eb6e
CL
7 * (C) Linux Foundation 2008-2013
8 * Unified interface for all slab allocators
1da177e4
LT
9 */
10
11#ifndef _LINUX_SLAB_H
12#define _LINUX_SLAB_H
13
1b1cec4b 14#include <linux/gfp.h>
1b1cec4b 15#include <linux/types.h>
1f458cbf
GC
16#include <linux/workqueue.h>
17
1da177e4 18
2e892f43
CL
19/*
20 * Flags to pass to kmem_cache_create().
124dee09 21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
1da177e4 22 */
55935a34 23#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
55935a34
CL
24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
2e892f43 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
2e892f43 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
2e892f43 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
d7de4c1d
PZ
30/*
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32 *
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
37 *
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
41 *
42 * rcu_read_lock()
43 * again:
44 * obj = lockless_lookup(key);
45 * if (obj) {
46 * if (!try_get_ref(obj)) // might fail for free objects
47 * goto again;
48 *
49 * if (obj->key != key) { // not the object we expected
50 * put_ref(obj);
51 * goto again;
52 * }
53 * }
54 * rcu_read_unlock();
55 *
68126702
JK
56 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
61 *
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
d7de4c1d 64 */
2e892f43 65#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
101a5001 66#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
81819f0f 67#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
1da177e4 68
30327acf
TG
69/* Flag to prevent checks on free */
70#ifdef CONFIG_DEBUG_OBJECTS
71# define SLAB_DEBUG_OBJECTS 0x00400000UL
72#else
73# define SLAB_DEBUG_OBJECTS 0x00000000UL
74#endif
75
d5cff635
CM
76#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
77
2dff4405
VN
78/* Don't track use of uninitialized memory */
79#ifdef CONFIG_KMEMCHECK
80# define SLAB_NOTRACK 0x01000000UL
81#else
82# define SLAB_NOTRACK 0x00000000UL
83#endif
4c13dd3b
DM
84#ifdef CONFIG_FAILSLAB
85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
86#else
87# define SLAB_FAILSLAB 0x00000000UL
88#endif
2dff4405 89
e12ba74d
MG
90/* The following flags affect the page allocator grouping pages by mobility */
91#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
92#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
6cb8f913
CL
93/*
94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
95 *
96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
97 *
98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
99 * Both make kfree a no-op.
100 */
101#define ZERO_SIZE_PTR ((void *)16)
102
1d4ec7b1 103#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
6cb8f913
CL
104 (unsigned long)ZERO_SIZE_PTR)
105
f1b6eb6e 106#include <linux/kmemleak.h>
0316bec2 107#include <linux/kasan.h>
3b0efdfa 108
2633d7a0 109struct mem_cgroup;
2e892f43
CL
110/*
111 * struct kmem_cache related prototypes
112 */
113void __init kmem_cache_init(void);
fda90124 114bool slab_is_available(void);
1da177e4 115
2e892f43 116struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
ebe29738 117 unsigned long,
51cc5068 118 void (*)(void *));
2e892f43
CL
119void kmem_cache_destroy(struct kmem_cache *);
120int kmem_cache_shrink(struct kmem_cache *);
2a4db7eb
VD
121
122void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
123void memcg_deactivate_kmem_caches(struct mem_cgroup *);
124void memcg_destroy_kmem_caches(struct mem_cgroup *);
2e892f43 125
0a31bd5f
CL
126/*
127 * Please use this macro to create slab caches. Simply specify the
128 * name of the structure and maybe some flags that are listed above.
129 *
130 * The alignment of the struct determines object alignment. If you
131 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
132 * then the objects will be properly aligned in SMP configurations.
133 */
134#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
135 sizeof(struct __struct), __alignof__(struct __struct),\
20c2df83 136 (__flags), NULL)
0a31bd5f 137
34504667
CL
138/*
139 * Common kmalloc functions provided by all allocators
140 */
141void * __must_check __krealloc(const void *, size_t, gfp_t);
142void * __must_check krealloc(const void *, size_t, gfp_t);
143void kfree(const void *);
144void kzfree(const void *);
145size_t ksize(const void *);
146
c601fd69
CL
147/*
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than the alignment of a 64-bit integer.
150 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
151 */
152#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
153#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
154#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
155#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
156#else
157#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158#endif
159
94a58c36
RV
160/*
161 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
162 * Intended for arches that get misalignment faults even for 64 bit integer
163 * aligned buffers.
164 */
165#ifndef ARCH_SLAB_MINALIGN
166#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
167#endif
168
169/*
170 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
171 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
172 * aligned pointers.
173 */
174#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
175#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
176#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
177
0aa817f0 178/*
95a05b42
CL
179 * Kmalloc array related definitions
180 */
181
182#ifdef CONFIG_SLAB
183/*
184 * The largest kmalloc size supported by the SLAB allocators is
0aa817f0
CL
185 * 32 megabyte (2^25) or the maximum allocatable page order if that is
186 * less than 32 MB.
187 *
188 * WARNING: Its not easy to increase this value since the allocators have
189 * to do various tricks to work around compiler limitations in order to
190 * ensure proper constant folding.
191 */
debee076
CL
192#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
193 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
95a05b42 194#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
c601fd69 195#ifndef KMALLOC_SHIFT_LOW
95a05b42 196#define KMALLOC_SHIFT_LOW 5
c601fd69 197#endif
069e2b35
CL
198#endif
199
200#ifdef CONFIG_SLUB
95a05b42 201/*
433a91ff
DH
202 * SLUB directly allocates requests fitting in to an order-1 page
203 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
95a05b42
CL
204 */
205#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
206#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
c601fd69 207#ifndef KMALLOC_SHIFT_LOW
95a05b42
CL
208#define KMALLOC_SHIFT_LOW 3
209#endif
c601fd69 210#endif
0aa817f0 211
069e2b35
CL
212#ifdef CONFIG_SLOB
213/*
433a91ff 214 * SLOB passes all requests larger than one page to the page allocator.
069e2b35
CL
215 * No kmalloc array is necessary since objects of different sizes can
216 * be allocated from the same page.
217 */
069e2b35 218#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
433a91ff 219#define KMALLOC_SHIFT_MAX 30
069e2b35
CL
220#ifndef KMALLOC_SHIFT_LOW
221#define KMALLOC_SHIFT_LOW 3
222#endif
223#endif
224
95a05b42
CL
225/* Maximum allocatable size */
226#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
227/* Maximum size for which we actually use a slab cache */
228#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
229/* Maximum order allocatable via the slab allocagtor */
230#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
0aa817f0 231
ce6a5026
CL
232/*
233 * Kmalloc subsystem.
234 */
c601fd69 235#ifndef KMALLOC_MIN_SIZE
95a05b42 236#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
ce6a5026
CL
237#endif
238
24f870d8
JK
239/*
240 * This restriction comes from byte sized index implementation.
241 * Page size is normally 2^12 bytes and, in this case, if we want to use
242 * byte sized index which can represent 2^8 entries, the size of the object
243 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
244 * If minimum size of kmalloc is less than 16, we use it as minimum object
245 * size and give up to use byte sized index.
246 */
247#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
248 (KMALLOC_MIN_SIZE) : 16)
249
069e2b35 250#ifndef CONFIG_SLOB
9425c58e
CL
251extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
252#ifdef CONFIG_ZONE_DMA
253extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
254#endif
255
ce6a5026
CL
256/*
257 * Figure out which kmalloc slab an allocation of a certain size
258 * belongs to.
259 * 0 = zero alloc
260 * 1 = 65 .. 96 bytes
1ed58b60
RV
261 * 2 = 129 .. 192 bytes
262 * n = 2^(n-1)+1 .. 2^n
ce6a5026
CL
263 */
264static __always_inline int kmalloc_index(size_t size)
265{
266 if (!size)
267 return 0;
268
269 if (size <= KMALLOC_MIN_SIZE)
270 return KMALLOC_SHIFT_LOW;
271
272 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
273 return 1;
274 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
275 return 2;
276 if (size <= 8) return 3;
277 if (size <= 16) return 4;
278 if (size <= 32) return 5;
279 if (size <= 64) return 6;
280 if (size <= 128) return 7;
281 if (size <= 256) return 8;
282 if (size <= 512) return 9;
283 if (size <= 1024) return 10;
284 if (size <= 2 * 1024) return 11;
285 if (size <= 4 * 1024) return 12;
286 if (size <= 8 * 1024) return 13;
287 if (size <= 16 * 1024) return 14;
288 if (size <= 32 * 1024) return 15;
289 if (size <= 64 * 1024) return 16;
290 if (size <= 128 * 1024) return 17;
291 if (size <= 256 * 1024) return 18;
292 if (size <= 512 * 1024) return 19;
293 if (size <= 1024 * 1024) return 20;
294 if (size <= 2 * 1024 * 1024) return 21;
295 if (size <= 4 * 1024 * 1024) return 22;
296 if (size <= 8 * 1024 * 1024) return 23;
297 if (size <= 16 * 1024 * 1024) return 24;
298 if (size <= 32 * 1024 * 1024) return 25;
299 if (size <= 64 * 1024 * 1024) return 26;
300 BUG();
301
302 /* Will never be reached. Needed because the compiler may complain */
303 return -1;
304}
069e2b35 305#endif /* !CONFIG_SLOB */
ce6a5026 306
94a58c36
RV
307void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment;
308void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment;
2a4db7eb 309void kmem_cache_free(struct kmem_cache *, void *);
f1b6eb6e 310
484748f0
CL
311/*
312 * Bulk allocation and freeing operations. These are accellerated in an
313 * allocator specific way to avoid taking locks repeatedly or building
314 * metadata structures unnecessarily.
315 *
316 * Note that interrupts must be enabled when calling these functions.
317 */
318void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 319int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 320
f1b6eb6e 321#ifdef CONFIG_NUMA
94a58c36
RV
322void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment;
323void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment;
f1b6eb6e
CL
324#else
325static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
326{
327 return __kmalloc(size, flags);
328}
329
330static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
331{
332 return kmem_cache_alloc(s, flags);
333}
334#endif
335
336#ifdef CONFIG_TRACING
94a58c36 337extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment;
f1b6eb6e
CL
338
339#ifdef CONFIG_NUMA
340extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
341 gfp_t gfpflags,
94a58c36 342 int node, size_t size) __assume_slab_alignment;
f1b6eb6e
CL
343#else
344static __always_inline void *
345kmem_cache_alloc_node_trace(struct kmem_cache *s,
346 gfp_t gfpflags,
347 int node, size_t size)
348{
349 return kmem_cache_alloc_trace(s, gfpflags, size);
350}
351#endif /* CONFIG_NUMA */
352
353#else /* CONFIG_TRACING */
354static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
355 gfp_t flags, size_t size)
356{
0316bec2
AR
357 void *ret = kmem_cache_alloc(s, flags);
358
359 kasan_kmalloc(s, ret, size);
360 return ret;
f1b6eb6e
CL
361}
362
363static __always_inline void *
364kmem_cache_alloc_node_trace(struct kmem_cache *s,
365 gfp_t gfpflags,
366 int node, size_t size)
367{
0316bec2
AR
368 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
369
370 kasan_kmalloc(s, ret, size);
371 return ret;
f1b6eb6e
CL
372}
373#endif /* CONFIG_TRACING */
374
94a58c36 375extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
f1b6eb6e
CL
376
377#ifdef CONFIG_TRACING
94a58c36 378extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
f1b6eb6e
CL
379#else
380static __always_inline void *
381kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
382{
383 return kmalloc_order(size, flags, order);
384}
ce6a5026
CL
385#endif
386
f1b6eb6e
CL
387static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
388{
389 unsigned int order = get_order(size);
390 return kmalloc_order_trace(size, flags, order);
391}
392
393/**
394 * kmalloc - allocate memory
395 * @size: how many bytes of memory are required.
7e3528c3 396 * @flags: the type of memory to allocate.
f1b6eb6e
CL
397 *
398 * kmalloc is the normal method of allocating memory
399 * for objects smaller than page size in the kernel.
7e3528c3
RD
400 *
401 * The @flags argument may be one of:
402 *
403 * %GFP_USER - Allocate memory on behalf of user. May sleep.
404 *
405 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
406 *
407 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
408 * For example, use this inside interrupt handlers.
409 *
410 * %GFP_HIGHUSER - Allocate pages from high memory.
411 *
412 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
413 *
414 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
415 *
416 * %GFP_NOWAIT - Allocation will not sleep.
417 *
e97ca8e5 418 * %__GFP_THISNODE - Allocate node-local memory only.
7e3528c3
RD
419 *
420 * %GFP_DMA - Allocation suitable for DMA.
421 * Should only be used for kmalloc() caches. Otherwise, use a
422 * slab created with SLAB_DMA.
423 *
424 * Also it is possible to set different flags by OR'ing
425 * in one or more of the following additional @flags:
426 *
427 * %__GFP_COLD - Request cache-cold pages instead of
428 * trying to return cache-warm pages.
429 *
430 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
431 *
432 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
433 * (think twice before using).
434 *
435 * %__GFP_NORETRY - If memory is not immediately available,
436 * then give up at once.
437 *
438 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
439 *
440 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
441 *
442 * There are other flags available as well, but these are not intended
443 * for general use, and so are not documented here. For a full list of
444 * potential flags, always refer to linux/gfp.h.
f1b6eb6e
CL
445 */
446static __always_inline void *kmalloc(size_t size, gfp_t flags)
447{
448 if (__builtin_constant_p(size)) {
449 if (size > KMALLOC_MAX_CACHE_SIZE)
450 return kmalloc_large(size, flags);
451#ifndef CONFIG_SLOB
452 if (!(flags & GFP_DMA)) {
453 int index = kmalloc_index(size);
454
455 if (!index)
456 return ZERO_SIZE_PTR;
457
458 return kmem_cache_alloc_trace(kmalloc_caches[index],
459 flags, size);
460 }
461#endif
462 }
463 return __kmalloc(size, flags);
464}
465
ce6a5026
CL
466/*
467 * Determine size used for the nth kmalloc cache.
468 * return size or 0 if a kmalloc cache for that
469 * size does not exist
470 */
471static __always_inline int kmalloc_size(int n)
472{
069e2b35 473#ifndef CONFIG_SLOB
ce6a5026
CL
474 if (n > 2)
475 return 1 << n;
476
477 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
478 return 96;
479
480 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
481 return 192;
069e2b35 482#endif
ce6a5026
CL
483 return 0;
484}
ce6a5026 485
f1b6eb6e
CL
486static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
487{
488#ifndef CONFIG_SLOB
489 if (__builtin_constant_p(size) &&
23774a2f 490 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
f1b6eb6e
CL
491 int i = kmalloc_index(size);
492
493 if (!i)
494 return ZERO_SIZE_PTR;
495
496 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
497 flags, node, size);
498 }
499#endif
500 return __kmalloc_node(size, flags, node);
501}
502
f7ce3190
VD
503struct memcg_cache_array {
504 struct rcu_head rcu;
505 struct kmem_cache *entries[0];
506};
507
ba6c496e
GC
508/*
509 * This is the main placeholder for memcg-related information in kmem caches.
ba6c496e
GC
510 * Both the root cache and the child caches will have it. For the root cache,
511 * this will hold a dynamically allocated array large enough to hold
f8570263
VD
512 * information about the currently limited memcgs in the system. To allow the
513 * array to be accessed without taking any locks, on relocation we free the old
514 * version only after a grace period.
ba6c496e
GC
515 *
516 * Child caches will hold extra metadata needed for its operation. Fields are:
517 *
518 * @memcg: pointer to the memcg this cache belongs to
2633d7a0 519 * @root_cache: pointer to the global, root cache, this cache was derived from
426589f5
VD
520 *
521 * Both root and child caches of the same kind are linked into a list chained
522 * through @list.
ba6c496e
GC
523 */
524struct memcg_cache_params {
525 bool is_root_cache;
426589f5 526 struct list_head list;
ba6c496e 527 union {
f7ce3190 528 struct memcg_cache_array __rcu *memcg_caches;
2633d7a0
GC
529 struct {
530 struct mem_cgroup *memcg;
2633d7a0
GC
531 struct kmem_cache *root_cache;
532 };
ba6c496e
GC
533 };
534};
535
2633d7a0
GC
536int memcg_update_all_caches(int num_memcgs);
537
e7efa615
MO
538/**
539 * kmalloc_array - allocate memory for an array.
540 * @n: number of elements.
541 * @size: element size.
542 * @flags: the type of memory to allocate (see kmalloc).
800590f5 543 */
a8203725 544static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
1da177e4 545{
a3860c1c 546 if (size != 0 && n > SIZE_MAX / size)
6193a2ff 547 return NULL;
a8203725
XW
548 return __kmalloc(n * size, flags);
549}
550
551/**
552 * kcalloc - allocate memory for an array. The memory is set to zero.
553 * @n: number of elements.
554 * @size: element size.
555 * @flags: the type of memory to allocate (see kmalloc).
556 */
557static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
558{
559 return kmalloc_array(n, size, flags | __GFP_ZERO);
1da177e4
LT
560}
561
1d2c8eea
CH
562/*
563 * kmalloc_track_caller is a special version of kmalloc that records the
564 * calling function of the routine calling it for slab leak tracking instead
565 * of just the calling function (confusing, eh?).
566 * It's useful when the call to kmalloc comes from a widely-used standard
567 * allocator where we care about the real place the memory allocation
568 * request comes from.
569 */
ce71e27c 570extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
1d2c8eea 571#define kmalloc_track_caller(size, flags) \
ce71e27c 572 __kmalloc_track_caller(size, flags, _RET_IP_)
1da177e4 573
97e2bde4 574#ifdef CONFIG_NUMA
ce71e27c 575extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
8b98c169
CH
576#define kmalloc_node_track_caller(size, flags, node) \
577 __kmalloc_node_track_caller(size, flags, node, \
ce71e27c 578 _RET_IP_)
2e892f43 579
8b98c169 580#else /* CONFIG_NUMA */
8b98c169
CH
581
582#define kmalloc_node_track_caller(size, flags, node) \
583 kmalloc_track_caller(size, flags)
97e2bde4 584
dfcd3610 585#endif /* CONFIG_NUMA */
10cef602 586
81cda662
CL
587/*
588 * Shortcuts
589 */
590static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
591{
592 return kmem_cache_alloc(k, flags | __GFP_ZERO);
593}
594
595/**
596 * kzalloc - allocate memory. The memory is set to zero.
597 * @size: how many bytes of memory are required.
598 * @flags: the type of memory to allocate (see kmalloc).
599 */
600static inline void *kzalloc(size_t size, gfp_t flags)
601{
602 return kmalloc(size, flags | __GFP_ZERO);
603}
604
979b0fea
JL
605/**
606 * kzalloc_node - allocate zeroed memory from a particular memory node.
607 * @size: how many bytes of memory are required.
608 * @flags: the type of memory to allocate (see kmalloc).
609 * @node: memory node from which to allocate
610 */
611static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
612{
613 return kmalloc_node(size, flags | __GFP_ZERO, node);
614}
615
07f361b2 616unsigned int kmem_cache_size(struct kmem_cache *s);
7e85ee0c
PE
617void __init kmem_cache_init_late(void);
618
1da177e4 619#endif /* _LINUX_SLAB_H */