]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - include/linux/slab.h
kasan: modify kmalloc_large_oob_right(), add kmalloc_pagealloc_oob_right()
[mirror_ubuntu-bionic-kernel.git] / include / linux / slab.h
CommitLineData
1da177e4 1/*
2e892f43
CL
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
cde53535 4 * (C) SGI 2006, Christoph Lameter
2e892f43
CL
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
f1b6eb6e
CL
7 * (C) Linux Foundation 2008-2013
8 * Unified interface for all slab allocators
1da177e4
LT
9 */
10
11#ifndef _LINUX_SLAB_H
12#define _LINUX_SLAB_H
13
1b1cec4b 14#include <linux/gfp.h>
1b1cec4b 15#include <linux/types.h>
1f458cbf
GC
16#include <linux/workqueue.h>
17
1da177e4 18
2e892f43
CL
19/*
20 * Flags to pass to kmem_cache_create().
124dee09 21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
1da177e4 22 */
becfda68 23#define SLAB_CONSISTENCY_CHECKS 0x00000100UL /* DEBUG: Perform (expensive) checks on alloc/free */
55935a34
CL
24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
2e892f43 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
2e892f43 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
2e892f43 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
d7de4c1d
PZ
30/*
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32 *
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
37 *
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
41 *
42 * rcu_read_lock()
43 * again:
44 * obj = lockless_lookup(key);
45 * if (obj) {
46 * if (!try_get_ref(obj)) // might fail for free objects
47 * goto again;
48 *
49 * if (obj->key != key) { // not the object we expected
50 * put_ref(obj);
51 * goto again;
52 * }
53 * }
54 * rcu_read_unlock();
55 *
68126702
JK
56 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
61 *
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
d7de4c1d 64 */
2e892f43 65#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
101a5001 66#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
81819f0f 67#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
1da177e4 68
30327acf
TG
69/* Flag to prevent checks on free */
70#ifdef CONFIG_DEBUG_OBJECTS
71# define SLAB_DEBUG_OBJECTS 0x00400000UL
72#else
73# define SLAB_DEBUG_OBJECTS 0x00000000UL
74#endif
75
d5cff635
CM
76#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
77
2dff4405
VN
78/* Don't track use of uninitialized memory */
79#ifdef CONFIG_KMEMCHECK
80# define SLAB_NOTRACK 0x01000000UL
81#else
82# define SLAB_NOTRACK 0x00000000UL
83#endif
4c13dd3b
DM
84#ifdef CONFIG_FAILSLAB
85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
86#else
87# define SLAB_FAILSLAB 0x00000000UL
88#endif
127424c8 89#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
230e9fc2
VD
90# define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */
91#else
92# define SLAB_ACCOUNT 0x00000000UL
93#endif
2dff4405 94
e12ba74d
MG
95/* The following flags affect the page allocator grouping pages by mobility */
96#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
97#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
6cb8f913
CL
98/*
99 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
100 *
101 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
102 *
103 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
104 * Both make kfree a no-op.
105 */
106#define ZERO_SIZE_PTR ((void *)16)
107
1d4ec7b1 108#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
6cb8f913
CL
109 (unsigned long)ZERO_SIZE_PTR)
110
f1b6eb6e 111#include <linux/kmemleak.h>
0316bec2 112#include <linux/kasan.h>
3b0efdfa 113
2633d7a0 114struct mem_cgroup;
2e892f43
CL
115/*
116 * struct kmem_cache related prototypes
117 */
118void __init kmem_cache_init(void);
fda90124 119bool slab_is_available(void);
1da177e4 120
2e892f43 121struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
ebe29738 122 unsigned long,
51cc5068 123 void (*)(void *));
2e892f43
CL
124void kmem_cache_destroy(struct kmem_cache *);
125int kmem_cache_shrink(struct kmem_cache *);
2a4db7eb
VD
126
127void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
128void memcg_deactivate_kmem_caches(struct mem_cgroup *);
129void memcg_destroy_kmem_caches(struct mem_cgroup *);
2e892f43 130
0a31bd5f
CL
131/*
132 * Please use this macro to create slab caches. Simply specify the
133 * name of the structure and maybe some flags that are listed above.
134 *
135 * The alignment of the struct determines object alignment. If you
136 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
137 * then the objects will be properly aligned in SMP configurations.
138 */
139#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
140 sizeof(struct __struct), __alignof__(struct __struct),\
20c2df83 141 (__flags), NULL)
0a31bd5f 142
34504667
CL
143/*
144 * Common kmalloc functions provided by all allocators
145 */
146void * __must_check __krealloc(const void *, size_t, gfp_t);
147void * __must_check krealloc(const void *, size_t, gfp_t);
148void kfree(const void *);
149void kzfree(const void *);
150size_t ksize(const void *);
151
c601fd69
CL
152/*
153 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
154 * alignment larger than the alignment of a 64-bit integer.
155 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
156 */
157#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
158#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
159#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
160#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
161#else
162#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
163#endif
164
94a58c36
RV
165/*
166 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
167 * Intended for arches that get misalignment faults even for 64 bit integer
168 * aligned buffers.
169 */
170#ifndef ARCH_SLAB_MINALIGN
171#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
172#endif
173
174/*
175 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
176 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
177 * aligned pointers.
178 */
179#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
180#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
181#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
182
0aa817f0 183/*
95a05b42
CL
184 * Kmalloc array related definitions
185 */
186
187#ifdef CONFIG_SLAB
188/*
189 * The largest kmalloc size supported by the SLAB allocators is
0aa817f0
CL
190 * 32 megabyte (2^25) or the maximum allocatable page order if that is
191 * less than 32 MB.
192 *
193 * WARNING: Its not easy to increase this value since the allocators have
194 * to do various tricks to work around compiler limitations in order to
195 * ensure proper constant folding.
196 */
debee076
CL
197#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
198 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
95a05b42 199#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
c601fd69 200#ifndef KMALLOC_SHIFT_LOW
95a05b42 201#define KMALLOC_SHIFT_LOW 5
c601fd69 202#endif
069e2b35
CL
203#endif
204
205#ifdef CONFIG_SLUB
95a05b42 206/*
433a91ff
DH
207 * SLUB directly allocates requests fitting in to an order-1 page
208 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
95a05b42
CL
209 */
210#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
211#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
c601fd69 212#ifndef KMALLOC_SHIFT_LOW
95a05b42
CL
213#define KMALLOC_SHIFT_LOW 3
214#endif
c601fd69 215#endif
0aa817f0 216
069e2b35
CL
217#ifdef CONFIG_SLOB
218/*
433a91ff 219 * SLOB passes all requests larger than one page to the page allocator.
069e2b35
CL
220 * No kmalloc array is necessary since objects of different sizes can
221 * be allocated from the same page.
222 */
069e2b35 223#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
433a91ff 224#define KMALLOC_SHIFT_MAX 30
069e2b35
CL
225#ifndef KMALLOC_SHIFT_LOW
226#define KMALLOC_SHIFT_LOW 3
227#endif
228#endif
229
95a05b42
CL
230/* Maximum allocatable size */
231#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
232/* Maximum size for which we actually use a slab cache */
233#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
234/* Maximum order allocatable via the slab allocagtor */
235#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
0aa817f0 236
ce6a5026
CL
237/*
238 * Kmalloc subsystem.
239 */
c601fd69 240#ifndef KMALLOC_MIN_SIZE
95a05b42 241#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
ce6a5026
CL
242#endif
243
24f870d8
JK
244/*
245 * This restriction comes from byte sized index implementation.
246 * Page size is normally 2^12 bytes and, in this case, if we want to use
247 * byte sized index which can represent 2^8 entries, the size of the object
248 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
249 * If minimum size of kmalloc is less than 16, we use it as minimum object
250 * size and give up to use byte sized index.
251 */
252#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
253 (KMALLOC_MIN_SIZE) : 16)
254
069e2b35 255#ifndef CONFIG_SLOB
9425c58e
CL
256extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
257#ifdef CONFIG_ZONE_DMA
258extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
259#endif
260
ce6a5026
CL
261/*
262 * Figure out which kmalloc slab an allocation of a certain size
263 * belongs to.
264 * 0 = zero alloc
265 * 1 = 65 .. 96 bytes
1ed58b60
RV
266 * 2 = 129 .. 192 bytes
267 * n = 2^(n-1)+1 .. 2^n
ce6a5026
CL
268 */
269static __always_inline int kmalloc_index(size_t size)
270{
271 if (!size)
272 return 0;
273
274 if (size <= KMALLOC_MIN_SIZE)
275 return KMALLOC_SHIFT_LOW;
276
277 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
278 return 1;
279 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
280 return 2;
281 if (size <= 8) return 3;
282 if (size <= 16) return 4;
283 if (size <= 32) return 5;
284 if (size <= 64) return 6;
285 if (size <= 128) return 7;
286 if (size <= 256) return 8;
287 if (size <= 512) return 9;
288 if (size <= 1024) return 10;
289 if (size <= 2 * 1024) return 11;
290 if (size <= 4 * 1024) return 12;
291 if (size <= 8 * 1024) return 13;
292 if (size <= 16 * 1024) return 14;
293 if (size <= 32 * 1024) return 15;
294 if (size <= 64 * 1024) return 16;
295 if (size <= 128 * 1024) return 17;
296 if (size <= 256 * 1024) return 18;
297 if (size <= 512 * 1024) return 19;
298 if (size <= 1024 * 1024) return 20;
299 if (size <= 2 * 1024 * 1024) return 21;
300 if (size <= 4 * 1024 * 1024) return 22;
301 if (size <= 8 * 1024 * 1024) return 23;
302 if (size <= 16 * 1024 * 1024) return 24;
303 if (size <= 32 * 1024 * 1024) return 25;
304 if (size <= 64 * 1024 * 1024) return 26;
305 BUG();
306
307 /* Will never be reached. Needed because the compiler may complain */
308 return -1;
309}
069e2b35 310#endif /* !CONFIG_SLOB */
ce6a5026 311
94a58c36
RV
312void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment;
313void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment;
2a4db7eb 314void kmem_cache_free(struct kmem_cache *, void *);
f1b6eb6e 315
484748f0 316/*
9f706d68 317 * Bulk allocation and freeing operations. These are accelerated in an
484748f0
CL
318 * allocator specific way to avoid taking locks repeatedly or building
319 * metadata structures unnecessarily.
320 *
321 * Note that interrupts must be enabled when calling these functions.
322 */
323void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 324int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 325
ca257195
JDB
326/*
327 * Caller must not use kfree_bulk() on memory not originally allocated
328 * by kmalloc(), because the SLOB allocator cannot handle this.
329 */
330static __always_inline void kfree_bulk(size_t size, void **p)
331{
332 kmem_cache_free_bulk(NULL, size, p);
333}
334
f1b6eb6e 335#ifdef CONFIG_NUMA
94a58c36
RV
336void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment;
337void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment;
f1b6eb6e
CL
338#else
339static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
340{
341 return __kmalloc(size, flags);
342}
343
344static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
345{
346 return kmem_cache_alloc(s, flags);
347}
348#endif
349
350#ifdef CONFIG_TRACING
94a58c36 351extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment;
f1b6eb6e
CL
352
353#ifdef CONFIG_NUMA
354extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
355 gfp_t gfpflags,
94a58c36 356 int node, size_t size) __assume_slab_alignment;
f1b6eb6e
CL
357#else
358static __always_inline void *
359kmem_cache_alloc_node_trace(struct kmem_cache *s,
360 gfp_t gfpflags,
361 int node, size_t size)
362{
363 return kmem_cache_alloc_trace(s, gfpflags, size);
364}
365#endif /* CONFIG_NUMA */
366
367#else /* CONFIG_TRACING */
368static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
369 gfp_t flags, size_t size)
370{
0316bec2
AR
371 void *ret = kmem_cache_alloc(s, flags);
372
373 kasan_kmalloc(s, ret, size);
374 return ret;
f1b6eb6e
CL
375}
376
377static __always_inline void *
378kmem_cache_alloc_node_trace(struct kmem_cache *s,
379 gfp_t gfpflags,
380 int node, size_t size)
381{
0316bec2
AR
382 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
383
384 kasan_kmalloc(s, ret, size);
385 return ret;
f1b6eb6e
CL
386}
387#endif /* CONFIG_TRACING */
388
94a58c36 389extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
f1b6eb6e
CL
390
391#ifdef CONFIG_TRACING
94a58c36 392extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
f1b6eb6e
CL
393#else
394static __always_inline void *
395kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
396{
397 return kmalloc_order(size, flags, order);
398}
ce6a5026
CL
399#endif
400
f1b6eb6e
CL
401static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
402{
403 unsigned int order = get_order(size);
404 return kmalloc_order_trace(size, flags, order);
405}
406
407/**
408 * kmalloc - allocate memory
409 * @size: how many bytes of memory are required.
7e3528c3 410 * @flags: the type of memory to allocate.
f1b6eb6e
CL
411 *
412 * kmalloc is the normal method of allocating memory
413 * for objects smaller than page size in the kernel.
7e3528c3
RD
414 *
415 * The @flags argument may be one of:
416 *
417 * %GFP_USER - Allocate memory on behalf of user. May sleep.
418 *
419 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
420 *
421 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
422 * For example, use this inside interrupt handlers.
423 *
424 * %GFP_HIGHUSER - Allocate pages from high memory.
425 *
426 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
427 *
428 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
429 *
430 * %GFP_NOWAIT - Allocation will not sleep.
431 *
e97ca8e5 432 * %__GFP_THISNODE - Allocate node-local memory only.
7e3528c3
RD
433 *
434 * %GFP_DMA - Allocation suitable for DMA.
435 * Should only be used for kmalloc() caches. Otherwise, use a
436 * slab created with SLAB_DMA.
437 *
438 * Also it is possible to set different flags by OR'ing
439 * in one or more of the following additional @flags:
440 *
441 * %__GFP_COLD - Request cache-cold pages instead of
442 * trying to return cache-warm pages.
443 *
444 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
445 *
446 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
447 * (think twice before using).
448 *
449 * %__GFP_NORETRY - If memory is not immediately available,
450 * then give up at once.
451 *
452 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
453 *
454 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
455 *
456 * There are other flags available as well, but these are not intended
457 * for general use, and so are not documented here. For a full list of
458 * potential flags, always refer to linux/gfp.h.
f1b6eb6e
CL
459 */
460static __always_inline void *kmalloc(size_t size, gfp_t flags)
461{
462 if (__builtin_constant_p(size)) {
463 if (size > KMALLOC_MAX_CACHE_SIZE)
464 return kmalloc_large(size, flags);
465#ifndef CONFIG_SLOB
466 if (!(flags & GFP_DMA)) {
467 int index = kmalloc_index(size);
468
469 if (!index)
470 return ZERO_SIZE_PTR;
471
472 return kmem_cache_alloc_trace(kmalloc_caches[index],
473 flags, size);
474 }
475#endif
476 }
477 return __kmalloc(size, flags);
478}
479
ce6a5026
CL
480/*
481 * Determine size used for the nth kmalloc cache.
482 * return size or 0 if a kmalloc cache for that
483 * size does not exist
484 */
485static __always_inline int kmalloc_size(int n)
486{
069e2b35 487#ifndef CONFIG_SLOB
ce6a5026
CL
488 if (n > 2)
489 return 1 << n;
490
491 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
492 return 96;
493
494 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
495 return 192;
069e2b35 496#endif
ce6a5026
CL
497 return 0;
498}
ce6a5026 499
f1b6eb6e
CL
500static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
501{
502#ifndef CONFIG_SLOB
503 if (__builtin_constant_p(size) &&
23774a2f 504 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
f1b6eb6e
CL
505 int i = kmalloc_index(size);
506
507 if (!i)
508 return ZERO_SIZE_PTR;
509
510 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
511 flags, node, size);
512 }
513#endif
514 return __kmalloc_node(size, flags, node);
515}
516
f7ce3190
VD
517struct memcg_cache_array {
518 struct rcu_head rcu;
519 struct kmem_cache *entries[0];
520};
521
ba6c496e
GC
522/*
523 * This is the main placeholder for memcg-related information in kmem caches.
ba6c496e
GC
524 * Both the root cache and the child caches will have it. For the root cache,
525 * this will hold a dynamically allocated array large enough to hold
f8570263
VD
526 * information about the currently limited memcgs in the system. To allow the
527 * array to be accessed without taking any locks, on relocation we free the old
528 * version only after a grace period.
ba6c496e
GC
529 *
530 * Child caches will hold extra metadata needed for its operation. Fields are:
531 *
532 * @memcg: pointer to the memcg this cache belongs to
2633d7a0 533 * @root_cache: pointer to the global, root cache, this cache was derived from
426589f5
VD
534 *
535 * Both root and child caches of the same kind are linked into a list chained
536 * through @list.
ba6c496e
GC
537 */
538struct memcg_cache_params {
539 bool is_root_cache;
426589f5 540 struct list_head list;
ba6c496e 541 union {
f7ce3190 542 struct memcg_cache_array __rcu *memcg_caches;
2633d7a0
GC
543 struct {
544 struct mem_cgroup *memcg;
2633d7a0
GC
545 struct kmem_cache *root_cache;
546 };
ba6c496e
GC
547 };
548};
549
2633d7a0
GC
550int memcg_update_all_caches(int num_memcgs);
551
e7efa615
MO
552/**
553 * kmalloc_array - allocate memory for an array.
554 * @n: number of elements.
555 * @size: element size.
556 * @flags: the type of memory to allocate (see kmalloc).
800590f5 557 */
a8203725 558static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
1da177e4 559{
a3860c1c 560 if (size != 0 && n > SIZE_MAX / size)
6193a2ff 561 return NULL;
a8203725
XW
562 return __kmalloc(n * size, flags);
563}
564
565/**
566 * kcalloc - allocate memory for an array. The memory is set to zero.
567 * @n: number of elements.
568 * @size: element size.
569 * @flags: the type of memory to allocate (see kmalloc).
570 */
571static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
572{
573 return kmalloc_array(n, size, flags | __GFP_ZERO);
1da177e4
LT
574}
575
1d2c8eea
CH
576/*
577 * kmalloc_track_caller is a special version of kmalloc that records the
578 * calling function of the routine calling it for slab leak tracking instead
579 * of just the calling function (confusing, eh?).
580 * It's useful when the call to kmalloc comes from a widely-used standard
581 * allocator where we care about the real place the memory allocation
582 * request comes from.
583 */
ce71e27c 584extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
1d2c8eea 585#define kmalloc_track_caller(size, flags) \
ce71e27c 586 __kmalloc_track_caller(size, flags, _RET_IP_)
1da177e4 587
97e2bde4 588#ifdef CONFIG_NUMA
ce71e27c 589extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
8b98c169
CH
590#define kmalloc_node_track_caller(size, flags, node) \
591 __kmalloc_node_track_caller(size, flags, node, \
ce71e27c 592 _RET_IP_)
2e892f43 593
8b98c169 594#else /* CONFIG_NUMA */
8b98c169
CH
595
596#define kmalloc_node_track_caller(size, flags, node) \
597 kmalloc_track_caller(size, flags)
97e2bde4 598
dfcd3610 599#endif /* CONFIG_NUMA */
10cef602 600
81cda662
CL
601/*
602 * Shortcuts
603 */
604static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
605{
606 return kmem_cache_alloc(k, flags | __GFP_ZERO);
607}
608
609/**
610 * kzalloc - allocate memory. The memory is set to zero.
611 * @size: how many bytes of memory are required.
612 * @flags: the type of memory to allocate (see kmalloc).
613 */
614static inline void *kzalloc(size_t size, gfp_t flags)
615{
616 return kmalloc(size, flags | __GFP_ZERO);
617}
618
979b0fea
JL
619/**
620 * kzalloc_node - allocate zeroed memory from a particular memory node.
621 * @size: how many bytes of memory are required.
622 * @flags: the type of memory to allocate (see kmalloc).
623 * @node: memory node from which to allocate
624 */
625static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
626{
627 return kmalloc_node(size, flags | __GFP_ZERO, node);
628}
629
07f361b2 630unsigned int kmem_cache_size(struct kmem_cache *s);
7e85ee0c
PE
631void __init kmem_cache_init_late(void);
632
1da177e4 633#endif /* _LINUX_SLAB_H */